WO2003084059A1 - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit Download PDF

Info

Publication number
WO2003084059A1
WO2003084059A1 PCT/JP2003/003343 JP0303343W WO03084059A1 WO 2003084059 A1 WO2003084059 A1 WO 2003084059A1 JP 0303343 W JP0303343 W JP 0303343W WO 03084059 A1 WO03084059 A1 WO 03084059A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
semiconductor integrated
integrated circuit
circuits
amplifier
Prior art date
Application number
PCT/JP2003/003343
Other languages
French (fr)
Japanese (ja)
Inventor
Tatsuo Tsujita
Original Assignee
Thine Electronics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thine Electronics, Inc. filed Critical Thine Electronics, Inc.
Priority to JP2003581348A priority Critical patent/JPWO2003084059A1/en
Publication of WO2003084059A1 publication Critical patent/WO2003084059A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G5/00Tone control or bandwidth control in amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/72Gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7209Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched from a first band to a second band
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/72Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
    • H03F2203/7236Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal the gated amplifier being switched on or off by putting into parallel or not, by choosing between amplifiers by (a ) switch(es)

Definitions

  • the present invention generally relates to a semiconductor integrated circuit including an analog amplifier circuit, and more particularly to an image placed before an image ADC (Analog to Digital Converter) for converting an analog image signal into a digital image signal.
  • the present invention relates to a semiconductor integrated circuit including an amplifier circuit. Background art
  • an amplifier circuit with a variable amplification factor is inserted before the image ADC that converts an analog image signal into a digital image signal so that the level of the analog image signal is optimized for ADC. Adjustments are being made.
  • an amplifier circuit with a variable amplification factor is placed before the image ADC. And an LPF with a variable cutoff frequency is inserted ( or an amplifier circuit with a variable frequency band and variable amplification factor is used).
  • FIGS. 4A and 4B are circuit diagrams showing a single-stage differential amplifier circuit using CMOS transistors.
  • This differential amplifier circuit is configured by using a differential pair of P-channel transistors, as shown in FIG. 4A.
  • Figure 4B shows this symbolized.
  • the transconductance g m of the P-channel transistors forming the differential pair Is expressed by the following equation using a constant K P.
  • the series resistance R or the load capacitance CL is made variable, or as shown in Fig. 4A.
  • a bias current I B Ru it is considered to be variable.
  • bias current I when the variable a B transconductance decrease the bias current I B to narrow to order the frequency band g m. And Reduces the, it is possible to reduce the current consumed in the amplifier circuit, however, when the bias current I B in the variable, the current value flowing constantly in the individual transistors changes, amplifier circuit operates best Electric The pressure range changes greatly.
  • FIG. 6A and 6B are circuit diagrams showing a two-stage amplification circuit using CMOS transistors. As shown in FIG. 6A, in this amplifier circuit, the first stage is a differential amplifier circuit, and the second stage is a common-source amplifier circuit. Figure 6B shows this symbolized.
  • the frequency band of this amplifier circuit is g m , using the capacitance C c for phase compensation. It is represented by Ri by the ZC c.
  • FIG. 7 shows an example in which the two-stage amplifier circuit shown in FIGS. 6A and 6B is used to configure an amplifier circuit having a variable cutoff frequency and amplification factor.
  • an arbitrary gain can be obtained by adding the resistors R11 and R12 as a negative feedback circuit.
  • the series resistance R and load capacitance CJ make up a CR-type LPF.
  • the series resistance R or the load capacitance C By varying the series resistance R or the load capacitance C to vary the cutoff frequency of the LPF, the frequency band of the wide circuit can be changed.
  • the bias current I B to the variable may be changed frequency band of the amplifier circuit.
  • bias current I B in order to narrow the frequency band conductance g m.
  • the current consumed in the wide circuit can be reduced.
  • bias current I B If this is changed, the current value that constantly flows through each transistor changes, and the voltage range in which the amplifier circuit operates optimally changes greatly. Disclosure of the invention
  • the present invention provides a semiconductor integrated circuit including an amplifier circuit inserted in a stage preceding an image ADC, without adding a passive element such as a resistor / capacitor.
  • the purpose is to make the rate variable and to reduce the power consumption of the amplifier circuit when narrowing the frequency band.
  • a semiconductor integrated circuit includes a plurality of amplifier circuits whose inputs and outputs are connected in parallel, and a plurality of amplifier circuits based on a control signal. And a selection circuit for activating the selected amplification circuit.
  • the semiconductor integrated circuit according to the second embodiment of the present invention includes a plurality of first amplifier circuits whose inputs and outputs are connected in parallel, and a second amplifier which amplifies output signals of the plurality of first amplifier circuits. And a selection circuit that activates an amplification circuit selected from the plurality of first amplification circuits according to a control signal.
  • a plurality of differential amplifier circuits are arranged in parallel, and the bias supplied to each differential amplifier circuit is switched by the selection circuit, so that a passive element such as a resistance capacitor is not added.
  • the frequency band or the amplification factor of the amplifier circuit can be made variable. Further, when the frequency band is narrowed, the power consumed in the amplifier circuit can be reduced.
  • FIG. 1 is a circuit diagram showing a configuration of a semiconductor integrated circuit according to the first embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration of a semiconductor integrated circuit according to the second embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing a configuration example of the variable resistor shown in FIG.
  • FIGS. 4A and 4B are circuit diagrams showing a single-stage differential amplifier circuit using CMOS transistors.
  • FIG. 5 is a circuit diagram showing a conventional amplifier circuit whose frequency band is variable.
  • FIGS. 6A and 6B are circuit diagrams showing a two-stage amplification circuit using CMOS transistors.
  • FIG. 7 is a circuit diagram showing a conventional amplifier circuit in which a frequency band and a bandwidth ratio are variable.
  • FIG. 1 is a circuit diagram showing a configuration of a semiconductor integrated circuit according to the first embodiment of the present invention.
  • the frequency band of the amplifier circuit included in the semiconductor integrated circuit is variable.
  • the semiconductor integrated circuit includes a variable band amplifier circuit 1, a load capacitance ⁇ , a control circuit 2, and an image ADC 3.
  • the variable band amplifier circuit 1 is composed of a plurality (N) of differential amplifier circuits A 1, A 2,..., AN connected in parallel, and these differential amplifier circuits A 1, A 2, ..., and a plurality of switches SW 1, SW2, which are connected to the aN, ..., and SWN, and load capacity flicking, and a bias voltage source for generating a bias potential V B.
  • the bias voltage source is the differential amplifier circuit A1, A2, ..., A Supply bias potential V B to selected ones of N.
  • the load capacitance C doctor is mainly a differential amplifier circuit A l, A 2, ⁇ ' , a sum of the output capacity of the AN, the load capacitance C 2 is connected to the output of the variable bandpass amplifier 1 This is the sum of the input capacitance and wiring capacitance of the circuit to be used.
  • the switches SW 1, SW 2,..., SWN are connected to the bias potential V B generated by the bias voltage source and the ground potential in accordance with the control signals C l, C 2,. Is connected to each differential width circuit.
  • a selected one of the differential width circuits A 1, A 2,..., AN is activated.
  • Current output from the activated differential amplifier circuit are added, c output voltage Output voltage at the output of the variable bandpass amplifier 1 is generated, is input to the image for AD C 3.
  • variable bandpass amplifier 1 N pieces of differential amplifier A 1, A 2, ⁇ ⁇ ⁇ , when the number of differential amplifier circuits operating within the AN and i pieces, the mutual conductance g m Is represented by the following equation.
  • g m Represents the transconductance of the entire differential amplifier circuit when all the differential amplifier circuits are operating.
  • the frequency band determined by the transconductance g m and the load capacitance CL i + CL 2 changes. Its frequency band is proportional to g m / ( CL 1 + CL 2 ).
  • the gain is almost constant because negative feedback is applied to each differential amplifier circuit.
  • the bias potential V B is set so that a bias current suitable for each transistor of the differential amplifier circuits A 1, A 2,..., AN flows, the switches SW 1, SW 2,. ⁇ Even if the bias current is switched on or off by SWN, the operating differential amplifier circuit always Operated by bias current. Also, the operating differential amplifier circuit is not affected by the non-operational differential amplifier circuit. Furthermore, since the current consumed in each of the differential amplifier circuits A1, A2,..., AN is proportional to the frequency band, when the frequency band of the differential amplifier circuit is narrowed, the current consumption is reduced. Reduced. In addition, since it is not necessary to add a passive element occupying a large area on the semiconductor integrated circuit such as a resistor and a capacitor to make the frequency band variable, the chip area can be reduced.
  • FIG. 2 is a circuit diagram showing a configuration of a semiconductor integrated circuit according to the second embodiment of the present invention.
  • the amplifier circuit included in the semiconductor integrated circuit according to the present embodiment has a variable frequency band and a wide bandwidth ratio.
  • the semiconductor integrated circuit includes a variable amplification factor variable band amplification circuit 4, a control circuit 2, and an image ADC 3.
  • Variable amplification factor The variable band amplification circuit 4 includes a plurality (N) of differential amplification circuits A1, A2,..., AN connected in parallel, and these differential amplification circuits A1, A2,. ⁇ ⁇ Amplifies the output signals of the multiple switches SW1, SW2, ..., SWN connected to AN, 2,-', and AN, and the differential amplifier circuits A1, A2, ..., AN And a common-source amplifier circuit B 1.
  • the variable ⁇ rate variable bandwidth amplifier circuit 4 includes a variable resistor R 1 ⁇ Pi R 2 to form a negative feedback circuit, and a bias voltage source for generating a bias potential V B.
  • the variable resistor can be composed of, for example, a plurality of resistors R A , R B , R c and a plurality of switches SW B , SW C as shown in FIG. That is, the total resistance value is changed by switching the number of resistors connected in parallel with the switch.
  • the bias voltage source supplies the bias potential V B to a selected one of the differential amplifier circuits A 1, A 2,. B 1 Supplying a bias potential V B.
  • the switches SW1, SW2,..., SWN are connected to a bias voltage source according to control signals C1, C2,. There connecting one of the bias potential V B and the ground potential generated in each of the differential amplifier circuit. As a result, a selected one of the differential amplifier circuits A1, A2,..., AN is activated. The current output from the activated differential amplifier circuit is added, and an output voltage is generated. This output voltage is input to the common source amplifier circuit B1.
  • variable amplification factor variable band amplifier circuit 4 assuming that the number of operating differential amplifier circuits among the N differential amplifier circuits A1, A2,..., AN is i, the mutual conductance g m is given by the following equation.
  • g m Represents the transconductance of the entire differential amplifier circuit when all the differential amplifier circuits are operating, and g ml represents the transconductance of the common-source amplifier circuit.
  • the transconductance g m of the variable amplification factor variable bandwidth amplifier circuit 4 is changed, so that the frequency band is determined by the capacitance C c of the transconductance g m and the phase compensation capacitor is changed.
  • the amplification factor is determined by the values of the variable resistors R1 and R2 of the negative feedback circuit. These values are controlled by the control circuit 2.
  • the band setting is applied to the common-source amplifier B1 in the output stage.
  • the mutual conductance g ml of the output stage hardly affects the product of the frequency band and the gain (gain / bandwidth product).
  • the common-source amplifier circuit B1 can be omitted and the outputs of the differential amplifier circuits A1, A2,..., AN can be connected to the capacitive load.
  • the frequency band or the amplification factor of the amplifier circuit can be made variable without adding a passive element such as a resistor or a capacitor. As a result, it is possible to suppress an increase in the chip area and to increase the degree of integration of the semiconductor integrated circuit. Further, when the frequency band is narrowed, the power consumed in the amplifier circuit can be reduced.
  • the present invention can be used in an image device or a computer that transmits image data and audio data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

A semiconductor integrated circuit including an amplifier circuit inserted in a stage preceding an image ADC, wherein the frequency band or amplification factor of the amplifier circuit can be changed without additionally providing any passive elements, such as resistors, capacitors and the like, and wherein when the frequency band is narrowed, the power consumption of the amplifier circuit is reduced. This semiconductor integrated circuit includes a plurality of amplifiers (A1-AN) with their input and output terminals connected in parallel, and also includes selector circuits (SW1-SWN) for activating selected ones of the amplifiers in accordance with control signals.

Description

明 細 書 半導体集積回路 技術分野  Description Semiconductor integrated circuit technology
本発明は、 一般に、 アナログ増幅回路を含む半導体集積回路に関し、 特に、 アナログ画像信号をディジタル画像信号に変換する画像用 AD C (Analog to Digital Converter: アナログ/ディジタル変換回路) の 前段に置かれる画像用増幅回路を含む半導体集積回路に関する。 背景技術  BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to a semiconductor integrated circuit including an analog amplifier circuit, and more particularly to an image placed before an image ADC (Analog to Digital Converter) for converting an analog image signal into a digital image signal. The present invention relates to a semiconductor integrated circuit including an amplifier circuit. Background art
一般に、 アナログ画像信号をディジタル画像信号に変換する画像用 A DCの前段には、 増幅率が可変な増幅回路を挿入し、 アナログ画像信号 のレベルを AD Cにとつて最適なレベルとなるように調整することが行 われている。  In general, an amplifier circuit with a variable amplification factor is inserted before the image ADC that converts an analog image signal into a digital image signal so that the level of the analog image signal is optimized for ADC. Adjustments are being made.
また、 アナログ信号をディジタル信号に変換する際に、 サンプリング 周波数の半分よりも高い周波数を有するアナログ信号が ADCに入力さ れると、 折り返し雑音を生じさせてしまう。 従って、 アナログ信号から 不要な高周波成分を取り除くために、 AD Cの前段に L P F (ローパス フィルタ) を挿入する必要がある。 しかしながら、 アナログ画像信号と しては、 NT S Cテレビジョン信号のような周波数帯域の狭い信号から, UXG A (解像度 : 1 6 0 0本 X 1 2 00本) や QXGA (解像度 : 2 04 8本 X I 5 3 6本) といった広帯域の信号まで幅広く存在する。 そ のような周波数帯域の異なるアナログ画像信号に対応するためには、 L P Fのカツ トオフ周波数を可変にしなければならない。  In addition, when converting an analog signal to a digital signal, if an analog signal having a frequency higher than half the sampling frequency is input to the ADC, aliasing noise is generated. Therefore, it is necessary to insert an LPF (low-pass filter) before ADC in order to remove unnecessary high-frequency components from the analog signal. However, as analog image signals, UXG A (resolution: 1,600 lines x 1,200 lines) and QXGA (resolution: 2,048 lines) from narrow frequency band signals such as NTSC television signals XI 5 3 6). In order to cope with such analog image signals having different frequency bands, the cutoff frequency of LPF must be made variable.
以上のことから、 画像用 AD Cの前段には、 増幅率が可変な増幅回路 と、 カツ トオフ周波数が可変な L P Fとを挿入することが行われている ( あるいは、 周波数帯域及び増幅率が可変な増幅回路が用いられる。 From the above, an amplifier circuit with a variable amplification factor is placed before the image ADC. And an LPF with a variable cutoff frequency is inserted ( or an amplifier circuit with a variable frequency band and variable amplification factor is used).
まず、 カツ トオフ周波数が可変な L P Fと して動作する従来の増幅回 路の例について説明する。  First, an example of a conventional amplification circuit that operates as an LPF whose cutoff frequency is variable will be described.
図 4 A及び 4 Bは、 C M O S トランジスタを用いた 1段構成の差動增 幅回路を示す回路図である。 この差動増幅回路は、 図 4 Aに示すように. Pチャネルトランジスタの差動ペアを用いて構成されている。 図 4 Bは. これをシンボル化して表したものである。 ここで、 差動ペアを構成する Pチャネルトランジスタの相互コンダクタンス g m。は、 定数 K Pを用い て、 次式により表される。
Figure imgf000004_0001
FIGS. 4A and 4B are circuit diagrams showing a single-stage differential amplifier circuit using CMOS transistors. This differential amplifier circuit is configured by using a differential pair of P-channel transistors, as shown in FIG. 4A. Figure 4B shows this symbolized. Here, the transconductance g m of the P-channel transistors forming the differential pair. Is expressed by the following equation using a constant K P.
Figure imgf000004_0001
この差動増幅回路を用いて周波数帯域が可変な増幅回路を実現するた めには、 図 5に示すように、 直列抵抗 R又は負荷容量 C Lを可変にする か、 又は、 図 4 Aに示すバイアス電流 I Bを可変にすることが考えられ る。 In order to realize an amplifier circuit with a variable frequency band using this differential amplifier circuit, as shown in Fig. 5, the series resistance R or the load capacitance CL is made variable, or as shown in Fig. 4A. a bias current I B Ru it is considered to be variable.
しかしながら、 直列抵抗 R又は負荷容量 C Lを可変にする場合には、 半導体集積回路において比較的大きな面積を占める受動素子を追加する 必要があり、 チップ面積が増大してしまう という問題がある。 また、 周 波数帯域を狭くするために直列抵抗 Rや負荷容量 C Lの値を増加させて も、 増幅回路において消費される電流を減少させることはできない。 However, when the series resistance R or the load capacitance CL is made variable, it is necessary to add a passive element that occupies a relatively large area in the semiconductor integrated circuit, and there is a problem that the chip area increases. Further, even if the values of the series resistance R and the load capacitance CL are increased in order to narrow the frequency band, the current consumed in the amplifier circuit cannot be reduced.
—方、 バイアス電流 I Bを可変にする場合には、 周波数帯域を狭くす るためにバイアス電流 I Bを減少させて相互コンダクタンス g m。を小さ くすると、 増幅回路において消費される電流を減少させることができる しかしながら、 バイアス電流 I Bを可変にすると、 個々のトランジスタ に定常的に流れる電流値が変化するため、 増幅回路が最適に動作する電 圧範囲が大きく変化してしまう。 - How, bias current I when the variable a B, transconductance decrease the bias current I B to narrow to order the frequency band g m. And Reduces the, it is possible to reduce the current consumed in the amplifier circuit, however, when the bias current I B in the variable, the current value flowing constantly in the individual transistors changes, amplifier circuit operates best Electric The pressure range changes greatly.
次に、 周波数帯域及び増幅率が可変な従来の増幅回路の例について説 明する。  Next, an example of a conventional amplifier circuit in which the frequency band and the amplification factor are variable will be described.
図 6 A及び 6 Bは、 C M O S トランジスタを用いた 2段構成の増幅回 路を示す回路図である。 図 6 Aに示すように、 この増幅回路は、 第 1段 目が差動増幅回路になっており、 第 2段目がソース接地増幅回路になつ ている。 図 6 Bは、 これをシンボル化して表したものである。 この増幅 回路の周波数帯域は、 位相補償用の容量 C cを用いて、 g m。Z C cによ り表される。 6A and 6B are circuit diagrams showing a two-stage amplification circuit using CMOS transistors. As shown in FIG. 6A, in this amplifier circuit, the first stage is a differential amplifier circuit, and the second stage is a common-source amplifier circuit. Figure 6B shows this symbolized. The frequency band of this amplifier circuit is g m , using the capacitance C c for phase compensation. It is represented by Ri by the ZC c.
図 7は、 図 6 A及び 6 Bに示す 2段増幅回路を用いて、 カッ トオフ周 波数及び増幅率が可変な増幅回路を構成した例を示している。 図 7に示 すように、 抵抗 R 1 1及び R 1 2を負帰還回路として追加することによ り、 任意の増幅率を得ることができる。 また、 直列抵抗 R及び負荷容量 C Jこよ り、 C R型の L P Fを構成している。 直列抵抗 R又は負荷容量 C しを可変にして L P Fのカツ トオフ周波数を可変にすることにより、 增幅回路の周波数帯域を変更することができる。 あるいは、 バイアス電 流 I Bを可変にすること等により、 増幅回路の周波数帯域を変更しても 良い。 FIG. 7 shows an example in which the two-stage amplifier circuit shown in FIGS. 6A and 6B is used to configure an amplifier circuit having a variable cutoff frequency and amplification factor. As shown in FIG. 7, an arbitrary gain can be obtained by adding the resistors R11 and R12 as a negative feedback circuit. The series resistance R and load capacitance CJ make up a CR-type LPF. By varying the series resistance R or the load capacitance C to vary the cutoff frequency of the LPF, the frequency band of the wide circuit can be changed. Alternatively, such as by the bias current I B to the variable may be changed frequency band of the amplifier circuit.
しかしながら、 図 7に示す増幅回路においても、 直列抵抗 Rや負荷容 量 C Lを可変にする場合には受動素子を追加する必要があり、 チップ面 積が増大してしまう。 また、 周波数帯域を狭くするために直列抵抗 Rや 負荷容量 C ^の値を増加させても、 増幅回路において消費される電流を 減少させることはできない。 However, also in the amplifier circuit shown in FIG. 7, when the series resistance R and the load capacitance CL are made variable, it is necessary to add a passive element, and the chip area increases. Even if the values of the series resistance R and the load capacitance C ^ are increased to narrow the frequency band, the current consumed in the amplifier circuit cannot be reduced.
一方、 周波数帯域を狭くするためにバイアス電流 I Bを減少させて相 互コンダクタンス g m。を小さくすると、 增幅回路において消費される 電流を減少させることができる。 しかしながら、 バイアス電流 I Bを可 変にすると、 個々のトランジスタに定常的に流れる電流値が変化するた め、 増幅回路が最適に動作する電圧範囲が大きく変化してしまう。 発明の開示 Meanwhile, mutual reduces the bias current I B in order to narrow the frequency band conductance g m. When the value is reduced, the current consumed in the wide circuit can be reduced. However, bias current I B If this is changed, the current value that constantly flows through each transistor changes, and the voltage range in which the amplifier circuit operates optimally changes greatly. Disclosure of the invention
そこで、 上記の点に鑑み、 本発明は、 画像用 A D Cの前段に挿入され る増幅回路を含む半導体集積回路において、 抵抗ゃコンデンサのような 受動素子を追加することなく増幅回路の周波数帯域又は増幅率を可変と し、 さらに、 周波数帯域を狭くする際に増幅回路の消費電力を低減する ことを目的とする。  In view of the above, the present invention provides a semiconductor integrated circuit including an amplifier circuit inserted in a stage preceding an image ADC, without adding a passive element such as a resistor / capacitor. The purpose is to make the rate variable and to reduce the power consumption of the amplifier circuit when narrowing the frequency band.
以上の課題を解決するため、 本発明の第 1の実施形態に係る半導体集 積回路は、 入出力が並列に接続された複数の増幅回路と、 制御信号に従 つて、 複数の増幅回路の内の選択された増幅回路を活性化する選択回路 とを具備する。  In order to solve the above problems, a semiconductor integrated circuit according to a first embodiment of the present invention includes a plurality of amplifier circuits whose inputs and outputs are connected in parallel, and a plurality of amplifier circuits based on a control signal. And a selection circuit for activating the selected amplification circuit.
また、 本発明の第 2の実施形態に係る半導体集積回路は、 入出力が並 列に接続された複数の第 1の増幅回路と、 複数の第 1の増幅回路の出力 信号を増幅する第 2の増幅回路と、 制御信号に従って、 複数の第 1の増 幅回路の内の選択された増幅回路を活性化する選択回路とを具備する。 本発明によれば、 複数の差動増幅回路を並列に配置し、 それぞれの差 動増幅回路に供給されるバイアスを選択回路により切り換えるので、 抵 抗ゃコンデンサのような受動素子を追加することなく、 増幅回路の周波 数帯域又は增幅率を可変とすることができる。 また、 周波数帯域を狭く する際に、 増幅回路において消費される電力を低減することができる。 図面の簡単な説明  Further, the semiconductor integrated circuit according to the second embodiment of the present invention includes a plurality of first amplifier circuits whose inputs and outputs are connected in parallel, and a second amplifier which amplifies output signals of the plurality of first amplifier circuits. And a selection circuit that activates an amplification circuit selected from the plurality of first amplification circuits according to a control signal. According to the present invention, a plurality of differential amplifier circuits are arranged in parallel, and the bias supplied to each differential amplifier circuit is switched by the selection circuit, so that a passive element such as a resistance capacitor is not added. The frequency band or the amplification factor of the amplifier circuit can be made variable. Further, when the frequency band is narrowed, the power consumed in the amplifier circuit can be reduced. BRIEF DESCRIPTION OF THE FIGURES
本発明の利点及び特徴は、 以下の詳細な説明と図面とを関連させて考 察すれば明らかになる。 これらの図面において、 同じ参照番号は同じ構 成要素を指している。 Advantages and features of the present invention will become apparent from consideration of the following detailed description and drawings. In these drawings, the same reference numbers have the same structure. Refers to components.
図 1は、 本発明の第 1の実施形態に係る半導体集積回路の構成を示す 回路図である。  FIG. 1 is a circuit diagram showing a configuration of a semiconductor integrated circuit according to the first embodiment of the present invention.
図 2は、 本発明の第 2の実施形態に係る半導体集積回路の構成を示す 回路図である。  FIG. 2 is a circuit diagram showing a configuration of a semiconductor integrated circuit according to the second embodiment of the present invention.
図 3は、 図 2に示す可変抵抗の構成例を示す回路図である。  FIG. 3 is a circuit diagram showing a configuration example of the variable resistor shown in FIG.
図 4 A及ぴ 4 Bは、 CMO S トランジスタを用いた 1段構成の差動增 幅回路を示す回路図である。  FIGS. 4A and 4B are circuit diagrams showing a single-stage differential amplifier circuit using CMOS transistors.
図 5は、 周波数帯域が可変な従来の増幅回路を示す回路図である。 図 6 A及ぴ 6 Bは、 CMO S トランジスタを用いた 2段構成の増幅回 路を示す回路図である。  FIG. 5 is a circuit diagram showing a conventional amplifier circuit whose frequency band is variable. FIGS. 6A and 6B are circuit diagrams showing a two-stage amplification circuit using CMOS transistors.
図 7は、 周波数帯域及び增幅率が可変な従来の増幅回路を示す回路図 である。 発明を実施するための最良の形態  FIG. 7 is a circuit diagram showing a conventional amplifier circuit in which a frequency band and a bandwidth ratio are variable. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 本発明の第 1の実施形態について説明する。  First, a first embodiment of the present invention will be described.
図 1は、 本発明の第 1の実施形態に係る半導体集積回路の構成を示す 回路図である。 この半導体集積回路に含まれている増幅回路は、 周波数 帯域が可変となっている。  FIG. 1 is a circuit diagram showing a configuration of a semiconductor integrated circuit according to the first embodiment of the present invention. The frequency band of the amplifier circuit included in the semiconductor integrated circuit is variable.
図 1に示すように、 この半導体集積回路は、 可変帯域増幅回路 1と、 負荷容量 ^と、 制御回路 2と、 画像用 AD C 3 とを含んでいる。 可 変帯域増幅回路 1は、 並列に接続された複数 (N個とする) の差動増幅 回路 A 1、 A 2、 ···、 ANと、 これらの差動増幅回路 A 1、 A 2、 ···、 ANにそれぞれ接続された複数のスィッチ SW 1、 SW2、 ···、 S W Nと、 負荷容量じいと、 バイアス電位 VBを発生するバイアス電圧源と を有している。 バイアス電圧源は、 差動増幅回路 A l、 A 2、 ···、 A Nの内の選択されたものにバイアス電位 VBを供給する。 ここで、 負荷 容量 Cいは、 主に差動増幅回路 A l、 A 2、 ··'、 ANの出力容量の合 計であり、 負荷容量 C 2は、 可変帯域増幅回路 1の出力に接続される 回路の入力容量や配線容量の合計である。 As shown in FIG. 1, the semiconductor integrated circuit includes a variable band amplifier circuit 1, a load capacitance ^, a control circuit 2, and an image ADC 3. The variable band amplifier circuit 1 is composed of a plurality (N) of differential amplifier circuits A 1, A 2,..., AN connected in parallel, and these differential amplifier circuits A 1, A 2, ..., and a plurality of switches SW 1, SW2, which are connected to the aN, ..., and SWN, and load capacity flicking, and a bias voltage source for generating a bias potential V B. The bias voltage source is the differential amplifier circuit A1, A2, ..., A Supply bias potential V B to selected ones of N. Here, the load capacitance C doctor is mainly a differential amplifier circuit A l, A 2, ·· ' , a sum of the output capacity of the AN, the load capacitance C 2 is connected to the output of the variable bandpass amplifier 1 This is the sum of the input capacitance and wiring capacitance of the circuit to be used.
スィッチ SW 1、 SW2、 ···、 SWNは、 制御回路 2から供給され る制御信号 C l、 C 2、 ···、 CNに従って、 バイアス電圧源が発生す るバイアス電位 VBと接地電位との内の一方をそれぞれの差動增幅回路 に接続する。 これにより、 差動增幅回路 A 1、 A 2、 ···、 ANの内の 選択されたものが活性化される。 活性化された差動増幅回路から出力さ れる電流は加算され、 可変帯域増幅回路 1の出力に出力電圧が発生する c この出力電圧は、 画像用 AD C 3に入力される。 The switches SW 1, SW 2,..., SWN are connected to the bias potential V B generated by the bias voltage source and the ground potential in accordance with the control signals C l, C 2,. Is connected to each differential width circuit. As a result, a selected one of the differential width circuits A 1, A 2,..., AN is activated. Current output from the activated differential amplifier circuit are added, c output voltage Output voltage at the output of the variable bandpass amplifier 1 is generated, is input to the image for AD C 3.
可変帯域増幅回路 1において、 N個の差動増幅回路 A 1、 A 2、 ···、 ANの内の動作している差動増幅回路の数を i個とすると、 相互コンダ クタンス gmは、 次式によって表される。 In the variable bandpass amplifier 1, N pieces of differential amplifier A 1, A 2, · · ·, when the number of differential amplifier circuits operating within the AN and i pieces, the mutual conductance g m Is represented by the following equation.
gm= gm0 ( i ZN) g m = g m0 (i ZN)
ここで、 g m。は、 全ての差動増幅回路が動作している場合における差 動増幅回路全体の相互コンダクタンスを表している。 Where g m . Represents the transconductance of the entire differential amplifier circuit when all the differential amplifier circuits are operating.
このように、 可変帯域增幅回路 1の相互コンダクタンス g mが変化す ると、 相互コンダクタンス g mと負荷容量 C L i + C L 2とによって決定 される周波数帯域が変化することになる。 その周波数帯域は、 g m/ (CL 1 + CL 2) に比例する。 一方、 増幅率は、 各々の差動増幅回路に 負帰還が掛けられているため、 ほぼ一定である。 As described above, when the transconductance g m of the variable bandwidth / width circuit 1 changes, the frequency band determined by the transconductance g m and the load capacitance CL i + CL 2 changes. Its frequency band is proportional to g m / ( CL 1 + CL 2 ). On the other hand, the gain is almost constant because negative feedback is applied to each differential amplifier circuit.
ここで、 バイアス電位 VBは、 差動増幅回路 A 1、 A 2、 ···、 AN の各トランジスタに適したバイアス電流を流すように設定されているの で、 スィッチ SW1、 SW2、 ···、 SWNによってバイアス電流をォ ン又はオフに切り替えても、 動作している差動増幅回路は、 常に適切な バイアス電流によって動作する。 また、 動作している差動増幅回路は、 動作していない差動増幅回路による影響を受けることはない。 さらに、 個々の差動増幅回路 A 1、 A 2、 ···、 ANにおいて消費される電流は、 その周波数帯域に比例するので、 差動増幅回路の周波数帯域を狭くする 場合には消費電流が低減される。 また、 周波数帯域を可変にするために 抵抗やコンデンサといった半導体集積回路上で大きな面積を占める受動 素子を追加しなくても良いため、 チップ面積を小さくできる。 Here, since the bias potential V B is set so that a bias current suitable for each transistor of the differential amplifier circuits A 1, A 2,..., AN flows, the switches SW 1, SW 2,. · Even if the bias current is switched on or off by SWN, the operating differential amplifier circuit always Operated by bias current. Also, the operating differential amplifier circuit is not affected by the non-operational differential amplifier circuit. Furthermore, since the current consumed in each of the differential amplifier circuits A1, A2,..., AN is proportional to the frequency band, when the frequency band of the differential amplifier circuit is narrowed, the current consumption is reduced. Reduced. In addition, since it is not necessary to add a passive element occupying a large area on the semiconductor integrated circuit such as a resistor and a capacitor to make the frequency band variable, the chip area can be reduced.
次に、 本発明の第 2に実施形態について説明する。 図 2は、 本発明の 第 2の実施形態に係る半導体集積回路の構成を示す回路図である。 本実 施形態に係る半導体集積回路に含まれている増幅回路は、 周波数帯域及 ぴ增幅率が可変となっている。  Next, a second embodiment of the present invention will be described. FIG. 2 is a circuit diagram showing a configuration of a semiconductor integrated circuit according to the second embodiment of the present invention. The amplifier circuit included in the semiconductor integrated circuit according to the present embodiment has a variable frequency band and a wide bandwidth ratio.
図 2に示すように、 この半導体集積回路は、 可変増幅率可変帯域増幅 回路 4と、 制御回路 2と、 画像用 AD C 3 とを含んでいる。 可変増幅率 可変帯域増幅回路 4は、 並列に接続された複数 (N個とする) の差動増 幅回路 A l、 A 2、 ···、 ANと、 これらの差動増幅回路 A 1、 Α 2、 · -'、 ANにそれぞれ接続された複数のスィ ッチ SW 1、 SW2、 ···、 SWNと、 差動増幅回路 A l、 A 2、 ···、 ANの出力信号を増幅する ソース接地増幅回路 B 1 とを有している。  As shown in FIG. 2, the semiconductor integrated circuit includes a variable amplification factor variable band amplification circuit 4, a control circuit 2, and an image ADC 3. Variable amplification factor The variable band amplification circuit 4 includes a plurality (N) of differential amplification circuits A1, A2,..., AN connected in parallel, and these differential amplification circuits A1, A2,.増 幅 Amplifies the output signals of the multiple switches SW1, SW2, ..., SWN connected to AN, 2,-', and AN, and the differential amplifier circuits A1, A2, ..., AN And a common-source amplifier circuit B 1.
また、 可変增幅率可変帯域増幅回路 4は、 負帰還回路を形成する可変 抵抗 R 1及ぴ R 2 と、 バイアス電位 VBを発生するバイアス電圧源とを 有している。 可変抵抗は、 例えば、 図 3に示すように、 複数の抵抗 RA、 RB、 Rcと複数のスィ ッチ SWB、 SWC等によって構成することがで きる。 即ち、 並列に接続される抵抗の数をスィ ッチによって切り換える ことにより、 全体の抵抗値が変更される。 再び図 2を参照すると、 バイ ァス電圧源は、 差動増幅回路 A 1、 A 2、 ···、 ANの内の選択された ものにバイアス電位 VBを供給すると共に、 ソース接地増幅回路 B 1に バイアス電位 VBを供給する。 The variable增幅rate variable bandwidth amplifier circuit 4 includes a variable resistor R 1及Pi R 2 to form a negative feedback circuit, and a bias voltage source for generating a bias potential V B. The variable resistor can be composed of, for example, a plurality of resistors R A , R B , R c and a plurality of switches SW B , SW C as shown in FIG. That is, the total resistance value is changed by switching the number of resistors connected in parallel with the switch. Referring again to FIG. 2, the bias voltage source supplies the bias potential V B to a selected one of the differential amplifier circuits A 1, A 2,. B 1 Supplying a bias potential V B.
第 1の実施形態におけるのと同様に、 スィ ッチ SW1、 SW2、 ···、 SWNは、 制御回路 2から供給される制御信号 C 1、 C 2、 ···、 C N に従って、 バイアス電圧源が発生するバイアス電位 VBと接地電位との 内の一方をそれぞれの差動増幅回路に接続する。 これにより、 差動増幅 回路 A l、 A 2、 ·'·、 ANの内の選択されたものが活性化される。 活 性化された差動増幅回路.から出力される電流は加算され、 出力電圧が発 生する。 この出力電圧は、 ソース接地増幅回路 B 1に入力される。 As in the first embodiment, the switches SW1, SW2,..., SWN are connected to a bias voltage source according to control signals C1, C2,. There connecting one of the bias potential V B and the ground potential generated in each of the differential amplifier circuit. As a result, a selected one of the differential amplifier circuits A1, A2,..., AN is activated. The current output from the activated differential amplifier circuit is added, and an output voltage is generated. This output voltage is input to the common source amplifier circuit B1.
可変増幅率可変帯域増幅回路 4において、 N個の差動増幅回路 A 1、 A 2、 ···、 ANの内の動作している差動増幅回路の数を i個とすると、 相互コンダクタンス g mは、 次式によって与えられる。 In the variable amplification factor variable band amplifier circuit 4, assuming that the number of operating differential amplifier circuits among the N differential amplifier circuits A1, A2,..., AN is i, the mutual conductance g m is given by the following equation.
g m = g m O ( i ) · g m l gm = gm O (i) g ml
ここで、 g m。は、 全ての差動増幅回路が動作している場合における差 動増幅回路全体の相互コンダクタンスを表し、 g m lは、 ソース接地増 幅回路の相互コンダクタンスを表している。 Where g m . Represents the transconductance of the entire differential amplifier circuit when all the differential amplifier circuits are operating, and g ml represents the transconductance of the common-source amplifier circuit.
このよ うに、 可変増幅率可変帯域増幅回路 4の相互コンダクタンス g mが変化すると、 相互コンダクタンス g mと位相補償用コンデンサの容 量 Ccとによって決定される周波数帯域が変化することになる。 一方、 増幅率は、 負帰還回路の可変抵抗 R 1及び R 2の値によって決定される。 これらの値は、 制御回路 2によって制御される。 The good sea urchin, the transconductance g m of the variable amplification factor variable bandwidth amplifier circuit 4 is changed, so that the frequency band is determined by the capacitance C c of the transconductance g m and the phase compensation capacitor is changed. On the other hand, the amplification factor is determined by the values of the variable resistors R1 and R2 of the negative feedback circuit. These values are controlled by the control circuit 2.
図 2に示すように、 出力負荷と して可変抵抗 R 1及び R 2のように電 流を流す素子が接続されている場合には、 出力段のソース接地増幅回路 B 1には、 帯域設定によらず常に一定のバイアス電位 VBを与えて、 出 力段のバイアス条件が変動しないようにする。 ここで、 出力段の相互コ ンダクタンス g m lは、 周波数帯域とゲインとの積 (ゲイン ·バンド幅 積) にほとんど影響を与えない。 一方、 第 1の実施形態におけるように、 出力の負荷が容量性の負荷のみの場合には、 ソース接地増幅回路 B 1を 省略し、 差動増幅回路 A l、 A 2、 · · ·、 A Nの出力を容量性の負荷に 接続できる。 As shown in Fig. 2, when elements that flow current such as variable resistors R1 and R2 are connected as output loads, the band setting is applied to the common-source amplifier B1 in the output stage. always giving a constant bias potential V B regardless, bias conditions output stage should not vary. Here, the mutual conductance g ml of the output stage hardly affects the product of the frequency band and the gain (gain / bandwidth product). On the other hand, as in the first embodiment, If the output load is only a capacitive load, the common-source amplifier circuit B1 can be omitted and the outputs of the differential amplifier circuits A1, A2,..., AN can be connected to the capacitive load.
以上述べた様に、 本発明によれば、 抵抗やコンデンサのような受動素 子を追加することなく、 増幅回路の周波数帯域又は増幅率を可変とする ことができる。 これより、 チップ面積の増加を抑制し、 半導体集積回路 を高集積化することが可能となる。 また、 周波数帯域を狭くする際に、 増幅回路において消費される電力を低減することができる。 産業上の利用可能性  As described above, according to the present invention, the frequency band or the amplification factor of the amplifier circuit can be made variable without adding a passive element such as a resistor or a capacitor. As a result, it is possible to suppress an increase in the chip area and to increase the degree of integration of the semiconductor integrated circuit. Further, when the frequency band is narrowed, the power consumed in the amplifier circuit can be reduced. Industrial applicability
本発明は、 画像データ及び音声データを伝送する画像機器やコンビュ ータ等において利用することが可能である。  INDUSTRIAL APPLICABILITY The present invention can be used in an image device or a computer that transmits image data and audio data.

Claims

請 求 の 範 囲 The scope of the claims
1. 入出力が並列に接続された複数の増幅回路 (A 1〜AN) と、 制御信号に従って、 前記複数の増幅回路 (A 1〜AN) の内の選択さ れた增幅回路を活性化する選択回路 (SW1〜SWN) と、 1. A plurality of amplifier circuits (A1 to AN) whose input and output are connected in parallel, and a selected width circuit of the plurality of amplifier circuits (A1 to AN) is activated according to a control signal. Selection circuits (SW1 to SWN),
を具備する半導体集積回路。 A semiconductor integrated circuit comprising:
2. 前記複数の増幅回路 (A 1〜AN) の各々が、 負帰還の掛けられた 差動増幅器である、 請求項 1記載の半導体集積回路。  2. The semiconductor integrated circuit according to claim 1, wherein each of the plurality of amplifier circuits (A1 to AN) is a differential amplifier to which negative feedback is applied.
3. 前記選択回路 (SW1〜SWN) を制御する制御回路 (2) をさら に具備する請求項 1記載の半導体集積回路。  3. The semiconductor integrated circuit according to claim 1, further comprising a control circuit (2) for controlling the selection circuits (SW1 to SWN).
4. 前記複数の増幅回路の出力信号が供給されるアナログ /ディジタル 変換回路 (3) をさらに具備する請求項 1記載の半導体集積回路。  4. The semiconductor integrated circuit according to claim 1, further comprising an analog / digital conversion circuit (3) to which output signals of the plurality of amplifier circuits are supplied.
5. 入出力が並列に接続された複数の第 1の増幅回路 (A 1〜AN) と、 前記複数の第 1の増幅回路 (A 1〜AN) の出力信号を増幅する第 2 の増幅回路 (B 1 ) と、  5. A plurality of first amplifier circuits (A 1 to AN) whose inputs and outputs are connected in parallel, and a second amplifier circuit for amplifying output signals of the plurality of first amplifier circuits (A 1 to AN) (B 1)
制御信号に従って、 前記複数の第 1の増幅回路 (A 1〜AN) の内の 選択された増幅回路を活性化する選択回路 (SW1〜SWN) と、 を具備する半導体集積回路。  A selection circuit (SW1 to SWN) for activating a selected amplification circuit among the plurality of first amplification circuits (A1 to AN) in accordance with a control signal.
6. 前記第 2の増幅回路 (B 1 ) 、 反転増幅回路である、 請求項 5記 載の半導体集積回路。  6. The semiconductor integrated circuit according to claim 5, wherein said second amplifier circuit (B1) is an inverting amplifier circuit.
7. 前記複数の第 1の增幅回路 (A 1〜AN) の出力と前記第 2の增幅 回路 (B 1 ) の出力との間に接続された容量 (Cc) をさらに具備する 請求項 5記載の半導体集積回路。 7. The apparatus further comprises a capacitance (C c ) connected between outputs of the plurality of first width circuits (A 1 to AN) and outputs of the second width circuits (B 1). A semiconductor integrated circuit as described in the above.
8. 前記第 2の増幅回路 (B 1 ) の出力から前記複数の第 1の増幅回路 (A 1〜AN) に負帰還を掛ける負帰還回路 (R l、 R 2) をさらに具 備する請求項 5記載の半導体集積回路。 8. A negative feedback circuit (Rl, R2) for applying negative feedback from the output of the second amplifier circuit (B1) to the plurality of first amplifier circuits (A1 to AN). Item 6. The semiconductor integrated circuit according to item 5.
9. 前記選択回路 (SW1〜SWN) を制御する制御回路 (2) をさら に具備する請求項 5記載の半導体集積回路。 9. The semiconductor integrated circuit according to claim 5, further comprising a control circuit (2) for controlling the selection circuits (SW1 to SWN).
1 0. 前記制御回路 ( 2) 力 前記負帰還回路 (R l、 R 2) における 帰還量を制御する、 請求項 9記載の半導体集積回路。  10. The semiconductor integrated circuit according to claim 9, wherein the control circuit controls the amount of feedback in the negative feedback circuit.
1 1. 前記第 2の増幅回路 (B 1 ) の出力信号が供給されるアナログ ディジタル変換回路 ( 3) をさらに具備する請求項 5記載の半導体集積 回路。  1 1. The semiconductor integrated circuit according to claim 5, further comprising an analog-to-digital conversion circuit (3) to which an output signal of the second amplifier circuit (B1) is supplied.
PCT/JP2003/003343 2002-03-28 2003-03-19 Semiconductor integrated circuit WO2003084059A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003581348A JPWO2003084059A1 (en) 2002-03-28 2003-03-19 Semiconductor integrated circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-091483 2002-03-28
JP2002091483 2002-03-28

Publications (1)

Publication Number Publication Date
WO2003084059A1 true WO2003084059A1 (en) 2003-10-09

Family

ID=28671682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/003343 WO2003084059A1 (en) 2002-03-28 2003-03-19 Semiconductor integrated circuit

Country Status (2)

Country Link
JP (1) JPWO2003084059A1 (en)
WO (1) WO2003084059A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022122A1 (en) * 2015-08-06 2017-02-09 三菱電機株式会社 Receiver
WO2018134918A1 (en) * 2017-01-18 2018-07-26 三菱電機株式会社 Variable gain amplifier and vector-sum phase shifter
WO2024038635A1 (en) * 2022-08-19 2024-02-22 株式会社フジクラ Amplifier with differential rf switch function

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693408A (en) * 1979-12-27 1981-07-29 Nec Corp Variable gain amplifier
JPS6025238U (en) * 1983-07-28 1985-02-20 ヤマハ株式会社 Voltage controlled filter
JPH11177357A (en) * 1997-12-10 1999-07-02 Fujitsu Ltd Gain variable amplifier circuit
JP2001007668A (en) * 1999-06-23 2001-01-12 Toko Inc Variable gain amplifier circuit
JP2001292051A (en) * 2000-01-31 2001-10-19 Matsushita Electric Ind Co Ltd Transconductor and filter circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5693408A (en) * 1979-12-27 1981-07-29 Nec Corp Variable gain amplifier
JPS6025238U (en) * 1983-07-28 1985-02-20 ヤマハ株式会社 Voltage controlled filter
JPH11177357A (en) * 1997-12-10 1999-07-02 Fujitsu Ltd Gain variable amplifier circuit
JP2001007668A (en) * 1999-06-23 2001-01-12 Toko Inc Variable gain amplifier circuit
JP2001292051A (en) * 2000-01-31 2001-10-19 Matsushita Electric Ind Co Ltd Transconductor and filter circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VENU GOPINATHAN ET AL.: "Design considerations and implementation of a programmable high-frequency continuous-time filter and variable-gain amplifier in submicrometer CMOS", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 34, no. 12, December 1999 (1999-12-01), pages 1698 - 1707, XP000932500 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017022122A1 (en) * 2015-08-06 2017-02-09 三菱電機株式会社 Receiver
JPWO2017022122A1 (en) * 2015-08-06 2017-11-02 三菱電機株式会社 Receiving machine
WO2018134918A1 (en) * 2017-01-18 2018-07-26 三菱電機株式会社 Variable gain amplifier and vector-sum phase shifter
JP6440919B1 (en) * 2017-01-18 2018-12-19 三菱電機株式会社 Variable gain amplifier and vector synthesis type phase shifter
WO2024038635A1 (en) * 2022-08-19 2024-02-22 株式会社フジクラ Amplifier with differential rf switch function

Also Published As

Publication number Publication date
JPWO2003084059A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
KR100946815B1 (en) Programmable low noise amplifier and method
US8111096B2 (en) Variable gain amplifier circuit and filter circuit
US6707336B2 (en) Operational amplifier with chopped input transistor pair
US7702716B2 (en) Analogue multiplier
US8335328B2 (en) Programmable integrated microphone interface circuit
US7821341B2 (en) Gain control device and amplifier using the same
US8254598B2 (en) Programmable integrated microphone interface circuit
US7999612B2 (en) Operational amplifier having DC offset cancellation capability
JP4193066B2 (en) Wireless filter circuit and noise reduction method
WO1998010512A1 (en) Resistorless operational transconductance amplifier circuit
JPH10173445A (en) Amplifier
JP2007221402A (en) Variable gain amplifier and semiconductor integrated device
WO2003084059A1 (en) Semiconductor integrated circuit
US6963238B2 (en) Level shift circuit
JP3951726B2 (en) Gain control circuit and electronic volume circuit
US7199655B2 (en) Multistage amplifier circuit without interstage coupling capacitor
JP3171247B2 (en) Multi-function arithmetic circuit
JP2006340046A (en) Variable gain circuit and application device using the same
US7327193B2 (en) Method for setting an amplifier, and corresponding amplifier circuit
US20090058520A1 (en) Amplifier circuit
JP2006325005A (en) Semiconductor integrated circuit
JP2005217710A (en) Electronic volume
JP2006166306A (en) Amplifying circuit
JPH0454012A (en) Low pass filter circuit
JPH11298272A (en) Variable amplifier

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003581348

Country of ref document: JP

122 Ep: pct application non-entry in european phase