WO2017021019A1 - Traktionsbatterie mit batteriezellmodulen - Google Patents

Traktionsbatterie mit batteriezellmodulen Download PDF

Info

Publication number
WO2017021019A1
WO2017021019A1 PCT/EP2016/058858 EP2016058858W WO2017021019A1 WO 2017021019 A1 WO2017021019 A1 WO 2017021019A1 EP 2016058858 W EP2016058858 W EP 2016058858W WO 2017021019 A1 WO2017021019 A1 WO 2017021019A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
module carrier
battery cell
cell modules
cooling plate
Prior art date
Application number
PCT/EP2016/058858
Other languages
English (en)
French (fr)
Inventor
Chiang Chen
Andreas Czok
Aaron Breitkopf
Marko Plönnigs
Original Assignee
Volkswagen Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen Aktiengesellschaft filed Critical Volkswagen Aktiengesellschaft
Priority to CN201680044303.0A priority Critical patent/CN107851863B/zh
Publication of WO2017021019A1 publication Critical patent/WO2017021019A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0481Compression means other than compression means for stacks of electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a traction battery having a battery housing and at least two battery cell modules, wherein in each case a cooling plate having a cooling device is formed between two battery cell modules.
  • the thermal management of the traction battery plays an important role.
  • the operation of battery cells preferably lithium-ion battery cells, is efficient. Even if the efficiency of these battery arrangements is high, a small amount of heat in the ratio of the transmitted energy must be dissipated, since this heat can damage the battery cell. At an elevated temperature, irreversible degradation reactions can occur inside the battery in the battery cells, causing the
  • the battery cells should ideally be operated permanently below in a certain temperature range, which is why a
  • Tempering device or a cooling device within the traction battery for larger discharge and charging currents is advantageous.
  • the invention is therefore based on the object to improve an arrangement of a cooling device within a traction battery with respect to occurring mechanical loads.
  • the object is achieved in that one between two
  • At least one cooling plate having cooling device has at least one load-free coolant connection.
  • Those caused by vehicle crash or abuse, e.g. Curb and rail crossings, occurring forces are thus absorbed by the cooling plate, but not via the coolant connections.
  • the cooling plate serves as a supporting structural element with no load at the same time coolant connections.
  • the cooling plates can be advantageously carried out as extruded profiles, which serves in a further advantageous manner for a uniform, reproducible design of the cooling channels with a defined surface, which have a significantly better cooling performance compared to the cooling plates made of sand casting.
  • the traction battery according to the invention can be further developed by the characterizing features of the subclaims, so that the design options are not exhausted.
  • module carriers are each arranged on the front side of the battery cell modules, wherein the one of the tunnel side
  • Housing side wall of the traction battery facing first module carrier geometrically from the outer housing side wall facing a second module carrier
  • This refinement is based on the existing space differences due to a center tunnel of a motor vehicle and the arrangement adapted to it.
  • the side wall of the same side facing arranged module carrier two adjacent battery cell modules are each formed as mutually mirror-symmetrical plate holder on both sides of the arranged between the battery cell modules cooling plate. Due to the mirror symmetry of the module carrier, the pressure load is discharged via the module carrier and not guided to the coolant connection of the cooling plate.
  • the module carriers are made of sheet steel by pressing or punching and subsequent forming inexpensive.
  • Module carrier has, for example, a substantially I-shaped geometry, wherein viewed in the Z direction lower vertical surface is horizontal and viewed in the Z direction upper vertical surface is approximately wave-shaped.
  • the undulating surface has a centrally located wave trough. At the trough a first retaining tab is formed.
  • the horizontal and the wave-shaped surface are integrally connected to each other via an arcuate surface. This geometry is advantageous for the power flow of
  • Coolant connections are arranged, for example, in the upper region.
  • the battery cell modules are mounted in the battery case.
  • Module carrier is so advantageous the power decoupling of the coolant connections.
  • the interior of the traction battery e.g. arranged on the tunnel side second module carrier has a substantially K-shaped geometry, wherein two Z-direction overhead arms are connected to each other and centrally in a connection interface a second retaining tab is arranged. Within the resulting closed area is a
  • the second module carrier has three arms. With the help of this configuration, the existing space can be used optimally. An opening between adjacent K-shaped second module carriers is not required since no coolant connections are arranged on the inner end face of the cooling plate.
  • each formed on both sides tabs are integrally formed on the module carrier. These are preferably made in one piece with the respective module carrier.
  • molded tabs of the module carrier embrace the respective battery cell module
  • Battery cell modules arranged cooling plate connected to each other via connecting elements.
  • screw nuts are integrally formed on one side of two adjacent module carrier by means of joining methods, which can be screwed with screws.
  • the screws are through the tabs, the cell modules and the holes introduced frontally feasible and screwed with the screw nuts, whereby the battery cell modules firmly together be tense.
  • the fixed tension is advantageous for a long life of the traction battery.
  • the screw connection creates a compact unit that has a high inherent rigidity.
  • An initiated pressure load from a vehicle crash or misuse by, for example, curb crossings can with the help of this elastic suspension on the
  • the module carrier of the module of the
  • Battery cell modules sustainable mounting tabs with which the module carrier can be fastened via fasteners to the battery case, whereby the power flow is passed directly into the battery case and a robust arrangement is created.
  • FIG. 1 shows an embodiment of a traction battery according to the invention
  • 1 a shows an assembly of two battery cell modules and a cooling plate of
  • Fig. 2 is an exploded view of the embodiment of the invention of Fig. 1;
  • Fig. 3 is a front view of the embodiment of Figures 1 and 2.
  • FIGS. 1 and 2 shows a rear view of the embodiment according to FIGS. 1 and 2;
  • FIG. 1 shows a traction battery 1 according to the invention of a motor vehicle having a battery housing 39 with an external housing side wall 4, wherein the
  • the traction battery 1 has two battery cell modules 3, each of which has two module carriers 5, 6, each designed as a blank holder, on their end faces 7, 10.
  • the first module carrier 5 is on the tunnel-side housing side wall 1 1 of the traction battery 1 facing end face 7 attached.
  • the second module carrier 6 is arranged on the outside of the housing side wall 4 of the traction battery 1 facing end face 10.
  • the module carriers 5, 6 are each mirror-symmetrical to a cooling device 9, which is arranged between the cell modules 3 executed. The exact configuration of the module carrier 5, 6 will be explained in more detail with reference to FIG.
  • the cooling device 8 has a cooling plate 9.
  • the cooling plate 9 points at one of her
  • Fig. 2 shows the embodiment of Figure 1 according to the invention in an exploded view, the battery cell modules 3, the cooling plate 9, an interposed thermal conductive layer 18, which is designed as a heat conducting foil, the module carrier 5, 6, wherein the module carrier 5, 6 shown enlarged are, and fasteners 15.
  • Two respectively adjacent module carriers 5, 6 are each designed mirror-symmetrically to the cooling plate 9.
  • the first module carrier 5 have, at its lower end in the Z direction, a horizontal surface 31 lying in the YZ plane and at its upper end a wave-shaped surface 33 lying in the YZ plane, this having a wavy edge in the Z direction ,
  • the wave-shaped surface 33 is designed in such a way that it has a wave trough 35 pointing in the center in the center.
  • a first retaining tab 37 is formed, by means of which this arrangement is advantageously held for a robot gripper for mounting in a battery case 39.
  • the wave-shaped surface 33 further has at its outer ends in the Y direction in each case a wave crest 36, wherein the wave crests 36 are bent at their maximum in the X direction and in this way form tabs 41 which the
  • Embrace battery cell modules 3 in a form-fitting manner.
  • the horizontal surface 31 is configured to have a straight edge at its lower end in the Z direction.
  • the horizontal surface 31 also points in the X direction
  • the tabs 41, 41 a are each provided with a hole arranged in the Y direction.
  • a first module carrier 5 at the folded tabs 41 a each have a welded-on
  • the nut 42 and a screw 15 form a connecting element 14, with which the screwing and clamping of the battery cell modules 3 takes place.
  • the screws 15 in the Y direction through the holes of the tabs 41 of two adjacent first module carrier 5 and each provided holes in the two battery cell modules. 3 and the cooling plate 6 out feasible and connectable with the nuts 42 on the tabs 41 a of a first module carrier 5.
  • the horizontal surface 31 and the wave-shaped surface 33 are connected to each other via a partially arcuate surface 43.
  • the arcuate surface 43 extends straight in a direction of the Z-axis upper portion 34 and in the other portion 38 arcuate and ends at the horizontal surface 31st
  • the arcuate surfaces 43 are mirror-symmetrical to each other on the cooling plate 9, so that the arcuate surfaces 43 of two adjacent first module carrier 5 form an oval opening 44, in which the load-free coolant connections 12, 13 are arranged in the assembly.
  • each first module carrier 5 has in each case following its contour, preferably in the transition between the straight portion 34 of the arcuate surface 43 and the arcuate portion 38 of the arcuate surface 43 and continuously in the arcuate portion 38, a first bead 45 for stiffening of the first module carrier 5.
  • a further stiffening is given by the fact that inner edges of the arcuate surface 43 have individual bends 47.
  • a first fastening tab 49 which points the way from the battery cell module 3 and has a bore, is formed.
  • a second fastening tab 49a is formed.
  • Mounting straps 49 is, for example, an electrical harness fastened and with the
  • the second module carrier 6 has a geometry that deviates from the first module carrier 5, which is essentially K-shaped, with only a slight constriction being present in a central region.
  • the outer edges 50 of the second module carrier 6 extend approximately vertically in the Z direction.
  • the mutually facing inner edges 52 of two adjacent module carrier 6 have a slightly curved course, wherein the two slightly curved curves of the inner edges 52 on the cooling plate 9 are mirror-symmetrical to each other.
  • the second module carrier 6 in each case has two upper arms 51 in an upper region seen in the Z direction. Between the two upper arms 51, a second retaining tab 37 is formed, by means of which this arrangement is held advantageous for a robot gripper for mounting in a battery case 39.
  • the first lower arm 55 runs in each case almost along the Y-axis, wherein the first lower arms 55 of two adjacent second module carriers 6 point in mutually opposite directions.
  • the second module carrier 6 In the region of the first lower arm 55, the second module carrier 6 has a short, formed at an obtuse angle with straight legs, second bead 58 for stiffening, both legs are of different lengths.
  • the second lower arm 56 and the third lower arm 57 close to each other an acute angle, which is made free of material.
  • Tabs 41 and 41 a formed, which surround the battery cell module 3 positively. Of two adjacent second module carriers 6, has a second module carrier 6 to the
  • Nut 42 and the screw 15 form the connecting element 14, with which the screwing and clamping of the battery cell modules 3 takes place.
  • the screws 15 in the Y direction through the holes of the tabs 41 of the second module carrier 6 and respective holes provided in the two battery cell modules 3 and the cooling plate 6 out and feasible with the nuts 42 on the tabs 41 a each second module carrier 6 connectable ,
  • each of the second module carrier 6 has a respective recess 59 with an exhibition 61, which are clipped in assembly with an electrical harness 60.
  • FIG. 3 shows a front view of the arrangement according to the invention with first module carriers 5, a high-voltage connector 63, the coolant connections 12, 13, battery cell modules 3, a section of the battery housing 39, the screws 15 and the associated ones
  • Screw nuts 42 and the mounting tabs 49, which by means of the. formed as screws fasteners 65 are connected to the battery case 39.
  • Fig. 4 shows a rear view of the arrangement according to the invention with the second module carriers 6, the cooling plate 9, a section of the battery case 39 and the fastening tabs 49, which are connected by means of fastening elements 65 with the battery case, as well Cut shows the clipping of the exhibits 61 with the electrical harness 60.
  • FIG. 5 shows the load path 70 of forces due to vehicle crash or abuse, such as curb or rail crossing crossings.
  • the load path 70 via the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Traktionsbatterie (1) mit einem Batteriegehäuse (39), aufweisend wenigstens zwei Batteriezellmodule (3), wobei jeweils zwischen zwei Batteriezellmodulen (3) eine eine Kühlplatte (9) aufweisende Kühlvorrichtung (8) angeordnet ist, dadurch gekennzeichnet, dass die Kühlplatte (9) wenigstens einen lastbefreiten Kühlmittelanschluss (12, 13) aufweist. Die Befestigung der Batteriemodule (3) mit der Kühlplatte (9) und den lastfreien Kühlanschlüssen (12, 13) kann über Modulträger (5, 6) als Entkopplungselemente erfolgen. Die durch Fahrzeugcrash oder Missbrauch, z.B. Bordstein- und Bahnübergangüberfahrten, auftretenden Kräfte werden somit durch die Kühlplatte (9), aber nicht über die Kühlmittelanschlüsse (12, 13) aufgenommen. Die Kühlplatte (9) dient als tragendes Strukturelement bei gleichzeitiger Lastfreiheit der Kühlmittelanschlüsse (12, 13).

Description

Beschreibung
Traktionsbatterie mit Batteriezellmodulen
Die Erfindung betrifft eine Traktionsbatterie mit einem Batteriegehäuse und wenigstens zwei Batteriezellmodulen, wobei jeweils zwischen zwei Batteriezellmodulen eine eine Kühlplatte aufweisende Kühlvorrichtung ausgebildet ist.
Für Elektro- und Hybridfahrzeuge spielt das Thermomanagement der Traktionsbatterie eine wichtige Rolle. Der Betrieb von Batteriezellen, vorzugsweise Lithium-Ionen-Batteriezellen, ist wirkungsgradbehaftet. Auch wenn der Wirkungsgrad dieser Batterieanordnungen hoch ist, muss eine im Verhältnis der übertragenen Energie geringe Wärmemenge abgeführt werden, da diese Wärme der Batteriezelle schaden kann. Bei einer erhöhten Temperatur können innerhalb der Batterie in den Batteriezellen irreversible Degradationsreaktionen auftreten, die die
Lebensdauer der Batteriezellen reduzieren. Die Batteriezellen sollten idealerweise dauerhaft unterhalb in einem bestimmten Temperaturbereich betrieben werden, weshalb eine
Temperiereinrichtung bzw. eine Kühlvorrichtung innerhalb der Traktionsbatterie bei größeren Entlade- und Ladeströmen von Vorteil ist.
Die aus Herstell- und Kostengründen im Sandguss hergestellten Kühlplatten herkömmlicher Batteriemodule könnten nur eine geringe Steifigkeit hinsichtlich Stoßbelastung aufweisen und könnten somit nur geringe Kräfte aufnehmen. Bauraumbedingt können in einigen Fällen keine zusätzlichen Elemente zur Steifigkeitserhohung und zum Schutz der Batteriezellmodule und der Kühlplatten bei einem Fahrzeugcrash oder Missbrauch, z.B. bei Bordsteinüberfahrten, vorgesehen werden. Weiterhin können die zur Versorgung der Kühlplatten mit Kühlmittel vorgesehenen Kühlmittelanschlüsse bauartbedingt nur wenige bis keine Kräfte aufnehmen.
Werden die Sandgusskühlplatten unmittelbar an die angrenzenden Batteriezellmodule angeschraubt und als Einheit in die bestehende Traktionsbatterie integriert, so besteht die Gefahr, dass die Kühlplatten und deren Kühlmittelanschlüsse bei hohen mechanischen
Belastungen durch Fahrzeugcrash, Bordstein- oder Bahnübergangsüberfahrten brechen können, sodass Kühlflüssigkeit im Inneren der Batterie austreten könnte. Der Erfindung liegt daher die Aufgabe zugrunde, eine Anordnung einer Kühlvorrichtung innerhalb einer Traktionsbatterie hinsichtlich auftretender mechanischer Belastungen zu verbessern.
Die Aufgabe wird erfindungsgemäß dadurch gelöst, dass eine zwischen zwei
Batteriezellmodulen angeordnete, wenigstens eine Kühlplatte aufweisende Kühlvorrichtung wenigstens einen lastbefreiten Kühlmittelanschluss aufweist. Die durch Fahrzeugcrash oder Missbrauch, z.B. Bordstein- und Bahnübergangüberfahrten, auftretenden Kräfte werden somit durch die Kühlplatte, aber nicht über die Kühlmittelanschlüsse aufgenommen. Die Kühlplatte dient als tragendes Strukturelement bei gleichzeitiger Lastfreiheit der Kühlmittelanschlüsse. Die Kühlplatten können vorteilhaft als Strangpressprofile ausgeführt werden, was in weiterer vorteilhafter Weise für eine gleichmäßige, reproduzierbare Ausbildung der Kühlkanäle mit definierter Oberfläche dient, die gegenüber den aus Sandguss hergestellten Kühlplatten eine deutlich bessere Kühlleistung aufweisen.
Die erfindungsgemäße Traktionsbatterie kann durch die kennzeichnenden Merkmale der Unteransprüche weitergebildet werden, womit die Ausgestaltungsmöglichkeiten jedoch nicht erschöpft sind.
Eine vorteilhafte Weiterbildung der Erfindung sieht vor, dass an den Batteriezellmodulen jeweils stirnseitig Modulträger angeordnet sind, wobei sich der einer tunnelseitigen
Gehäuseseitenwand der Traktionsbatterie zugewandten erste Modulträger geometrisch von dem einer außenliegenden Gehäuseseitenwand zugewandten zweiten Modulträger
unterscheidet. Durch diese Ausgestaltung wird auf die vorhanden Bauraumunterschiede bedingt durch einen Mitteltunnel eines Kraftfahrzeugs eingegangen und die Anordnung darauf angepasst.
In vorteilhafter Weise sind die derselben Gehäuseseitenwand zugewandten nebeneinander angeordneten Modulträger zweier benachbarter Batteriezellmodule jeweils als zueinander spiegelsymmetrische Blechhalter auf beiden Seiten der zwischen den Batteriezellmodulen angeordneten Kühlplatte ausgebildet. Durch die Spiegelsymmetrie der Modulträger wird die Druckbelastung über die Modulträger abgeleitet und nicht zu dem Kühlmittelanschluss der Kühlplatte geführt. Die Modulträger sind aus Stahlblech durch Pressen oder Stanzen und anschließendes Umformen kostengünstig herstellbar. Der erste z.B. der tunnelseitigen Gehäuseseitenwand der Traktionsbatterie zugewandte
Modulträger weist beispielsweise eine im wesentlichen I-förmige Geometrie auf, wobei eine in Z-Richtung gesehen untere vertikale Fläche horizontal verläuft und eine in Z-Richtung betrachtet obere vertikale Fläche annähernd wellenförmig verläuft. Die wellenförmige Fläche weist ein mittig angeordnetes Wellental auf. An dem Wellental ist eine erste Haltelasche angeformt. Die horizontale und die wellenförmige Fläche sind über eine bogenförmige Fläche miteinander einstückig verbunden. Diese Geometrie dient vorteilhaft dem Kraftfluss der
Stoßbelastungen von in Z-Richtung gesehen oben um die Kühlmittelanschlüsse herum in das Batteriegehäuse, sodass die Kühlmittelanschlüsse keine Last aufnehmen. Die bogenförmigen Flächen zweier benachbarter erster Modulträger bilden eine ovale Öffnung, in der die
Kühlmittelanschlüsse beispielsweise im oberen Bereich angeordnet sind. Mit Hilfe der ersten Haltelaschen sind die Batteriezellmodule in dem Batteriegehäuse befestigt. Der erste
Modulträger dient so vorteilhaft der Kraftentkopplung der Kühlmittelanschlüsse.
Der in der Traktionsbatterie innenliegende, z.B. tunnelseitig angeordnete zweite Modulträger weist eine im wesentlichen K-förmige Geometrie auf, wobei zwei in Z-Richtung oben liegenden Arme miteinander verbunden sind und mittig in einem Verbindungsschnittpunkt eine zweite Haltelasche angeordnet ist. Innerhalb der entstehenden geschlossenen Fläche ist eine
Aussparung vorgesehen, die eine von den Batteriezellmodulen wegweisende Ausstellung aufweist. In Z-Richtung gesehen unten weist der zweite Modulträger drei Arme auf. Mit Hilfe dieser Ausgestaltung kann der bestehende Bauraum optimal genutzt werden. Eine Öffnung zwischen benachbarten K-förmigen zweiten Modulträgern ist nicht erforderlich, da an der innenliegenden Stirnseite der Kühlplatte keine Kühlmittelanschlüsse angeordnet sind.
Vorteilhafter Weise sind an dem Modulträger jeweils beidseitig abgekantete Laschen angeformt. Diese sind vorzugsweise einstückig mit dem jeweiligen Modulträger ausgeführt. Die
angeformten Laschen des Modulträgers umgreifen das jeweilige Batteriezellmodul
formschlüssig, wodurch die Batteriezellmodule zusätzlich versteift und verspannt werden.
In einer bevorzugten Ausführungsform sind jeweils zwei benachbarte Batteriezellmodule und die zwei daran stirnseitig angeordneten Modulträger sowie die zwischen den
Batteriezellmodulen angeordnete Kühlplatte über Verbindungselemente miteinander verbindbar. Vorteilhafter Weise sind an einem zweier benachbarter Modulträger einseitig Schraubmuttern mittels Fügeverfahren angeformt, die mit Schrauben verschraubbar sind. Die Schrauben sind durch die Laschen, die Zellmodule und die eingebrachten Bohrungen stirnseitig durchführbar und mit den Schraubmuttern verschraubbar, wodurch die Batteriezellmodule fest miteinander verspannt werden. Die feste Verspannung ist für eine lange Lebensdauer der Traktionsbatterie vorteilhaft.
Durch die Verschraubung entsteht eine kompakte Einheit, die eine hohe Eigensteifigkeit aufweist. Eine eingeleitete Druckbelastung aus einem Fahrzeugcrash oder Missbrauch durch bspw. Bordsteinüberfahrten kann mit Hilfe dieser elastischen Aufhängung über das
Verbindungselement und den Modulträger abgeleitet werden, wobei der Kühlmittelanschluss lastbefreit ist.
In einer weiteren vorteilhaften Ausgestaltung weist der Modulträger von den
Batteriezellmodulen wegweisende Befestigungslaschen auf, mit denen der Modulträger über Befestigungselemente an dem Batteriegehäuse befestigbar sind, wodurch der Kraftfluss direkt in das Batteriegehäuse geleitet wird und eine widerstandsfähige Anordnung entsteht.
Die Erfindung lässt zahlreiche Ausführungsformen zu, die ebenfalls unter den Schutzbereich fallen. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine bevorzugte Ausführungsform in den Figuren dargestellt und wird nachfolgend beschrieben.
Es zeigen
Fig. 1 eine erfindungsgemäße Ausführungsform einer Traktionsbatterie;
Fig. 1 a einen Zusammenbau von zwei Batteriezellmodulen und einer Kühlplatte der
Ausführungsform gemäß Fig. 1 ;
Fig. 2 eine Explosionsdarstellung der erfindungsgemäßen Ausführungsform aus Fig. 1 ;
Fig. 3 eine Frontalansicht der Ausführungsform gemäß Fig. 1 und 2;
Fig. 4 eine Rückansicht der Ausführungsform gemäß Fig. 1 und 2;
Fig. 5 Kraftfluss der Ausführungsform gemäß Fig. 1 bis 4.
Fig. 1 zeigt eine erfindungsgemäße Traktionsbatterie 1 eines Kraftfahrzeugs aufweisend ein Batteriegehäuse 39 mit einer außenliegenden Gehäuseseitenwand 4, wobei das
Batteriegehäuse 39 um einen karosserieseitigen Tunnel 2 des Kraftfahrzeugs für die
Durchführung eines Abgasrohrs oder ähnliches herum geformt ist und somit eine tunnelseitige Gehäusewand 1 1 bildet.
Die Traktionsbatterie 1 weist gemäß Fig. 1 a zwei Batteriezellmodule 3 auf, welche jeweils zwei als Blechhalter ausgeführte Modulträger 5, 6 jeweils an ihren Stirnseiten 7, 10 aufweisen. Der erste Modulträger 5 ist auf der der tunnelseitigen Gehäuseseitenwand 1 1 der Traktionsbatterie 1 zugewandten Stirnseite 7 angebracht. Der zweite Modulträger 6 ist auf der außenseitigen Gehäuseseitenwand 4 der Traktionsbatterie 1 zugewandten Stirnseite 10 angeordnet. Die Modulträger 5, 6 sind jeweils spiegelsymmetrisch zu einer Kühlvorrichtung 9, welche zwischen den Zellmodulen 3 angeordnet ist, ausgeführt. Die genaue Ausgestaltung der Modulträger 5, 6 wird anhand der Fig. 2 näher erläutert.
Die Kühlvorrichtung 8 weist eine Kühlplatte 9 auf. Die Kühlplatte 9 weist an einer ihrer
Stirnseiten 1 1 zwei Kühlmittelanschlüsse 12, 13 auf. Über die Kühlmittelanschlüsse 12, 13 wird keine Last aufgenommen, sodass die Kühlmittelanschlüsse 12, 13 lastfrei bleiben.
Fig. 2 zeigt die erfindungsgemäße Ausführungsform aus Fig.1 in einer Explosionsdarstellung aufweisend die Batteriezellmodule 3, die Kühlplatte 9, eine dazwischen angeordnete thermische Leitschicht 18, die als Wärmeleitfolie ausgeführt ist, die Modulträger 5, 6, wobei die Modulträger 5, 6 vergrößert dargestellt sind, und Verbindungselemente 15.
Zwei jeweils benachbarte Modulträger 5, 6 sind jeweils zu der Kühlplatte 9 spiegelsymmetrisch ausgeführt.
Der erste Modulträger 5 weisen an seinem in Z-Richtung unteren Ende eine in der YZ-Ebene liegende horizontale Fläche 31 und an seinem oberen Ende eine in der YZ-Ebene liegende wellenförmige Fläche 33 auf, wobei diese eine in Z-Richtung gewellte Kante aufweist. Die wellenförmige Fläche 33 ist derart ausgeführt, dass sie mittig ein in Z-Richtung weisendes Wellental 35 aufweist. An dem Wellental 35 ist eine erste Haltelasche 37 angeformt, mit Hilfe derer diese Anordnung für einen Robotergreifer für eine Montage in einem Batteriegehäuse 39 vorteilhaft gehalten wird. Die wellenförmige Fläche 33 weist weiterhin an ihren in Y-Richtung äußeren Enden jeweils einen Wellenberg 36 auf, wobei die Wellenberge 36 an ihrem Maximum in X-Richtung abgekantet sind und auf diese Weise Laschen 41 ausbilden, die die
Batteriezellmodule 3 formschlüssig umgreifen.
Die horizontale Fläche 31 ist derart ausgestaltet, dass sie an ihrem in Z-Richtung unteren Ende eine gerade Kante aufweist. Die horizontale Fläche 31 weist ebenfalls in X-Richtung
abgekantete Laschen 41 , 41 a auf. Die Laschen 41 , 41 a sind jeweils mit einer in Y-Richtung angeordneten Bohrung versehen. Von zwei benachbarten ersten Modulträgern 5, weist ein erster Modulträger 5 an den angekanteten Laschen 41 a jeweils eine angeschweißte
Schraubenmutter 42 auf.
Die Schraubenmutter 42 und eine Schraube 15 bilden ein Verbindungselement 14, mit denen die Verschraubung und Verspannung der Batteriezellmodule 3 erfolgt. Im Zusammenbau sind die Schrauben 15 in Y-Richtung durch die Bohrungen der Laschen 41 zweier benachbarter erster Modulträger 5 und jeweils vorgesehene Bohrungen in den zwei Batteriezellmodulen 3 und der Kühlplatte 6 hin durchführbar und mit den Schraubenmuttern 42 an den Laschen 41 a eines ersten Modulträgers 5 verbindbar.
Die horizontale Fläche 31 und die wellenförmige Fläche 33 sind jeweils über eine teilweise bogenförmige Fläche 43 miteinander verbunden. Die bogenförmige Fläche 43 verläuft in einem mit Orientierung an der Z-Achse oberen Teilabschnitt 34 gerade und im weiteren Teilabschnitt 38 bogenförmig und endet an der horizontalen Fläche 31 . Die bogenförmigen Flächen 43 sind an der Kühlplatte 9 zueinander spiegelsymmetrisch ausgeführt, sodass die bogenförmigen Flächen 43 zweier benachbarter erster Modulträger 5 eine ovale Öffnung 44 bilden, in der im Zusammenbau die lastbefreiten Kühlmittelanschlüsse 12, 13 angeordnet sind.
Die bogenförmigen Fläche 43 jedes ersten Modulträgers 5 weist jeweils ihrer Kontur folgend, vorzugsweise in dem Übergang zwischen dem geraden Teilabschnitt 34 der bogenförmigen Fläche 43 und dem bogenförmigen Teilabschnitt 38 der bogenförmigen Fläche 43 und fortlaufend in dem bogenförmigen Teilabschnitt 38, eine erste Sicke 45 zur Versteifung des ersten Modulträgers 5 auf. Eine weitere Versteifung ist dadurch gegeben, dass Innenkanten der bogenförmigen Fläche 43 einzelne Abkantungen 47 aufweisen. An einer Außenkante der ersten Modulträger 5 im Bereich der bogenförmigen Fläche 43 ist eine erste vom Batteriezellmodul 3 wegweisend ausgestellte Befestigungslasche 49, aufweisend eine Bohrung, ausgebildet. An der Innenkante ist eine zweite Befestigungslasche 49a ausgebildet. Mit Hilfe der
Befestigungslaschen 49 ist bspw. ein elektrischer Kabelbaum befestigbar und mit den
Befestigungslaschen 49a ist die Anordnung mit dem Batteriegehäuse 39 verbindbar.
Der zweite Modulträger 6 weist eine gegenüber dem ersten Modulträger 5 abweichende Geometrie auf, die im Wesentlichen K-förmig ist, wobei in einem mittleren Bereich nur eine geringe Einschnürung vorhanden ist. Die Außenkanten 50 des zweiten Modulträgers 6 verlaufen annähernd vertikal in Z-Richtung. Die einander zugewandten Innenkanten 52 zweier benachbarter Modulträger 6 weisen einen leicht gebogenen Verlauf auf, wobei die beiden leicht gebogenen Verläufe der Innenkanten 52 an der Kühlplatte 9 zueinander spiegelsymmetrisch ausgeführt sind.
Der zweite Modulträger 6 weist jeweils in einem in Z-Richtung gesehen oberen Bereich zwei obere Arme 51 auf. Zwischen den beiden oberen Arme 51 ist eine zweite Haltelasche 37 angeformt, mit Hilfe derer diese Anordnung für einen Robotergreifer für eine Montage in einem Batteriegehäuse 39 vorteilhaft gehalten wird. Der zweite Modulträger 6 weist in Z-Richtung gesehen unten drei untere Arme 55, 56, 57 auf. Der erste untere Arm 55 verläuft jeweils nahezu entlang der Y-Achse, wobei die ersten unteren Arme 55 zweier benachbarter zweiten Modulträger 6 in zueinander entgegengesetzte Richtung weisen. Im Bereich des ersten unteren Armes 55 weist der zweite Modulträger 6 eine kurze, in einem stumpfen Winkel mit geraden Schenkeln geformte, zweite Sicke 58 zur Versteifung auf, wobei beide Schenkel unterschiedlich lang sind. An dem ersten unteren Arm 55 ist weiterhin eine vom Zellmodul 3 wegweisend ausgestellte Befestigungslasche 49a, aufweisend eine Schraubmutter 42, deren Achse in Z-Richtung liegt, ausgebildet. Der zweite untere Arm 56 und der dritte untere Arm 57 schließen zueinander einen spitzen Winkel ein, der materialfrei ausgeführt ist.
An den zwei unteren Armen 56, 57 und den beiden oberen Armen 51 sind abgekantete
Laschen 41 und 41 a ausgebildet, die das Batteriezellmodul 3 formschlüssig umgreifen. Von zwei benachbarten zweiten Modulträgern 6, weist ein zweiter Modulträger 6 an den
angeordneten Laschen 41 a jeweils eine angeschweißte Schraubenmutter 42 auf. Die
Schraubenmutter 42 und die Schraube 15 bilden das Verbindungselement 14, mit denen die Verschraubung und Verspannung der Batteriezellmodule 3 erfolgt. Im Zusammenbau sind die Schrauben 15 in Y-Richtung durch die Bohrungen der Laschen 41 der zweiten Modulträger 6 und jeweils vorgesehene Bohrungen in den zwei Batteriezellmodulen 3 und der Kühlplatte 6 hin durchführbar und mit den Schraubenmuttern 42 an den Laschen 41 a jedes zweiten Modulträger 6 verbindbar.
In einem mittleren Bereich weist jeder der zweiten Modulträger 6 jeweils eine Aussparung 59 mit einer Ausstellung 61 auf, die im Zusammenbau mit einem elektrischen Kabelbaum 60 verclipst werden.
Fig. 3 zeigt eine Frontalansicht der erfindungsgemäßen Anordnung mit ersten Modulträgern 5, einem Hochvoltverbinder 63, den Kühlmittelanschlüssen 12, 13, Batteriezellmodulen 3, einem Ausschnitt des Batteriegehäuses 39, den Schrauben 15 und den damit verbundenen
Schraubmuttern 42 sowie den Befestigungslaschen 49, die mittels den z.B. als Schrauben ausgebildeten Befestigungselementen 65 mit dem Batteriegehäuse 39 verbunden sind.
Fig. 4 zeigt eine Rückansicht der erfindungsgemäßen Anordnung mit den zweiten Modulträgern 6, der Kühlplatte 9, einem Ausschnitt des Batteriegehäuses 39 und den Befestigungslaschen 49, die mittels Befestigungselementen 65 mit dem Batteriegehäuse verbunden sind, sowie geschnitten dargestellt die Verclipsung der Ausstellungen 61 mit dem elektrischen Kabelbaum 60.
Fig. 5 zeigt den Lastpfad 70 von durch Fahrzeugcrash oder Missbrauch, wie Bordstein- oder Bahnübergangüberfahrten auftretenden Kräften. Der Lastpfad 70 erfolgt über das
Verbindungselement 15, die wellenförmige Fläche 33, den geraden Teilabschnitt 34 der bogenförmigen Fläche 43 und die Befestigungslaschen 49a in das Batteriegehäuse 39. Auf diese Weise werden die Kühlmittelanschlüsse lastfrei gehalten.
Bezugszeichenliste
Traktionsbatterie
Mitteltunnel
Zellmodul
Außenliegende Gehäuseseitenwand
Erste Modulträger
Zweite Modulträger
Erste Stirnseite der Batteriezellmodule
Kühlvorrichtung
Kühlplatte
Zweite Stirnseite der Batteriezellmodule
Tunnelseitige Gehäuseseitenwand
Kühlmittelanschluss
Kühlmittelanschluss
Verbindungselement
Schraube
thermische Leitschicht
horizontale Fläche
wellenförmige Fläche
gerader Teilabschnitt
Wellental
Wellenberg
Haltelasche
bogenförmiger Teilabschnitt
Batteriegehäuse
/41 a Lasche
Schraubmutter
bogenförmige Fläche
ovale Öffnung
erste Sicke
Abkantung
/49a Befestigungslasche
Außenkante Oberer Arm
Innenkante
Schnittpunkt erster unterer Arm zweiter unterer Arm dritter unterer Arm zweite Sicke
Aussparung elektrischer Kabelbaum Ausstellung
Lastpfad

Claims

Ansprüche
Traktionsbatterie (1 ) mit einem Batteriegehäuse (39), aufweisend wenigstens zwei Batteriezellmodule (3), wobei jeweils zwischen zwei Batteriezellmodulen (3) eine eine Kühlplatte (9) aufweisende Kühlvorrichtung (8) angeordnet ist, dadurch gekennzeichnet, dass die Kühlplatte (9) wenigstens einen lastbefreiten
Kühlmittelanschluss (12, 13) aufweist.
Traktionsbatterie (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass jeweils stirnseitig an den Batteriezellmodulen (3) Modulträger (5, 6) angeordnet sind, wobei sich ein erster Modulträger (5), der auf der einer innenliegenden tunnelseitigen Gehäuseseitenwand (1 1 ) der Traktionsbatterie (1 ) zugewandten Stirnseite (7) der Batteriezellmodule (3) vorgesehen ist, von einem an einer außenliegenden
Gehäusewand (4) angeordneten zweiten Modulträger (6) unterscheidet.
Traktionsbatterie (1 ) nach Anspruch 2, dadurch gekennzeichnet, dass zwei nebeneinander angeordnete erste Modulträger (5) und/oder zwei nebeneinander angeordnete zweite Modulträger (6) zweier benachbarter Batteriezellmodule (3) jeweils als zueinander spiegelsymmetrische Blechhalter auf beiden Seiten der zwischen den Modulträgern (5, 6) angeordneten Kühlplatte (9) ausgebildet sind.
Traktionsbatterie (1 ) nach Ansprüche 2 oder 3, dadurch gekennzeichnet, dass der der Gehäuseseitenwand zugewandte erste Modulträger (5) eine im wesentlichen I- förmige Geometrie aufweist, wobei jeweils eine in Z-Richtung gesehen untere vertikale Fläche (31 ) horizontal verläuft und jeweils eine in Z-Richtung betrachtet obere vertikale Fläche (33) annähernd wellenförmig verläuft, aufweisend jeweils ein mittig angeordnetes Wellental (35), wobei an dem Wellental (35) jeweils eine erste Haltelasche (37) angeformt ist und die jeweils in Z-Richtung betrachtet obere vertikale Fläche (33) und die untere vertikale Fläche (31 ) über eine bogenförmige Fläche (43) miteinander einstückig verbunden sind.
Traktionsbatterie (1 ) nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der innenliegende zweite Modulträger (6) eine im wesentlichen K-förmige Geometrie aufweist, wobei zwei in Z-Richtung betrachtet obere Arme (51 ) nahezu geschlossen miteinander verbunden sind und eine zweite Haltelasche (37) mittig am in Z-Richtung gesehen oberen Ende der geschlossenen Flächen vorgesehen ist, sowie jeweils innerhalb der geschlossenen Fläche eine Aussparung (59) mit einer Ausstellung (61 ) angeordnet ist und der zweite Modulträger (6) jeweils an seinem in Z-Richtung gesehen unteren Ende drei untere Arme (55, 56, 57) aufweist.
6. Traktionsbatterie (1 ) nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass jeder der ersten und zweiten Modulträger (5, 6) wenigstens zwei in Richtung des Batteriezellmoduls (3) weisende und das Batteriezellmodul (3) umgreifende abgekantete Laschen (41 ) aufweist.
7. Traktionsbatterie (1 ) nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass jeweils zwei benachbarte Batteriezellmodule (3) und deren Modulträger (5, 6) sowie die zwischen den Batteriezellmodulen (3) angeordnete Kühlplatte (9) über Verbindungselemente (15) verbindbar und verspannbar sind.
8. Traktionsbatterie (1 ) nach einem Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die Modulträger (5, 6) nach außen ausgestellte Befestigungslaschen (49) aufweisen, mit denen die Modulträger (5, 6) über Befestigungselemente (65) an einem
Batteriegehäuse (39) befestigbar sind.
9. Kraftfahrzeug mit einer Traktionsbatterie (1 ) nach einem oder mehreren der
vorstehenden Ansprüche.
PCT/EP2016/058858 2015-07-31 2016-04-21 Traktionsbatterie mit batteriezellmodulen WO2017021019A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680044303.0A CN107851863B (zh) 2015-07-31 2016-04-21 具有蓄电池单元模块的牵引用蓄电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015214662.6 2015-07-31
DE102015214662.6A DE102015214662A1 (de) 2015-07-31 2015-07-31 Traktionsbatterie mit Batteriezellmodulen

Publications (1)

Publication Number Publication Date
WO2017021019A1 true WO2017021019A1 (de) 2017-02-09

Family

ID=55794991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/058858 WO2017021019A1 (de) 2015-07-31 2016-04-21 Traktionsbatterie mit batteriezellmodulen

Country Status (3)

Country Link
CN (1) CN107851863B (de)
DE (1) DE102015214662A1 (de)
WO (1) WO2017021019A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110901361A (zh) * 2018-08-28 2020-03-24 本田技研工业株式会社 电池外壳的固定结构
US11133539B2 (en) 2017-04-05 2021-09-28 Siemens Energy AS Cooling system and method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017211922A1 (de) 2017-07-12 2019-01-17 Volkswagen Aktiengesellschaft Anordnung zur Temperierung eines Zellmoduls, Batterie mit einer derartigen Anordnung sowie Fahrzeug
DE102017223215A1 (de) 2017-12-19 2019-06-19 Volkswagen Aktiengesellschaft Kühlvorrichtung für zumindest eine Batteriezelle, Zellmodul sowie Verfahren zur Herstellung einer Kühlplatte der Kühlvorrichtung
AT521255B1 (de) * 2018-12-04 2019-12-15 Avl List Gmbh Zellträger für einen elektrischen Energiespeicher
DE102019206646A1 (de) * 2019-05-08 2020-11-12 Audi Ag Energiespeichergehäuseanordnung für ein Kraftfahrzeug
DE102019213674B3 (de) * 2019-09-09 2020-12-31 Volkswagen Aktiengesellschaft Traktionsbatterie sowie elektrisch angetriebenes Kraftfahrzeug

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037742A1 (de) * 2011-09-12 2013-03-21 Avl List Gmbh Wiederaufladbare batterie
US20130309542A1 (en) * 2012-05-19 2013-11-21 Lg Chem, Ltd. Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly
US20140050952A1 (en) * 2012-08-16 2014-02-20 Lg Chem, Ltd. Battery module
WO2014132047A2 (en) * 2013-02-26 2014-09-04 Williams Grand Prix Engineering Limited Heat transfer device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060102851A (ko) * 2005-03-25 2006-09-28 삼성에스디아이 주식회사 이차 전지 모듈
US8465863B2 (en) * 2008-04-09 2013-06-18 GM Global Technology Operations LLC Batteries and components thereof and methods of making and assembling the same
CN102082309B (zh) * 2009-11-27 2014-09-17 尹学军 电动车辆快速补充电能的方法及其供电装置
US20110206964A1 (en) * 2010-02-24 2011-08-25 Gm Global Technology Operations, Inc. Cooling system for a battery assembly
DE102010026133A1 (de) * 2010-07-05 2012-01-05 Ads-Tec Gmbh Kühlvorrichtung in einem Akkublock
DE102011120511A1 (de) * 2011-12-07 2013-06-13 Daimler Ag Batterie und Zellblock für eine Batterie
EP2608309A1 (de) * 2011-12-21 2013-06-26 Fortu Intellectual Property AG Batteriemodul mit Batteriemodulgehäuse und Batteriezellen
EP2744033B1 (de) * 2012-12-07 2015-02-18 Obrist Powertrain GmbH Batterie

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013037742A1 (de) * 2011-09-12 2013-03-21 Avl List Gmbh Wiederaufladbare batterie
US20130309542A1 (en) * 2012-05-19 2013-11-21 Lg Chem, Ltd. Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly
US20140050952A1 (en) * 2012-08-16 2014-02-20 Lg Chem, Ltd. Battery module
WO2014132047A2 (en) * 2013-02-26 2014-09-04 Williams Grand Prix Engineering Limited Heat transfer device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11133539B2 (en) 2017-04-05 2021-09-28 Siemens Energy AS Cooling system and method
CN110901361A (zh) * 2018-08-28 2020-03-24 本田技研工业株式会社 电池外壳的固定结构

Also Published As

Publication number Publication date
CN107851863A (zh) 2018-03-27
DE102015214662A1 (de) 2017-02-02
CN107851863B (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2017021019A1 (de) Traktionsbatterie mit batteriezellmodulen
DE60032434T2 (de) Polenstruktur einer modularen Batterie
EP2377184B1 (de) Vorrichtung zur spannungsversorgung eines kraftfahrzeugs mit optimierter wärmeabführung
DE102008059961B4 (de) Batterie, umfassend einen Zellverbund aus mehreren parallel und/oder seriell miteinander verschalteten Einzelzellen
EP2789029B1 (de) Batterie und zellblock für eine batterie
DE102011089076A1 (de) Inverter für ein fahrzeug
DE102012219783B4 (de) Batteriemodul mit vielfältigen Montagevarianten und Querung
DE102008059969B4 (de) Vorrichtung zur Kühlung einer Batterie und Verwendung der Vorrichtung
DE102017208597A1 (de) Bordbatterie für Fahrzeug
WO2017207125A1 (de) Batteriegehäuse für eine fahrzeugbatterie und fahrzeugbatterie
DE102009006990A1 (de) Karosserieaufbau mit einem Hohlraum
WO2012065855A1 (de) Befestigungseinrichtung für zumindest ein batteriemodul
WO2010037796A2 (de) Energiespeichereinheit
DE102017217814B4 (de) Batteriegehäuse für ein Fahrzeug
DE102006015566A1 (de) Flexibler Polverbinder
EP3557654A1 (de) Montageanordnung eines elektrisch antreibbaren kraftfahrzeugs
EP2255991B1 (de) Stromschiene
DE102017005314A1 (de) Energiespeicheranordnung und Kraftfahrzeug
DE102017005315A1 (de) Batteriekasten
EP3753064B1 (de) Batterie für ein kraftfahrzeug
EP2819208B1 (de) Batteriesystem
DE102017211365A1 (de) Energiespeichereinrichtung für ein Kraftfahrzeug und Kraftfahrzeug
DE102013021670A1 (de) Hochvoltbatterie, Kühlkörper dafür und ein Kraftfahrzeug mit einer Hochvoltbatterie
DE102016205920A1 (de) Batteriepack
DE102013205063A1 (de) Stützkonstruktion für einen Akkumulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16717401

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16717401

Country of ref document: EP

Kind code of ref document: A1