WO2017020709A1 - 一种改进的多功能变压器 - Google Patents

一种改进的多功能变压器 Download PDF

Info

Publication number
WO2017020709A1
WO2017020709A1 PCT/CN2016/090643 CN2016090643W WO2017020709A1 WO 2017020709 A1 WO2017020709 A1 WO 2017020709A1 CN 2016090643 W CN2016090643 W CN 2016090643W WO 2017020709 A1 WO2017020709 A1 WO 2017020709A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
transformer
coils
iron core
tap
Prior art date
Application number
PCT/CN2016/090643
Other languages
English (en)
French (fr)
Inventor
李晓明
Original Assignee
李晓明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李晓明 filed Critical 李晓明
Publication of WO2017020709A1 publication Critical patent/WO2017020709A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P13/00Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output

Definitions

  • the invention relates to the technical field of power system transmission and transformation, and in particular to an improved multi-function transformer.
  • Power transformers are widely used in power systems. Power transformers can convert high voltages to low voltages and low voltages to high voltages.
  • a controllable saturable reactor whose reactance value can be continuously adjusted is simply referred to as a saturable reactor or a magnetron reactor.
  • both the transformer and the saturable reactor can be realized at the same time. .
  • the operation of the transformer module does not affect the performance of the saturable reactor module, and the operation of the saturable reactor module does not affect the performance of the transformer module.
  • CN201410461882.1, CN 201510010431.0 proposed multi-function transformer, but the performance of the saturable reactor module is not good enough, the structure can be improved.
  • An object of the present invention is to provide an improved multi-function transformer having better performance and more reasonable structure in order to solve the above problems.
  • the present invention adopts the following method:
  • An improved multi-function transformer comprising a saturable reactor and a transformer mounted on the same closed-loop iron core;
  • the transformer is composed of a primary coil and a secondary coil
  • the saturated reactor shares the primary coil of the transformer, and the rest of the saturated reactor is not connected to the transformer coil and is not connected to the power system; and includes a pair of DC coils of the same structure, which are respectively mounted on the two iron core columns of the closed-loop iron core Each of the DC coils has a tap; the same name ends of the two DC coils are connected, and the different name end of one DC coil is connected to the tap of another DC coil through a reverse thyristor, and the different end of the other DC coil passes through a positive Connecting the thyristor to the tap of the front DC coil;
  • the control ends of the two thyristors are controlled by a control circuit that controls the magnitude of the firing angle of the two thyristors; continuously adjusts the magnitude of the direct current of the two DC coils to achieve continuous adjustment of the reactance of the saturable reactor.
  • This type of multi-function transformer has two DC coils reduced, which simplifies the structure of the entire multi-function transformer, but the transformer part and the saturation reactor part have little influence on each other, even if the load current of the transformer changes, it will not affect. Performance of the saturated reactor section.
  • An improved multi-function transformer comprising a saturable reactor and a transformer mounted on the same closed-loop iron core;
  • the transformer is composed of a primary coil and a secondary coil
  • the saturated reactor shares the primary coil of the transformer, and the rest of the saturated reactor is not connected to the transformer coil and is not connected to the power system; and includes two pairs of DC coils of the same structure, which are respectively mounted on the two iron core columns of the closed-loop iron core
  • Each pair of DC coils is composed of a DC coil without a tap and a DC coil with only a tap; the same name of the two DC coils without taps is connected, and the DC terminal of the other core column is connected with a tapped DC coil.
  • the opposite end of a tapped DC coil is connected to the tap of another tapped DC coil via a reverse thyristor, and the opposite end of the tapped DC coil passes through a forward thyristor and the previous one.
  • a tap connection of a tapped DC coil ;
  • the control ends of the two thyristors are controlled by a control circuit that controls the magnitude of the firing angle of the two thyristors; continuously adjusts the magnitude of the direct current of the two DC coils to achieve continuous adjustment of the reactance of the saturable reactor.
  • the primary coil of the transformer is composed of four alternating current coils, and the number of turns of each alternating current coil is equal, respectively installed on the two iron core columns of the closed-loop iron core; two alternating current coils on different iron core columns are connected in series to form two The AC coil string is then connected in series with the two AC coils to form a primary coil.
  • a diode is connected in series between the two AC coils on at least one of the iron core columns to provide a rectifying channel for the higher harmonics in the AC coil.
  • the freewheeling diode is arranged to provide voltage balance for each of the AC coil and the DC coil on the multi-function transformer, thereby improving the performance of the multi-function transformer.
  • the secondary coil of the transformer is formed by a pair of alternating current coils on two iron core columns of the closed-loop iron core, and the number of turns of each alternating current coil is equal.
  • the taps of the tapped two DC coils have the same turns ratio ⁇ , which are all less than 1/3.
  • the rectifier circuits of the two thyristors do not work, the DC current of each DC coil is equal to zero, and the primary coil of the transformer has a maximum reactance value Zmax;
  • a freewheeling diode is connected between the two DC coils on the same core column to provide a rectifying channel for higher harmonics in the DC coil.
  • the freewheeling diode can provide voltage balance for each AC coil and DC coil on the multi-function transformer, and improve the multifunctional function. Transformer performance.
  • the currents in the two DC coils on the same core column are opposite in direction, and a collision occurs to shorten the transient response time of the DC flux.
  • a three-phase improved multi-function transformer comprising the improved multi-function transformer of claim 1 or 2 to form a three-phase multi-function transformer.
  • the DC coil structure of the first improved multi-function transformer shown in FIG. 2 is simpler than the DC coil structure of the multi-function transformer shown in FIG. 1, and the performance is not degraded.
  • the DC coil structure of the second improved multi-function transformer shown in FIG. 3 is more complicated than the DC coil structure of the multi-function transformer shown in FIG. 1, but the magnetic flux generated by the DC coil of the second modified multi-function transformer collides. As a result of the collision, the transient response time of the DC magnetic flux is greatly shortened, and the performance of the saturable reactor module in the multi-function transformer is improved.
  • the higher harmonic rectification channel provided by diode D3 and diode D4 can improve the DC magnetic flux collision effect and improve the performance of the multi-function transformer.
  • Figure 1 shows a conventional multi-function transformer.
  • Figure 2 shows a first improved multi-function transformer.
  • Figure 3 shows a second modified multi-function transformer.
  • CN 201510010431.0 proposed the structure and connection mode of the multi-function transformer as shown in Figure 1.
  • One of the iron core columns has an AC coil L11, an AC coil L13, an AC coil L15, a DC coil L17 and a DC coil L19
  • the other core column has an AC coil L12, an AC coil L14, an AC coil L16, and a DC coil.
  • L18 and DC coil L20 There are four DC coils, and the four DC coils have a larger number of turns. Therefore, four DC coils can be modified to simplify the structure.
  • the structure and connection of the first improved multi-function transformer are shown in Figure 2.
  • the primary coil terminal I1, the primary coil terminal II2, the secondary coil terminal I3, the secondary coil terminal II4, the closed-loop iron core 5, and the control circuit 6 are included.
  • the closed-loop iron core of the first improved multi-function transformer is the same as the closed-loop iron core of the existing saturable reactor.
  • the first modified multi-function transformer closed-loop iron core 5 has at least two iron core columns having the same cross-sectional area and having a DC coil and an AC coil; each of the two iron core columns can form at least one of the core legs without passing through the other side. Magnetic flux closed loop.
  • One of the iron core columns has an AC coil L11 and an AC
  • the coil L13, the AC coil L15, and the DC coil L23, and the other core leg have an AC coil L12, an AC coil L14, an AC coil L16, and a DC coil L24; an AC coil L11, an AC coil L12, an AC coil L13, and an AC coil L14.
  • the number of turns is equal, the number of turns of the AC coil L15 and the AC coil L16 is equal, the structure of the DC coil L23 and the DC coil L24 is the same, and the number of turns is equal; the DC coil L23 and the DC coil L24 have taps, and the tap is turned to the opposite end of the coil.
  • the ratio of the number of turns of the coil to the number of turns of the entire coil is ⁇
  • the number of turns of the DC coil L23 and the tap of the DC coil L24 is equal to ⁇ , which are all less than 1/3.
  • the closed-loop iron core 5 may be two closed-loop iron cores having no passages to each other, for example, 1: two square-shaped iron cores. It can also be a one-piece, closed-loop iron core with a mutual passage; for example, 2: three iron core columns, and a yoke at both ends of the iron core column is connected with three iron core columns, and any two iron core columns can form a magnetic flux closed loop with each other. However, at least two of them can form a closed loop that does not pass through the other core column.
  • 3 four iron core columns, the core legs have yokes connected to the four iron core columns at both ends, and any two iron core columns can form a magnetic flux closed loop, but at least two can form each other without passing through the opposite iron core.
  • the closed loop of the stem is shown in Figure 2.
  • the AC coil L11 and the AC coil L14 are connected in series between the primary coil terminal I1 and the primary coil terminal II2 in the forward direction, and the AC coil L12 and the AC coil L13 are connected in series between the primary coil terminal I1 and the primary coil terminal II2 in the forward direction.
  • the AC coil L15 and the AC coil L16 are connected in series in the forward direction to the secondary coil terminal I3 and the secondary coil terminal II4.
  • the primary coil and the secondary coil constitute a transformer module in the first improved multi-function transformer.
  • a diode D3 is also connected between the opposite end of the AC coil L11 and the same name end of the AC coil L13.
  • Diode D3 is called a freewheeling diode.
  • the freewheeling diode can provide voltage balance for each AC coil and DC coil on the multi-function transformer; the freewheeling diode can provide a rectification channel for the higher harmonics of the AC coil on the multi-function transformer, and improve the performance of the multi-function transformer. Freewheeling diodes can be removed in some applications.
  • the DC coil L23 is connected to the same name end of the DC coil L24.
  • the tap of the DC coil L23 is connected to the different name end of the DC coil L24 via the forward thyristor D1, and the different end of the DC coil L23 is connected to the tap of the DC coil L24 via the forward thyristor D2.
  • the trigger terminals of the thyristor D1 and the thyristor D2 are respectively connected to the control circuit 6, and the control circuit 6 controls the magnitude of the firing angle of the thyristor D1 and the thyristor D2 to continuously adjust the magnitude of the rectification of the thyristor D1 and the thyristor D2.
  • the first improved multi-function transformer primary coil rated voltage is U1
  • the first improved multi-function transformer primary coil is connected to the system with rated voltage U1.
  • the AC coil L11, the AC coil L12, the AC coil L13, and the AC coil L14 have an exciting current flowing, and an AC magnetic flux is generated in the closed-loop iron core 5, and the AC magnetic flux generates an induced electromotive force in the AC coil L15 and the AC coil L16, if When the AC coil L15 and the secondary coil formed by the AC coil L16 are connected to the load, the secondary coil supplies a load current to the load.
  • the primary and secondary coils implement the transformer function of the first improved multi-function transformer.
  • the first improved multi-function transformer primary coil is connected to a system with a rated voltage of U1.
  • the coil L12, the AC coil L13, and the AC coil L14 have an excitation current flowing, and an AC magnetic flux is generated in the closed-loop iron core 5, and the AC magnetic flux generates an induced AC electromotive force in the DC coil L23 and the DC coil L24, and the thyristor D1 and the thyristor D2 There are alternating voltages at both ends.
  • the first modified multi-function transformer primary coil has a maximum reactance value Zmax.
  • the first modified multi-function transformer primary coil has a minimum reactance value Zmin.
  • the control circuit 6 controls the magnitude of the rectification of the thyristor D1 and the thyristor D2, and can control the magnitude of the direct current in the DC coil L23 and the DC coil L24, and can control the magnitude of the primary coil reactance of the first improved multi-function transformer.
  • the control circuit 6 continuously controls the magnitude of the rectification of the thyristor D1 and the thyristor D2, and can continuously control the magnitude of the direct current in the DC coil L23 and the DC coil L24, thereby realizing the continuous adjustment of the primary coil reactance value of the first improved multi-function transformer, first An improved multi-function transformer primary coil reactance value is adjusted and varied between a maximum value and a minimum value.
  • the multi-function transformer shown in Figure 1 has a longer transient response time than the multi-function transformer shown in Figure 2.
  • This embodiment provides a multi-function transformer with a shorter transient response time.
  • the structure and connection of the second improved multi-function transformer are shown in Figure 3.
  • the primary coil terminal I1, the primary coil terminal II2, the secondary coil terminal I3, the secondary coil terminal II4, the closed-loop iron core 5, and the control circuit 6 are included.
  • the closed-loop iron core of the second improved multi-function transformer is the same as that of Embodiment 1, and is no longer cumbersome.
  • One of the iron core columns has an AC coil L11, an AC coil L13, an AC coil L15, a DC coil L21 and a DC coil L23, and the other core column has an AC coil L12, an AC coil L14, an AC coil L16, and a DC coil.
  • AC coil L11, AC coil L12, AC coil L13, AC coil L14 have the same number of turns, The number of turns of the stream coil L15 and the alternating current coil L16 is the same; the structure of the direct current coil L21 and the direct current coil L22 is the same, the number of turns is equal, the structure of the direct current coil L23 and the direct current coil L24 is the same, the number of turns is equal; the direct current coil L23 and the direct current coil L24 have The ratio of the number of turns of the tap to the number of turns of the coil to the number of turns of the coil is ⁇ , and the number of turns of the DC coil L23 and the tap of the DC coil L24 is equal to ⁇ , which are less than 1/3.
  • the second improved multi-function transformer AC coil is connected in the same manner as in Embodiment 1, and is no longer cumbersome.
  • the DC coil L21 is connected to the same name end of the DC coil L22, the DC coil L21 is connected to the same name of the DC coil L24, the DC coil L22 is connected to the same name of the DC coil L23, and the DC coil L23 is connected to the DC via the forward thyristor D1. At the opposite end of the coil L24, the opposite end of the DC coil L23 is connected to the tap of the DC coil L24 via the forward thyristor D2.
  • the trigger terminals of the thyristor D1 and the thyristor D2 are respectively connected to the control circuit 6, and the control circuit 6 controls the magnitude of the firing angle of the thyristor D1 and the thyristor D2 to continuously adjust the magnitude of the rectification of the thyristor D1 and the thyristor D2.
  • a diode D4 is also connected between the different name end of the DC coil L21 and the same name end of the DC coil L23.
  • Diode D4 is also known as a freewheeling diode.
  • the freewheeling diode can provide voltage balance for each AC coil and DC coil on the multi-function transformer; the freewheeling diode can provide a rectification channel for the higher harmonics of the DC coil on the multi-function transformer, improving the performance of the multi-function transformer. Freewheeling diodes can be removed in some applications.
  • the second improved multi-function transformer primary coil is connected to a system with a rated voltage of U1.
  • the AC coil L11, the AC coil L12, the AC coil L13, and the AC coil L14 have an excitation current flowing, and an AC magnetic flux is generated in the closed-loop iron core 5, and the AC magnetic flux is in the DC coil L21, the DC coil L22, the DC coil L23, and the DC coil.
  • An induced electromotive force is generated in L24, and an alternating voltage exists at both ends of thyristor D1 and thyristor D2.
  • the second improved multi-function transformer primary coil has a maximum reactance value Zmax.
  • the second improved multi-function transformer primary coil has a minimum reactance value Zmin.
  • the control circuit 6 controls the magnitude of the rectification of the thyristor D1 and the thyristor D2, and can control the magnitude of the direct current in the DC coil L21, the DC coil L22, the DC coil L23 and the DC coil L24, and can control the second improved multi-function transformer primary coil reactance The size of the value.
  • the control circuit 6 continuously controls the magnitude of the rectification of the thyristor D1 and the thyristor D2, and can continuously control the magnitude of the direct current in the DC coil L21, the DC coil L22, the DC coil L23 and the DC coil L24, and realize the second improved multi-function transformer primary coil Continuous adjustment of reactance value, second improved multi-function transformer primary coil The resistance value is adjusted and varied between the maximum value and the minimum value.
  • the DC coil L24 and the DC coil L21 have a direct current direction upward; the DC coil L22 and the DC coil L23 have a DC direction facing downward; and the DC current forms a loop in the DC coil L24, the DC coil L21, the DC coil L22, and the DC coil L23.
  • the DC coil L21 and the DC coil L23 are on the same core leg, and the direct current flux generated by the DC coil L21 and the DC coil L23 collides in the opposite direction.
  • the DC coil L22 and the DC coil L24 are on the same core leg, and the direct current flux generated by the DC coil L22 and the DC coil L24 collides in the opposite direction.
  • An improved multi-function transformer of the present invention can be designed and manufactured using the prior art and is fully achievable. Has broad application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Dc-Dc Converters (AREA)
  • Rectifiers (AREA)

Abstract

一种改进的多功能变压器。该变压器包括安装在同一闭环铁芯(5)上的饱和电抗器和变压器;该饱和电抗器包括两铁芯柱上各有一只直流线圈(L23、L24),各直流线圈(L23、L24)都有抽头;两直流线圈(L23、L24)的同名端连接,第一只直流线圈(L23)的抽头经第一正向晶闸管(D1)连接第二只直流线圈(L24)的异名端,第一只直流线圈(L23)的异名端经第二正向晶闸管(D2)连接第二只直流线圈(L24)的抽头;该两晶闸管(D1、D2)的控制端接控制电路(6),控制电路(6)控制两晶闸管(D1、D2)触发角的大小;连续调节两直流线圈(L23、L24)直流电流的大小,实现饱和电抗器电抗值的连续调节。

Description

一种改进的多功能变压器 技术领域
本发明涉及电力系统送变电技术领域,特别涉及一种改进的多功能变压器。
背景技术
电力变压器在电力系统中的应用非常广泛。电力变压器可把高电压变换为低电压,也可把低电压变换为高电压。
电抗器在电力系统中的应用也很广泛。电抗值可以连续调节的可控饱和电抗器简称为饱和电抗器或磁控电抗器。
至今,电力变压器与饱和电抗器这两种设备都是分别研究,分别制造。如果一座变电站同时需要电力变压器与饱和电抗器这两种设备,则设备的总体积大、铁芯重、价格高、占地面积大。
由于“不论变压器铁芯饱和度的变化是多少,引起变压器漏抗的变化不大于7%。”所以,在一台饱和电抗器铁芯的基础上,可以同时实现变压器和饱和电抗器两种功能。变压器模块工作不影响饱和电抗器模块的性能,饱和电抗器模块工作不影响变压器模块的性能。CN201410461882.1,CN 201510010431.0提出的多功能变压器,但其中的饱和电抗器模块的性能不够好,结构可以改进。
发明内容
本发明的目的就是为解决上述问题,提供一种性能更好、结构更合理的改进的多功能变压器。
为实现上述目的,本发明采用如下方法:
一种改进的多功能变压器,它包括安装在同一闭环铁芯上的饱和电抗器和变压器;其中,
所述变压器由一次线圈和二次线圈组成;
所述饱和电抗器共用变压器一次线圈,饱和电抗器其余部分不连接变压器线圈,且不接入电力系统;包括一对结构相同的直流线圈,分别安装在所述闭环铁芯的两铁芯柱上;所述各直流线圈都有抽头;两直流线圈的同名端连接,一个直流线圈的异名端经过一个反向晶闸管与另一直流线圈的抽头连接,另一个直流线圈的异名端经过一个正向晶闸管与前一直流线圈的抽头连接;
所述两晶闸管的控制端接控制电路,控制电路控制两晶闸管触发角的大小;连续调节两直流线圈直流电流的大小,实现饱和电抗器电抗值的连续调节。
该种形式的多功能变压器其直流线圈减为两个,从而使得整个多功能变压器结构简化,但其中的变压器部分与饱和电抗器部分相互影响小,即便变压器部分负载电流有变化,也不会影响饱和电抗器部分的性能。
一种改进的多功能变压器,它包括安装在同一闭环铁芯上的饱和电抗器和变压器;其中,
所述变压器由一次线圈和二次线圈组成;
所述饱和电抗器共用变压器一次线圈,饱和电抗器其余部分不连接变压器线圈,且不接入电力系统;包括两对结构相同的直流线圈,分别安装在所述闭环铁芯的两铁芯柱上,每对直流线圈均由一只没有抽头的直流线圈和一只有抽头的直流线圈组成;没有抽头的两直流线圈的同名端连接,异名端分别连接另一铁芯柱上有抽头的直流线圈的同名端,一个有抽头的直流线圈的异名端经过一个反向晶闸管与另一有抽头的直流线圈的抽头连接,另一个有抽头的直流线圈的异名端经过一个正向晶闸管与前一有抽头的直流线圈的抽头连接;
所述两晶闸管的控制端接控制电路,控制电路控制两晶闸管触发角的大小;连续调节两直流线圈直流电流的大小,实现饱和电抗器电抗值的连续调节。
该种多功能变压器直流线圈有四个,但同一铁芯柱上的两直流线圈电流产生对撞,从而有效缩短了直流磁通的暂态相应时间,进一步提升了饱和电抗器部分的性能。
所述变压器的一次线圈由四只交流线圈组成,各交流线圈匝数相等,分别安装在所述闭环铁芯的两铁芯柱上;不同铁芯柱上的两只交流线圈正向串联形成两交流线圈串,然后两交流线圈串并联形成一次线圈。
所述一次线圈中,至少一个铁芯柱上的两交流线圈间串联续流二极管,为交流线圈中高次谐波提供整流通道。该续流二极管的设置,可为多功能变压器上的各交流线圈与直流线圈提供电压平衡,从而提高多功能变压器的性能。
所述变压器的二次线圈由位于所述闭环铁芯的两铁芯柱上的一对交流线圈正向串接构成;各交流线圈匝数相等。
所述有抽头的两直流线圈的抽头的匝数比δ相等,皆小于1/3。
所述当控制电路控制两晶闸管全截止时,两晶闸管的整流电路不工作,各直流线圈的直流电流等于零,变压器一次线圈有最大电抗值Zmax;
控制电路控制各晶闸管全导通时,流过各直流线圈的直流电流达到最大设计值,变压器一次线圈有最小电抗值Zmin。
所述同一铁芯柱上两直流线圈间连接一续流二极管,为直流线圈中高次谐波提供整流通道。该续流二极管可为多功能变压器上的各交流线圈与直流线圈提供电压平衡,提高多功能 变压器性能。所述同一铁芯柱上两直流线圈中的电流方向相反,发生对撞,使直流磁通的暂态响应时间缩短。
一种三相改进的多功能变压器,它采用权利要求1或2所述的改进的多功能变压器组成三相多功能变压器。
本发明的有益效果是:图2所示第一种改进的多功能变压器的直流线圈结构比图1所示多功能变压器的直流线圈结构简单,且性能没有下降。
图3所示第二种改进的多功能变压器的直流线圈结构比图1所示多功能变压器的直流线圈结构复杂,但是第二种改进的多功能变压器直流线圈产生的磁通发生对撞。对撞的结果使直流磁通的暂态响应时间有较大的缩短,提高了多功能变压器中的饱和电抗器模块的性能。
二极管D3、二极管D4提供的高次谐波整流通道可提高直流磁通对撞的效果,提高多功能变压器性能。
附图说明
图1表示现有的多功能变压器。
图2表示第一种改进的多功能变压器。
图3表示第二种改进的多功能变压器。
其中,1.一次线圈端子I,2.一次线圈端子II,3.二次线圈端子I,4.二次线圈端子II,5.闭环铁芯,6.控制电路。
具体实施方式
下面结合附图与实施例对本发明做进一步说明。
实施例1:
CN 201510010431.0提出的多功能变压器的结构与连接方式如图1所示。其中一根铁芯柱上有交流线圈L11、交流线圈L13、交流线圈L15、直流线圈L17和直流线圈L19,另一根铁芯柱上有交流线圈L12、交流线圈L14、交流线圈L16、直流线圈L18和直流线圈L20。共有四个直流线圈,且四个直流线圈的匝数都比较多。因此可对四个直流线圈进行改进,以简化结构。
第一种改进的多功能变压器的结构与连接方式如图2所示。包括一次线圈端子I 1,一次线圈端子II2,二次线圈端子I3,二次线圈端子II4,闭环铁芯5,控制电路6。第一种改进的多功能变压器的闭环铁芯与现有饱和电抗器的闭环铁芯相同。第一种改进的多功能变压器闭环铁芯5至少有两根截面积相等、均有直流线圈和交流线圈的铁芯柱;这两根铁芯柱各自至少有能形成一条不经过对方铁芯柱的磁通闭环。其中一根铁芯柱上有交流线圈L11、交流 线圈L13、交流线圈L15、直流线圈L23,另一根铁芯柱上有交流线圈L12、交流线圈L14、交流线圈L16、直流线圈L24;交流线圈L11、交流线圈L12、交流线圈L13、交流线圈L14的匝数相等,交流线圈L15与交流线圈L16的匝数相等,直流线圈L23与直流线圈L24的结构相同,匝数相等;直流线圈L23与直流线圈L24有抽头,抽头至该线圈异名端之间的线圈匝数与整个线圈匝数之比为δ,直流线圈L23与直流线圈L24抽头的匝数比δ相等,皆小于1/3。
闭环铁芯5可以是相互没有通路的两个闭环铁芯,例如1:两个口字形铁芯。也可以是一体的,相互有通路的闭环铁芯;例如2:三根铁芯柱,铁芯柱两端有磁轭连通三根铁芯柱,任何两根铁芯柱都能够相互构成磁通闭环,但至少有两根能各自形成不经过对方铁芯柱的闭环。例如3:四根铁芯柱,铁芯柱两端有磁轭连通四根铁芯柱,任何两根铁芯柱都能够相互构成磁通闭环,但至少有两根能各自形成不经过对方铁芯柱的闭环,如图2所示。
交流线圈L11与交流线圈L14正向串联接在一次线圈端子I 1与一次线圈端子II2之间,交流线圈L12与交流线圈L13正向串联接在一次线圈端子I 1与一次线圈端子II2之间。交流线圈L15与交流线圈L16正向串联接在二次线圈端子I3与二次线圈端子II4。一次线圈与二次线圈构成第一种改进的多功能变压器中的变压器模块。
交流线圈L11异名端与交流线圈L13同名端之间还连接二极管D3。二极管D3称为续流二极管。续流二极管可为多功能变压器上的各交流线圈与直流线圈提供电压平衡;续流二极管可为多功能变压器上交流线圈中高次谐波提供整流通道,提高多功能变压器性能。续流二极管在一些应用场合,可以去除。
直流线圈L23同名端连接直流线圈L24同名端,直流线圈L23的抽头经正向晶闸管D1连接直流线圈L24的异名端,直流线圈L23的异名端经正向晶闸管D2连接直流线圈L24的抽头。
晶闸管D1和晶闸管D2的触发端子分别连接控制电路6,控制电路6控制晶闸管D1和晶闸管D2触发角的大小,实现连续调节晶闸管D1和晶闸管D2整流量的大小。
设第一种改进的多功能变压器一次线圈额定电压为U1,第一种改进的多功能变压器一次线圈第接入额定电压为U1的系统。交流线圈L11、交流线圈L12、交流线圈L13、交流线圈L14有励磁电流流通,在闭环铁芯5中产生交流磁通,该交流磁通在交流线圈L15与交流线圈L16中产生感生电动势,如果交流线圈L15与交流线圈L16构成的二次线圈连接负载,则二次线圈为负载提供负荷电流。一次线圈与二次线圈实现第一种改进的多功能变压器的变压器功能。
第一种改进的多功能变压器一次线圈接入额定电压为U1的系统。交流线圈L11、交流线 圈L12、交流线圈L13、交流线圈L14有励磁电流流通,在闭环铁芯5中产生交流磁通,该交流磁通在直流线圈L23,直流线圈L24中产生感生交流电动势,晶闸管D1和晶闸管D2两端有交流电压存在。
当控制电路6控制晶闸管D1和晶闸管D2全截止时,晶闸管D1和晶闸管D2整流电路不工作,直流线圈L23和直流线圈L24中的直流电流等于零。第一种改进的多功能变压器一次线圈有最大电抗值Zmax。
当控制电路6控制晶闸管D1和晶闸管D2全导通时,流过直流线圈L23与直流线圈L24的直流电流达到最大设计值。第一种改进的多功能变压器一次线圈有最小电抗值Zmin。
控制电路6控制晶闸管D1和晶闸管D2整流量的大小,可控制直流线圈L23和直流线圈L24中直流电流的大小,可控制第一种改进的多功能变压器一次线圈电抗值的大小。控制电路6连续控制晶闸管D1和晶闸管D2整流量的大小,可连续控制直流线圈L23和直流线圈L24中直流电流的大小,实现第一种改进的多功能变压器一次线圈电抗值的连续调节,第一种改进的多功能变压器一次线圈电抗值在最大值与最小值之间调节、变化。
实验表明,第一种改进的多功能变压器二次线圈连接负载,不论负荷电流增大,或者减小,都不会改变直流线圈L23和直流线圈L24中的直流电流大小,都不会影响第一种改进的多功能变压器中的饱和电抗器性能。
实验表明,直流线圈L23和直流线圈L24中的直流电流在饱和电抗器需求的范围内变化,对第一种改进的多功能变压器一次电压与二次电压的变比影响很小,对第一种改进的多功能变压器一次线圈与二次线圈之间的漏抗影响不大于7%。
实验表明,图2所示第一种改进的多功能变压器的直流线圈结构比图1所示多功能变压器的直流线圈结构简单,且性能没有下降。
实施例2:
图1所示多功能变压器与图2所示多功能变压器的暂态响应时间比较长。本实施例提供一种暂态响应时间更短的多功能变压器。
第二种改进的多功能变压器的结构与连接方式如图3所示。包括一次线圈端子I 1,一次线圈端子II2,二次线圈端子I3,二次线圈端子II4,闭环铁芯5,控制电路6。第二种改进的多功能变压器的闭环铁芯与实施例1相同,不再累赘。
其中一根铁芯柱上有交流线圈L11、交流线圈L13、交流线圈L15、直流线圈L21和直流线圈L23,另一根铁芯柱上有交流线圈L12、交流线圈L14、交流线圈L16、直流线圈L22和直流线圈L24;交流线圈L11、交流线圈L12、交流线圈L13、交流线圈L14的匝数相等,交 流线圈L15与交流线圈L16的匝数相等;直流线圈L21与直流线圈L22的结构相同,匝数相等,直流线圈L23与直流线圈L24的结构相同,匝数相等;直流线圈L23与直流线圈L24有抽头,抽头至线圈异名端之间的线圈匝数与整个线圈匝数之比为δ,直流线圈L23与直流线圈L24抽头的匝数比δ相等,皆小于1/3。
第二种改进的多功能变压器交流线圈的连接方式与实施例1相同,不再累赘。
直流线圈L21同名端连接直流线圈L22同名端,直流线圈L21异名端连接直流线圈L24同名端,直流线圈L22异名端连接直流线圈L23同名端,直流线圈L23的抽头经正向晶闸管D1连接直流线圈L24的异名端,直流线圈L23的异名端经正向晶闸管D2连接直流线圈L24的抽头。
晶闸管D1和晶闸管D2的触发端子分别连接控制电路6,控制电路6控制晶闸管D1和晶闸管D2触发角的大小,实现连续调节晶闸管D1和晶闸管D2整流量的大小。
直流线圈L21异名端与直流线圈L23同名端之间还连接二极管D4。二极管D4也称为续流二极管。续流二极管可为多功能变压器上的各交流线圈与直流线圈提供电压平衡;续流二极管可为多功能变压器上直流线圈中高次谐波提供整流通道,提高多功能变压器性能。续流二极管在一些应用场合,可以去除。
第二种改进的多功能变压器一次线圈接入额定电压为U1的系统。交流线圈L11、交流线圈L12、交流线圈L13、交流线圈L14有励磁电流流通,在闭环铁芯5中产生交流磁通,该交流磁通在直流线圈L21,直流线圈L22,直流线圈L23,直流线圈L24中产生感生电动势,晶闸管D1和晶闸管D2两端有交流电压存在。
当控制电路6控制晶闸管D1和晶闸管D2全截止时,晶闸管D1和晶闸管D2整流电路不工作,直流线圈L21,直流线圈L22,直流线圈L23和直流线圈L24中的直流电流等于零。第二种改进的多功能变压器一次线圈有最大电抗值Zmax。
当控制电路6控制晶闸管D1和晶闸管D2全导通时,流过直流线圈L21,直流线圈L22,直流线圈L23和直流线圈L24的直流电流达到最大设计值。第二种改进的多功能变压器一次线圈有最小电抗值Zmin。
控制电路6控制晶闸管D1和晶闸管D2整流量的大小,可控制直流线圈L21,直流线圈L22,直流线圈L23和直流线圈L24中直流电流的大小,可控制第二种改进的多功能变压器一次线圈电抗值的大小。控制电路6连续控制晶闸管D1和晶闸管D2整流量的大小,可连续控制直流线圈L21,直流线圈L22,直流线圈L23和直流线圈L24中直流电流的大小,实现第二种改进的多功能变压器一次线圈电抗值的连续调节,第二种改进的多功能变压器一次线圈电 抗值在最大值与最小值之间调节、变化。
直流线圈L24、直流线圈L21的直流方向朝上;直流线圈L22,直流线圈L23的直流方向朝下;直流电流在直流线圈L24、直流线圈L21、直流线圈L22、直流线圈L23中形成环路。直流线圈L21与直流线圈L23在同一铁芯柱上,直流线圈L21与直流线圈L23产生的直流磁通方向相反发生对撞。直流线圈L22与直流线圈L24在同一铁芯柱上,直流线圈L22与直流线圈L24产生的直流磁通方向相反发生对撞。实验表明:对撞的结果使直流磁通的暂态响应时间缩短。
实验表明,直流线圈L21与直流线圈L23产生的直流磁通发生对撞,直流线圈L22与直流线圈L24产生的直流磁通发生对撞,二极管D3、二极管D4提供的高次谐波整流通道可提高直流磁通对撞的效果,提高第二种改进的多功能变压器性能。
实施例2与实施例1共性的部分,不再累赘。
本发明的一种改进的多功能变压器可用现有技术设计制造,完全可以实现。有广阔应用前景。

Claims (10)

  1. 一种改进的多功能变压器,其特征是,它包括安装在同一闭环铁芯上的饱和电抗器和变压器;其中,
    所述变压器由一次线圈和二次线圈组成;
    所述饱和电抗器共用变压器一次线圈,饱和电抗器其余部分不连接变压器线圈,且不接入电力系统;包括一对结构相同的直流线圈,分别安装在所述闭环铁芯的两铁芯柱上;所述各直流线圈都有抽头;两直流线圈的同名端连接,一个直流线圈的异名端经过一个反向晶闸管与另一直流线圈的抽头连接,另一个直流线圈的异名端经过一个正向晶闸管与前一直流线圈的抽头连接;
    所述两晶闸管的控制端接控制电路,控制电路控制两晶闸管触发角的大小;连续调节两直流线圈直流电流的大小,实现饱和电抗器电抗值的连续调节。
  2. 一种改进的多功能变压器,其特征是,它包括安装在同一闭环铁芯上的饱和电抗器和变压器;其中,
    所述变压器由一次线圈和二次线圈组成;
    所述饱和电抗器共用变压器一次线圈,饱和电抗器其余部分不连接变压器线圈,且不接入电力系统;包括两对结构相同的直流线圈,分别安装在所述闭环铁芯的两铁芯柱上,每对直流线圈均由一只没有抽头的直流线圈和一只有抽头的直流线圈组成;没有抽头的两直流线圈的同名端连接,异名端分别连接另一铁芯柱上有抽头的直流线圈的同名端,一个有抽头的直流线圈的异名端经过一个反向晶闸管与另一有抽头的直流线圈的抽头连接,另一个有抽头的直流线圈的异名端经过一个正向晶闸管与前一有抽头的直流线圈的抽头连接;
    所述两晶闸管的控制端接控制电路,控制电路控制两晶闸管触发角的大小;连续调节两直流线圈直流电流的大小,实现饱和电抗器电抗值的连续调节。
  3. 如权利要求1或2所述的一种改进的多功能变压器,其特征是,所述变压器的一次线圈由四只交流线圈组成,各交流线圈匝数相等,分别安装在所述闭环铁芯的两铁芯柱上;不同铁芯柱上的两只交流线圈正向串联形成两交流线圈串,然后两交流线圈串并联形成一次线圈。
  4. 如权利要求3所述的一种改进的多功能变压器,其特征是,所述一次线圈中,至少一个铁芯柱上的两交流线圈间串联续流二极管,为交流线圈中高次谐波提供整流通道。
  5. 如权利要求1或2所述的一种改进的多功能变压器,其特征是,所述变压器的二次线圈由位于所述闭环铁芯的两铁芯柱上的一对交流线圈正向串接构成;各交流线圈匝数相等。
  6. 如权利要求1或2所述的一种改进的多功能变压器,其特征是,所述有抽头的两直流 线圈的抽头的匝数比δ相等,皆小于1/3。
  7. 如权利要求1或2所述的一种改进的多功能变压器,其特征是,所述当控制电路控制两晶闸管全截止时,两晶闸管的整流电路不工作,各直流线圈的直流电流等于零,变压器一次线圈有最大电抗值Zmax;
    控制电路控制各晶闸管全导通时,流过各直流线圈的直流电流达到最大设计值,变压器一次线圈有最小电抗值Zmin。
  8. 如权利要求2所述的一种改进的多功能变压器,其特征是,所述同一铁芯柱上两直流线圈间连接一续流二极管,为直流线圈中高次谐波提供整流通道。
  9. 如权利要求2所述的一种改进的多功能变压器,其特征是,所述同一铁芯柱上两直流线圈中的电流方向相反,发生对撞,使直流磁通的暂态响应时间缩短。
  10. 一种三相改进的多功能变压器,其特征是,它采用权利要求1或2所述的改进的多功能变压器组成三相多功能变压器。
PCT/CN2016/090643 2015-07-31 2016-07-20 一种改进的多功能变压器 WO2017020709A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510467899.2A CN105141140B (zh) 2015-07-31 2015-07-31 一种改进的多功能变压器
CN201510467899.2 2015-07-31

Publications (1)

Publication Number Publication Date
WO2017020709A1 true WO2017020709A1 (zh) 2017-02-09

Family

ID=54726389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/090643 WO2017020709A1 (zh) 2015-07-31 2016-07-20 一种改进的多功能变压器

Country Status (2)

Country Link
CN (1) CN105141140B (zh)
WO (1) WO2017020709A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105141140B (zh) * 2015-07-31 2017-09-26 山东大学 一种改进的多功能变压器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902952B2 (en) * 2007-01-09 2011-03-08 Mitsubishi Electric Corporation Shared reactor transformer
CN104201903A (zh) * 2014-09-11 2014-12-10 山东大学 一种多功能变压器
CN104485824A (zh) * 2015-01-08 2015-04-01 山东大学 一种磁控孤立的多功能变压器
CN105141140A (zh) * 2015-07-31 2015-12-09 山东大学 一种改进的多功能变压器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201146386Y (zh) * 2008-01-21 2008-11-05 丹东欣泰电气股份有限公司 磁阀式连续可调消弧线圈
CN202019199U (zh) * 2011-05-18 2011-10-26 合肥华威自动化有限公司 不同绕向绕组组合的磁控电抗器
CN104078199B (zh) * 2014-07-23 2016-08-31 山东大学 一种提高直流饱和电抗器性能的装置及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7902952B2 (en) * 2007-01-09 2011-03-08 Mitsubishi Electric Corporation Shared reactor transformer
CN104201903A (zh) * 2014-09-11 2014-12-10 山东大学 一种多功能变压器
CN104485824A (zh) * 2015-01-08 2015-04-01 山东大学 一种磁控孤立的多功能变压器
CN105141140A (zh) * 2015-07-31 2015-12-09 山东大学 一种改进的多功能变压器

Also Published As

Publication number Publication date
CN105141140A (zh) 2015-12-09
CN105141140B (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
US8072785B2 (en) Switching power supply unit
US20080054874A1 (en) Power Converter Employing Regulators with a Coupled Inductor
CN107808752B (zh) 一种四柱无级调压变压器
CA2930845C (en) Device and method for reducing a magnetic unidirectional flux component of a transformer core
CN113241952A (zh) 一种隔离式双向变换器及其控制方法
WO2017016249A1 (zh) 一种响应速度快的多功能变压器
US8199542B2 (en) Method and device for creating a direct voltage or a direct current
CN112992510B (zh) 自励式三相三柱型电调磁控电抗器
WO2016110013A1 (zh) 一种磁控孤立的多功能变压器
CA2763267A1 (en) Current supply arrangement for the rectifying three-phase ac current into multi-pulse dc current
WO2017020709A1 (zh) 一种改进的多功能变压器
CN102158104B (zh) 一种电压与电流调节器
JP4411460B2 (ja) 電圧調整変圧器
WO2016180219A1 (zh) 一种缩短暂态响应时间的饱和电抗器
US10297383B2 (en) Device and method for reducing a magnetic unidirectional flux component in the core of a three-phase transformer
RU2269175C1 (ru) Электрический реактор с подмагничиванием
RU2708937C1 (ru) Индуктивно-импульсный генератор
CN212990895U (zh) 补偿式可控变压器
CN219716634U (zh) 他励式和自励式磁控电抗器
CN219875102U (zh) 动态无功补偿装置和调压型磁控调相器
JP5923341B2 (ja) 電圧調整装置
JPS62182815A (ja) サイリスタ制御式電圧位相調整単巻変圧器
CN112309696A (zh) 补偿式可控变压器
CN117543990A (zh) 一种三相输入隔离型正激式矩阵变换器
Wijesooriya et al. Fast acting linear AC voltage regulator for consumer applications: Implementation options

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832197

Country of ref document: EP

Kind code of ref document: A1