WO2017016249A1 - 一种响应速度快的多功能变压器 - Google Patents

一种响应速度快的多功能变压器 Download PDF

Info

Publication number
WO2017016249A1
WO2017016249A1 PCT/CN2016/080093 CN2016080093W WO2017016249A1 WO 2017016249 A1 WO2017016249 A1 WO 2017016249A1 CN 2016080093 W CN2016080093 W CN 2016080093W WO 2017016249 A1 WO2017016249 A1 WO 2017016249A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
transformer
response speed
turns
Prior art date
Application number
PCT/CN2016/080093
Other languages
English (en)
French (fr)
Inventor
李晓明
Original Assignee
李晓明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李晓明 filed Critical 李晓明
Publication of WO2017016249A1 publication Critical patent/WO2017016249A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • H02M5/12Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers for conversion of voltage or current amplitude only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P13/00Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output

Definitions

  • the invention relates to the technical field of power system transmission and transformation, in particular to a multi-function transformer with fast response speed.
  • Power transformers are widely used in power systems to convert high voltages to low voltages and low voltages to high voltages.
  • Parallel reactors are also widely used in power systems.
  • the shunt reactor can limit the overvoltage; the reactor and the capacitor can form a reactive power regulation circuit of the power system.
  • the reactance of shunt reactors is fixed; in some applications, the reactance of reactors should be constantly adjusted as the operating mode of the power system changes.
  • a controllable saturable reactor whose reactance value can be continuously adjusted is simply referred to as a saturable reactor or a magnetron reactor.
  • Patent CN201410461882.1 and CN201510010431.0 each propose a multi-function transformer.
  • the proposed multi-function transformer realizes the regulation change of the saturable reactor does not affect the transformer characteristics; however, the transformer load size change will affect the reactance value of the saturable reactor.
  • CN201510010431.0 proposed multi-function transformer to achieve saturation reactor regulation changes will not affect the transformer characteristics; transformer load size changes will not affect the saturation reactor reactance value; but CN201510010431.0 provides multi-function transformer response speed Not fast enough, the power system needs a multi-function transformer that responds faster.
  • An object of the present invention is to provide a multi-function transformer having a faster response speed in order to solve the above problems.
  • the present invention adopts the following method:
  • a multi-function transformer with fast response which is single-phase, including:
  • a transformer comprising a primary coil and a secondary coil mounted on a core leg of the closed-loop iron core;
  • a saturable reactor comprising two sets of coils respectively mounted on two iron cores of the closed-loop iron core, the two sets of coils having the same structure, each set of coils being composed of two alternating current coils and one direct current coil;
  • the different names of the DC coils are respectively Connected to the connection point N through a thyristor, the two thyristors are connected in opposite directions; the control ends of the two thyristors are connected to the control circuit;
  • the control circuit adjusts the DC current of the saturable reactor, and the two DC currents in the saturated reactor coil on the same core column have opposite trends, generating a hedging effect, and shortening the transient response time of the multi-function transformer.
  • the same name ends of the first alternating current coils in each set of coils are connected to each other, and the different end ends are connected to the same end of the second alternating current coil on the opposite core legs; two second alternating current coils The opposite end of the name is connected to the connection point N; the same name end of the DC coil in each set of coils is connected to the same name end of the second AC coil on the core post.
  • the number of turns of the DC coil and the AC coil connected thereto is not equal, and the difference between the two is 1%, and the DC coil is approximately equal to the number of turns required for the rated voltage of 1/2.
  • a diode is connected between the same-name end and the different-name end of the two AC coils in the at least one coil to provide a rectification path for the higher harmonics and reduce the transient response time of the saturable reactor.
  • the primary coil and the secondary coil of the transformer are respectively composed of a pair of alternating current coils mounted on two iron core columns and forwardly connected in series; the number of turns of the two alternating current coils of the primary coil is equal; and the two alternating current coils of the secondary coil The turns are equal; the turns ratio of each AC coil of the primary coil and the secondary coil of the secondary coil is equal to the ratio of the primary coil to the secondary coil of the transformer.
  • the number of turns of the two first AC coils is equal; the number of turns of the two second AC coils is equal; the number of turns of the two DC coils is equal; the number of turns of each DC coil is not equal to the number of turns of the second AC coil on the core leg To ensure that there is voltage at both ends of the two thyristors.
  • the rectifier circuits of the two thyristors do not work, the DC current of each DC coil is equal to zero, and the primary coil of the transformer has a maximum reactance value Zmax;
  • the transformer and the coil of the saturable reactor are independent of each other, and the change of the load current of the transformer does not change the magnitude of the direct current in each of the DC reactors in the saturable reactor; the adjustment of the reactance value of the saturable reactor does not affect the transformer load current.
  • the DC coil on one of the core reactors has the same direct current direction as the DC coil on the other core cylinder that is not connected to the DC coil; the DC coil on the same core column and the AC coil that is not connected thereto
  • the direct currents in the opposite directions are opposite, so that the transient response of the two coils on the same core column is opposite, causing a collision, which cancels most of the transient response time.
  • a multi-function transformer with fast response speed which adopts the single-phase multi-function transformer with fast response speed as claimed in claim 1 to form a three-phase multi-function transformer with fast response speed.
  • the beneficial effects of the invention are: using DC currents in two coils on the same core column to have a counteracting effect, two The DC current changes in opposite directions, which shortens the transient response time of the multi-function transformer.
  • the higher harmonics generated by the two currents are rectified by diode D3 to provide a DC current with a short transient response time, which can reduce the transient response time of the saturable reactor.
  • the overall transient response time of the saturable reactor is very short.
  • the multi-function transformer with fast response speed realizes two functions of transformer and saturable reactor based on a saturated reactor core.
  • the overall footprint of the device is reduced, the overall core weight is reduced, and the overall price is reduced.
  • Figure 1 shows a multi-function transformer with fast response.
  • a structure and connection mode of a multi-function transformer with fast response speed is shown in Fig. 1.
  • the primary coil terminal I1, the primary coil terminal II2, the secondary coil terminal I3, the secondary coil terminal II4, the closed-loop iron core 5, and the control circuit 6 are included.
  • a closed-loop iron core of a multi-function transformer with fast response speed is the same as a closed-loop iron core of a saturable reactor.
  • the single-phase multi-function transformer closed-loop core 5 with fast response speed has at least two iron core columns; there are two iron core columns with equal cross-sectional areas and DC coils and AC coils; the two iron core columns are at least at least There is a magnetic flux closed loop that can form a core without the other side.
  • One of the iron core columns has an AC coil L1, an AC coil L3, an AC coil L5, an AC coil L7 and a DC coil L9
  • the other core column has an AC coil L2, an AC coil L4, an AC coil L6, and an AC coil.
  • L8 and DC coil L10 the number of turns of the AC coil L1 and the AC coil L2 is equal, the number of turns of the AC coil L3 and the AC coil L4 is equal, and the number of turns of the AC coil L5 and the AC coil L6 is equal, and the AC coil L7 and the AC coil L8 are equal.
  • the number of turns is equal, and the number of turns of the direct current coil L9 and the direct current coil L10 is equal.
  • the turns ratio of the AC coil L1 to the AC coil L3 is equal to the ratio of the primary coil to the secondary coil of the transformer.
  • the number of turns of the DC coil L9 (L10) is not equal to the number of turns of the AC coil L7 (L8).
  • the closed-loop iron core 5 may be two closed-loop iron cores having no passages to each other, for example, 1: two square-shaped iron cores. It can also be a one-piece, closed-loop iron core with a mutual passage; for example, 2: three iron core columns, and a yoke at both ends of the iron core column is connected with three iron core columns, and any two iron core columns can form a magnetic flux closed loop with each other. However, at least two of them can form a closed loop that does not pass through the other core column.
  • 3 four iron core columns, the core legs have yokes connected to the four iron core columns at both ends, and any two iron core columns can form a magnetic flux closed loop, but at least two can form each other without passing through the opposite iron core.
  • the closed loop of the stem is shown in Figure 1.
  • the AC coil L1 and the AC coil L2 are connected in series in the forward direction as a transformer primary coil, and the remaining terminals are connected to the primary coil terminal I1 and the primary coil terminal II2, respectively.
  • the AC coil L3 and the AC coil L4 are connected in series in the forward direction as a transformer secondary coil.
  • the remaining terminals are connected to the secondary coil terminal I3 and the secondary coil terminal II4, respectively.
  • the primary coil and the secondary coil serve as the transformer function of the first multi-function transformer that responds quickly. It should be noted that there are many forms of transformers for those skilled in the art. This embodiment only provides a relatively simple form of transformer, but other types of transformers can also be used in this patent.
  • the AC coil L5 is connected to the same name end of the AC coil L6, the AC coil L5 is connected to the AC coil L8 with the same name, the AC coil L6 is connected to the AC coil L7 with the same name; the AC coil L7 is connected to the AC coil L8.
  • the DC coil L9 is connected to the same name end of the AC coil L7, the DC coil L9 is terminated by the forward thyristor D1 connected to the AC coil L7 different name end;
  • the DC coil L10 is connected to the AC coil L8 At the same name, the DC coil L10 is connected to the opposite end of the AC coil L8 via the reverse thyristor D2.
  • the trigger terminals of the thyristor D1 and the thyristor D2 are respectively connected to the control circuit 6, and the control circuit 6 controls the magnitude of the firing angle of the thyristor D1 and the thyristor D2 to continuously adjust the magnitude of the rectification of the thyristor D1 and the thyristor D2.
  • a diode D3 is also connected between the different name end of the AC coil L5 and the same name end of the AC coil L7. Diode D3 increases the balance of the saturation reactor voltage. Diode D3 provides a rectification path for higher harmonics and reduces the transient response time of the saturable reactor.
  • a multi-function transformer with fast response speed is set to U1, and a multi-function transformer with fast response speed is connected to the system with rated voltage U1.
  • the AC coil L1 and the AC coil L2 have an exciting current flowing, and an AC magnetic flux is generated in the closed-loop iron core 5, and the AC magnetic flux generates an induced electromotive force in the AC coil L3 and the AC coil L4, and the AC coil L3 and the AC coil L4 are formed.
  • the secondary coil is connected to the load, and the secondary coil supplies a load current to the load.
  • the primary coil and the secondary coil realize a transformer function of a multi-function transformer with a fast response speed.
  • a multi-function transformer with fast response speed is connected to a system with a rated voltage of U1.
  • the AC coil L1 and the AC coil L2 have an excitation current flowing, and an AC magnetic flux is generated in the closed-loop iron core 5; the AC magnetic flux is in the AC coil L5, the AC coil L6, the AC coil L7, the AC coil L8, the DC coil L9, and the DC coil.
  • the induced electromotive force is generated in L10. Since the number of turns of the DC coil L9 is not equal to the number of turns of the AC coil L7, there is an AC voltage across the thyristor D1. Since the number of turns of the DC coil L10 is not equal to the number of turns of the AC coil L8, there are two ends of the thyristor D2. AC voltage.
  • the rated AC voltages at both ends of the Thyristor D1 and the Thyristor D2 are equal.
  • the rated AC voltage across the thyristor D1 and the thyristor D2 provides power to the DC current of the saturable reactor.
  • the control circuit 6 controls the thyristor D1 and the thyristor D2 to be completely turned off, the thyristor D1 and the thyristor D2 rectifier circuit are not Working, the DC current in the DC coil L9 and the DC coil L10 is equal to zero.
  • a multi-function transformer with a fast response speed has a maximum reactance value Zmax.
  • the control circuit 6 controls the thyristor D1 and the thyristor D2 to be fully turned on, the rated AC voltage across the thyristor D1 and the thyristor D2 is half-wave rectified by the thyristor D1 and the thyristor D2 to generate a direct current. Since the thyristor D1 and the thyristor D2 are all turned on, the direct current flowing through the direct current coil L9 and the direct current coil L10 reaches a maximum design value.
  • a multi-function transformer with a fast response speed has a minimum reactance value Zmin.
  • the control circuit 6 controls the magnitude of the rectification of the thyristor D1 and the thyristor D2, and can control the magnitude of the direct current in the DC coil L9 and the DC coil L10 to control the magnitude of the primary coil reactance of the multi-function transformer with a fast response speed.
  • the control circuit 6 continuously controls the magnitude of the rectification of the thyristor D1 and the thyristor D2, and can continuously control the magnitude of the direct current in the DC coil L9 and the DC coil L10, thereby realizing a continuous adjustment of the primary coil reactance value of the multi-function transformer with a fast response speed,
  • the primary coil reactance value of the multi-function transformer with fast response speed is adjusted and changed between the maximum value and the minimum value.
  • the number of turns of the two DC coils connected in series with the two thyristors is relatively large, and the number of turns required for the rated voltage is close.
  • the number of turns of the direct current coil L9 and the direct current coil L10 connected in series with the thyristor D1 and the thyristor D2 is small. If the number of turns of the design AC coil L5, the AC coil L6, the AC coil L7, and the AC coil L8 is equal, the number of turns of the DC coil L9 and the DC coil L10 is equal; the DC coil L9 (L10) and the AC coil L7 are not equal, but the difference is different. Small, the difference between the two is 1%. Then, the DC coil L9 (L10) is approximately equal to the number of turns required for the 1/2 rated voltage. The number of DC coil turns is small, which shortens the transient response time.
  • the direct current in the coil L6 and the coil L9 is directed downward, and the direct current in the coil L5 and the coil L10 is directed upward.
  • the coil L5 and the coil L9 are on the same core leg, and the transient response tendency of the coil L5 is opposite to the transient response tendency of the coil L9, and a collision occurs, which can offset most of the transient response time.
  • the coil L6 and the coil L10 are on the same core leg, and the transient response tendency of the coil L6 is opposite to the transient response tendency of the coil L10, and a collision occurs, which can offset most of the transient response time.
  • a diode D3 is also connected between the different name end of the AC coil L5 and the same name end of the AC coil L7, and the higher harmonics generated by the two currents are rectified by the diode D3 to provide a DC current with a short transient response time, which can reduce the saturation reactance. Transient response time.
  • the overall transient response time of the saturable reactor is very short. Experiments show that the transient response time of a multi-function transformer with fast response speed is about 40 milliseconds, which is much smaller than the transient response speed of CN201510010431.0 multi-function transformer for 1 second.
  • the size of the fast multi-function transformer reactance value is not limited to the size of the fast multi-function transformer reactance value.
  • the closed-loop core 5 can be constructed with a magnetic valve to improve current harmonic characteristics.
  • the magnetic valve structure improves the current harmonic characteristics of the saturable reactor is a common knowledge and is no longer cumbersome.
  • the structure and connection mode of a multi-function transformer with fast response speed shown in Fig. 1 is a multi-function transformer with a single-phase response speed.
  • the multi-function transformer with fast single-phase response speed can be extended to a multi-function transformer with fast three-phase response speed.
  • the promotion method is public knowledge and is no longer cumbersome.
  • a series resistance method can be adopted, so that the transient process of a multi-function transformer with fast response speed is shortened and the reaction speed is adjusted fast.
  • the method of series resistance can be referred to CN201410353026.4; CN2014104617822.4; CN201410714156.6.
  • a varistor (or a Zener diode) may be connected across the thyristor D1 and the thyristor D2.
  • a thyristor D1 and a thyristor D2 may be connected in parallel with a damper circuit in series with a capacitor to protect the thyristor D1 and the thyristor D2. This is public knowledge and no longer cumbersome.
  • the varistor or Zener diode
  • the varistor is connected across the thyristor D1 and the thyristor D2 to increase the response speed of the saturable reactor.
  • the multi-function transformer with fast response speed of the invention can be designed and manufactured by the prior art and can be fully realized. Has broad application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种响应速度快的多功能变压器,包括闭环铁芯(5);一个变压器,由安装在闭环铁芯的铁芯柱上的一次和二次线圈(L1, L2; L3, L4)组成;一个饱和电抗器,包括分别安装在闭环铁芯的两铁芯柱上的两组线圈(L5, L7, L9; L6, L8, L10),每组线圈均包括第一、第二交流线圈和一个直流线圈;两个第一交流线圈(L5, L6)的同名端连接在一起,第一交流线圈异名端均与另一铁芯柱上的第二交流线圈(L7; L8)同名端连接;两个第二交流线圈的异名端接节点N;两个直流线圈(L9, L10)的同名端分别连接所在铁芯柱第二交流线圈的同名端;两个直流线圈的异名端分别经不同方向的晶闸管(D1, D2)连接节点N;两个晶闸管的控制端接控制电路,控制电路调整饱和电抗器的直流电流大小,处于同一铁芯柱上的饱和电抗器线圈中的两个直流电流变化趋势相反,产生对冲作用,使变压器暂态响应时间缩短。

Description

一种响应速度快的多功能变压器 技术领域
本发明涉及电力系统送变电技术领域,特别涉及一种响应速度快的多功能变压器。
背景技术
电力变压器在电力系统中的应用非常广泛,它可把高电压变换为低电压,也可把低电压变换为高电压。
并联电抗器在电力系统中的应用也很广泛。并联电抗器可限制过电压;电抗器与电容联合可构成电力系统无功调节电路。在一些应用领域,并联电抗器的电抗值是固定不变的;在一些应用领域,电抗器的电抗值应随着电力系统运行方式的变化而不断调节。电抗值可以连续调节的可控饱和电抗器简称为饱和电抗器或磁控电抗器。
至今,电力变压器、饱和电抗器这两种设备都是分别研究,分别制造。两种设备分别都有较大的铁芯,都需要匝数较多的线圈。如果一座变电站同时需要电力变压器、饱和电抗器、这两种设备,则设备的总体积大、铁芯重、价格高、占地面积大。
由于“不论变压器铁芯饱和度的变化是多少,引起变压器漏抗的变化不大于7%”。因此,可在一个铁芯上同时实现变压器功能和饱和电抗器功能。专利CN201410461882.1,CN201510010431.0各提出一种多功能变压器。CN201410461882.1提出的多功能变压器实现饱和电抗器调节变化不会对变压器特性产生影响;但变压器负载大小变化会对饱和电抗器电抗值产生影响。CN201510010431.0提出的多功能变压器实现饱和电抗器调节变化不会对变压器特性产生影响;变压器负载大小变化也不会对饱和电抗器电抗值产生影响;但CN201510010431.0提供的多功能变压器响应速度还不够快,电力系统需要响应速度更快的多功能变压器。
发明内容
本发明的目的就是为解决上述问题,提供一种响应速度更快的多功能变压器。
为实现上述目的,本发明采用如下方法:
一种响应速度快的多功能变压器,它为单相的,包括:
闭环铁芯;
一个变压器,由一次线圈和二次线圈安装在所述闭环铁芯的铁芯柱上组成;
一个饱和电抗器,包括分别安装在所述闭环铁芯的两铁芯柱上的两组线圈,所述两组线圈结构相同,每组线圈均由两交流线圈和一个直流线圈组成;所述两直流线圈的异名端分别 通过一个晶闸管与连接点N连接,所述两晶闸管连接方向相反;所述两晶闸管的控制端与控制电路连接;
所述控制电路调整饱和电抗器的直流电流大小,处于同一铁芯柱上的饱和电抗器线圈中的两个直流电流变化趋势相反,产生对冲作用,使多功能变压器暂态响应时间缩短。
所述饱和电抗器的两组线圈中,每组线圈中的第一交流线圈的同名端相互连接,异名端则与相对铁芯柱上第二交流线圈的同名端连接;两第二交流线圈的异名端与连接点N连接;每组线圈中的直流线圈同名端则与本铁芯柱上第二交流线圈的同名端连接。
所述饱和电抗器中,直流线圈与跟其连接的交流线圈匝数不相等,两者差别1%,直流线圈约等于1/2额定电压所需的匝数。
所述至少一组线圈中两交流线圈的同名端与异名端之间连接二极管,为高次谐波提供整流通路,减小饱和电抗器暂态响应时间。
所述变压器一次线圈和二次线圈分别由一对安装在两铁芯柱上,并正向串接的交流线圈组成;所述一次线圈的两交流线圈匝数相等;二次线圈的两交流线圈匝数相等;一次线圈各交流线圈与二次线圈各交流线圈的匝数比等于变压器一次线圈与二次线圈的变比。
所述饱和电抗器中两第一交流线圈匝数相等;两第二交流线圈匝数相等;两直流线圈匝数相等;各直流线圈匝数不等于其所在铁芯柱上第二交流线圈匝数,以确保两晶闸管的两端有电压存在。
所述当控制电路控制两晶闸管全截止时,两晶闸管的整流电路不工作,各直流线圈的直流电流等于零,变压器一次线圈有最大电抗值Zmax;
控制电路控制各晶闸管全导通时,流过各直流线圈的直流电流达到最大设计值,变压器一次线圈有最小电抗值Zmin。
所述变压器与所述饱和电抗器的各线圈相互独立,变压器负荷电流的变化,不改变饱和电抗器中各直流先前中的直流电流大小;饱和电抗器电抗值的调节也不影响变压器负荷电流。
所述饱和电抗器中一个铁芯柱上直流线圈与另一铁芯柱上非与直流线圈连接的交流线圈中的直流电流方向相同;同一铁芯柱上的直流线圈以及与其非连接的交流线圈中的直流电流方向相反,从而使同一铁芯柱上的上述两线圈的暂态响应趋势相反,产生冲撞,抵消大部分暂态响应时间。
一种响应速度快的多功能变压器,它采用权利要求1所述的单相的响应速度快的多功能变压器组成三相的响应速度快的多功能变压器。
本发明的有益效果是:利用处于同一铁芯柱上的两个线圈中直流电流有对冲作用,两个 直流电流变化趋势相反,使多功能变压器暂态响应时间缩短。两股对冲电流产生的高次谐波通过二极管D3整流,提供暂态响应时间很短的直流电流,可减小饱和电抗器暂态响应时间。使得饱和电抗器的总体暂态响应时间很短。
响应速度快的多功能变压器在一台饱和电抗器铁芯的基础上,实现变压器与饱和电抗器两种功能。减小了设备总体占地面积、减轻了总体铁芯重量、降低了总体价格。
附图说明
图1表示一种响应速度快的多功能变压器。
其中,1.一次线圈端子I,2.一次线圈端子II,3.二次线圈端子I,4.二次线圈端子II,5.闭环铁芯,6.控制电路。
具体实施方式
下面结合附图与实施例对本发明做进一步说明。
实施例:
一种响应速度快的多功能变压器的结构与连接方式如图1所示。包括一次线圈端子I1,一次线圈端子II2,二次线圈端子I3,二次线圈端子II4,闭环铁芯5,控制电路6。一种响应速度快的多功能变压器的闭环铁芯与饱和电抗器的闭环铁芯相同。一种响应速度快的单相多功能变压器闭环铁芯5至少有两根铁芯柱;有两根截面积相等、均有直流线圈和交流线圈的铁芯柱;这两根铁芯柱各自至少有能形成一条不经过对方铁芯柱的磁通闭环。其中一根铁芯柱上有交流线圈L1、交流线圈L3、交流线圈L5、交流线圈L7和直流线圈L9,另一根铁芯柱上有交流线圈L2、交流线圈L4、交流线圈L6、交流线圈L8和直流线圈L10;交流线圈L1与交流线圈L2的匝数相等,交流线圈L3与交流线圈L4的匝数相等,交流线圈L5、交流线圈L6的匝数相等,交流线圈L7、交流线圈L8的匝数相等,直流线圈L9与直流线圈L10的匝数相等。交流线圈L1与交流线圈L3的匝数比等于变压器一次线圈与二次线圈的变比。直流线圈L9(L10)的匝数不等于交流线圈L7(L8)匝数。
闭环铁芯5可以是相互没有通路的两个闭环铁芯,例如1:两个口字形铁芯。也可以是一体的,相互有通路的闭环铁芯;例如2:三根铁芯柱,铁芯柱两端有磁轭连通三根铁芯柱,任何两根铁芯柱都能够相互构成磁通闭环,但至少有两根能各自形成不经过对方铁芯柱的闭环。例如3:四根铁芯柱,铁芯柱两端有磁轭连通四根铁芯柱,任何两根铁芯柱都能够相互构成磁通闭环,但至少有两根能各自形成不经过对方铁芯柱的闭环,如图1所示。
交流线圈L1与交流线圈L2正向串联作为变压器一次线圈,剩余的端子分别连接一次线圈端子I1与一次线圈端子II2。交流线圈L3与交流线圈L4正向串联作为变压器二次线圈, 剩余的端子分别连接二次线圈端子I3与二次线圈端子II4。一次线圈与二次线圈作为第一种响应速度快的多功能变压器的变压器功能。需要注意的是,对于本领域技术人员而言,变压器的形式还有很多,本实施例仅是提供了一种较为简便的变压器形式,但其他形式的变压器也同样可以用于本专利中。
交流线圈L5同名端连接交流线圈L6同名端,交流线圈L5异名端连接交流线圈L8同名端,交流线圈L6异名端连接交流线圈L7同名端;交流线圈L7异名端连接交流线圈L8异名端(节点可称为N点);直流线圈L9同名端连接交流线圈L7同名端,直流线圈L9异名端经正向晶闸管D1连接交流线圈L7异名端;直流线圈L10同名端连接交流线圈L8同名端,直流线圈L10异名端经反向晶闸管D2连接交流线圈L8异名端。上述为饱和电抗器的一种连接形式,除此之外本领域技术人员还有其他形式的饱和电抗器可采用,但无论何种形式的饱和电抗器,均应保证有两个交流线圈和一个直流线圈的基本形式,并保证能够产生直流电流的对冲效果。
晶闸管D1和晶闸管D2的触发端子分别连接控制电路6,控制电路6控制晶闸管D1和晶闸管D2触发角的大小,实现连续调节晶闸管D1和晶闸管D2整流量的大小。
交流线圈L5异名端与交流线圈L7同名端之间还连接二极管D3。二极管D3可提高饱和电抗器电压的平衡特性。二极管D3可为高次谐波提供整流通路,减小饱和电抗器暂态响应时间。
设一种响应速度快的多功能变压器一次线圈额定电压为U1,一种响应速度快的多功能变压器一次线圈接入额定电压为U1的系统。交流线圈L1与交流线圈L2有励磁电流流通,在闭环铁芯5中产生交流磁通,该交流磁通在交流线圈L3与交流线圈L4中产生感生电动势,如果交流线圈L3与交流线圈L4构成的二次线圈连接负载,则二次线圈为负载提供负荷电流。一次线圈与二次线圈实现一种响应速度快的多功能变压器的变压器功能。
一种响应速度快的多功能变压器一次线圈接入额定电压为U1的系统。交流线圈L1与交流线圈L2有励磁电流流通,在闭环铁芯5中产生交流磁通;该交流磁通在交流线圈L5,交流线圈L6,交流线圈L7,交流线圈L8,直流线圈L9,直流线圈L10中产生感生电动势,由于直流线圈L9的匝数不等于交流线圈L7匝数,晶闸管D1两端有交流电压,由于直流线圈L10的匝数不等于交流线圈L8匝数,晶闸管D2两端有交流电压。由于交流线圈L7与交流线圈L8的匝数相等,直流线圈L9与直流线圈L10的匝数相等,晶闸管D1与晶闸管D2两端额定交流电压相等。晶闸管D1与晶闸管D2两端额定交流电压为饱和电抗器直流电流提供电源。
当控制电路6控制晶闸管D1和晶闸管D2全截止时,晶闸管D1和晶闸管D2整流电路不 工作,直流线圈L9和直流线圈L10中的直流电流等于零。一种响应速度快的多功能变压器一次线圈有最大电抗值Zmax。
当控制电路6控制晶闸管D1和晶闸管D2全导通时,晶闸管D1与晶闸管D2两端额定交流电压经晶闸管D1与晶闸管D2半波整流,产生直流电流。由于晶闸管D1和晶闸管D2全导通,流过直流线圈L9与直流线圈L10的直流电流达到最大设计值。一种响应速度快的多功能变压器一次线圈有最小电抗值Zmin。
控制电路6控制晶闸管D1和晶闸管D2整流量的大小,可控制直流线圈L9和直流线圈L10中直流电流的大小,实现控制一种响应速度快的多功能变压器一次线圈电抗值的大小。控制电路6连续控制晶闸管D1和晶闸管D2整流量的大小,可连续控制直流线圈L9和直流线圈L10中直流电流的大小,实现一种响应速度快的多功能变压器一次线圈电抗值的连续调节,一种响应速度快的多功能变压器一次线圈电抗值在最大值与最小值之间调节、变化。
CN201510010431.0提供的多功能变压器中,与两晶闸管分别串联的两直流线圈的匝数较多,接近额定电压所需的匝数。本实施例,与晶闸管D1、晶闸管D2分别串联的直流线圈L9、直流线圈L10的匝数较少。如果设计交流线圈L5、交流线圈L6、交流线圈L7、交流线圈L8的匝数相等,直流线圈L9与直流线圈L10的匝数相等;直流线圈L9(L10)与交流线圈L7不相等,但差别较小,可选两者差别1%。则直流线圈L9(L10)约等于1/2额定电压所需的匝数。直流线圈匝数少,可缩短暂态响应时间。
实验表明,线圈L6、线圈L9中的直流电流方向朝下,线圈L5、线圈L10中的直流电流方向朝上。线圈L5、线圈L9在同一铁芯柱上,线圈L5的暂态响应趋势与线圈L9的暂态响应趋势相反,产生冲撞,可抵消大部分暂态响应时间。线圈L6、线圈L10在同一铁芯柱上,线圈L6的暂态响应趋势与线圈L10的暂态响应趋势相反,产生冲撞,可抵消大部分暂态响应时间。交流线圈L5异名端与交流线圈L7同名端之间还连接二极管D3,两股对冲电流产生的高次谐波通过二极管D3整流,提供暂态响应时间很短的直流电流,可减小饱和电抗器暂态响应时间。使得饱和电抗器的总体暂态响应时间很短。实验表明:本发明一种响应速度快的多功能变压器的暂态响应时间约40毫秒,远小于CN201510010431.0多功能变压器1秒钟的暂态响应速度。
一种响应速度快的多功能变压器二次线圈连接负载,不论负荷电流增大,或者减小,都不会改变直流线圈L9和直流线圈L10中的直流电流大小,都不会影响一种响应速度快的多功能变压器电抗值的大小。
实验表明,直流线圈L9和直流线圈L10中的直流电流在饱和电抗器需求的范围内变化, 对一种响应速度快的多功能变压器一次电压与二次电压的变比影响很小,对一种响应速度快的多功能变压器一次线圈与二次线圈之间的漏抗影响很小。即饱和电抗器电抗值调节变化,不会影响变压器负荷电流,对变压器漏抗影响很小。
闭环铁芯5可以采用磁阀结构,以改善电流谐波特性。磁阀结构改善饱和电抗器电流谐波特性是公共知识,不再累赘。
图1所示一种响应速度快的多功能变压器的结构与连接方式为单相响应速度快的多功能变压器。可以把单相响应速度快的多功能变压器推广到三相响应速度快的多功能变压器。推广方法是公共知识,不再累赘。
图1所示一种响应速度快的多功能变压器中可以采用串联电阻的方法,使一种响应速度快的多功能变压器的暂态过程缩短、调节反应速度快。串联电阻的方法可参考CN201410353026.4;CN2014104617822.4;CN201410714156.6。
晶闸管D1与晶闸管D2两端还可以并联压敏电阻(或稳压二极管),晶闸管D1与晶闸管D2两端还可以并联电阻与电容串联的阻尼电路;以保护晶闸管D1与晶闸管D2。这是公共知识,不再累赘。实验表明,晶闸管D1与晶闸管D2两端并联压敏电阻(或稳压二极管),能提高饱和电抗器的反应速度。
本发明的一种响应速度快的多功能变压器可用现有技术设计制造,完全可以实现。有广阔应用前景。

Claims (10)

  1. 一种响应速度快的多功能变压器,其特征是,它为单相的,包括:
    闭环铁芯;
    一个变压器,由一次线圈和二次线圈安装在所述闭环铁芯的铁芯柱上组成;
    一个饱和电抗器,包括分别安装在所述闭环铁芯的两铁芯柱上的两组线圈,所述两组线圈结构相同,每组线圈均由两交流线圈和一个直流线圈组成;所述两直流线圈的异名端分别通过一个晶闸管与连接点N连接,所述两晶闸管连接方向相反;所述两晶闸管的控制端与控制电路连接;
    所述控制电路调整饱和电抗器的直流电流大小,处于同一铁芯柱上的饱和电抗器线圈中的两个直流电流变化趋势相反,产生对冲作用,使多功能变压器暂态响应时间缩短。
  2. 如权利要求1所述的一种响应速度快的多功能变压器,其特征是,所述饱和电抗器的两组线圈中,每组线圈中的第一交流线圈的同名端相互连接,异名端则与相对铁芯柱上第二交流线圈的同名端连接;两第二交流线圈的异名端与连接点N连接;每组线圈中的直流线圈同名端则与本铁芯柱上第二交流线圈的同名端连接。
  3. 如权利要求1或2所述的一种响应速度快的多功能变压器,其特征是,所述饱和电抗器中,直流线圈与跟其连接的交流线圈匝数不相等,两者差别1%,直流线圈约等于1/2额定电压所需的匝数。
  4. 如权利要求1或2所述的一种响应速度快的多功能变压器,其特征是,所述至少一组线圈中两交流线圈的同名端与异名端之间连接二极管,为高次谐波提供整流通路,减小饱和电抗器暂态响应时间。
  5. 如权利要求1所述的一种响应速度快的多功能变压器,其特征是,所述变压器一次线圈和二次线圈分别由一对安装在两铁芯柱上,并正向串接的交流线圈组成;所述一次线圈的两交流线圈匝数相等;二次线圈的两交流线圈匝数相等;一次线圈各交流线圈与二次线圈各交流线圈的匝数比等于变压器一次线圈与二次线圈的变比。
  6. 如权利要求1或2所述的一种响应速度快的多功能变压器,其特征是,所述饱和电抗器中两第一交流线圈匝数相等;两第二交流线圈匝数相等;两直流线圈匝数相等;各直流线圈匝数不等于其所在铁芯柱上第二交流线圈匝数,以确保两晶闸管的两端有电压存在。
  7. 如权利要求1的一种响应速度快的多功能变压器,其特征是,所述当控制电路控制两晶闸管全截止时,两晶闸管的整流电路不工作,各直流线圈的直流电流等于零,变压器一次线圈有最大电抗值Zmax;
    控制电路控制各晶闸管全导通时,流过各直流线圈的直流电流达到最大设计值,变压器 一次线圈有最小电抗值Zmin。
  8. 如权利要求1或2所述的一种响应速度快的多功能变压器,其特征是,所述变压器与所述饱和电抗器的各线圈相互独立,变压器负荷电流的变化,不改变饱和电抗器中各直流先前中的直流电流大小;饱和电抗器电抗值的调节也不影响变压器负荷电流。
  9. 如权利要求1或2所述的一种响应速度快的多功能变压器,其特征是,所述饱和电抗器中一个铁芯柱上直流线圈与另一铁芯柱上非与直流线圈连接的交流线圈中的直流电流方向相同;同一铁芯柱上的直流线圈以及与其非连接的交流线圈中的直流电流方向相反,从而使同一铁芯柱上的上述两线圈的暂态响应趋势相反,产生冲撞,抵消大部分暂态响应时间。
  10. 一种响应速度快的多功能变压器,其特征是,它采用权利要求1所述的单相的响应速度快的多功能变压器组成三相的响应速度快的多功能变压器。
PCT/CN2016/080093 2015-07-24 2016-04-23 一种响应速度快的多功能变压器 WO2017016249A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510443133.0 2015-07-24
CN201510443133.0A CN104953850A (zh) 2015-07-24 2015-07-24 一种响应速度快的多功能变压器

Publications (1)

Publication Number Publication Date
WO2017016249A1 true WO2017016249A1 (zh) 2017-02-02

Family

ID=54168276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080093 WO2017016249A1 (zh) 2015-07-24 2016-04-23 一种响应速度快的多功能变压器

Country Status (2)

Country Link
CN (1) CN104953850A (zh)
WO (1) WO2017016249A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380512A (zh) * 2021-05-26 2021-09-10 中铁十六局集团电气化工程有限公司 一种磁阀式可控电抗器的拓扑结构

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953850A (zh) * 2015-07-24 2015-09-30 山东大学 一种响应速度快的多功能变压器
CN107039986B (zh) * 2017-03-13 2020-03-17 国网山东省电力公司淄博供电公司 一种无功功率连续快速补偿装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2157572C1 (ru) * 1999-04-28 2000-10-10 Научно-технический центр Всероссийского электротехнического института им. В.И. Ленина Устройство повышения быстродействия управляемого подмагничиванием реактора
CN104091685A (zh) * 2014-06-09 2014-10-08 沈阳昊诚电气股份有限公司 磁控变压器
CN104485824A (zh) * 2015-01-08 2015-04-01 山东大学 一种磁控孤立的多功能变压器
CN104953850A (zh) * 2015-07-24 2015-09-30 山东大学 一种响应速度快的多功能变压器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104201903B (zh) * 2014-09-11 2016-08-31 山东大学 一种多功能变压器
CN104795202B (zh) * 2015-05-12 2017-01-18 山东大学 一种缩短暂态响应时间的饱和电抗器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2157572C1 (ru) * 1999-04-28 2000-10-10 Научно-технический центр Всероссийского электротехнического института им. В.И. Ленина Устройство повышения быстродействия управляемого подмагничиванием реактора
CN104091685A (zh) * 2014-06-09 2014-10-08 沈阳昊诚电气股份有限公司 磁控变压器
CN104485824A (zh) * 2015-01-08 2015-04-01 山东大学 一种磁控孤立的多功能变压器
CN104953850A (zh) * 2015-07-24 2015-09-30 山东大学 一种响应速度快的多功能变压器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380512A (zh) * 2021-05-26 2021-09-10 中铁十六局集团电气化工程有限公司 一种磁阀式可控电抗器的拓扑结构

Also Published As

Publication number Publication date
CN104953850A (zh) 2015-09-30

Similar Documents

Publication Publication Date Title
WO2017016249A1 (zh) 一种响应速度快的多功能变压器
US20160300662A1 (en) Device and Method for Reducing a Magnetic Unidirectional Flux Component of a Transformer Core
CN104201903B (zh) 一种多功能变压器
WO2016110013A1 (zh) 一种磁控孤立的多功能变压器
CN102158104B (zh) 一种电压与电流调节器
CN112992510A (zh) 自励式三相三柱型电调磁控电抗器
CA2763267A1 (en) Current supply arrangement for the rectifying three-phase ac current into multi-pulse dc current
CN204966234U (zh) 一种快速响应型自励式磁控电抗器
WO2016180219A1 (zh) 一种缩短暂态响应时间的饱和电抗器
JP4411460B2 (ja) 電圧調整変圧器
WO2016141614A1 (zh) 一种结构简单的饱和电抗器
WO2017020709A1 (zh) 一种改进的多功能变压器
CN104916409A (zh) 一种快速响应型自励式磁控电抗器
CN104465056A (zh) 一种可控电阻的直流饱和电抗器
US10297383B2 (en) Device and method for reducing a magnetic unidirectional flux component in the core of a three-phase transformer
CN104485213A (zh) 一种减小晶闸管耐压的直流饱和电抗器
RU2708937C1 (ru) Индуктивно-импульсный генератор
CN215731244U (zh) 他励式三相三柱型磁控电抗器
CN219716634U (zh) 他励式和自励式磁控电抗器
CN212990895U (zh) 补偿式可控变压器
CN219875102U (zh) 动态无功补偿装置和调压型磁控调相器
CN104779044B (zh) 一种有谐波整流通路的饱和电抗器
RU2778934C1 (ru) Управляемый трехфазный реактор (варианты)
CN113035537B (zh) 调压型磁控调相器
CN104184335A (zh) 一种双变压器串联的多功能变压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829616

Country of ref document: EP

Kind code of ref document: A1