WO2016110013A1 - 一种磁控孤立的多功能变压器 - Google Patents

一种磁控孤立的多功能变压器 Download PDF

Info

Publication number
WO2016110013A1
WO2016110013A1 PCT/CN2015/075725 CN2015075725W WO2016110013A1 WO 2016110013 A1 WO2016110013 A1 WO 2016110013A1 CN 2015075725 W CN2015075725 W CN 2015075725W WO 2016110013 A1 WO2016110013 A1 WO 2016110013A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coils
transformer
magnetically controlled
isolated multi
Prior art date
Application number
PCT/CN2015/075725
Other languages
English (en)
French (fr)
Inventor
李晓明
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2016110013A1 publication Critical patent/WO2016110013A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F21/00Variable inductances or transformers of the signal type
    • H01F21/02Variable inductances or transformers of the signal type continuously variable, e.g. variometers
    • H01F21/08Variable inductances or transformers of the signal type continuously variable, e.g. variometers by varying the permeability of the core, e.g. by varying magnetic bias
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/14Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P13/00Arrangements for controlling transformers, reactors or choke coils, for the purpose of obtaining a desired output

Definitions

  • the invention relates to the technical field of power system transmission and transformation, in particular to a magnetically controlled isolated multi-function transformer.
  • Power transformers are widely used in power systems. Power transformers can convert high voltages to low voltages and low voltages to high voltages.
  • Parallel reactors are also widely used in power systems.
  • the shunt reactor can limit the overvoltage; the reactor and the capacitor can form a reactive power regulation circuit of the power system.
  • the reactance of shunt reactors is fixed; in some applications, the reactance of reactors should be constantly adjusted as the operating mode of the power system changes.
  • a controllable saturable reactor whose reactance value can be continuously adjusted is simply referred to as a saturable reactor or a magnetron reactor.
  • CN201410461882.1 proposes a multi-function transformer, which realizes the function of transformer and the function of magnetron saturation reactor on the basis of the core of a magnetron-saturated reactor.
  • the transformer load size variation of the invention affects the reactance value of the magnetron saturable reactor. It is not suitable for occasions where the transformer load changes greatly and the reactance value of the magnetron saturation reactor does not change.
  • the object of the present invention is to solve the above problems and provide a multi-function transformer with a magnetically controlled isolation that does not affect the reactance value of the magnetron saturation reactor.
  • the present invention adopts the following method:
  • a magnetically controlled isolated multi-function transformer which is single-phase, comprising a magnetron-saturated reactor and a transformer mounted on the same closed-loop iron core;
  • the transformer is composed of a primary coil and a secondary coil, and the ratio of the primary coil to the secondary coil is equal to the transformer ratio;
  • the magnetically controlled saturable reactor includes each AC coil and a DC coil and a control circuit, and the coils are not directly connected to the primary coil and the secondary coil of the transformer, and are not connected to the power system;
  • the control circuit adjusts the magnitude of the direct current of the magnetron saturable reactor to achieve continuous adjustment of the reactance value of the primary coil.
  • the primary coil and the secondary coil of the transformer are respectively composed of a pair of AC coils which are mounted on two iron core columns and are forwardly connected in series;
  • the magnetron saturable reactor comprises two sets of coils on two iron core columns, the two sets of coils have the same structure; each set of coils comprises a first alternating current coil, a second alternating current coil and a direct current coil; a same name end of a DC coil and the same end of the two DC coils are connected together;
  • the opposite ends of the two DC coils are connected via a forward thyristor and the other via a reverse thyristor;
  • the different ends of the first AC coil on each of the iron core columns are connected to the same name end of the second AC coil on the other core column; the different names of the two second coils are connected to the connection point N;
  • the control terminals of the two thyristors are controlled by a control circuit, and the control circuit controls the magnitude of the firing angle of the two thyristors to continuously adjust the magnitude of the rectification of the two thyristors, thereby adjusting the DC current of the two DC coils.
  • the number of turns of the two alternating coils of the primary coil is equal; the number of turns of the two alternating coils of the secondary coil is equal; the turns ratio of each alternating current coil of the primary coil and the secondary coil of the primary coil is equal to the ratio of the primary coil to the secondary coil of the transformer .
  • a freewheeling diode is connected in series between the first AC coil and the second AC coil on the same core leg.
  • the number of turns of each AC coil in the magnetron-saturated reactor is equal; the number of turns of each DC coil is equal; the number of turns of each DC coil is not equal to twice the number of turns of the first AC coil on the core leg thereof to ensure the two thyristors There is a voltage at both ends.
  • the primary coil of the transformer is composed of two pairs of AC coils connected in series, and the two AC coils of each pair of AC coils are respectively located on different iron core columns; the two AC coils at the same position of the two pairs of AC coils are connected at the same end. The opposite ends of the remaining two AC coils are connected; the secondary coil is composed of a pair of forward series AC coils located on the two legs;
  • the magnetron saturation electronic controller is composed of two sets of DC coils, which are respectively located on different iron core columns; in each group of DC coils, two DC coils of the same position on the two iron core columns are connected at the same end; the remaining synonyms are in the middle end.
  • connection point N The two different names of the same group of DC coils are directly connected to the connection point N, and the other is connected to the connection point N via the forward or reverse thyristor, but the DC coil connected to the thyristor does not correspond to the position on the core column; each thyristor and control The circuit is connected; the control circuit controls the magnitude of the firing angle of the two thyristors, and continuously adjusts the magnitude of the rectification of the two thyristors, thereby adjusting the magnitude of the direct current of the two DC coils.
  • the number of turns of each alternating current coil of the primary coil is equal; the number of turns of each alternating current coil of the secondary coil is equal;
  • the turns ratio of each AC coil of the primary coil and the turns ratio of each AC coil of the secondary coil are equal to twice the transformation ratio of the primary coil and the secondary coil of the transformer.
  • a freewheeling diode is connected in series between the two AC coils on the same core column in the primary coil.
  • the rectifier circuits of the two thyristors do not work, the DC current of each DC coil is equal to zero, and the primary coil of the transformer has a maximum reactance value Zmax;
  • the closed-loop iron core has at least two iron core columns having the same cross-sectional area, and each of the two iron core columns can form at least one magnetic flux closed loop that does not pass through the opposite core leg; the magnetron-saturated reactor and the The coils of the transformer are mounted on two legs.
  • the closed-loop iron core may be two closed-loop iron cores having no passages to each other; or an integral, closed-loop iron core having three or more iron core columns, each of which can be mutually configured
  • the magnetic flux is closed loop, but at least two of them can form a closed loop that does not pass through the opposite core leg.
  • the closed loop core has a magnetic valve.
  • a magnetically controlled isolated multi-function transformer adopts the single-phase magnetically controlled isolated multi-function transformer to form a three-phase magnetically controlled isolated multi-function transformer.
  • a magnetically controlled isolated multi-function transformer adopts the single-phase magnetically controlled isolated multi-function transformer to form a three-phase magnetically controlled isolated multi-function transformer.
  • a magnetically controlled isolated multi-function transformer adopts the single-phase magnetically controlled isolated multi-function transformer to form a three-phase magnetically controlled isolated multi-function transformer.
  • the invention has the beneficial effects that the magnetically controlled isolated multi-function transformer realizes two functions of a transformer and a magnetron saturation reactor on the basis of a magnetron-saturated reactor core.
  • the overall size of the device is reduced, the overall core weight of the device is reduced, the overall price of the device is reduced, and the overall footprint of the device is reduced.
  • the change of the reactance value of the magnetron saturable reactor does not affect the transformer load current, and has little influence on the leakage reactance between the primary coil and the secondary coil of the transformer. Transformer load current changes will not affect the reactance value of the magnetron saturable reactor.
  • Figure 1 shows the first type of magnetically controlled isolated multi-function transformer.
  • Figure 2 shows a second type of magnetron isolated multi-function transformer.
  • the structure and connection of the first type of magnetically controlled isolated multi-function transformer is shown in Figure 1.
  • the primary coil terminal I1, the primary coil terminal II2, the secondary coil terminal I3, the secondary coil terminal II4, the closed-loop iron core 5, and the control circuit 6 are included.
  • the closed-loop iron core of the first type of magnetically controlled isolated multi-function transformer is the same as the closed-loop iron core of the magnetron-saturated reactor.
  • the first type of magnetically controlled isolated multi-function transformer closed-loop core 5 has at least two iron core columns; there are two iron core columns having the same cross-sectional area and having a DC coil and an AC coil; each of the two iron core columns has at least It can form a magnetic flux closed loop that does not pass through the other core leg.
  • the core column has an AC coil L1, an AC coil L3, an AC coil L5, an AC coil L7 and a DC coil L9
  • the other core column has an AC coil L2, an AC coil L4, an AC coil L6, an AC coil L8 and a DC coil.
  • the turns ratio of the AC coil L1 to the AC coil L3 is equal to the ratio of the primary coil to the secondary coil of the transformer.
  • the number of turns of the DC coil L9 (L10) is not equal to the number of turns of the double AC coil L5 (L6, L7, or L8).
  • the closed-loop iron core 5 may be two closed-loop iron cores having no passages to each other, for example, 1: two square-shaped iron cores. It can also be a one-piece, closed-loop iron core with a mutual passage; for example, 2: three iron core columns, and a yoke at both ends of the iron core column is connected with three iron core columns, and any two iron core columns can form a magnetic flux closed loop with each other. However, at least two of them can form a closed loop that does not pass through the other core column.
  • 3 four iron core columns, the core legs have yokes connected to the four iron core columns at both ends, and any two iron core columns can form a magnetic flux closed loop, but at least two can form each other without passing through the opposite iron core.
  • the closed loop of the stem is shown in Figure 1.
  • the AC coil L1 and the AC coil L2 are connected in series in the forward direction as a transformer primary coil, and the remaining terminals are connected to the primary coil terminal I 1 and the primary coil terminal II 2, respectively.
  • the AC coil L3 and the AC coil L4 are connected in series in the forward direction as a transformer secondary coil, and the remaining terminals are connected to the secondary coil terminal I3 and the secondary coil terminal II4, respectively.
  • the primary coil and the secondary coil serve as the transformer function of the first type of magnetically controlled isolated multi-function transformer.
  • the trigger terminals of the thyristor D1 and the thyristor D2 are respectively connected to the control circuit 6, and the control circuit 6 controls the magnitude of the firing angle of the thyristor D1 and the thyristor D2 to continuously adjust the magnitude of the rectification of the thyristor D1 and the thyristor D2.
  • a diode D3 is also connected between the different name end of the AC coil L5 and the same name end of the AC coil L7.
  • Diode D3 is called a freewheeling diode.
  • the freewheeling diode improves the freewheeling characteristics of the magnetron saturable reactor and the balance characteristics of the magnetron saturation reactor coil voltage.
  • the freewheeling diode can be removed in some applications.
  • the role of the freewheeling diode of the magnetron-saturated reactor is public knowledge and will not be described again.
  • the first type of magnetically controlled isolated multi-function transformer primary coil rated voltage is U1
  • the first type of magnetically controlled isolated multi-function transformer primary coil is connected to the rated voltage U1 system.
  • the AC coil L1 and the AC coil L2 have an exciting current flowing, and an AC magnetic flux is generated in the closed-loop iron core 5, and the AC magnetic flux generates an induced electromotive force in the AC coil L3 and the AC coil L4, and the AC coil L3 and the AC coil L4 are formed.
  • the secondary coil is connected to the load, and the secondary coil supplies a load current to the load.
  • the primary coil and the secondary coil serve as the transformer function of the first type of magnetically controlled isolated multi-function transformer.
  • the first type of magnetically controlled isolated multi-function transformer primary coil is connected to a system with a rated voltage of U1.
  • the AC coil L1 and the AC coil L2 have an excitation current flowing, and an AC magnetic flux is generated in the closed-loop iron core 5; the AC magnetic flux is in the AC coil L5, the AC coil L6, the AC coil L7, the AC coil L8, the DC coil L9, and the DC coil.
  • the induced electromotive force is generated in L10. Since the number of turns of the DC coil L9 is not equal to the number of turns of the double AC coil L5, there is a voltage across the thyristor D1 and the thyristor D2.
  • the first type of magnetron isolated multi-function transformer primary coil has a maximum reactance value Zmax.
  • the first type of magnetron isolated multi-function transformer primary coil has a minimum reactance value Zmin.
  • the control circuit 6 controls the magnitude of the rectification of the thyristor D1 and the thyristor D2, and can control the magnitude of the direct current in the direct current coil L9 and the direct current coil L10, thereby realizing the magnitude of the primary coil reactance value of the first type of magnetically controlled isolated multi-function transformer.
  • the control circuit 6 continuously controls the magnitude of the rectification of the thyristor D1 and the thyristor D2, and can continuously control the magnitude of the direct current in the DC coil L9 and the DC coil L10, thereby realizing the continuous adjustment of the primary coil reactance value of the first type of magnetically controlled isolated multi-function transformer.
  • the first type of magnetron isolated multi-function transformer primary coil reactance value is adjusted and changed between the maximum value and the minimum value.
  • the closed-loop iron core 5, the AC coil L5, the AC coil L7 and the DC coil L9, the AC coil L6, the AC coil L8 and the DC coil L10, the thyristor D1 and the thyristor D2, the diode D3, and the control circuit 6 are shown in FIG. And their connection methods are actually magnetron-saturated reactors that are not directly connected to the power system. Adding the primary and secondary coils of the transformer to the magnetron-saturated reactor constitutes the first type of magnetically controlled isolated multi-function transformer. The magnetron-saturated reactor has no direct electrical connection with the primary coil and the secondary coil, and has no direct electrical connection with the power system.
  • the load current changes in the primary coil and the secondary coil do not affect the magnetically controlled saturable reactor.
  • Reactance value Although the magnetically controlled saturable reactor has no direct electrical connection with the primary coil and the secondary coil, as long as the primary coil and the secondary coil have voltage, the magnetically controlled saturation reactor has an AC magnetic flux in the closed-loop iron core 5, and the magnetic control is saturated.
  • the AC coil and DC coil of the reactor can obtain AC energy from the AC flux of the closed-loop iron core 5 of the magnetron saturation reactor, thereby driving the magnetron saturation reactor to work.
  • the first type of magnetically controlled isolated multi-function transformer secondary coil connected to the load regardless of the load current increases or decreases, does not change the DC current in the DC coil L9 and the DC coil L10, will not affect the first type
  • the size of the reactance value of the magnetically controlled isolated multi-function transformer is not limited
  • the closed-loop core 5 can be constructed with a magnetic valve to improve current harmonic characteristics.
  • the magnetic valve structure improves the current harmonic characteristics of the magnetron saturation reactor is a common knowledge and will not be described again.
  • the structure and connection mode of the first type of magnetically controlled isolated multi-function transformer shown in Fig. 1 is a single-phase magnetically controlled isolated multi-function transformer.
  • the single-phase magnetron isolated multi-function transformer can be extended to a three-phase magnetron isolated multi-function transformer.
  • the promotion method is public knowledge and will not be described again.
  • a series resistance method can be adopted, so that the transient process of the first type of magnetically controlled isolated multi-function transformer is shortened and the reaction speed is adjusted fast.
  • the method of series resistance can be referred to CN201410353026.4; CN2014104617822.4; CN201410714156.6.
  • a varistor (or a Zener diode) may be connected across the thyristor D1 and the thyristor D2.
  • a thyristor D1 and a thyristor D2 may be connected in parallel with a damper circuit in series with a capacitor to protect the thyristor D1 and the thyristor D2. This is public knowledge and will not be repeated.
  • the varistor or Zener diode is connected across the thyristor D1 and the thyristor D2 to improve the response speed of the magnetron-saturated reactor.
  • the closed-loop iron core 5 the AC coil L5, the AC coil L7 and the DC coil L9, the AC coil L6, the AC coil L8 and the DC coil L10, the thyristor D1 and the thyristor D2, the diode D3, and the control circuit 6 are shown in FIG.
  • the magnetically controlled saturable reactor is just an example.
  • the magnetron-saturated reactor can have various structures and forms.
  • the primary coil and the secondary coil can be added on the basis of other kinds of magnetic-controlled saturable reactors, and the magnetic-controlled isolated multi-function transformer can also be constructed.
  • the primary coil can also take many forms.
  • This embodiment provides a primary coil form different from that of Embodiment 1, and provides a magnetron saturation reactor form different from that of Embodiment 1.
  • the same portions as those of Embodiment 1 will not be described again. The different parts are described below.
  • the structure and connection mode of the second type of magnetically controlled isolated multi-function transformer is shown in Fig. 2.
  • the primary coil terminal I1, the primary coil terminal II2, the secondary coil terminal I3, the secondary coil terminal II4, the closed-loop iron core 5, and the control circuit 6 are included.
  • the closed-loop iron core of the second magnetically controlled isolated multi-function transformer is the same as the closed-loop iron core of the magnetron-saturated reactor.
  • the second magnetically controlled isolated multi-function transformer closed-loop iron core 5 has at least two iron core columns; there are two iron core columns having the same cross-sectional area and having a DC coil and an AC coil; the two iron core columns each have at least It can form a magnetic flux closed loop that does not pass through the other core leg.
  • One of the iron core columns has an AC coil L11, an AC coil L13, an AC coil L15, a DC coil L17 and a DC coil L19
  • the other core column has an AC coil L12, an AC coil L14, an AC coil L16, and a DC coil.
  • L18 and DC coil L20 The number of turns of the AC coil L11, the AC coil L12, the AC coil L13, and the AC coil L14 is equal, the number of turns of the AC coil L15 and the AC coil L16 is equal, the number of turns of the DC coil L17 and the DC coil L20 is equal, and the DC coil L18 and the DC coil are equal.
  • the number of turns of L19 is equal.
  • the number of turns of the DC coil L17 and the DC coil L18 is not equal, and the number of turns of the DC coil L19 and the DC coil L20 is not equal.
  • the turns ratio of the AC coil L11 to the AC coil L15 is equal to twice the transformation ratio of the primary coil to the secondary coil of the transformer.
  • the AC coil L11 and the AC coil L14 are connected in series in the forward direction between the primary coil terminal I1 and the primary coil terminal II2, and the AC coil L12 and the AC coil L13 are connected in series in the forward direction between the primary coil terminal I1 and the primary coil terminal II2.
  • the AC coil L15 and the AC coil L16 are connected in series in the forward direction as a transformer secondary coil, and the remaining terminals are connected to the secondary coil terminal I3 and the secondary coil terminal II4, respectively.
  • the primary coil and the secondary coil function as a transformer of the second magnetically controlled isolated multi-function transformer.
  • a diode D3 is also connected between the opposite end of the AC coil L11 and the same name end of the AC coil L13.
  • Diode D3 is called a freewheeling diode.
  • the freewheeling diode provides voltage balancing characteristics for each of the AC coil and DC coil on the second magnetically controlled isolated multi-function transformer.
  • the freewheeling diode can be removed in some applications.
  • the function of the primary coil freewheeling diode is similar to that of the magnetron-saturated reactor freewheeling diode, which is a common knowledge and will not be described again.
  • the DC coil L17 is connected to the same name end of the DC coil L18, the DC coil L19 is connected to the same name of the DC coil L20, the DC coil L17 is connected to the node N through the forward thyristor D1, and the DC coil L20 is terminated by the reverse thyristor.
  • D1 connects the node N, the DC coil L18 is connected to the node N at the different name end, and the DC coil L19 is connected to the node N at the different name.
  • the trigger terminals of the thyristor D1 and the thyristor D2 are respectively connected to the control circuit 6, and the control circuit 6 controls the magnitude of the firing angle of the thyristor D1 and the thyristor D2 to continuously adjust the magnitude of the rectification of the thyristor D1 and the thyristor D2.
  • the second magnetically controlled isolated multi-function transformer has a primary coil rated voltage of U1, and the first type of magnetron-isolated multi-function transformer primary coil is connected to a system with a rated voltage of U1.
  • the AC coil L11, the AC coil L12, the AC coil L13, and the AC coil L14 have an exciting current flowing, and an AC magnetic flux is generated in the closed-loop iron core 5, and the AC magnetic flux generates an induced electromotive force in the AC coil L15 and the AC coil L16, if When the AC coil L15 and the secondary coil formed by the AC coil L16 are connected to the load, the secondary coil supplies a load current to the load.
  • the primary coil and the secondary coil function as a transformer of the second magnetically controlled isolated multi-function transformer.
  • the second type of magnetically controlled isolated multi-function transformer primary coil is connected to a system with a rated voltage of U1.
  • the AC coil L11, the AC coil L12, the AC coil L13, and the AC coil L14 have an excitation current flowing, and an AC magnetic flux is generated in the closed loop iron core 5; the AC magnetic flux is in the DC coil L17, the DC coil L18, the DC coil L19, and the DC coil.
  • an AC induced electromotive force is generated. Since the number of turns of the DC coil L17 and the DC coil L18 is not equal, an alternating voltage exists at both ends of the thyristor D1. Since the number of turns of the DC coil L19 and the DC coil L20 is not equal, there are two ends of the thyristor D2. The AC voltage is present.
  • the second magnetically controlled isolated multi-function transformer primary coil has a maximum reactance value Zmax.
  • the second magnetically controlled isolated multi-function transformer primary coil has a minimum reactance value Zmin.
  • the control circuit 6 controls the magnitude of the rectification of the thyristor D1 and the thyristor D2, and can control the magnitude of the direct current in the DC coil L17, the DC coil L18, the DC coil L19, and the DC coil L20, thereby realizing the control of the second magnetically controlled isolated multi-function transformer.
  • the magnitude of the coil reactance value is the magnitude of the coil reactance value.
  • the control circuit 6 continuously controls the magnitude of the rectification of the thyristor D1 and the thyristor D2, and can continuously control the magnitude of the direct current in the direct current coil L17, the direct current coil L18, the direct current coil L19, and the direct current coil L20, thereby realizing the second magnetically controlled isolated multi-function transformer
  • the primary coil reactance value is continuously adjusted, and the second magnetron isolated multi-function transformer primary coil reactance value is adjusted and changed between the maximum value and the minimum value.
  • the magnetically controlled isolated multi-function transformer of the invention can be designed and manufactured by the prior art and can be completely realized. Has broad application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Ac-Ac Conversion (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种磁控孤立的多功能变压器(5)包括磁控饱和电抗器。磁控饱和电抗器铁芯上有一次线圈(L1,L2)和二次线圈(L3,L4)。一次线圈与二次线圈变比等于变压器变比。磁控饱和电抗器的各交流线圈(L5,L6,L7,L8)与直流线圈(L9,L10)没有连接一次线圈和二次线圈,也没有连接电力系统。磁控饱和电抗器有直流线圈(L9,L10),直流线圈分别与两个晶闸管(D1,D2)串联,控制电路控制晶闸管触发角的大小,实现连续调节一次线圈电抗值的大小。

Description

一种磁控孤立的多功能变压器 技术领域
本发明涉及电力系统送变电技术领域,特别涉及一种磁控孤立的多功能变压器。
背景技术
电力变压器在电力系统中的应用非常广泛。电力变压器可把高电压变换为低电压,也可把低电压变换为高电压。
并联电抗器在电力系统中的应用也很广泛。并联电抗器可限制过电压;电抗器与电容联合可构成电力系统无功调节电路。在一些应用领域,并联电抗器的电抗值是固定不变的;在一些应用领域,电抗器的电抗值应随着电力系统运行方式的变化而不断调节。电抗值可以连续调节的可控饱和电抗器简称为饱和电抗器或磁控电抗器。
至今,电力变压器、磁控饱和电抗器这两种设备都是分别研究,分别制造。两种设备分别都有较大的铁芯,都需要匝数较多的线圈。如果一座变电站同时需要电力变压器、磁控饱和电抗器、这两种设备,则设备的总体积大、铁芯重、价格高、占地面积大。
CN201410461882.1提出一种多功能变压器,在一台磁控饱和电抗器铁芯的基础上,实现变压器功能、磁控饱和电抗器功能。但该发明的变压器负载大小变化会对磁控饱和电抗器电抗值产生影响。不适合变压器负载变化较大,且要求磁控饱和电抗器电抗值不变化的场合。
发明内容
本发明的目的就是为解决上述问题,提供一种变压器负载变化,不会对磁控饱和电抗器电抗值产生影响的,磁控孤立的多功能变压器。
为实现上述目的,本发明采用如下方法:
一种磁控孤立的多功能变压器,它为单相的,包括安装在同一闭环铁芯上的磁控饱和电抗器和变压器;其中,
所述变压器由一次线圈和二次线圈组成,一次线圈与二次线圈变比等于变压器变比;
所述磁控饱和电抗器的包括各交流线圈与直流线圈以及控制电路,所述各线圈与所述变压器一次线圈和二次线圈不直接连接,也不接入电力系统;
所述控制电路调整磁控饱和电抗器的直流电流大小,实现连续调节一次线圈电抗值的大小。
所述变压器的一次线圈和二次线圈分别由一对安装在两铁芯柱上,并正向串接的交流线圈组成;
所述磁控饱和电抗器包括位于两铁芯柱上的两组线圈,这两组线圈的结构相同;每组线圈均包括第一交流线圈、第二交流线圈和一个直流线圈;所述两第一直流线圈的同名端以及所述两直流线圈的同名端连接在一起的;
所述两直流线圈的异名端则一个经正向晶闸管,另一个经反向晶闸管接连接点N;
所述各铁芯柱上的第一交流线圈异名端均与另一铁芯柱上的第二交流线圈同名端连接;所述两第二线圈的异名端接连接点N;
所述两晶闸管的控制端接控制电路,控制电路控制两晶闸管触发角的大小,实现连续调节两晶闸管整流量的大小,进而调整所述两直流线圈直流电流的大小。
所述一次线圈的两交流线圈匝数相等;二次线圈的两交流线圈匝数相等;一次线圈各交流线圈与二次线圈各交流线圈的匝数比等于变压器一次线圈与二次线圈的变比。
所述磁控饱和电抗器中位于同一铁芯柱上的第一交流线圈与第二交流线圈间串接一续流二极管。
所述磁控饱和电抗器中各交流线圈匝数相等;各直流线圈匝数相等;各直流线圈匝数不等于其所在铁芯柱上第一交流线圈匝数的二倍,以确保两晶闸管的两端有电压存在。
所述变压器一次线圈由两对正向串接的交流线圈组成,每对交流线圈的两交流线圈分别位于不同的铁芯柱上;两对交流线圈中处于同一位置的两交流线圈同名端连接,剩余两交流线圈的异名端连接;二次线圈则由位于两铁芯柱上的一对正向串接交流线圈构成;
所述磁控饱和电控器由两组直流线圈组成,分别位于不同的铁芯柱上;各组直流线圈中在两铁芯柱上同一位置的两直流线圈同名端连接;剩余异名端中,同一组的直流线圈的两异名端一个直接接连接点N,另一个经正向或反向晶闸管接连接点N,但与晶闸管连接的直流线圈在铁芯柱上位置不对应;各晶闸管与控制电路连接;控制电路控制两晶闸管触发角的大小,实现连续调节两晶闸管整流量的大小,进而调整所述两直流线圈直流电流的大小。
所述一次线圈的各交流线圈匝数相等;二次线圈各交流线圈匝数相等;
一次线圈各交流线圈的匝数与二次线圈各交流线圈匝数比等于变压器一次线圈与二次线圈的变比的2倍。
所述一次线圈中同一铁芯柱上两交流线圈间串接续流二极管。
所述当控制电路控制两晶闸管全截止时,两晶闸管的整流电路不工作,各直流线圈的直流电流等于零,变压器一次线圈有最大电抗值Zmax;
控制电路控制各晶闸管全导通时,流过各直流线圈的直流电流达到最大设计值,变压器一次线圈有最小电抗值Zmin。
所述闭环铁芯至少有两根截面积相等的铁芯柱,这两根铁芯柱各自至少有能形成一条不经过对方铁芯柱的磁通闭环;所述磁控饱和电抗器和所述变压器的各线圈安装在两铁芯柱上。
所述闭环铁芯可以是相互没有通路的两个闭环铁芯;或是一体的,相互有通路的具有三个及以上铁芯柱的闭环铁芯,其中任何两根铁芯柱都能够相互构成磁通闭环,但至少有两根能各自形成不经过对方铁芯柱的闭环。
所述闭环铁芯有磁阀。
一种磁控孤立的多功能变压器,它采用所述的单相的磁控孤立的多功能变压器组成三相的磁控孤立的多功能变压器。
一种磁控孤立的多功能变压器,它采用所述的单相的磁控孤立的多功能变压器组成三相的磁控孤立的多功能变压器。
一种磁控孤立的多功能变压器,它采用所述的单相的磁控孤立的多功能变压器组成三相的磁控孤立的多功能变压器。
本发明的有益效果是:磁控孤立的多功能变压器在一台磁控饱和电抗器铁芯的基础上,实现变压器与磁控饱和电抗器两种功能。减小了设备总体体积、减轻了设备总体铁芯重量、减低了设备总体价格、减小了设备总体占地面积。
磁控饱和电抗器电抗值调节变化,不会影响变压器负荷电流,对变压器一次线圈与二次线圈之间漏抗影响很小。变压器负载电流变化,不会对磁控饱和电抗器电抗值产生影响。
附图说明
图1表示第一种磁控孤立的多功能变压器。
图2表示第二种磁控孤立的多功能变压器。
其中,1.一次线圈端子I,2.一次线圈端子II,3.二次线圈端子I,4.二次线圈端子II,5.闭环铁芯,6.控制电路。
下面结合附图与实施例对本发明做进一步说明。
具体实施方式:
实施例1:
第一种磁控孤立的多功能变压器的结构与连接方式如图1所示。包括一次线圈端子I 1,一次线圈端子II2,二次线圈端子I3,二次线圈端子II4,闭环铁芯5,控制电路6。第一种磁控孤立的多功能变压器的闭环铁芯与磁控饱和电抗器的闭环铁芯相同。第一种磁控孤立的多功能变压器闭环铁芯5至少有两根铁芯柱;有两根截面积相等、均有直流线圈和交流线圈的铁芯柱;这两根铁芯柱各自至少有能形成一条不经过对方铁芯柱的磁通闭环。其中一根铁 芯柱上有交流线圈L1、交流线圈L3、交流线圈L5、交流线圈L7和直流线圈L9,另一根铁芯柱上有交流线圈L2、交流线圈L4、交流线圈L6、交流线圈L8和直流线圈L10;交流线圈L1与交流线圈L2的匝数相等,交流线圈L3与交流线圈L4的匝数相等,交流线圈L5、交流线圈L6、交流线圈L7、交流线圈L8的匝数相等,直流线圈L9与直流线圈L10的匝数相等。交流线圈L1与交流线圈L3的匝数比等于变压器一次线圈与二次线圈的变比。直流线圈L9(L10)的匝数不等于二倍交流线圈L5(L6,L7,或L8)匝数。
闭环铁芯5可以是相互没有通路的两个闭环铁芯,例如1:两个口字形铁芯。也可以是一体的,相互有通路的闭环铁芯;例如2:三根铁芯柱,铁芯柱两端有磁轭连通三根铁芯柱,任何两根铁芯柱都能够相互构成磁通闭环,但至少有两根能各自形成不经过对方铁芯柱的闭环。例如3:四根铁芯柱,铁芯柱两端有磁轭连通四根铁芯柱,任何两根铁芯柱都能够相互构成磁通闭环,但至少有两根能各自形成不经过对方铁芯柱的闭环,如图1所示。
交流线圈L1与交流线圈L2正向串联作为变压器一次线圈,剩余的端子分别连接一次线圈端子I 1与一次线圈端子II2。交流线圈L3与交流线圈L4正向串联作为变压器二次线圈,剩余的端子分别连接二次线圈端子I3与二次线圈端子II4。一次线圈与二次线圈作为第一种磁控孤立的多功能变压器的变压器功能。
交流线圈L5同名端,交流线圈L6同名端,直流线圈L9同名端,直流线圈L10同名端连接在一起;交流线圈L5异名端连接交流线圈L8同名端,交流线圈L6异名端连接交流线圈L7同名端;交流线圈L7异名端,交流线圈L7异名端连接结点N;直流线圈L9异名端经正向晶闸管D1连接结点N,直流线圈L10异名端经反向晶闸管D1连接结点N。
晶闸管D1和晶闸管D2的触发端子分别连接控制电路6,控制电路6控制晶闸管D1和晶闸管D2触发角的大小,实现连续调节晶闸管D1和晶闸管D2整流量的大小。
交流线圈L5异名端与交流线圈L7同名端之间还连接二极管D3。二极管D3称为续流二极管。续流二极管提高磁控饱和电抗器续流特性和磁控饱和电抗器线圈电压的平衡特性,续流二极管在一些应用场合,可以去除。磁控饱和电抗器续流二极管的作用是公共知识,不再赘述。
设第一种磁控孤立的多功能变压器一次线圈额定电压为U1,第一种磁控孤立的多功能变压器一次线圈第接入额定电压为U1的系统。交流线圈L1与交流线圈L2有励磁电流流通,在闭环铁芯5中产生交流磁通,该交流磁通在交流线圈L3与交流线圈L4中产生感生电动势,如果交流线圈L3与交流线圈L4构成的二次线圈连接负载,则二次线圈为负载提供负荷电流。一次线圈与二次线圈作为第一种磁控孤立的多功能变压器的变压器功能。
第一种磁控孤立的多功能变压器一次线圈第接入额定电压为U1的系统。交流线圈L1与交流线圈L2有励磁电流流通,在闭环铁芯5中产生交流磁通;该交流磁通在交流线圈L5,交流线圈L6,交流线圈L7,交流线圈L8,直流线圈L9,直流线圈L10中产生感生电动势,由于直流线圈L9的匝数不等于二倍交流线圈L5匝数,晶闸管D1和晶闸管D2两端有电压存在。
当控制电路6控制晶闸管D1和晶闸管D2全截止时,晶闸管D1和晶闸管D2整流电路不工作,直流线圈L9和直流线圈L10中的直流电流等于零。第一种磁控孤立的多功能变压器一次线圈有最大电抗值Zmax。
当控制电路6控制晶闸管D1和晶闸管D2全导通时,流过直流线圈L9与直流线圈L10的直流电流达到最大设计值。第一种磁控孤立的多功能变压器一次线圈有最小电抗值Zmin。
控制电路6控制晶闸管D1和晶闸管D2整流量的大小,可控制直流线圈L9和直流线圈L10中直流电流的大小,实现控制第一种磁控孤立的多功能变压器一次线圈电抗值的大小。控制电路6连续控制晶闸管D1和晶闸管D2整流量的大小,可连续控制直流线圈L9和直流线圈L10中直流电流的大小,实现第一种磁控孤立的多功能变压器一次线圈电抗值的连续调节,第一种磁控孤立的多功能变压器一次线圈电抗值在最大值与最小值之间调节、变化。
可以看出,图1所示的闭环铁芯5,交流线圈L5、交流线圈L7和直流线圈L9,交流线圈L6、交流线圈L8和直流线圈L10,晶闸管D1和晶闸管D2,二极管D3,控制电路6,及其它们的连接方式,实际就是与电力系统没有直接有电气连接的磁控饱和电抗器。在磁控饱和电抗器基础上增加变压器一次线圈和二次线圈,就构成了第一种磁控孤立的多功能变压器。磁控饱和电抗器与一次线圈和二次线圈没有直接有电气连接,与电力系统没有直接有电气连接,所以,一次线圈和二次线圈中的负荷电流变化,不会影响磁控饱和电抗器的电抗值。磁控饱和电抗器虽然与一次线圈和二次线圈没有直接有电气连接,但是,只要一次线圈和二次线圈有电压,磁控饱和电抗器闭环铁芯5中就有交流磁通,磁控饱和电抗器的交流线圈和直流线圈就可从磁控饱和电抗器闭环铁芯5交流磁通获得交流能量,从而驱动磁控饱和电抗器工作。
第一种磁控孤立的多功能变压器二次线圈连接负载,不论负荷电流增大,或者减小,都不会改变直流线圈L9和直流线圈L10中的直流电流大小,都不会影响第一种磁控孤立的多功能变压器电抗值的大小。
实验表明,直流线圈L9和直流线圈L10中的直流电流在磁控饱和电抗器需求的范围内变化,对第一种磁控孤立的多功能变压器一次电压与二次电压的变比影响很小,对第一种磁控 孤立的多功能变压器一次线圈与二次线圈之间的漏抗影响很小。即磁控饱和电抗器电抗值调节变化,不会影响变压器负荷电流,对变压器漏抗影响很小。
闭环铁芯5可以采用磁阀结构,以改善电流谐波特性。磁阀结构改善磁控饱和电抗器电流谐波特性是公共知识,不再赘述。
图1所示第一种磁控孤立的多功能变压器的结构与连接方式为单相磁控孤立的多功能变压器。可以把单相磁控孤立的多功能变压器推广到三相磁控孤立的多功能变压器。推广方法是公共知识,不再赘述。
图1所示第一种磁控孤立的多功能变压器中可以采用串联电阻的方法,使第一种磁控孤立的多功能变压器的暂态过程缩短、调节反应速度快。串联电阻的方法可参考CN201410353026.4;CN2014104617822.4;CN201410714156.6。
晶闸管D1与晶闸管D2两端还可以并联压敏电阻(或稳压二极管),晶闸管D1与晶闸管D2两端还可以并联电阻与电容串联的阻尼电路;以保护晶闸管D1与晶闸管D2。这是公共知识,不再赘述。实验表明,晶闸管D1与晶闸管D2两端并联压敏电阻(或稳压二极管),能提高磁控饱和电抗器的反应速度。
可以看出,图1所示的闭环铁芯5,交流线圈L5、交流线圈L7和直流线圈L9,交流线圈L6、交流线圈L8和直流线圈L10,晶闸管D1和晶闸管D2,二极管D3,控制电路6,及其它们的连接方式,所构成的磁控饱和电抗器只是一种事例。磁控饱和电抗器可以有多种结构和形式,在其他种类磁控饱和电抗器基础上增加一次线圈与二次线圈,同样可以构成磁控孤立的多功能变压器。
为了提高一次线圈的作用,一次线圈也可以有多种形式。
实施例2:
本实施例提供一种与实施例1不同的一次线圈形式,提供一种与实施例1不同的磁控饱和电抗器形式。与实施例1相同的部分,不再赘述。不同的部分,表述如下。
第二种磁控孤立的多功能变压器的结构与连接方式如图2所示。包括一次线圈端子I 1,一次线圈端子II2,二次线圈端子I3,二次线圈端子II4,闭环铁芯5,控制电路6。第二种磁控孤立的多功能变压器的闭环铁芯与磁控饱和电抗器的闭环铁芯相同。第二种磁控孤立的多功能变压器闭环铁芯5至少有两根铁芯柱;有两根截面积相等、均有直流线圈和交流线圈的铁芯柱;这两根铁芯柱各自至少有能形成一条不经过对方铁芯柱的磁通闭环。其中一根铁芯柱上有交流线圈L11、交流线圈L13、交流线圈L15、直流线圈L17和直流线圈L19,另一根铁芯柱上有交流线圈L12、交流线圈L14、交流线圈L16、直流线圈L18和直流线圈L20; 交流线圈L11、交流线圈L12、交流线圈L13、交流线圈L14的匝数相等,交流线圈L15与交流线圈L16的匝数相等,直流线圈L17与直流线圈L20的匝数相等,直流线圈L18与直流线圈L19的匝数相等。直流线圈L17与直流线圈L18的匝数不相等,直流线圈L19与直流线圈L20的匝数不相等。交流线圈L11与交流线圈L15的匝数比等于变压器一次线圈与二次线圈的变比的2倍。
交流线圈L11与交流线圈L14正向串联在一次线圈端子I 1与一次线圈端子II2之间,交流线圈L12与交流线圈L13正向串联在一次线圈端子I 1与一次线圈端子II2之间。交流线圈L15与交流线圈L16正向串联作为变压器二次线圈,剩余的端子分别连接二次线圈端子I3与二次线圈端子II4。一次线圈与二次线圈作为第二种磁控孤立的多功能变压器的变压器功能。
交流线圈L11异名端与交流线圈L13同名端之间还连接二极管D3。二极管D3称为续流二极管。续流二极管为第二种磁控孤立的多功能变压器上的各交流线圈与直流线圈提供电压平衡特性,续流二极管在一些应用场合,可以去除。此处一次线圈续流二极管的作用类似磁控饱和电抗器续流二极管的作用,是公共知识,不再赘述。
直流线圈L17同名端连接直流线圈L18同名端,直流线圈L19同名端连接直流线圈L20同名端,直流线圈L17异名端经正向晶闸管D1连接结点N,直流线圈L20异名端经反向晶闸管D1连接结点N,直流线圈L18异名端连接结点N,直流线圈L19异名端连接结点N。
晶闸管D1和晶闸管D2的触发端子分别连接控制电路6,控制电路6控制晶闸管D1和晶闸管D2触发角的大小,实现连续调节晶闸管D1和晶闸管D2整流量的大小。
设第二种磁控孤立的多功能变压器一次线圈额定电压为U1,第一种磁控孤立的多功能变压器一次线圈第接入额定电压为U1的系统。交流线圈L11、交流线圈L12、交流线圈L13、交流线圈L14有励磁电流流通,在闭环铁芯5中产生交流磁通,该交流磁通在交流线圈L15与交流线圈L16中产生感生电动势,如果交流线圈L15与交流线圈L16构成的二次线圈连接负载,则二次线圈为负载提供负荷电流。一次线圈与二次线圈作为第二种磁控孤立的多功能变压器的变压器功能。
第二种磁控孤立的多功能变压器一次线圈第接入额定电压为U1的系统。交流线圈L11、交流线圈L12、交流线圈L13、交流线圈L14有励磁电流流通,在闭环铁芯5中产生交流磁通;该交流磁通在直流线圈L17、直流线圈L18、直流线圈L19、直流线圈L20中产生交流感生电动势,由于直流线圈L17与直流线圈L18的匝数不相等,晶闸管D1两端有交流电压存在,由于直流线圈L19与直流线圈L20的匝数不相等,晶闸管D2两端有交流电压存在。
当控制电路6控制晶闸管D1和晶闸管D2全截止时,晶闸管D1和晶闸管D2整流电路不 工作,直流线圈L17、直流线圈L18、直流线圈L19、直流线圈L20中的直流电流等于零。第二种磁控孤立的多功能变压器一次线圈有最大电抗值Zmax。
当控制电路6控制晶闸管D1和晶闸管D2全导通时,流过直流线圈L17、直流线圈L18、直流线圈L19、直流线圈L20的直流电流达到最大设计值。第二种磁控孤立的多功能变压器一次线圈有最小电抗值Zmin。
控制电路6控制晶闸管D1和晶闸管D2整流量的大小,可控制直流线圈L17、直流线圈L18、直流线圈L19、直流线圈L20中直流电流的大小,实现控制第二种磁控孤立的多功能变压器一次线圈电抗值的大小。控制电路6连续控制晶闸管D1和晶闸管D2整流量的大小,可连续控制直流线圈L17、直流线圈L18、直流线圈L19、直流线圈L20中直流电流的大小,实现第二种磁控孤立的多功能变压器一次线圈电抗值的连续调节,第二种磁控孤立的多功能变压器一次线圈电抗值在最大值与最小值之间调节、变化。
实施例2与实施例1共性的部分,不再赘述。
本发明的一种磁控孤立的多功能变压器可用现有技术设计制造,完全可以实现。有广阔应用前景。

Claims (15)

  1. 一种磁控孤立的多功能变压器,其特征是,它为单相的,包括安装在同一闭环铁芯上的磁控饱和电抗器和变压器;其中,
    所述变压器由一次线圈和二次线圈组成,一次线圈与二次线圈变比等于变压器变比;
    所述磁控饱和电抗器的包括各交流线圈与直流线圈以及控制电路,所述各线圈与所述变压器一次线圈和二次线圈不直接连接,也不接入电力系统;
    所述控制电路调整磁控饱和电抗器的直流电流大小,实现连续调节一次线圈电抗值的大小。
  2. 如权利要求1所述的一种磁控孤立的多功能变压器,其特征是,所述变压器的一次线圈和二次线圈分别由一对安装在两铁芯柱上,并正向串接的交流线圈组成;
    所述磁控饱和电抗器包括位于两铁芯柱上的两组线圈,这两组线圈的结构相同;每组线圈均包括第一交流线圈、第二交流线圈和一个直流线圈;所述两第一直流线圈的同名端以及所述两直流线圈的同名端连接在一起的;
    所述两直流线圈的异名端则一个经正向晶闸管,另一个经反向晶闸管接连接点N;
    所述各铁芯柱上的第一交流线圈异名端均与另一铁芯柱上的第二交流线圈同名端连接;所述两第二线圈的异名端接连接点N;
    所述两晶闸管的控制端接控制电路,控制电路控制两晶闸管触发角的大小,实现连续调节两晶闸管整流量的大小,进而调整所述两直流线圈直流电流的大小。
  3. 如权利要求2所述的一种磁控孤立的多功能变压器,其特征是,所述一次线圈的两交流线圈匝数相等;二次线圈的两交流线圈匝数相等;一次线圈各交流线圈与二次线圈各交流线圈的匝数比等于变压器一次线圈与二次线圈的变比。
  4. 如权利要求2所述的一种磁控孤立的多功能变压器,其特征是,所述磁控饱和电抗器中位于同一铁芯柱上的第一交流线圈与第二交流线圈间串接一续流二极管。
  5. 如权利要求2所述的一种磁控孤立的多功能变压器,其特征是,所述磁控饱和电抗器中各交流线圈匝数相等;各直流线圈匝数相等;各直流线圈匝数不等于其所在铁芯柱上第一交流线圈匝数的二倍,以确保两晶闸管的两端有电压存在。
  6. 如权利要求1所述的一种磁控孤立的多功能变压器,其特征是,所述变压器一次线圈由两对正向串接的交流线圈组成,每对交流线圈的两交流线圈分别位于不同的铁芯柱上;两对交流线圈中处于同一位置的两交流线圈同名端连接,剩余两交流线圈的异名端连接;二次线圈则由位于两铁芯柱上的一对正向串接交流线圈构成;
    所述磁控饱和电控器由两组直流线圈组成,分别位于不同的铁芯柱上;各组直流线圈中 在两铁芯柱上同一位置的两直流线圈同名端连接;剩余异名端中,同一组的直流线圈的两异名端一个直接接连接点N,另一个经正向或反向晶闸管接连接点N,但与晶闸管连接的直流线圈在铁芯柱上位置不对应;各晶闸管与控制电路连接;控制电路控制两晶闸管触发角的大小,实现连续调节两晶闸管整流量的大小,进而调整所述两直流线圈直流电流的大小。
  7. 如权利要求6所述的一种磁控孤立的多功能变压器,其特征是,所述一次线圈的各交流线圈匝数相等;二次线圈各交流线圈匝数相等;
    一次线圈各交流线圈的匝数与二次线圈各交流线圈匝数比等于变压器一次线圈与二次线圈的变比的2倍。
  8. 如权利要求6所述的一种磁控孤立的多功能变压器,其特征是,所述一次线圈中同一铁芯柱上两交流线圈间串接续流二极管。
  9. 如权利要求2或6所述的一种磁控孤立的多功能变压器,其特征是,所述当控制电路控制两晶闸管全截止时,两晶闸管的整流电路不工作,各直流线圈的直流电流等于零,变压器一次线圈有最大电抗值Zmax;
    控制电路控制各晶闸管全导通时,流过各直流线圈的直流电流达到最大设计值,变压器一次线圈有最小电抗值Zmin。
  10. 如权利要求1-9任一所述的一种磁控孤立的多功能变压器,其特征是,所述闭环铁芯至少有两根截面积相等的铁芯柱,这两根铁芯柱各自至少有能形成一条不经过对方铁芯柱的磁通闭环;所述磁控饱和电抗器和所述变压器的各线圈安装在两铁芯柱上。
  11. 如权利要求1-9任一所述的一种磁控孤立的多功能变压器,其特征是,所述闭环铁芯可以是相互没有通路的两个闭环铁芯;
    或是一体的,相互有通路的具有三个及以上铁芯柱的闭环铁芯,其中任何两根铁芯柱都能够相互构成磁通闭环,但至少有两根能各自形成不经过对方铁芯柱的闭环。
  12. 如权利要求1-9任一所述的一种磁控孤立的多功能变压器,其特征是,所述闭环铁芯有磁阀。
  13. 一种磁控孤立的多功能变压器,其特征是,它采用权利要求1所述的单相的磁控孤立的多功能变压器组成三相的磁控孤立的多功能变压器。
  14. 一种磁控孤立的多功能变压器,其特征是,它采用权利要求2所述的单相的磁控孤立的多功能变压器组成三相的磁控孤立的多功能变压器。
  15. 一种磁控孤立的多功能变压器,其特征是,它采用权利要求6所述的单相的磁控孤立的多功能变压器组成三相的磁控孤立的多功能变压器。
PCT/CN2015/075725 2015-01-08 2015-04-01 一种磁控孤立的多功能变压器 WO2016110013A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510010431.0A CN104485824B (zh) 2015-01-08 2015-01-08 一种磁控孤立的多功能变压器
CN201510010431.0 2015-01-08

Publications (1)

Publication Number Publication Date
WO2016110013A1 true WO2016110013A1 (zh) 2016-07-14

Family

ID=52760341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075725 WO2016110013A1 (zh) 2015-01-08 2015-04-01 一种磁控孤立的多功能变压器

Country Status (2)

Country Link
CN (1) CN104485824B (zh)
WO (1) WO2016110013A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104953850A (zh) * 2015-07-24 2015-09-30 山东大学 一种响应速度快的多功能变压器
CN105141140B (zh) * 2015-07-31 2017-09-26 山东大学 一种改进的多功能变压器
CN105261466B (zh) * 2015-10-20 2018-05-01 天津市天传鑫丰电气科技发展有限公司 磁控可调电抗器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032840A (en) * 1975-07-17 1977-06-28 Lebedev Vladimir Konstantinovi Adjustable transformer
CN1037427A (zh) * 1988-05-05 1989-11-22 海德罗-魁北克公司 带气隙的自调电抗的变压器
JP2005045133A (ja) * 2003-07-25 2005-02-17 Tohoku Electric Power Co Inc 電磁機器
CN1933056A (zh) * 2006-09-04 2007-03-21 特变电工沈阳变压器集团有限公司技术中心 带补偿绕组可控电抗器
CN201733104U (zh) * 2010-07-26 2011-02-02 青岛菲特电器科技有限公司 磁控无功变压器
CN104091685A (zh) * 2014-06-09 2014-10-08 沈阳昊诚电气股份有限公司 磁控变压器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124252A (ja) * 2009-12-08 2011-06-23 Nissin Electric Co Ltd ギャップ付き鉄心形超電導リアクトル
CN102184765B (zh) * 2011-02-21 2012-11-21 山东大学 一种饱和电抗器
JP5701120B2 (ja) * 2011-03-23 2015-04-15 三菱電機株式会社 変圧器用磁気遮蔽装置
CN203135785U (zh) * 2012-09-26 2013-08-14 北京三得普华科技有限责任公司 磁控电抗器
CN104201903B (zh) * 2014-09-11 2016-08-31 山东大学 一种多功能变压器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032840A (en) * 1975-07-17 1977-06-28 Lebedev Vladimir Konstantinovi Adjustable transformer
CN1037427A (zh) * 1988-05-05 1989-11-22 海德罗-魁北克公司 带气隙的自调电抗的变压器
JP2005045133A (ja) * 2003-07-25 2005-02-17 Tohoku Electric Power Co Inc 電磁機器
CN1933056A (zh) * 2006-09-04 2007-03-21 特变电工沈阳变压器集团有限公司技术中心 带补偿绕组可控电抗器
CN201733104U (zh) * 2010-07-26 2011-02-02 青岛菲特电器科技有限公司 磁控无功变压器
CN104091685A (zh) * 2014-06-09 2014-10-08 沈阳昊诚电气股份有限公司 磁控变压器

Also Published As

Publication number Publication date
CN104485824A (zh) 2015-04-01
CN104485824B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
WO2016110013A1 (zh) 一种磁控孤立的多功能变压器
WO2017016249A1 (zh) 一种响应速度快的多功能变压器
CN104201903A (zh) 一种多功能变压器
CN113241952A (zh) 一种隔离式双向变换器及其控制方法
CN112992510B (zh) 自励式三相三柱型电调磁控电抗器
CN204966234U (zh) 一种快速响应型自励式磁控电抗器
Mai et al. Analysis, design, and optimization of the IPT system with LC filter rectifier featuring high efficiency
CA2763267A1 (en) Current supply arrangement for the rectifying three-phase ac current into multi-pulse dc current
CN102158104B (zh) 一种电压与电流调节器
WO2016180219A1 (zh) 一种缩短暂态响应时间的饱和电抗器
WO2016141614A1 (zh) 一种结构简单的饱和电抗器
CN104916409A (zh) 一种快速响应型自励式磁控电抗器
WO2017020709A1 (zh) 一种改进的多功能变压器
CN104465056A (zh) 一种可控电阻的直流饱和电抗器
JP2005252113A (ja) 電圧調整変圧器
CN109755945B (zh) 一种基于脉冲电流控制的磁控电抗器
CN104485213A (zh) 一种减小晶闸管耐压的直流饱和电抗器
CN112865127A (zh) 动态无功补偿装置
CN219875102U (zh) 动态无功补偿装置和调压型磁控调相器
CN113035537B (zh) 调压型磁控调相器
CN219716634U (zh) 他励式和自励式磁控电抗器
CN104184335A (zh) 一种双变压器串联的多功能变压器
CN215731244U (zh) 他励式三相三柱型磁控电抗器
Lin et al. A Single-Phase Non-Isolated Inverter with a High Attenuation Gain Magnetic-Coupled Active Filter
CN219759367U (zh) 磁控调压器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15876521

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 15876521

Country of ref document: EP

Kind code of ref document: A1