WO2017020535A1 - 一种铜铝合金晶振片镀膜工艺 - Google Patents

一种铜铝合金晶振片镀膜工艺 Download PDF

Info

Publication number
WO2017020535A1
WO2017020535A1 PCT/CN2016/000422 CN2016000422W WO2017020535A1 WO 2017020535 A1 WO2017020535 A1 WO 2017020535A1 CN 2016000422 W CN2016000422 W CN 2016000422W WO 2017020535 A1 WO2017020535 A1 WO 2017020535A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
aluminum
target
quartz plate
aluminum alloy
Prior art date
Application number
PCT/CN2016/000422
Other languages
English (en)
French (fr)
Inventor
肖共和
陈愿勤
Original Assignee
中山泰维电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山泰维电子有限公司 filed Critical 中山泰维电子有限公司
Publication of WO2017020535A1 publication Critical patent/WO2017020535A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Definitions

  • the invention relates to a coating process, in particular to an alloy coating process of a copper-aluminum alloy crystal oscillator.
  • a metal conductive film layer is plated on the quartz plate.
  • the material used as the metal conductive film layer is mainly gold, silver, aluminum and copper.
  • the crystal plate using aluminum as the conductive layer has the best stress resistance effect, but the aluminum material is too Soft, scratch-resistant and oxidized, and compared to gold, silver and copper, aluminum has a high impedance and low electrical conductivity and thermal conductivity.
  • copper-aluminum alloy not only improves the anti-stress effect of the crystal oscillator, but also overcomes the disadvantages of high impedance, low electrical conductivity and thermal conductivity in the aluminum crystal oscillator.
  • the traditional copper-aluminum alloy coating process is to deposit copper and aluminum in a molybdenum boat or crucible at a certain ratio and to evaporate on a quartz plate in a vacuum environment.
  • the specific process is as follows: when the vapor deposition is performed, the quartz piece is placed in a vacuum chamber. Above, the copper and aluminum alloy materials are placed on the boat or the crucible according to the weight ratio; the boat or the crucible of the copper and aluminum alloy materials is heated under vacuum, and the copper and aluminum alloy materials are plated on one side of the quartz plate to form an alloy. After the film, the jig was flipped and the copper and aluminum alloy materials were plated to the other side of the quartz plate in the same manner.
  • the proportion of the components evaporated from copper and aluminum in the above vapor deposition process is difficult to control, and thus the content ratio of copper and aluminum alloy on the quartz plate often fails to reach a predetermined value, thereby causing the performance of copper and aluminum alloy to fail to meet the required requirements.
  • the present invention provides an alloy plating process for a copper-aluminum alloy crystal oscillator, which can precisely control the composition ratio of copper and aluminum in the copper-aluminum alloy film.
  • the invention relates to a copper-aluminum alloy crystal oscillator plate coating process, which comprises the following steps:
  • Step one preparing an aluminum target, a copper target, and a quartz piece to be coated
  • Step 2 placing an aluminum target, a copper target, and a quartz plate in a magnetron sputtering coating device, wherein the coating working area in the magnetron sputtering coating device is filled with high-purity argon gas, and the magnetron sputtering
  • the coating apparatus includes an ion emitting device for emitting high energy particles and a conveying device for moving the quartz sheet,
  • the magnetron sputtering coating device is activated, and the bombardment of the high-energy particles is performed by the ion-emitting device, so that the aluminum target is sputtered to deposit aluminum atoms on the quartz plate, and the quartz plate is coated with a layer of aluminum having a thickness D. membrane,
  • Step 4 after the aluminum film is plated to a certain thickness, the ion emitting device stops emitting, and the quartz plate is moved to a working position opposite to the copper target by the conveying device, and the temperature of the quartz plate is kept within a certain range and cannot be cooled.
  • Step six take out the finished product inspection and storage.
  • An ion emitting device, an aluminum target, and a copper target are disposed on both sides of the quartz plate, After the magnetron sputtering coating device is activated, a copper-aluminum alloy film can be plated on both sides of the quartz plate at the same time.
  • the temperature in the step 4 is: 200-550 degrees.
  • the range of X is: 5-20
  • the beneficial effects of the invention are that the copper-aluminum alloy film formed on the quartz plate by the process not only firmly bonds with the quartz plate, but also can accurately control the composition ratio of copper and aluminum in the copper-aluminum alloy film, and thus, the final finished copper-aluminum alloy crystal oscillator
  • the performance of the film meets the basic requirements of use, can achieve the settings we need, with the heat dissipation, conductivity, small impedance, and hardness we need.
  • Figure 1 is a schematic view showing one of the products of the copper-aluminum alloy crystal oscillator of the present invention.
  • the present invention discloses a copper-aluminum alloy crystal oscillator film coating process, comprising the following steps:
  • an aluminum target, a copper target, and a quartz plate to be coated are prepared.
  • the aluminum target and the copper target must be made of pure aluminum or pure copper, and the mixed metal cannot be used as a target.
  • Step 2 placing an aluminum target, a copper target, and a quartz plate in a magnetron sputtering coating device, wherein the coating working area in the magnetron sputtering coating device is filled with high-purity argon gas, and the magnetron sputtering
  • the coating device includes an ion emitting device for emitting high-energy particles and a conveying device for moving the quartz plate, and the magnetron sputtering coating device is an outsourced device, and the structure thereof is not detailed.
  • both sides of the quartz plate are provided with an ion emitting device, an aluminum target and a copper target, so that after the magnetron sputtering coating device is activated, a copper-aluminum alloy film can be simultaneously plated on both sides of the quartz plate. higher efficiency.
  • the high-energy particles are electrons, and under the action of the electric field, they collide with the argon atoms during the flying out process to ionize to generate argon ions and new electrons; the argon ions accelerate under the action of the electric field.
  • the cathode target in this example, is an aluminum target and a copper target, and the target surface is bombarded with high energy to cause sputtering of the target.
  • a neutral target atom is deposited on the quartz plate to form a thin film, and the generated secondary electrons are subjected to an electric field and a magnetic field, are bound in a plasma region close to the target surface, and are ionized in the region.
  • a large amount of argon ions are used to bombard the target, thereby achieving a high deposition rate.
  • the energy of the secondary electrons is exhausted, gradually away from the target surface, and finally deposited on the quartz plate under the action of the electric field. Since the energy of the electron is very low, the energy transmitted to the quartz plate is small. This causes the quartz plate to have a lower temperature rise and thus does not cause the aluminum having a lower melting point to form a crater on the quartz plate.
  • the magnetron sputtering coating device is started, and the bombardment of the high-energy particles is performed by the ion-emitting device, so that the aluminum target is sputtered and the aluminum atoms are deposited on the quartz plate.
  • the quartz plate is coated with a layer of aluminum having a thickness D. Membrane, in this case, it is necessary to first plate the aluminum film on the quartz plate because the bonding force between the aluminum and the quartz plate is the best.
  • Step 4 after the aluminum film is plated to a certain thickness, the ion emitting device stops emitting, and the quartz plate is moved to a working position opposite to the copper target by the conveying device, and the temperature of the quartz plate is kept within a certain range and cannot be cooled. 200-550 degrees, in this temperature range, copper has a good fusion with the aluminum film, copper atoms can be well integrated into the aluminum film, and thus in the follow-up a uniform copper-aluminum alloy film can be formed in the step
  • the key factor of the performance of the aluminum alloy film, in this ratio, not only meets the basic requirements of use, but also ensures that the performance of the copper-aluminum alloy crystal oscillator can achieve the required settings, with the required heat dissipation, conductivity, and Small impedance, and hardness, if the proportion of copper is too low, it will not reach the heat dissipation, electrical conductivity, small impedance, and has a certain basic hardness requirement, and it is easy to indent or during detection and use.
  • Step six take out the finished product inspection and storage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种铜铝合金晶振片的合金镀膜工艺,采用磁控溅射技术在石英基片上形成铝膜和铜膜,通过本工艺在石英片上形成的铜铝合金膜不仅与石英片结合牢固,而且能够精确控制铜铝合金膜中铜和铝的成分比例。

Description

一种铜铝合金晶振片镀膜工艺 技术领域
本发明涉及一种镀膜工艺,特别是一种铜铝合金晶振片的合金镀膜工艺。
背景技术
在石英片上镀上金属导电膜层,用作金属导电膜层的材料主要是金、银、铝和铜,用铝作导电层的晶振片具有最好的抗应力效果,但是铝这种材质过于柔软,易刮伤和氧化,而且对比金、银和铜,铝的阻抗大,其导电率和热导率都较低。
采用铜铝合金既提高了晶振片的抗应力效果,又克服了铝晶振片中阻抗较大,电导率和热导率都较低的不足,
传统的铜铝合金镀膜工艺是把铜和铝按一定比例放在钼舟或坩埚中加热在真空环境中蒸镀在石英片上,具体过程如下:蒸镀时,将石英片置于真空室的夹具上面,按重量配比将铜、铝合金材料放置于舟或坩埚上;在真空状态下加热放置铜、铝合金材料的舟或坩埚,将铜、铝合金材料镀在石英片的一面上形成合金膜后,翻转夹具,采用相同的方式将铜、铝合金材料镀至石英片的另一面上。上述蒸镀过程中铜、铝蒸发出来的成分比例很难控制,因而石英片上的铜、铝合金的含量比经常达不到预定值,从而导致铜、铝合金的性能达不到需要的要求。
发明内容
为了克服现有技术的不足,本发明提供一种铜铝合金晶振片的合金镀膜工艺,可以精确控制铜铝合金膜中铜和铝的成分比例。
本发明解决其技术问题所采用的技术方案是:
一种铜铝合金晶振片镀膜工艺,其特征在于:包括以下步骤:
步骤一,准备铝材靶、铜材靶及需要镀膜的石英片,
步骤二,将铝材靶、铜材靶及石英片放置于磁控溅射镀膜设备中,所述磁控溅射镀膜设备中的镀膜工作区域充有高纯度氩气,且本磁控溅射镀膜设备包括用于发射高能粒子的离子发射装置和用于移动石英片的传送装置,
步骤三,启动磁控溅射镀膜设备,通过离子发射装置发射高能粒子的轰击,使铝材靶发生溅射而使铝原子沉积在石英片上,而在石英片上镀上一层厚度为D的铝膜,
步骤四,铝膜镀到一定厚度后,离子发射装置停止发射,通过传送装置将石英片移动到与铜材靶相对的工作位置,并保持石英片的温度为某一范围不能冷却,
步骤五,通过离子发射装置发射高能粒子轰击,使铜材靶发生溅射而使铜原子沉积在铝膜上面并且与铝膜融合形成均匀的铜铝合金膜,铜铝合金膜的厚度为H,且D/(H-D)=X,
步骤六,取出成品检测入库。
所述石英片的两侧均设置有离子发射装置、铝材靶及铜材靶,从 而在启动磁控溅射镀膜设备后可以同时在石英片的两侧镀上铜铝合金膜。
所述步骤四中的温度为:200-550度。
所述步骤五中X的范围为:5-20,
本发明的有益效果是:通过本工艺在石英片上形成的铜铝合金膜不仅与石英片结合牢固,而且能够精确控制铜铝合金膜中铜和铝的成分比例,因而,最终成品铜铝合金晶振片的各项性能在满足了基本的使用要求的基础上,能够达到我们所需要的设置,具有我们所需要的散热性、导电性、较小的阻抗、及硬度。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的铜铝合金晶振片的其中一种产品的示意图。
具体实施方式
参照图1,本发明公开了一种铜铝合金晶振片镀膜工艺,包括以下步骤:
步骤一,准备铝材靶、铜材靶及需要镀膜的石英片,本工艺中,铝材靶及铜材靶都必须是纯铝或纯铜的材质,混合金属不能作为靶材,
步骤二,将铝材靶、铜材靶及石英片放置于磁控溅射镀膜设备中,所述磁控溅射镀膜设备中的镀膜工作区域充有高纯度氩气,且本磁控溅射镀膜设备包括用于发射高能粒子的离子发射装置和用于移动石英片的传送装置,磁控溅射镀膜设备为外购设备,再此不详述其结构, 但是所述石英片的两侧均设置有离子发射装置、铝材靶及铜材靶,从而在启动磁控溅射镀膜设备后可以同时在石英片的两侧镀上铜铝合金膜,这样镀膜效率更高。
本设备的工作原理为:高能粒子为电子,在电场的作用下,在飞出的过程中与氩原子发生碰撞,使其电离产生出氩离子和新的电子;氩离子在电场作用下加速飞向阴极靶,本例中阴极靶是铝材靶及铜材靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子沉积在石英片上形成薄膜,而产生的二次电子会受到电场和磁场作用,被束缚在靠近靶表面的等离子体区域内,并且在该区域中电离出大量的氩离子来轰击靶材,从而实现了高速的沉积速率。随着碰撞次数的增加,二次电子的能量消耗殆尽,逐渐远离靶表面,并在电场的作用下最终沉积在石英片上,由于该电子的能量很低,传递给石英片的能量很小,致使石英片温升较低,因而不会导致熔点较低的铝在石英片上形成熔坑。
步骤三,启动磁控溅射镀膜设备,通过离子发射装置发射高能粒子的轰击,使铝材靶发生溅射而使铝原子沉积在石英片上,首先在石英片上镀上一层厚度为D的铝膜,本例中,必须要先在石英片上镀铝膜,因为铝材与石英片表面的结合力最好,
步骤四,铝膜镀到一定厚度后,离子发射装置停止发射,通过传送装置将石英片移动到与铜材靶相对的工作位置,并保持石英片的温度为某一范围不能冷却,该温度为200-550度,在此温度范围内,铜具有与铝膜很好的融合性,铜原子能够很好融入铝膜中,因而在后续 的步骤中能够形成均匀的铜铝合金膜,
步骤五,通过离子发射装置发射高能粒子轰击,使铜材靶发生溅射而使铜原子沉积在铝膜上面并且与铝膜融合形成均匀的铜铝合金膜,铜铝合金膜的厚度为H,且D/(H-D)=X,X的范围为:5-20,上述X的值直接表示的是铝膜厚与步骤五中增加厚度的比值,该增加厚度是H-D,而该增加厚度是因为从铜材靶溅射出的铜原子沉积而成,因为镀膜的面积是不变的,因而X值实质上表示了铝和铜在铜铝合金膜中的成分比例,而该成分比例是决定该铜铝合金膜的性能的关键因素,在此比值下,既满足了基本的使用要求,又保证铜铝合金晶振片的各项性能能够达到我们需要的设置,具有需要的散热性、导电性、较小的阻抗、及硬度,如果铜的比例过低,肯定达不到散热性、导电性、较小的阻抗、并且具有一定的硬度的基本要求,而且在检测及使用过程中易起压痕或刮痕;如果铜的比例过高,不仅成本高,而且过量的铜在溅射到铝膜上后不能均匀融入铝膜而会在铝膜表面形成铜斑,因而影响整个产品的外观。
步骤六,取出成品检测入库。
以上对本发明实施例所提供的一种铜铝合金晶振片的合金镀膜工艺,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明 的限制。

Claims (4)

  1. 一种铜铝合金晶振片镀膜工艺,其特征在于:包括以下步骤:
    步骤一,准备铝材靶、铜材靶及需要镀膜的石英片,
    步骤二,将铝材靶、铜材靶及石英片放置于磁控溅射镀膜设备中,所述磁控溅射镀膜设备中的镀膜工作区域充有高纯度氩气,且本磁控溅射镀膜设备包括用于发射高能粒子的离子发射装置和用于移动石英片的传送装置,
    步骤三,启动磁控溅射镀膜设备,通过离子发射装置发射高能粒子的轰击,使铝材靶发生溅射而使铝原子沉积在石英片上,而在石英片上镀上一层厚度为D的铝膜,
    步骤四,铝膜镀到一定厚度后,离子发射装置停止发射,通过传送装置将石英片移动到与铜材靶相对的工作位置,并保持石英片的温度为某一范围不能冷却,
    步骤五,通过离子发射装置发射高能粒子轰击,使铜材靶发生溅射而使铜原子沉积在铝膜上面并且与铝膜融合形成均匀的铜铝合金膜,铜铝合金膜的厚度为H,且D/(H-D)=X,
    步骤六,取出成品检测入库。
  2. 根据权利要求1所述的一种铜铝合金晶振片镀膜工艺,其特征在于:所述步骤五中X的范围为:5-20。
  3. 根据权利要求1所述的一种铜铝合金晶振片镀膜工艺,其特征在于:所述石英片的两侧均设置有离子发射装置、铝材靶及铜材靶,从而在启动磁控溅射镀膜设备后可以同时在石英片的两侧镀上铜 铝合金膜。
  4. 根据权利要求1所述的一种铜铝合金晶振片镀膜工艺,其特征在于:所述步骤四中的温度为:200-550度。
PCT/CN2016/000422 2015-08-04 2016-08-01 一种铜铝合金晶振片镀膜工艺 WO2017020535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510469620.4 2015-08-04
CN201510469620.4A CN105088140A (zh) 2015-08-04 2015-08-04 一种铜铝合金晶振片镀膜工艺

Publications (1)

Publication Number Publication Date
WO2017020535A1 true WO2017020535A1 (zh) 2017-02-09

Family

ID=54569456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000422 WO2017020535A1 (zh) 2015-08-04 2016-08-01 一种铜铝合金晶振片镀膜工艺

Country Status (2)

Country Link
CN (1) CN105088140A (zh)
WO (1) WO2017020535A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471034A (zh) * 2021-05-29 2021-10-01 南京三乐集团有限公司 一种氧化镁次级发射体的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088140A (zh) * 2015-08-04 2015-11-25 中山泰维电子有限公司 一种铜铝合金晶振片镀膜工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1231291A1 (en) * 2001-02-12 2002-08-14 Ingersoll-Rand Company Process for forming decorative films and resulting products
CN101244898A (zh) * 2008-01-25 2008-08-20 东莞南玻工程玻璃有限公司 金色低辐射镀膜玻璃及其制作方法
CN101363110A (zh) * 2008-09-24 2009-02-11 四川大学 一种阻氢(氚)用的C-SiC涂层物理气相制备方法
CN101736302A (zh) * 2009-12-18 2010-06-16 西安交通大学 一种同质多层纳米金属薄膜材料的制备方法
CN103360122A (zh) * 2013-06-21 2013-10-23 西南交通大学 一种提高陶瓷工件表面金属化表面性能的方法
CN105088140A (zh) * 2015-08-04 2015-11-25 中山泰维电子有限公司 一种铜铝合金晶振片镀膜工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100482854C (zh) * 2005-01-27 2009-04-29 中华映管股份有限公司 磁控溅射制造工艺
CN103334079A (zh) * 2013-06-25 2013-10-02 苏州奕光薄膜科技有限公司 一种电子器件的镀膜工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1231291A1 (en) * 2001-02-12 2002-08-14 Ingersoll-Rand Company Process for forming decorative films and resulting products
CN101244898A (zh) * 2008-01-25 2008-08-20 东莞南玻工程玻璃有限公司 金色低辐射镀膜玻璃及其制作方法
CN101363110A (zh) * 2008-09-24 2009-02-11 四川大学 一种阻氢(氚)用的C-SiC涂层物理气相制备方法
CN101736302A (zh) * 2009-12-18 2010-06-16 西安交通大学 一种同质多层纳米金属薄膜材料的制备方法
CN103360122A (zh) * 2013-06-21 2013-10-23 西南交通大学 一种提高陶瓷工件表面金属化表面性能的方法
CN105088140A (zh) * 2015-08-04 2015-11-25 中山泰维电子有限公司 一种铜铝合金晶振片镀膜工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113471034A (zh) * 2021-05-29 2021-10-01 南京三乐集团有限公司 一种氧化镁次级发射体的制备方法
CN113471034B (zh) * 2021-05-29 2023-11-14 南京三乐集团有限公司 一种氧化镁次级发射体的制备方法

Also Published As

Publication number Publication date
CN105088140A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
US20090078565A1 (en) Method and apparatus for depositing a coating onto a substrate
CN107937873B (zh) 碳掺杂的过渡金属硼化物涂层、碳-过渡金属硼化物复合涂层、制备方法及应用和切削工具
CN102492924A (zh) 自体离子轰击辅助电子束蒸镀装置及利用其镀膜的方法
CN109518148A (zh) 一种利用高能脉冲反应磁控溅射制备二氧化钒智能热控器件的方法
WO2017020535A1 (zh) 一种铜铝合金晶振片镀膜工艺
US11299801B2 (en) Structure and method to fabricate highly reactive physical vapor deposition target
WO2017020534A1 (zh) 一种银铝合金晶振片镀膜工艺
CN115322013A (zh) 一种在石墨器件表面制备金属碳化物涂层的方法
CN107186373B (zh) 一种钛基多层膜钎料及其制备方法
CN103866241A (zh) 一种离子辅助热蒸发复合磁控溅射镀膜装置
CN102051497B (zh) 金银镶嵌靶材及其薄膜的制备方法
CN115044879B (zh) 一种微孔镀膜装置及镀膜方法
RU2407820C1 (ru) Способ нанесения покрытия на изделия из керамики в вакууме
JPH11335815A (ja) 透明導電膜付き基板および成膜装置
CN105063557A (zh) 一种定向增加ito导电膜阻值的方法
CN110670043B (zh) 一种基于气体团簇离子束溅射的薄膜沉积方法
CN113322433B (zh) 一种AlTi靶放电AlTiN/AlN复合相涂层的多弧离子镀制备方法
JPH02280310A (ja) 電解コンデンサ用電極材料の製造方法
CN106637116A (zh) 一种二次电子发射薄膜的简易制备方法
CN100370584C (zh) GaAs基材料上原位淀积高介电常数Al2O3和金属膜的方法
JPH0329216A (ja) 透明電導膜の形成方法
CN108359952A (zh) 一种Cu-W梯度薄膜材料及其制备方法
JPH11279756A (ja) 透明導電膜の形成方法
KR100537014B1 (ko) 이온 플래이팅 방식에 의한 유해전자파 방지용 및 투명아크릴 폴리 카보네이트의 금속 칼라 박막 형성 시스템
JPH04276062A (ja) アーク蒸着装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16832028

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16832028

Country of ref document: EP

Kind code of ref document: A1