WO2017020516A1 - 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法 - Google Patents

一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法 Download PDF

Info

Publication number
WO2017020516A1
WO2017020516A1 PCT/CN2015/099318 CN2015099318W WO2017020516A1 WO 2017020516 A1 WO2017020516 A1 WO 2017020516A1 CN 2015099318 W CN2015099318 W CN 2015099318W WO 2017020516 A1 WO2017020516 A1 WO 2017020516A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid nitrogen
coal seam
temperature
steel pipe
resistant steel
Prior art date
Application number
PCT/CN2015/099318
Other languages
English (en)
French (fr)
Inventor
翟成
秦雷
徐吉钊
汤宗情
武世亮
仲超
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2015383062A priority Critical patent/AU2015383062B2/en
Priority to US15/307,006 priority patent/US10577891B2/en
Publication of WO2017020516A1 publication Critical patent/WO2017020516A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B36/00Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
    • E21B36/001Cooling arrangements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/243Combustion in situ
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • E21B47/07Temperature

Definitions

  • the invention relates to a method for extracting gas, in particular to a method for refining and unloading gas based on horizontally oriented drilling liquid nitrogen circulation freeze-thaw.
  • Gas disaster is the main cause of serious coal mine disasters in China. With the intensive coal mining and deepening of coal mining, gas emission is increasing, and gas explosion and gas outburst are becoming more and more difficult problems in mines.
  • gas drainage is one of the most effective ways to solve gas disasters. China's coal seams are mostly high-gas and low-breathing coal seams. Gas drainage is difficult. Overcoming the problem of low gas drainage concentration and small amount of drainage has always been to control gas disasters.
  • hydraulic fracturing, hydraulic slitting and pre-cracking blasting are often used to increase the permeability of the coal seam. However, as the depth of the coal increases, the permeability of the coal body becomes smaller and smaller, and the conventional coal seam is enhanced.
  • the gas method has a small range of cracking and permeability, and the coal body cannot form a large-scale gas drainage crack network, which makes the gas extraction rate low and the gas control effect is not ideal.
  • the object of the present invention is to provide a method for freezing and thawing gasification based on horizontally directional drilling liquid nitrogen circulation, which is enhanced by liquid nitrogen circulation freeze-thaw, promotes the development of cracks in low permeability coal seam, and communicates gas drainage.
  • the gap network is used to effectively improve the gas drainage of the low permeability coal seam.
  • the method for horizontally drilling a liquid nitrogen circulation freeze-thaw gasification and gas extraction method comprises the following steps:
  • a main borehole is drilled along the coal seam bedding layer, the low roadway layer or the high roadway through the layer, and the main borehole is constructed according to the thickness of the coal seam. Arrive at a distance of 2 to 10 m from the upper edge of the coal seam, with the main borehole as the center of the circle, and use a horizontal directional drilling machine to evenly arrange a plurality of branch boreholes with the same angle and length of 30-50 m along the horizontal direction of the coal seam;
  • the low-temperature resistant steel pipe is set in the main borehole.
  • the front part of the low-temperature resistant steel pipe is a flower tube with a length of 1 to 3 m, and the front part of the flower tube is sealed; the low temperature resistant steel pipe is provided with a pressure measuring port, and the pressure measuring port is connected. Have a high pressure gauge;
  • Two temperature measuring holes are symmetrically constructed on both sides of the low temperature resistant steel pipe.
  • the distance L from the center of the two temperature measuring holes to the center of the main drilling hole is 30-50 m.
  • the area between the two temperature measuring holes is cracked and enhanced by the coal seam.
  • a temperature sensor is disposed in the temperature measuring hole, and the temperature sensor is connected to the digital display temperature meter disposed outside the orifice through the wire lead, and the inlet section of the temperature measuring hole is provided with a sensor sleeve fixed by the temperature measuring sealing section. Real-time monitoring through the front and rear push-pull movement of the temperature sensor in the sensor sleeve
  • the temperature in the borehole temperature measurement zone, the length of the borehole temperature measurement zone set in the coal seam is 5-10 m;
  • the water injection valve on the quick joint is removed, and the liquid nitrogen valve is installed, and the low temperature resistant steel pipe in the main borehole is arranged in the inlet or return air passage.
  • the liquid nitrogen tank car is connected, the liquid nitrogen valve is opened, the liquid nitrogen is poured into the low temperature resistant steel pipe in the main borehole, and the temperature in the borehole temperature measurement area is monitored through the temperature measuring hole, and the average temperature at the two ends of the borehole temperature measuring area is averaged.
  • the temperature is lower than -2 °C, it can be judged that the cracking and anti-permeability area of the coal seam is already frozen.
  • the liquid nitrogen valve is closed to stop the nitrogen injection, and the coal body is naturally melted for 2 to 3 hours to complete the freeze-thaw cycle of a phase change cracking unit;
  • the coal seam cracking and anti-dipping area between the two temperature measuring holes is subjected to gas drainage drilling to the coal seam, and gas drainage is performed;
  • the coal seam is repeatedly injected with water and injected with liquid nitrogen through the low temperature resistant steel pipe and 6 branch boreholes, and the coal body is frozen in the multiple freeze-thaw cycles. Under the action of melting-freezing, the stress fatigue limit of the coal body is reached and cracking occurs.
  • liquid nitrogen valve In the process of perfusion liquid nitrogen, when the pressure of liquid nitrogen in the low temperature resistant steel pipe exceeds 8 MPa, the liquid nitrogen valve is closed, and when the pressure is lower than 2 MPa, the liquid nitrogen valve is opened to continue to perfuse the liquid nitrogen.
  • the plurality of branch boreholes (1) having the same angle and having a length of 30 to 50 m uniformly arranged along the horizontal direction of the coal seam are 4 to 8.
  • the present invention is based on horizontally oriented drilling liquid nitrogen circulation freeze-thaw gasification and extraction gas, wherein: 1) Horizontal directional drilling technology is a combination of directional drilling technology of petroleum industry and traditional pipeline construction method.
  • the new construction technology has achieved rapid development in more than ten years. It has the advantages of fast construction speed, high construction precision, low cost, and adapt to hard rock operation. It is widely used in construction projects, and its directional construction drilling is implementing coal mine guidance. There are unique advantages in drilling. Freezing and thawing is a common physical geological phenomenon and phenomenon in nature, especially in the construction of objects with relatively large temperature differences, such as highways and buildings in the Qinghai-Tibet Plateau and the northern region.
  • Freeze-thaw erosion is caused by the volume expansion of the water in the pores of the soil and its parent material or in the cracks of the rock, which causes the fracture to increase and increase, causing the whole soil or rock to break, and the resistance after ablation
  • the stability of the eclipse is greatly reduced, and the displacement of the rock and soil along the slope is caused by gravity. Freezing and thawing erosion causes the frozen soil to repeatedly melt and freeze, resulting in the destruction, disturbance, deformation and even movement of the soil or rock mass.
  • the alternating freezing and thawing of the moisture content on the surface of the structural member and the interior is called a freeze-thaw cycle.
  • the recurrence of the freeze-thaw cycle causes serious damage to the structure of the object.
  • the application of freeze-thaw erosion and circulation processes in the formation and cracking of coal bodies has broad prospects.
  • 3) at atmospheric pressure, liquid nitrogen temperature up to -196 deg.] C, latent heat of vaporization 5.56kJ / mol, 1M 3 nitrogen may be expanded into 21 °C pure nitrogen gas of 696m 3, a large amount of heat can be absorbed by the surrounding vaporization.
  • Liquid nitrogen has the advantages of simple preparation and wide source of raw materials. Liquid nitrogen can be used as an efficient refrigeration and anti-reflection medium in the freezing and thawing cycle of coal.
  • the invention innovatively applies the freeze-thaw erosion phenomenon and the cyclic freeze-thaw to the coal body cracking and anti-reflection gas, and uses the branch drilling to guide the medium water to penetrate into the coal body, and the cryogenic liquid nitrogen acts as the refrigerant medium, and gasification The expansion is 696 times of nitrogen.
  • the expansion effectively accelerates the migration of water in the macroscopic fractures of the coal body and increases the moisture content in the microscopic pores, so that the freeze-thaw cycle has a larger anti-permeability zone;
  • the expansion force cooperates with the water phase frost heave force and the flow osmotic pressure to promote the macroscopic fracture propagation and the micro-crack development in the coal body, which makes the freeze-thaw efficiency high. And has the following advantages:
  • the liquid medium in the coal body produces a "freezing-expansion-thaw-freezing" cycle, and the coal seam reaches the fatigue and stress limit under the alternating stress, the frost heaving force of the water phase change, and the expansion force of the liquid nitrogen vaporization.
  • the macro-fracture development communication and micro-porosity development are promoted to form a gas drainage fracture network, which can effectively unload the coal seam pressure and increase the coal seam permeability.
  • Six branches are drilled in 360° along the coal seam. The branch drilling guides the medium water and the refrigerant medium to penetrate into the coal body.
  • the freeze-thaw range can reach 30 ⁇ 60m. After the freeze-thaw range is extended, the freeze-thaw units can be significantly reduced. Number and number of holes drilled by gas;
  • the low-temperature resistant steel pipe is connected to the freeze-thaw unit through a quick joint.
  • the front tube of the steel pipe can transport the medium water and liquid nitrogen in an all-round way, realizing “one-tube multi-purpose” and saving engineering quantity;
  • the single-hole extraction volume and extraction concentration of the coal seam gas can be effectively increased, and the gas concentration decay time can be prolonged;
  • the refrigerant medium can absorb a large amount of heat when vaporized by liquid nitrogen, it has a good cooling effect on the coal body, and has positive significance for preventing coal seam fire.
  • the method of the invention effectively solves the problems of low gas drainage efficiency, long extraction period and small influence range of the extraction and drilling of the high gas and low gas permeable coal seam, and has wide practicality.
  • FIG. 1 is a schematic diagram of a method for leaching and immersing liquid nitrogen in a layered directional drilling of a coal seam
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • Figure 3 is a schematic view showing the arrangement and connection of steel pipes in the main borehole of Figures 1, 5 and 6;
  • FIG 4 is a schematic view of the temperature measuring hole of the B-B section in Figures 2 and 7;
  • FIG. 5 is a schematic diagram of a method for liquid-nitrogen circulation freeze-thaw gasification and gas extraction in an uphole hole of a low passway;
  • FIG. 6 is a schematic diagram of a method for liquid-nitrogen circulation freeze-thaw gasification and gas extraction in a high-level roadway through-hole;
  • Figure 7 is a cross-sectional view taken along line C-C and D-D of Figures 5 and 6.
  • the method for horizontally boring drilling liquid nitrogen circulation freeze-thaw gasification and gas extraction according to the invention has the following specific steps:
  • a. Constructing a main borehole 3 in the inlet duct or return air duct 6 of the coal mining layer along the coal seam bedding layer, the low roadway layer or the high roadway layer to the anti-reflection coal seam 7 according to the thickness of the coal seam 7
  • the main borehole 3 reaches 2 ⁇ 10m away from the upper edge of the coal seam 7.
  • the main borehole 3 is taken as the center, and the guiding function of the horizontal directional drilling machine is used to evenly arrange the directional construction along the horizontal direction of the coal seam 7 ⁇ 8 branch holes 1 having a length of 30 to 50 m;
  • the low-temperature resistant steel pipe 3-1 is set in the main borehole 3.
  • the front part of the low-temperature resistant steel pipe 3-1 is a flower tube 2 with a length of 1 to 3 m, and the front part of the flower tube 2 is sealed;
  • the distance L between the center of the two temperature measuring holes 9 to the center of the main drilling hole 3 is 30 to 50 m, between the two temperature measuring holes 9
  • the area is a crack-enhanced area of the coal seam, and a temperature sensor 9-2 is disposed in the temperature measuring hole 9, and the temperature sensor 9-2 is connected to the digital display temperature meter 9-5 disposed outside the orifice through the wire lead, and the temperature measuring hole is connected.
  • the inlet section of 9 is provided with a sensor sleeve 9-3 fixed by the temperature measuring sealing section 9-4, and the temperature sensing area 9-2 is moved forward and backward in the sensor sleeve 9-3 to monitor the drilling temperature measuring area in real time.
  • the temperature in 9-1, the length of the borehole temperature measuring zone 9-1 is 5 to 10 m in the coal seam 7;
  • the water injection device 8-1 located in the inlet or return air passage 6 the water is injected into the low temperature resistant steel pipe 3-1 via the quick joint 5, and the injected water is shunted from the six branches by the low temperature resistant steel pipe 3-1. Entering within the borehole 1, the infiltration remains in the coal body and continues to seep into the smaller coal seam fissures;
  • the water injection valve 5-1 on the quick joint 5 is removed, and the liquid nitrogen valve 5-2 is installed, and the low temperature resistant steel pipe 3-1 in the main bore 3 is
  • the liquid nitrogen tank truck 8-2 located in the inlet wind passage or the return air passage 6 is connected, the liquid nitrogen valve 5-2 is opened, and the liquid nitrogen, liquid nitrogen is poured into the low temperature resistant steel pipe 3-1 in the main borehole 3.
  • the expansion causes the expansion pressure, and the liquid nitrogenation process absorbs a lot of heat, and the water injected into the coal seam branch and the surrounding water are rapidly frozen. During the freezing process, the free water in the coal seam crack is gradually converted from liquid to solid, and the phase change changes.
  • the temperature hole 9 monitors the temperature in the borehole temperature measuring zone 9-1.
  • the average temperature of the two ends in the borehole temperature measuring zone 9-1 is lower than -2 °C, it can be determined that the coal seam cracking and antireflection zone is already frozen.
  • Close the liquid nitrogen valve 5-2 to stop the nitrogen injection let the coal body melt naturally for 2 ⁇ 3h, complete the freeze-thaw cycle of a phase change cracking unit; the freezing and swelling force of the coal body in the water phase, the liquid nitrogen expansion force and the micropores Under the action of liquid flow osmotic pressure, the macro-fracture and micro-fractures are expanded to form a fracture network and increase the permeability of the coal seam. ;
  • the coal seam 7 is repeatedly filled with water and injected with liquid nitrogen through the low temperature resistant steel pipe 3-1 and 6 branch drilling holes 1 to increase the permeability of the coal seam around the drilling hole.
  • the coal body reaches the stress fatigue limit of the coal body under the alternating action of “freezing-thawing-freezing” in multiple freeze-thaw cycles, resulting in cracking.
  • liquid nitrogen valve 5-2 In the process of infusing liquid nitrogen, when the pressure of the liquid nitrogen in the low temperature resistant steel pipe 3-1 exceeds 8 MPa, the liquid nitrogen valve 5-2 is closed, and when the pressure is lower than 2 MPa, the liquid nitrogen valve 5-2 is opened to continue to perfuse the liquid nitrogen.
  • a main borehole 3 is constructed in the area of the anti-drainage coal seam. According to the thickness of the coal seam 7, the main borehole 3 reaches 2 to 10 m from the upper edge of the coal seam 7, with the main borehole 3 as the center.
  • six branch holes 1 with a length of 30-50 m are oriented along the horizontal direction of the coal seam 7 at a horizontal interval of 60°; after the drilling, the low temperature resistant steel pipe 3-1 is introduced into the main drilling hole 3, and the low temperature resistant steel pipe is introduced.
  • the front part of 3-1 is flower tube 2 with length of 1 ⁇ 3m, the front part of flower tube 2 is sealed, which is convenient for conveying medium water and liquid nitrogen in all directions; the low temperature resistant steel tube 3-1 is provided with pressure measuring port, and the pressure measuring port is connected with high pressure.
  • the inlet section of the temperature measuring hole 9 is provided with a sensor sleeve 9-3 fixed by the temperature measuring sealing section 9-4, and the push-pull movement of the temperature sensor 9-2 in the sensor sleeve 9-3 is used to monitor the drilling in real time.
  • the temperature in the hole temperature measuring zone 9-1, the borehole temperature measuring zone 9-1 is set in the coal seam 7 and the length is 5-10 m; then the water injection device 8-1 is injected into the low temperature resistant steel pipe 3-1, and the water injection pressure is controlled 5 ⁇ 10MPa, after the water injection is finished, the main drilling water injection valve 5-1 is closed, and the injected water is infiltrated along the 6 branch drill holes 1 and remains in the coal body and continues to seep into the smaller cracks; after the water seepage for 2 to 3 hours, The water injection valve 5-1 is removed, the low temperature resistant steel pipe 3-1 is connected with the liquid nitrogen tank truck 8-2, the liquid nitrogen valve 5-2 is opened, and the liquid nitrogen is poured into the low temperature resistant steel pipe 3-1, and the nitrogen injection pressure is controlled at 2-8 MPa.
  • the drilling is repeatedly injected and injected with liquid nitrogen, and under the alternating action of “freezing-thawing-freezing” in the repeated freezing and thawing cycle, the fatigue limit of the coal body is reached. Cracking.
  • the low-level lane 11 is subjected to the upward directional drilling liquid nitrogen freezing and thawing anti-extrusion extraction pressure-removing gas, which is basically the same as the first embodiment.
  • the different parts mainly implement the freeze-thaw unit from the low-level lane 11 through the upper part of the coal seam 7 to the freeze-thaw and anti-permeability area.
  • the main borehole penetrates the rock formation to the coal seam 7. According to the thickness of the coal seam, the main borehole should be driven into the coal seam 10m ⁇ 100m. .
  • the rest is the same as in the first embodiment, and the same parts are omitted.
  • the high-grade lane 12 is subjected to the downward directed directional drilling liquid nitrogen freezing and thawing anti-extrusion extraction pressure-removing gas, which is basically the same as the first embodiment.
  • the different parts mainly implement the freezing and thawing unit from the high-level lane 12 through the lower part of the coal seam 7 to the freeze-thaw and anti-permeability area.
  • the main drilling depth should penetrate the rock layer to the coal seam 7. According to the thickness of the coal seam, the main borehole should be driven into the coal seam 10m ⁇ 100m. The rest is the same as in the first embodiment, and the same parts are omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Mechanical Engineering (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Earth Drilling (AREA)

Abstract

一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法,包括以下步骤:首先在进风巷或回风巷(6)、低位巷(11)、高位巷(12)施工一个主钻孔(3),钻头到达煤层(7)预定目标位置后,顺煤层(7)水平方向均布定向施工多个分支钻孔(1),对煤层(7)实施注水,然后开启阀门向主钻孔(3)内灌注液氮,注入煤层分支钻孔(1)及周围的水迅速冷冻,通过测温孔(9)监测预增透区域平均温度降到-2℃以下时停止注氮。煤体在水相变冻胀力、液氮气化膨胀力以及微孔液体流动渗透压共同作用下,促使宏观裂隙和微观裂隙扩展联通,构成裂隙网,增加煤层透气性。注入液氮结束后进行瓦斯抽采。可根据瓦斯抽采效果变化,对钻孔进行多次重复注水、注入液氮作业,达到增加钻孔周围煤层透气性,实现瓦斯快速高效抽采的目的。

Description

一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法 技术领域
本发明涉及一种抽采瓦斯方法,尤其是一种基于水平定向钻孔液氮循环冻融增透抽采卸压瓦斯方法。
技术背景
瓦斯灾害是造成我国煤矿灾害事故严重的主要原因,随着煤炭开采高效集约化和采深的增加,瓦斯涌出量越来越大,瓦斯爆炸和瓦斯突出愈来愈成为矿井亟待解决的难题。目前瓦斯抽采是解决瓦斯灾害最有效的途径之一,我国煤层多为高瓦斯低透气性煤层,瓦斯抽采难度大,克服瓦斯抽放浓度低、抽放量小的问题一直是治理瓦斯灾害的重中之重,目前多采用水力压裂、水力割缝和预裂爆破等方法来增大煤层透气性,但随着采深增加煤体渗透性越来越小,常规煤层增透抽采瓦斯方法致裂增透范围小,煤体无法形成大范围瓦斯抽采裂隙网,使得瓦斯抽采率低,瓦斯治理效果不理想。
发明内容
技术问题:本发明的目的是提供一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法,通过液氮循环冻融增透,促使低透气性煤层的裂隙发展发育,沟通瓦斯抽采裂隙网,从而有效提高低透气性煤层的瓦斯抽采。
技术方案:本发明的基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法,包括以下步骤:
a.在回采煤层的进风巷或回风巷内沿煤层顺层、低位巷穿层或高位巷穿层方向向增透抽采煤层施工一个主钻孔,根据煤层的厚度,主钻孔到达距煤层上部边缘2~10m处,以主钻孔为圆心,采用水平定向钻机沿煤层水平方向均匀布置定向施工多个角度相同、长度为30~50m的分支钻孔;
b.退钻后在主钻孔内设置耐低温钢管,耐低温钢管前部为长度1~3m的花管,花管前部封口;耐低温钢管上设有测压口,测压口处连接有高压压力表;
c.通过注浆泵向耐低温钢管与主钻孔之间的缝隙注入配置好的高压钻孔密封材料浆液实施注浆封孔,注浆封孔段的长度H为15~25m;
d.在耐低温钢管两侧对称施工两个测温孔,两个测温孔中心至主钻孔中心的距离L为30~50m,两个测温孔之间的区域为煤层致裂增透区域,在测温孔内设置一温度传感器,温度传感器经导线引出与设在孔口外的数显式温度仪相连,测温孔的入口段设有由测温封孔段固定的传感器套管,通过温度传感器在传感器套管内的前后推拉移动,实时监测 钻孔测温区内温度,钻孔测温区设置在煤层中的长度为5~10m;
e.利用设在进风巷或回风巷内的注水装置,经快速接头向耐低温钢管内注水,注入的水经耐低温钢管分流从6个分支钻孔内进入,渗透留存在煤体中,并持续渗流进入更微小的煤层裂隙中;
f.待注入水在煤体内渗流2~3h后,将快速接头上的注水阀门拆除,装上液氮阀门,将主钻孔内的耐低温钢管与设在进风巷或回风巷内的液氮槽车相连接,开启液氮阀门,向主钻孔内的耐低温钢管内灌注液氮,通过测温孔监测钻孔测温区内的温度,当钻孔测温区内两端平均温度低于-2℃时,可以判定煤层致裂增透区域已经处于冻结状态,关闭液氮阀门停止注氮,让煤体自然融化2~3h,完成一个相变致裂单元的冻融循环;
g.按常规方法,在两个测温孔之间的煤层致裂增透区域向煤层实施瓦斯抽采钻孔,并进行瓦斯抽采;
h.瓦斯抽采过程中,根据瓦斯抽采效果变化,经耐低温钢管和6个分支钻孔对煤层进行多次重复注水和注入液氮作业,煤体在多次冻融循环中“冻结—融化—冻结”交变作用下,达到煤体应力疲劳极限,产生致裂。
在灌注液氮过程中,耐低温钢管内液氮的压力超过8MPa时,关闭液氮阀门,待压力低于2MPa时,打开液氮阀门继续灌注液氮。
所述沿煤层水平方向均匀布置定向施工的多个角度相同、长度为30~50m的分支钻孔(1)为4~8个。
有益效果:本发明基于水平定向钻孔液氮循环冻融增透抽采瓦斯,其中:1)水平定向钻进技术是将石油工业的定向钻进技术和传统的管线施工方法结合在一起的一项施工新技术,在十几年间获得了飞速发展,它具有施工速度快、施工精度高、成本低、适应硬岩作业等优点,广泛应用于施工工程中,其定向施工钻孔在实施煤矿导向钻孔中具有独到的优势。冻融现象是自然界中一种常见的物理地质作用和现象,尤其出现在温差变化比较大的物体构造中,如青藏高原、北方地区的公路和建筑物。其中青藏公路严重的冻融灾害给安全运输、道路养护、施工造成了极大的困难。2)冻融侵蚀是由于土壤及其母质孔隙中或岩石裂缝中的水分在冻结时,体积膨胀,使裂隙随之加大、增多所导致整块土体或岩石发生碎裂,消融后其抗蚀稳定性大为降低,在重力作用下岩土顺坡向下方产生位移的现象。冻融侵蚀引起冻土反复融化与冻结,从而导致土体或岩体的破坏、扰动、变形甚至移动。结构件表面和内部所含水分的冻结和融化的交替出现,称为冻融循环。冻融循环的反复出现,造成物体构造的严重破坏。把冻融侵蚀和循环过程应用在 煤体致裂增透中具有广阔的前景。3)在常压下,液氮温度可达-196℃,汽化潜热为5.56kJ/mol,1m3的液氮可以膨胀为696m3的21℃纯气态氮,汽化时可吸收周围大量热量。液氮具有制备简单、原料来源广泛等优点,在煤体冻融循环中液氮可作为一种高效的制冷和增透介质。
本发明创新性地把冻融侵蚀现象和循环冻融应用于煤体致裂增透抽采瓦斯中,采用分支钻孔引导介质水渗透到煤体中,深冷液氮作为制冷介质,气化时膨胀为696倍的氮气,一方面膨胀作用有效加速了水在煤体宏观裂隙中的运移以及增加微观孔隙中水分含量,使得冻融循环具有更大的增透区域;另一方面液氮气化膨胀力与水相变冻胀力、流动渗透压共同作用,促使煤体中宏观裂隙扩展和微观裂隙的发育连通,使得冻融效率高。并具有如下优点:
循环冻融过程中,煤体中液体介质产生“冻结-膨胀-融化-冻结”循环过程,煤层在交变应力下达到疲劳和应力极限,水相变的冻胀力、液氮汽化的膨胀力以及融化过程中液体流动渗透压共同作用下,促使宏观裂隙发展沟通和微小孔隙张开发育,形成瓦斯抽采裂隙网,可有效卸载煤层压力,增加煤层透气性。顺煤层360°实施6个分支钻孔,分支钻孔引导介质水和制冷介质充分渗透到煤体中,冻融增透范围可达30~60m,扩大冻融范围后可明显降低冻融单元个数和瓦斯抽采钻孔数量;
耐低温钢管通过快速接头连接冻融机组,钢管前部花管可全方位输送介质水、液氮,实现了“一管多用”,节约工程量;
通过循环冻融后可有效提高煤层瓦斯单孔抽采量和抽采浓度,延长瓦斯浓度衰减时间;
由于介质水作用通过分支钻孔均匀扩散到煤层中,冻融后可有效消除煤层局部高应力集中区,促进局部积聚瓦斯的运移,释放煤层中积聚的煤与瓦斯突出潜能,具有很好的消除煤与瓦斯突出作用;
此外,由于制冷介质液氮汽化时可吸收周围大量热量,对煤体具有很好的降温效果,对防治煤层火灾具有积极意义。本发明方法有效解决了高瓦斯低透气煤层瓦斯抽采效率低、抽采周期长、抽采钻孔影响范围小的问题,具有广泛的实用性。
附图说明
图1是煤层顺层定向钻孔液氮循环冻融增透抽采瓦斯方法示意图;
图2是图1的A-A剖面示意图;
图3是图1、图5和图6中主钻孔内钢管布置和连接示意图;
图4是图2和图7中B-B剖面测温孔示意图;
图5是低位巷穿层上行孔液氮循环冻融增透抽采瓦斯方法示意图;
图6是高位巷穿层下行孔液氮循环冻融增透抽采瓦斯方法示意图;
图7是图5和图6的C-C和D—D剖面图。
图中:1-分支钻孔,2—花管,3—主钻孔,3—1耐低温钢管,4—封孔段,5—快速接头,5—1注水阀门,5—2液氮阀门,6—进风巷或回风巷,7—煤层,8-设备机组,8—1注水装置,8—2液氮槽车,9-测温孔,9-1-钻孔测温区,9-2-温度传感器,9-3-传感器移动套管,9-4-测温封孔段,9-5-数显式温度仪,10-采空区,11-低位巷,12-高位巷,13-高压压力表。
具体实施方式
下面结合附图对本发明的实施例作进一步的描述:
本发明的基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法,具体步骤如下:
a.在回采煤层的进风巷或回风巷6内沿煤层顺层、低位巷穿层或高位巷穿层方向向增透抽采煤层7施工一个主钻孔3,根据煤层7的厚度,主钻孔3到达距煤层7上部边缘2~10m处,钻头到达煤层预定目标位置后,以主钻孔3为圆心,采用水平定向钻机的导向功能沿煤层7水平方向均匀布置定向施工4~8个长度为30~50m的分支钻孔1;
b.退钻后在主钻孔3内设置耐低温钢管3-1,耐低温钢管3-1前部为长度1~3m的花管2,花管2前部封口;耐低温钢管3-1上设有测压口,测压口处连接有高压压力表13;
c.通过注浆泵向耐低温钢管3-1与主钻孔3之间的缝隙注入配置好的高压钻孔密封材料浆液实施注浆封孔,注浆封孔段4的长度H为15~25m;
d.在耐低温钢管3-1两侧对称施工两个测温孔9,两个测温孔9中心至主钻孔3中心的距离L为30~50m,两个测温孔9之间的区域为煤层致裂增透区域,在测温孔9内设置一温度传感器9-2,温度传感器9-2经导线引出与设在孔口外的数显式温度仪9-5相连,测温孔9的入口段设有由测温封孔段9-4固定的传感器套管9-3,通过温度传感器9-2在传感器套管9-3内的前后推拉移动,实时监测钻孔测温区9-1内温度,钻孔测温区9-1设置在煤层7中的长度为5~10m;
e.利用设在进风巷或回风巷6内的注水装置8-1,经快速接头5向耐低温钢管3-1内注水,注入的水经耐低温钢管3-1分流从6个分支钻孔1内进入,渗透留存在煤体中,并持续渗流进入更微小的煤层裂隙中;
f.待注入水在煤体内渗流2~3h后,将快速接头5上的注水阀门5-1拆除,装上液氮阀门5-2,将主钻孔3内的耐低温钢管3-1与设在进风巷或回风巷6内的液氮槽车8-2相连接,开启液氮阀门5-2,向主钻孔3内的耐低温钢管3-1内灌注液氮,液氮气化膨胀产生膨胀压力,并且液氮气化过程大量吸热,注入煤层分支钻孔及周围的水迅速冷冻,冻结过程中煤层裂隙中的自由水逐渐由液态转化为固态,发生相变变化,通过测温孔9监测钻孔测温区9-1内的温度,当钻孔测温区9-1内两端平均温度低于-2℃时,可以判定煤层致裂增透区域已经处于冻结状态,关闭液氮阀门5-2停止注氮,让煤体自然融化2~3h,完成一个相变致裂单元的冻融循环;煤体在水相变冻胀力、液氮气化膨胀力以及微孔液体流动渗透压共同作用下,促使宏观裂隙和微观裂隙扩展联通,构成裂隙网,增加煤层透气性;
g.注入液氮结束后,按常规方法,在两个测温孔9之间的煤层致裂增透区域向煤层实施瓦斯抽采钻孔,并进行瓦斯抽采;
h.瓦斯抽采过程中,根据瓦斯抽采效果变化,经耐低温钢管3-1和6个分支钻孔1对煤层7进行多次重复注水和注入液氮作业,达到增加钻孔周围煤层透气性,实现瓦斯快速高效抽采的目的;煤体在多次冻融循环中“冻结—融化—冻结”交变作用下,达到煤体应力疲劳极限,产生致裂。
在灌注液氮过程中,耐低温钢管3-1内液氮的压力超过8MPa时,关闭液氮阀门5-2,待压力低于2MPa时,打开液氮阀门5-2继续灌注液氮。
实施例一、
如图1、图2、图3和图4所示,为煤层7顺层定向钻孔液氮冻融增透抽采卸压瓦斯,首先在进回风巷道6内沿煤层顺层、低位巷穿层或高位巷穿层向增透抽采煤层区域施工一个主钻孔3,根据煤层7厚度,主钻孔3到达距煤层7上部边缘2~10m处,以主钻孔3为圆心,采用水平定向钻机的导向功能沿煤层7水平方向间隔60°定向施工6个长度为30~50m的分支钻孔1;退钻后在主钻孔3内导入耐低温钢管3-1,耐低温钢管3-1前部为长度1~3m的花管2,花管2前部封口,便于全方位输送介质水、液氮;耐低温钢管3-1设有测压口,测压口连接高压压力表13;通过注浆泵向耐低温钢管3-1与主钻孔3之间缝隙注入配置好的高压钻孔密封材料浆液实施常规高压封孔,注浆封孔段4长度H为15~25m;在耐低温钢管3-1两侧对称施工两个测温孔9,两个测温孔9中心至主钻孔3中心的距离为30~50m,两个测温孔9之间的区域为煤层致裂增透区域,在测温孔9内设置一温度传感器9-2,温度传感器9-2经导线引出与设在孔口外的数显式温度仪9-5相 连,测温孔9的入口段设有由测温封孔段9-4固定的传感器套管9-3,通过温度传感器9-2在传感器套管9-3内的推拉移动,实时监测钻孔测温区9-1内温度,钻孔测温区9-1设置在煤层7中长度为5~10m;然后通过注水装置8-1向耐低温钢管3-1内注水,注水压力控制在5~10MPa,注水结束后关闭主钻孔注水阀门5-1,注入的水沿6个分支钻孔1渗透留存在煤体中并持续渗流进入更微小的裂隙;水渗流2~3h后,将注水阀门5-1拆除,耐低温钢管3-1与液氮槽车8-2连接,开启液氮阀门5-2向耐低温钢管3-1内灌注液氮,注氮压力控制在2~8MPa,通过温度传感器9-2监测钻孔测温区9-1的平均温度降到-2℃以下时停止注氮,让煤体自然融化2~3h,完成一个相变致裂单元的冻融循环;灌注液氮过程中,当耐低温钢管3-1内液氮的压力超过8MPa时,关闭液氮阀门5-2,待压力低于2MPa时,打开液氮阀门5-2继续灌注液氮。在致裂增透区域向煤层实施常规瓦斯抽采钻孔进行瓦斯抽采。抽采过程中根据瓦斯抽采效果变化,对钻孔进行多次重复注水、注入液氮作业,在重复冻融循环中“冻结—融化—冻结”交变作用下,达到煤体疲劳极限,产生致裂。
实施例二、
如图5、图7所示,为低位巷11穿层上行定向钻孔液氮冻融增透抽采卸压瓦斯,与实施例一基本相同。不同部分主要为从低位巷11穿层向上部煤层7中冻融增透区域实施冻融单元,主钻孔深度穿透岩层到煤层7中,根据煤层厚度主钻孔应打入煤层10m~100m。其余部分与实施例一都相同,相同部分略。
实施例三、
如图6、图7所示,为高位巷12穿层下行定向钻孔液氮冻融增透抽采卸压瓦斯,与实施例一基本相同。不同部分主要为从高位巷12穿层向下部煤层7中冻融增透区域实施冻融单元,主钻孔深度应穿透岩层到煤层7中,根据煤层厚度主钻孔应打入煤层10m~100m。其余部分与实施例一都相同,相同部分略。

Claims (3)

  1. 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法,其特征在于包括以下步骤:
    a.在回采煤层的进风巷或回风巷(6)内沿煤层顺层、低位巷穿层或高位巷穿层方向向增透抽采煤层(7)施工一个主钻孔(3),根据煤层(7)的厚度,主钻孔(3)到达距煤层(7)上部边缘2~10m处,以主钻孔(3)为圆心,采用水平定向钻机沿煤层(7)水平方向均匀布置定向施工多个角度相同、长度为30~50m的分支钻孔(1);
    b.退钻后在主钻孔(3)内设置耐低温钢管(3-1),耐低温钢管(3-1)前部为长度1~3m的花管(2),花管(2)前部封口;耐低温钢管(3-1)上设有测压口,测压口处连接有高压压力表(13);
    c.通过注浆泵向耐低温钢管(3-1)与主钻孔(3)之间的缝隙注入配置好的高压钻孔密封材料浆液实施注浆封孔,注浆封孔段(4)的长度H为15~25m;
    d.在耐低温钢管(3-1)两侧对称施工两个测温孔(9),两个测温孔(9)中心至主钻孔(3)中心的距离L为30~50m,两个测温孔(9)之间的区域为煤层致裂增透区域,在测温孔(9)内设置一温度传感器(9-2),温度传感器(9-2)经导线引出与设在孔口外的数显式温度仪(9-5)相连,测温孔(9)的入口段设有由测温封孔段(9-4)固定的传感器套管(9-3),通过温度传感器(9-2)在传感器套管(9-3)内的前后推拉移动,实时监测钻孔测温区(9-1)内温度,钻孔测温区(9-1)设置在煤层(7)中的长度为5~10m;
    e.利用设在进风巷或回风巷(6)内的注水装置(8-1),经快速接头(5)向耐低温钢管(3-1)内注水,注入的水经耐低温钢管(3-1)分流从6个分支钻孔(1)内进入,渗透留存在煤体中,并持续渗流进入更微小的煤层裂隙中;
    f.待注入水在煤体内渗流2~3h后,将快速接头(5)上的注水阀门(5-1)拆除,装上液氮阀门(5-2),将主钻孔(3)内的耐低温钢管(3-1)与设在进风巷或回风巷(6)内的液氮槽车(8-2)相连接,开启液氮阀门(5-2),向主钻孔(3)内的耐低温钢管(3-1)内灌注液氮,通过测温孔(9)监测钻孔测温区(9-1)内的温度,当钻孔测温区(9-1)内两端平均温度低于-2℃时,可以判定煤层致裂增透区域已经处于冻结状态,关闭液氮阀门(5-2)停止注氮,让煤体自然融化2~3h,完成一个相变致裂单元的冻融循环;
    g.按常规方法,在两个测温孔(9)之间的煤层致裂增透区域向煤层实施瓦斯抽采钻孔,并进行瓦斯抽采;
    h.瓦斯抽采过程中,根据瓦斯抽采效果变化,经耐低温钢管(3-1)和6个分支钻孔 (1)对煤层(7)进行多次重复注水和注入液氮作业,煤体在多次冻融循环中“冻结—融化—冻结”交变作用下,达到煤体应力疲劳极限,产生致裂。
  2. 根据权利要求1所述的基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法,其特征在于:在灌注液氮过程中,耐低温钢管(3-1)内液氮的压力超过8MPa时,关闭液氮阀门(5-2),待压力低于2MPa时,打开液氮阀门(5-2)继续灌注液氮。
  3. 根据权利要求1所述的基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法,其特征在于:所述沿煤层(7)水平方向均匀布置定向施工的多个角度相同、长度为30~50m的分支钻孔(1)为4~8个。
PCT/CN2015/099318 2015-08-03 2015-12-29 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法 WO2017020516A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2015383062A AU2015383062B2 (en) 2015-08-03 2015-12-29 Liquid nitrogen cyclic freeze-thaw permeability-improvement gas drainage method based on horizontal directional borehole
US15/307,006 US10577891B2 (en) 2015-08-03 2015-12-29 Using horizontal directional drilling and liquid nitrogen cyclic freeze-thaw process to improve permeability in gas drainage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510480831.8 2015-08-03
CN201510480831.8A CN105134284B (zh) 2015-08-03 2015-08-03 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法

Publications (1)

Publication Number Publication Date
WO2017020516A1 true WO2017020516A1 (zh) 2017-02-09

Family

ID=54719818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099318 WO2017020516A1 (zh) 2015-08-03 2015-12-29 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法

Country Status (4)

Country Link
US (1) US10577891B2 (zh)
CN (1) CN105134284B (zh)
AU (1) AU2015383062B2 (zh)
WO (1) WO2017020516A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361061A (zh) * 2018-04-27 2018-08-03 河南理工大学 低渗煤层电爆震及微波辅助液氮冻融增透装置及方法
CN110107306A (zh) * 2019-03-16 2019-08-09 重庆大学 一种盾构施工中孤石的热破岩处置方法
CN110907335A (zh) * 2019-12-17 2020-03-24 华北科技学院 一种煤层瓦斯透气率模拟实验装置及其控制方法
CN112709574A (zh) * 2019-10-24 2021-04-27 西安闪光能源科技有限公司 基于可控冲击波增透的突出煤层消突方法
CN112834559A (zh) * 2020-11-24 2021-05-25 安徽理工大学 一种可考虑温度梯度的岩石冻融循环实验装置
CN113482697A (zh) * 2021-08-17 2021-10-08 华能铜川照金煤电有限公司西川煤矿分公司 综采工作面回撤期间采空区的注氮防火装置及措施
CN115387775A (zh) * 2022-08-01 2022-11-25 太原理工大学 基于树状长钻孔的邻近煤层开采瓦斯协同抽采消突方法

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105134284B (zh) * 2015-08-03 2017-05-31 中国矿业大学 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法
CN106124243A (zh) * 2016-06-16 2016-11-16 重庆大学 煤层瓦斯含量测定超前冷冻取样方法
CN105971579B (zh) * 2016-07-07 2018-05-08 赵立强 一种相变水力压裂工艺
CN106014408B (zh) * 2016-07-07 2018-07-06 华北科技学院 一种采空区上覆坚硬岩体致裂的装置与方法
CN106194161A (zh) * 2016-08-17 2016-12-07 西南科技大学 一种基于冻结封堵岩体高压裂隙水测定煤层瓦斯压力的方法
CN106285605B (zh) * 2016-11-01 2019-06-04 中国矿业大学 一种微波液氮协同冻融煤层增透方法
CN106285681B (zh) * 2016-11-11 2018-05-04 中国矿业大学 一种坚硬煤层顶板致裂装置及方法
CN106930746B (zh) * 2017-03-06 2019-06-04 中国矿业大学 钻孔丙酮侵袭与水力压裂相结合的交替式煤层增透方法
CN107130998A (zh) * 2017-07-12 2017-09-05 贵州大学 一种发热电缆加热煤层温度监控系统
CN107313745B (zh) * 2017-07-18 2023-05-09 山西晋城无烟煤矿业集团有限责任公司 一种过采空区多结点集约化注浆加固煤层气井的固井方法
CN107605484B (zh) * 2017-08-28 2020-03-17 中国矿业大学 一种液氮冻结式石门揭煤方法
CN107762473B (zh) * 2017-09-28 2019-07-02 徐州工程学院 一种液氮与高温氮气冻融循环增加煤体透气性的方法
CN107489445A (zh) * 2017-09-30 2017-12-19 杨世梁 一种冰楔调压煤矿瓦斯井下抽采方法和装置
CN107882564A (zh) * 2017-09-30 2018-04-06 河南理工大学 一种石门过断层方法
CN108194125A (zh) * 2017-12-18 2018-06-22 中国矿业大学 一种煤层协同逐级增透方法
CN108956412B (zh) * 2018-04-12 2020-10-02 河海大学 一种确定高海拔寒区岩石冻融损伤程度的方法
CN108330991A (zh) * 2018-04-26 2018-07-27 佳琳 一种土钉加液氮冻土墙基坑围护结构及其施工方法
CN108330968A (zh) * 2018-04-26 2018-07-27 佳琳 一种锚杆加液氮冻土墙基坑围护结构及其施工方法
CN108756836B (zh) * 2018-05-29 2024-01-26 西安科技大学 一种煤矿井下注液氮增透瓦斯抽采系统
CN109113784B (zh) * 2018-09-20 2023-09-15 中国矿业大学 一种煤层瓦斯抽采-注水耦合装置及方法
CN109356641A (zh) * 2018-10-25 2019-02-19 四川大学 一种软围岩综放工作面瓦斯抽采方法
CN109630100B (zh) * 2018-10-31 2021-09-24 中国矿业大学 一种自动化煤层渗透性测试装置及方法
CN109252847B (zh) * 2018-11-16 2019-12-27 中国石油大学(北京) 水和低温流体交替压裂控制煤层裂缝扩展的方法及装置
CN109307558B (zh) * 2018-11-19 2024-02-02 河南理工大学 煤样液氮温度传递测试装置及测试方法
CN109404039A (zh) * 2018-12-07 2019-03-01 西安科技大学 一种基于液氮冻结法防治煤层钻孔塌孔的设备及方法
CN109406372B (zh) * 2018-12-17 2024-04-05 中国矿业大学(北京) 一种松散介质液氮渗流运移特征测试实验装置及方法
CN109630087B (zh) * 2019-01-15 2023-04-25 河南理工大学 可增压液氮溶浸煤体致裂增透装置及增透实验方法
CN109779597B (zh) * 2019-03-06 2022-09-13 绍兴文理学院 利用液氮弱化煤体实现冲击地压灾害防控的方法和系统
CN109854221B (zh) * 2019-03-08 2020-09-04 中国矿业大学 一种井下注冷、制热交替工作循环致裂增透煤层系统及抽采方法
CN109869125A (zh) * 2019-04-17 2019-06-11 四川省科建煤炭产业技术研究院有限公司 一种液态氮气与水压预裂复合增透用于煤层瓦斯抽采的方法
CN110056355B (zh) * 2019-04-24 2020-09-18 河南理工大学 冻融循环增透促抽安全高效石门揭煤方法
CN110195583A (zh) * 2019-06-28 2019-09-03 中煤科工集团重庆研究院有限公司 煤矿井下的高位及下行深钻孔测温设备
CN110700829B (zh) * 2019-09-25 2020-09-29 中国矿业大学 基于冻胀力的加压装置
CN110924899B (zh) * 2019-12-03 2021-06-15 中国石油大学(北京) 煤层气增产改造方法及开发方法
CN111236907B (zh) * 2019-12-20 2021-04-30 中国矿业大学 一种基于多参数监测的液氮循环冷冲击增透方法
CN111119829B (zh) * 2019-12-20 2021-07-23 中国矿业大学 一种利用液氮冷冲击及相变气体循环损伤的煤层增透方法
CN110953016A (zh) * 2019-12-27 2020-04-03 煤炭科学技术研究院有限公司 一种卸压消能与冻结固化协同防控煤与瓦斯突出方法
CN111188620B (zh) * 2020-01-13 2021-05-28 西南交通大学 一种高地温隧道岩爆防治装置
CN111411891A (zh) * 2020-03-14 2020-07-14 山西晋煤集团技术研究院有限责任公司 一种氮气复合定向钻进的成套设备及工艺
CN111173513B (zh) * 2020-03-16 2020-11-27 中国矿业大学 一种煤矿采空区坚硬顶板低温致裂放顶方法
CN111677495B (zh) * 2020-05-08 2023-08-15 中煤科工集团西安研究院有限公司 煤矿井下定向钻进随钻瓦斯测量装置、钻具及测量方法
CN111894540B (zh) * 2020-06-23 2021-08-06 中国矿业大学 一种上向钻孔负压前进式注入低温流体分段循环压裂方法
CN112096349B (zh) * 2020-10-12 2023-10-10 中国矿业大学 一种千米钻孔分段水爆致裂开采煤层气的设备及方法
CN112031858B (zh) * 2020-10-12 2022-05-13 黑龙江科技大学 一种用于在煤层中形成瓦斯水合物的合成装置
CN112412422A (zh) * 2020-11-05 2021-02-26 河南理工大学 冷冻致裂协同本煤层水力造穴增透促抽方法
CN112412416B (zh) * 2020-11-05 2022-11-11 河南理工大学 一种冷冻致裂与注热激励相结合致裂煤体增透促抽方法
CN112412415B (zh) * 2020-11-05 2022-11-04 河南理工大学 水力冲孔、冷冻致裂和注热激励协同增透促抽方法
CN112546487B (zh) * 2020-12-03 2022-03-11 石家庄国盛矿业科技有限公司 一种煤矿陷落柱周边煤层火区治理工艺
CN112878972B (zh) * 2021-01-19 2022-09-20 中国石油大学(北京) 液氮脉动压裂系统以及压裂方法
CN112943191A (zh) * 2021-01-27 2021-06-11 西安科技大学 一种钻孔内充填干冰增透驱替煤层瓦斯的方法
CN112943197B (zh) * 2021-02-05 2023-02-28 义煤集团宜阳义络煤业有限责任公司 一种采煤工作面深浅联合注水孔注水系统及方法
CN112796730B (zh) * 2021-02-08 2022-04-12 太原理工大学 一种多水平跨采区地面钻井井网布设方法
CN112946204B (zh) * 2021-03-17 2023-03-14 重庆大学 模拟煤与瓦斯突出实验用的集成式抽注气系统
CN112901118B (zh) * 2021-03-18 2023-01-13 山东科技大学 一种水力割缝、液氮冻胀、爆破联合增透煤层的方法
CN113156079B (zh) * 2021-03-31 2023-06-27 西安科技大学 一种液氮浸没煤样裂纹时空演化及力学参数测试实验装置
CN113464191B (zh) * 2021-05-20 2024-01-23 太原理工大学 一种高强度复合相变壳体温敏阻化物及其制备方法
CN113433223B (zh) * 2021-06-23 2024-01-23 西安科技大学 一种液氮冻融煤体全过程声发射监测实验系统
CN113445980B (zh) * 2021-07-08 2023-03-17 徐州工程学院 一种强化地面钻井水力压裂增透效果的方法
CN114060029B (zh) * 2021-10-19 2023-06-20 煤炭科学研究总院有限公司 深部煤层增渗方法
CN114046148B (zh) * 2021-11-10 2023-02-21 中国矿业大学 液态co2致裂增渗提高煤层注水效果的方法
CN114151124B (zh) * 2021-11-30 2023-03-24 中国矿业大学 液碳-水智能循环加注致裂增润煤层的注水减尘方法
CN114109382B (zh) * 2021-11-30 2023-02-24 中国矿业大学 煤层液态co2-水智能循环加注致裂增润减尘系统
CN114320219A (zh) * 2021-12-22 2022-04-12 重庆交通大学 一种岩溶钻孔裂隙水快速封堵装置及方法
CN114233185B (zh) * 2021-12-22 2024-02-13 中铁十九局集团第三工程有限公司 一种瓦斯隧道超前探孔用湿式旋转钻孔装置及方法
CN114264791B (zh) * 2021-12-23 2022-08-12 中国矿业大学 一种模拟井下煤层低温流体相变膨胀压的测定装置及方法
CN114575813B (zh) * 2022-03-05 2023-04-21 中国矿业大学 液氮致裂装置及施工方法和具有致裂装置的致裂系统
CN114718039B (zh) * 2022-04-12 2023-09-26 宋恩泽 一种钻孔和液氮冻结一体式的堤坝加固装置及加固方法
CN115163021B (zh) * 2022-07-13 2023-11-03 中国矿业大学 一种注水注氮抽采瓦斯封孔装置及钻孔布置方法
CN115263264B (zh) * 2022-08-03 2023-11-07 中煤科工集团重庆研究院有限公司 一种近距离煤层群开采层和邻近层瓦斯协调高效抽采方法
CN115387772B (zh) * 2022-09-02 2023-03-10 中国矿业大学(北京) 一种煤层液态co2致裂增透与循环堵漏装置及方法
CN115853578B (zh) * 2023-02-28 2023-05-02 臣功环境科技有限公司 一种井工煤矿小窑破坏区充填复采探查充注方法
CN117266820B (zh) * 2023-11-21 2024-01-23 太原理工大学 一种基于液氮冷却储层的水压裂缝扩展方位控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271676A (en) * 1979-10-20 1981-06-09 Air Products And Chemicals, Inc. Method and apparatus for recovering natural gas in a mine
US5388642A (en) * 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using membrane separation of oxygen from air
CN103397900A (zh) * 2013-07-15 2013-11-20 中国矿业大学 一种多孔协同压抽一体化瓦斯抽采方法
CN104614497A (zh) * 2015-03-09 2015-05-13 中国矿业大学 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统
CN104632271A (zh) * 2015-01-12 2015-05-20 中国矿业大学 一种钻孔内冷胀热驱式煤体增透方法
CN104712302A (zh) * 2015-04-14 2015-06-17 新疆大学 低透性煤层气储层循环冻融增透方法
CN105134284A (zh) * 2015-08-03 2015-12-09 中国矿业大学 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1867758A (en) * 1931-07-10 1932-07-19 Ranney Leo Process of degasifying coal and other carbonaceous material in situ
US4320627A (en) * 1979-10-20 1982-03-23 Air Products And Chemicals, Inc. Apparatus for recovering natural gas in a mine
SU1348535A1 (ru) * 1985-08-11 1987-10-30 Производственное Объединение По Добыче Угля "Якутуголь" Способ увлажнени угл в массиве в услови х многолетней мерзлоты
US7264049B2 (en) * 2004-05-14 2007-09-04 Maguire James Q In-situ method of coal gasification
US7775281B2 (en) * 2006-05-10 2010-08-17 Kosakewich Darrell S Method and apparatus for stimulating production from oil and gas wells by freeze-thaw cycling
AU2007313393B2 (en) * 2006-10-13 2013-08-15 Exxonmobil Upstream Research Company Improved method of developing a subsurface freeze zone using formation fractures
CN101382073A (zh) * 2007-09-29 2009-03-11 永城煤电集团有限责任公司 “三软”低透气性高瓦斯煤层快速掘进方法
US8448708B2 (en) * 2009-04-17 2013-05-28 Triple D Technologies Inc. Method and apparatus for freeze-thaw well stimulation using orificed refrigeration tubing
CN101644166A (zh) * 2009-07-14 2010-02-10 中国矿业大学 高瓦斯低透气性煤层冲孔割缝卸压增透瓦斯抽采方法
EA030263B1 (ru) * 2011-06-24 2018-07-31 Иан Грэй Способ разработки газоносных и низкопроницаемых угольных пластов
US9243485B2 (en) * 2013-02-05 2016-01-26 Triple D Technologies, Inc. System and method to initiate permeability in bore holes without perforating tools
CN104061013B (zh) * 2014-06-23 2016-02-10 中国矿业大学 一种利用冻结法提高低透煤层渗透性的方法及装置
CN104265354B (zh) * 2014-08-07 2016-04-20 中国矿业大学 一种低透气性煤层水力相变致裂强化瓦斯抽采方法
CN104533374A (zh) * 2014-11-18 2015-04-22 河南理工大学 煤层气井活性水-氮气伴注复合压裂快速返排增产方法
CN104405359A (zh) * 2014-11-18 2015-03-11 河南理工大学 低压低渗透储层煤层气井氮气泡沫压裂降污染方法和设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271676A (en) * 1979-10-20 1981-06-09 Air Products And Chemicals, Inc. Method and apparatus for recovering natural gas in a mine
US5388642A (en) * 1993-11-03 1995-02-14 Amoco Corporation Coalbed methane recovery using membrane separation of oxygen from air
CN103397900A (zh) * 2013-07-15 2013-11-20 中国矿业大学 一种多孔协同压抽一体化瓦斯抽采方法
CN104632271A (zh) * 2015-01-12 2015-05-20 中国矿业大学 一种钻孔内冷胀热驱式煤体增透方法
CN104614497A (zh) * 2015-03-09 2015-05-13 中国矿业大学 真三轴流压致裂、割缝、渗流、瓦斯驱赶一体化实验系统
CN104712302A (zh) * 2015-04-14 2015-06-17 新疆大学 低透性煤层气储层循环冻融增透方法
CN105134284A (zh) * 2015-08-03 2015-12-09 中国矿业大学 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108361061A (zh) * 2018-04-27 2018-08-03 河南理工大学 低渗煤层电爆震及微波辅助液氮冻融增透装置及方法
CN108361061B (zh) * 2018-04-27 2024-03-01 河南理工大学 低渗煤层电爆震及微波辅助液氮冻融增透装置及方法
CN110107306A (zh) * 2019-03-16 2019-08-09 重庆大学 一种盾构施工中孤石的热破岩处置方法
CN112709574A (zh) * 2019-10-24 2021-04-27 西安闪光能源科技有限公司 基于可控冲击波增透的突出煤层消突方法
CN110907335A (zh) * 2019-12-17 2020-03-24 华北科技学院 一种煤层瓦斯透气率模拟实验装置及其控制方法
CN112834559A (zh) * 2020-11-24 2021-05-25 安徽理工大学 一种可考虑温度梯度的岩石冻融循环实验装置
CN113482697A (zh) * 2021-08-17 2021-10-08 华能铜川照金煤电有限公司西川煤矿分公司 综采工作面回撤期间采空区的注氮防火装置及措施
CN115387775A (zh) * 2022-08-01 2022-11-25 太原理工大学 基于树状长钻孔的邻近煤层开采瓦斯协同抽采消突方法
CN115387775B (zh) * 2022-08-01 2023-07-18 太原理工大学 基于树状长钻孔的邻近煤层开采瓦斯协同抽采消突方法

Also Published As

Publication number Publication date
US20170175489A1 (en) 2017-06-22
CN105134284A (zh) 2015-12-09
CN105134284B (zh) 2017-05-31
AU2015383062B2 (en) 2017-12-14
US10577891B2 (en) 2020-03-03
AU2015383062A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
WO2017020516A1 (zh) 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法
CN102121395B (zh) 低渗透单一煤层瓦斯综合治理一体化的方法
CN103291325B (zh) 承压水体上采煤底板岩层突水的防控方法
CN111075420B (zh) 一种利用液氮-热气冷热循环冲击的高效增透煤体方法
WO2016019825A1 (zh) 一种低透气性煤层水力相变致裂强化瓦斯抽采方法
CN103924945B (zh) 煤矿用厚松散层下富水风化裂隙岩层的高压注浆工艺
AU2015299588B2 (en) Freezing cross-cut coal cutting method based on hydraulic seam-cutting
CN102654049B (zh) 多孔线性控制水力致裂方法
WO2017028559A1 (zh) 非常规油气层渗透性水泥石压裂开采方法
CN111119829B (zh) 一种利用液氮冷冲击及相变气体循环损伤的煤层增透方法
CN104533452B (zh) 一种煤矿井下破碎煤体分段式注浆加固方法
CN106988719B (zh) 向煤层循环注入热水和液氮的增透系统和增透方法
CN104632174A (zh) 煤层液态二氧化碳压裂装置及方法
CN204782970U (zh) 一种低透气性煤层水力割缝系统
CN204419145U (zh) 煤层液态二氧化碳压裂装置
CN207131404U (zh) 铁路隧道超深竖井冻结法施工结构体系
CN107605484B (zh) 一种液氮冻结式石门揭煤方法
CN102937011A (zh) 瓦斯抽采钻孔群区域性裂隙场二次注浆封堵装置及方法
CN106939766A (zh) 一种热冷冲击三级破煤装置与实施方法
CN112412418A (zh) 用于低渗透性煤层的冷冻致裂协同水力冲孔增透促抽方法
CN107034874A (zh) 双螺旋式注浆型冻结装置及施工方法
CN106194161A (zh) 一种基于冻结封堵岩体高压裂隙水测定煤层瓦斯压力的方法
CN109458208A (zh) 一种煤矿非正规采空区地面灭火钻孔致裂方法
CN113914839A (zh) 一种仿鱼刺状钻孔低温液氮冻融循环增透煤层瓦斯抽采方法
CN112412422A (zh) 冷冻致裂协同本煤层水力造穴增透促抽方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15307006

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015383062

Country of ref document: AU

Date of ref document: 20151229

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900280

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900280

Country of ref document: EP

Kind code of ref document: A1