RU2157572C1 - Устройство повышения быстродействия управляемого подмагничиванием реактора - Google Patents

Устройство повышения быстродействия управляемого подмагничиванием реактора Download PDF

Info

Publication number
RU2157572C1
RU2157572C1 RU99109370A RU99109370A RU2157572C1 RU 2157572 C1 RU2157572 C1 RU 2157572C1 RU 99109370 A RU99109370 A RU 99109370A RU 99109370 A RU99109370 A RU 99109370A RU 2157572 C1 RU2157572 C1 RU 2157572C1
Authority
RU
Russia
Prior art keywords
reactor
controlled
sections
winding
signal winding
Prior art date
Application number
RU99109370A
Other languages
English (en)
Inventor
А.М. Брянцев
А.Г. Долгополов
Original Assignee
Научно-технический центр Всероссийского электротехнического института им. В.И. Ленина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-технический центр Всероссийского электротехнического института им. В.И. Ленина filed Critical Научно-технический центр Всероссийского электротехнического института им. В.И. Ленина
Priority to RU99109370A priority Critical patent/RU2157572C1/ru
Application granted granted Critical
Publication of RU2157572C1 publication Critical patent/RU2157572C1/ru

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

Изобретение относится к области электротехники и может использоваться для повышения быстродействия управляемых подмагничиванием реакторов при наборе и сбросе мощности в переходных процессах. Технический результат - повышение функциональных возможностей и упрощение устройства, снижение его габаритов и стоимости. Указанная цель достигается тем, что параллельно секциям низковольтной сигнальной обмотки управляемого подмагничиванием реактора подключаются управляемые ключи коммутатора, в качестве которых могут использоваться силовые тиристоры, транзисторы или симисторы. При появлении сетевого напряжения на рабочей обмотке реактора его формированный выход на номинальный режим обеспечивается дополнительным насыщением магнитопровода от импульсов тока в секциях сигнальной обмотки, коммутируемых соответствующими управляемыми ключами коммутатора заданное число полупериодов наведенного в них напряжения, для сброса мощности с помощью тех же ключей используется противоположная полярность наведенного в секциях напряжения, что обеспечивает появление дополнительного магнитного потока, размагничивающего замкнутые стержни магнитопровода управляемого реактора. Включение ключей коммутатора на регулируемую часть каждого полупериода наведенного на секциях сигнальной обмотки напряжения позволяет плавно изменять динамические характеристики реактора и обеспечивать его форсированный выход на любой требуемый уровень мощности в установившемся режиме. 1 ил.

Description

Изобретение относится к области электротехники и может использоваться для повышения быстродействия реакторов, управляемых подмагничиванием, в частности управляемых дугогасящих реакторов.
Одним из относительных недостатков управляемых реакторов, сужающим их области применения, является сравнительно низкое быстродействие. Для улучшения динамических характеристик реакторов, в том числе при наборе номинальной мощности, предложены способы начального подмагничивания магнитопровода, форсировки напряжения управления и т.д. [1]. Однако реализация этих способов сопряжена с ростом сложности их схем, габаритов устройств, увеличением потерь, не обеспечивая при этом существенного увеличения быстродействия.
Наиболее близким по технической сущности к предлагаемому изобретению является устройство для управления однофазным реактором с подмагничиванием [2] , содержащее предварительно заряжаемый конденсатор, который через коммутатор разряжается на обмотку управления (подмагничивания) реактора, тем самым обеспечивая дополнительное подмагничивание и форсированный набор или сброс мощности [1, 2].
Однако подобный способ, обладая высокой эффективностью, требует для своей реализации дополнительного конденсатора, коммутатора с системой управления тиристорами, независимого источника питания для предварительного заряда накопительного конденсатора, а также подбора параметров указанных элементов форсировки по условиям электромагнитной совместимости с обмоткой управления реактора. Так, например, при классе напряжения обмотки управления 10 кВ и выше это вызывает существенный рост габаритов и стоимости схемы форсировки. Кроме того, функциональные возможности такой схемы ограничены и не позволяют обеспечивать регулируемый по времени и заданному значению выход реактора на любой требуемый режим нагрузки.
Цель предлагаемого изобретения - повышение функциональных возможностей и упрощение устройства, снижение его габаритов и стоимости. Указанная цель достигается тем, что вместо накопительного конденсатора, разряжающегося через коммутатор на обмотку управления, используется управляемый коммутатор в секциях дополнительной низковольтной обмотки реактора (в случае дугогасящего реактора используется существующая сигнальная обмотка).
Сущность изобретения заключается в том, что устройство повышения быстродействия управляемого подмагничиванием реактора, содержащего замкнутые стержни магнитопровода и размещенные на них секции рабочей обмотки, обмотки управления и сигнальной обмотки, дополнительно содержит коммутатор, состоящий из подключенных к выводам каждой секции сигнальной обмотки управляемых ключей, число которых соответствует числу секций используемой для повышения быстродействия сигнальной обмотки, и блока управления ключами коммутатора, который обеспечивает включение ключей и закорачивание соответствующих секций сигнальной обмотки при появлении соответствующей полуволны напряжения на них таким образом, чтобы при ускоренном наборе мощности реактора создать дополнительный поток подмагничивания в соответствующих замкнутых стержнях магнитопровода за счет импульсов тока в секциях сигнальной обмотки, коммутируемых заданное число полупериодов сетевого напряжения управляемыми ключами, а при ускоренном сбросе мощности создать размагничивающий поток в каждом замкнутом стержне магнитопровода за счет импульсов тока противоположной полярности в тех же секциях, коммутируемых теми же управляемыми ключами заданное число полупериодов сетевого напряжения обратной полярности.
Для пояснения принципа действия предлагаемого устройства в качестве примера одного из вариантов его реализации на чертеже приведена схема однофазного управляемого дугогасящего реактора с самоподмагничиванием [1] и дополнительным коммутатором в сигнальной обмотке. Схема содержит управляемый реактор УР с двумя замкнутыми магнитопроводами 1, рабочей обмоткой, совмещенной с обмоткой управления 2, ключами самоподмагничивания 3, сигнальной обмоткой 4 и управляемый коммутатор К, в данном случае состоящий из двух тиристоров, включенных параллельно с секциями сигнальной обмотки 4, расположенными на соответствующих стержнях магнитопровода 1. В составе системы управления СУ реактора находится блок управления БУ тиристорами коммутатора, который обеспечивает включение соответствующего тиристора с заданным углом включения при положительной полуволне напряжения на соответствующей секции и на требуемое число периодов, соответствующее заданному времени и требуемой мощности выхода реактора на установившийся режим работы. В общем случае управляемый коммутатор состоит из необходимого числа тиристоров или других силовых управляемых ключей в соответствии с числом секций низковольтной обмотки реактора, используемой для повышения быстродействия. На чертеже показаны также трансформатор ТСН с выведенной нейтралью для подключения реактора к трехфазной сети, трансформатор напряжения ТН и емкости фаз сети на землю С.
Устройство работает следующим образом. При отсутствии коммутатора К и появлении сетевого напряжения Uс на совмещенной рабочей обмотке УР 2 реактор в соответствии с постоянной времени, обусловленной индуктивным и активным сопротивлениями обмоток, выходит на номинальный режим за 1...2 с в зависимости от угла управления ключами самоподмагничивания 3. При этом с появлением сетевого напряжения на рабочей обмотке соответствующее напряжение трансформируется в сигнальную обмотку 4, однако, поскольку она разомкнута (или нагружена на большое входное сопротивление измерительных устройств), ток в ней отсутствует.
При наличии коммутатора с появлением сетевого напряжения на рабочей обмотке и наличием соответствующего напряжения на секциях сигнальной обмотки 4 появляется возможность закорачивания секций сигнальной обмотки тиристорами коммутатора. Если открывать тиристоры коммутатора в соответствующую положительную полуволну напряжения на секции сигнальной обмотки (либо на требуемую часть этой полуволны), то импульсы тока, проходящие через секции сигнальной обмотки и соответствующие тиристоры, обеспечивают дополнительное подмагничивание согласно с направлением основного потока подмагничивания, в результате чего форсированно насыщают стержни магнитопровода и выводят реактор на номинальный режим за 2...3 периода промышленной частоты.
Таким образом, просто и надежно, минимальными техническими средствами обеспечиваются динамические характеристики реактора, более чем на порядок повышающие его быстродействие. При этом не требуется ни внешних источников питания, ни накопительного конденсатора, ни дополнительных систем управления, кроме блока управления двумя тиристорами, который входит в состав существующей системы управления реактором. Сигнальная обмотка электрически не связана с рабочей и имеет класс напряжения 0,4 кВ, что существенно облегчает выбор и подключение дополнительных цепей повышения быстродействия.
В качестве ключей в коммутаторе может использоваться любой силовой управляемый прибор - тиристор, транзистор, симистор, вакуумный ключ и т.д. При этом если в качестве ключа использовать симистор (или встречно-параллельно включенные тиристоры), то функциональные возможности такой схемы дополнительно повышаются. Коммутация секций в полупериоды напряжения, обеспечивающие дополнительное подмагничивание согласное с основным потоком, ускоряет набор мощности реактора, а их коммутация в обратные полупериоды напряжения создает встречный основному поток, размагничивающий замкнутые стержни магнитопровода реактора, ускоряя тем самым сброс мощности.
Аналогичные схемы могут быть применены и в других исполнениях реакторов, управляемых подмагничиванием - трехфазных, с внешним источником подмагничивания, с раздельными обмотками и т.д. При этом соответственно изменяется число управляемых ключей коммутатора, включаемых в соответствующие секции сигнальной или дополнительной низковольтной обмотки.
В случае коммутации соответствующих секций низковольтной обмотки на часть полупериода сетевого напряжения появляется возможность регулировать динамические характеристики реактора по времени набора или сброса мощности, а также по выходу реактора на требуемую мощность в установившемся процессе, и тем самым обеспечивать его параметрический выход на любой заданный режим.
Таким образом, цель предлагаемого изобретения, заключающаяся в повышении функциональных возможностей и упрощении устройства, снижении его габаритов и стоимости, в общем случае достигается тем, что управляемый подмагничиванием реактор дополнительно содержит коммутатор, состоящий из подключенных к выводам каждой секции низковольтной обмотки управляемых ключей, число которых соответствует числу секций используемой для повышения быстродействия низковольтной обмотки, и блока управления ключами коммутатора, который обеспечивает включение ключей в соответствующих секциях низковольтной обмотки при появлении соответствующей полуволны напряжения на них таким образом, чтобы при ускоренном наборе мощности реактора создать дополнительный поток подмагничивания в соответствующих замкнутых стержнях магнитопровода за счет импульсов тока в секциях низковольтной обмотки, коммутируемых заданное число полупериодов сетевого напряжения управляемыми ключами, а при ускоренном сбросе мощности создать размагничивающий поток в каждом замкнутом стержне магнитопровода за счет импульсов тока противоположной полярности в тех же секциях, коммутируемых теми же управляемыми ключами заданное число полупериодов сетевого напряжения обратной полярности.
В любом из перечисленных выше случаев, как и в приведенном на чертеже, повышение быстродействия реактора обеспечивается без внешних источников питания, дополнительных конденсаторов и высоковольтных элементов путем контролируемого числа коммутаций секций низковольтной обмотки ключами коммутатора в соответствующие полупериоды сетевого напряжения.
Предлагаемое устройство было реализовано на серийной элементной базе и проверено в комплекте с физической моделью реактора мощностью 5 КВАР.
Испытания подтвердили вышеуказанные динамические характеристики, а также простоту и надежность реализации предлагаемого устройства. При этом габариты и стоимость устройства составляют незначительную долю от электромагнитной части управляемого реактора.
Источники информации
1. Электротехника, 1991 г., N 2, с. 41-44.
2. Авт.св. СССР N 1224946. Устройство для управления однофазным реактором с подмагничиванием / А. М. Брянцев, Е.Н. Бродовой и др. // Открытия. Изобретения. 1986, N 14.

Claims (1)

  1. Устройство повышения быстродействия управляемого подмагничиванием реактора, содержащего замкнутые стержни магнитопровода и размещенные на них секции рабочей обмотки, обмотки управления и сигнальной обмотки, отличающееся тем, что оно дополнительно содержит коммутатор, состоящий из подключенных к выводам каждой секции сигнальной обмотки управляемых ключей, число которых соответствует числу секций используемой для повышения быстродействия сигнальной обмотки, и блока управления ключами коммутатора, который обеспечивает включение ключей и закорачивание соответствующих секций сигнальной обмотки при появлении соответствующей полуволны напряжения на них таким образом, чтобы при ускоренном наборе мощности реактора создать дополнительный поток подмагничивания в соответствующих замкнутых стержнях магнитопровода за счет импульсов тока в секциях сигнальной обмотки, коммутируемых заданное число полупериодов сетевого напряжения управляемыми ключами, а при ускоренном сбросе мощности создать размагничивающий поток в каждом замкнутом стержне магнитопровода за счет импульсов тока противоположной полярности в тех же секциях, коммутируемых теми же управляемыми ключами заданное число полупериодов сетевого напряжения обратной полярности.
RU99109370A 1999-04-28 1999-04-28 Устройство повышения быстродействия управляемого подмагничиванием реактора RU2157572C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99109370A RU2157572C1 (ru) 1999-04-28 1999-04-28 Устройство повышения быстродействия управляемого подмагничиванием реактора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99109370A RU2157572C1 (ru) 1999-04-28 1999-04-28 Устройство повышения быстродействия управляемого подмагничиванием реактора

Publications (1)

Publication Number Publication Date
RU2157572C1 true RU2157572C1 (ru) 2000-10-10

Family

ID=20219415

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99109370A RU2157572C1 (ru) 1999-04-28 1999-04-28 Устройство повышения быстродействия управляемого подмагничиванием реактора

Country Status (1)

Country Link
RU (1) RU2157572C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684163A (zh) * 2012-09-26 2014-03-26 北京三得普华科技有限责任公司 磁控电抗器
CN103684164A (zh) * 2012-09-26 2014-03-26 北京三得普华科技有限责任公司 磁控电抗器
CN104779044A (zh) * 2015-05-05 2015-07-15 山东大学 一种有谐波整流通路的饱和电抗器
WO2017016249A1 (zh) * 2015-07-24 2017-02-02 李晓明 一种响应速度快的多功能变压器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103684163A (zh) * 2012-09-26 2014-03-26 北京三得普华科技有限责任公司 磁控电抗器
CN103684164A (zh) * 2012-09-26 2014-03-26 北京三得普华科技有限责任公司 磁控电抗器
CN103684164B (zh) * 2012-09-26 2016-09-14 北京三得普华科技有限责任公司 磁控电抗器
CN103684163B (zh) * 2012-09-26 2016-09-14 北京三得普华科技有限责任公司 磁控电抗器
CN104779044A (zh) * 2015-05-05 2015-07-15 山东大学 一种有谐波整流通路的饱和电抗器
WO2017016249A1 (zh) * 2015-07-24 2017-02-02 李晓明 一种响应速度快的多功能变压器

Similar Documents

Publication Publication Date Title
Rezaei-Zare et al. Analysis of ferroresonance modes in power transformers using Preisach-type hysteretic magnetizing inductance
JPS6048932B2 (ja) 固体しや断器
Li et al. A high-power active filtering system with fundamental magnetic flux compensation
CN110661241B (zh) 一种变压器涌流抑制方法、装置和设备
Mukhopadhyay et al. A novel compact magnetic current limiter for three phase applications
Murthy et al. A novel method of multistage dynamic braking of three-phase induction motors
RU2157572C1 (ru) Устройство повышения быстродействия управляемого подмагничиванием реактора
JPH02179220A (ja) 変圧器励磁突流抑制装置
US3408551A (en) Current spike suppressor for inverter
US3173022A (en) Overload protected switching circuit
Sonagra et al. Controlled switching of non-coupled & coupled reactor for re-ignition free de-energization operation
JPH077978A (ja) 電動機のコンドルファ起動方式
GB2251741A (en) Rapid response ground fault circuit interrupter
RU2141695C1 (ru) Устройство повышения быстродействия управляемого подмагничиванием реактора
CA1068338A (en) Scr d.c. interrupter
JPS644313Y2 (ru)
Yamagata et al. Ferroresonance by open-phase on transformer with delta winding and grounded neutral
SU1072172A1 (ru) Ограничитель сверхтока
RU2654544C1 (ru) Устройство безударного пуска
SU1757066A2 (ru) Транзисторный инвертор
CN115051316A (zh) 一种基于选相合闸励磁涌流抑制方法
Qingming et al. Study on the Influence of Converter Transformer Magnetizing Inrush Current on the Low-order AC Filter
Chen et al. Simulation of ferroresonance in low-loss grounded wye-wye transformers using a new multi-legged transformer model in EMTP
SU574812A1 (ru) Устройство дл дифференциальной защиты электроустановки
SU1709410A1 (ru) Способ пофазного управлени трехфазным выключателем