WO2017028559A1 - 非常规油气层渗透性水泥石压裂开采方法 - Google Patents

非常规油气层渗透性水泥石压裂开采方法 Download PDF

Info

Publication number
WO2017028559A1
WO2017028559A1 PCT/CN2016/081638 CN2016081638W WO2017028559A1 WO 2017028559 A1 WO2017028559 A1 WO 2017028559A1 CN 2016081638 W CN2016081638 W CN 2016081638W WO 2017028559 A1 WO2017028559 A1 WO 2017028559A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
fracturing
supercritical carbon
cement slurry
cement
Prior art date
Application number
PCT/CN2016/081638
Other languages
English (en)
French (fr)
Inventor
付睿
牛辉英
付万春
Original Assignee
四川行之智汇知识产权运营有限公司
付睿
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川行之智汇知识产权运营有限公司, 付睿 filed Critical 四川行之智汇知识产权运营有限公司
Priority to US15/550,858 priority Critical patent/US10174601B2/en
Publication of WO2017028559A1 publication Critical patent/WO2017028559A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/0099Equipment or details not covered by groups E21B15/00 - E21B40/00 specially adapted for drilling for or production of natural hydrate or clathrate gas reservoirs; Drilling through or monitoring of formations containing gas hydrates or clathrates
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/025Consolidation of loose sand or the like round the wells without excessively decreasing the permeability thereof
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/166Injecting a gaseous medium; Injecting a gaseous medium and a liquid medium
    • E21B43/168Injecting a gaseous medium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Definitions

  • the invention relates to the field of oil and gas exploitation, in particular to an unconventional oil and gas layer permeability cement stone fracturing mining method.
  • the amount of fracturing fluid is large, the compatibility of the formation is poor, the formation is easy to be polluted, the liquid is returned to the drain after pressing, the composition is complex, the harmless treatment is difficult, the cost is high, and the environment is easily polluted.
  • the yield increase effect is poor
  • the conventional fracturing not only the spherical ceramsite proppant and the crack surface is point contact, easy to be crushed and embedded in the soft formation, the effective period is short, and the proppants are not connected to each other, the small particles are easy to move and reverse vomiting, resulting in Complex hazards such as wear and blockage of downhole, wellhead and surface pipeline systems.
  • fracturing water horsepower such as a shale gas horizontal well with a vertical depth of 3,000 meters and a horizontal section length of 1000 meters
  • the conventional staged fracturing operation fracturing car water horsepower is more than 20,000 horsepower.
  • Fracturing wells are large, and conventional fracturing equipment, materials for oil storage and fracturing, oil materials, proppants, water and other ancillary equipments are large, occupying large well sites.
  • the mining cost is high.
  • the unconventional oil and gas layer uses conventional fracturing to produce more fracturing fluid, large water horsepower, large occupied well site, high environmental protection cost, short production period, etc., which causes the mining cost to be too high, which restricts the rich and dense oil and gas.
  • Large-scale, efficient and environmentally friendly development of unconventional oil and gas such as shale gas, coalbed methane and combustible ice.
  • the invention relates to a high-efficiency and environmentally-friendly unconventional fracturing mining method for unconventional oil and gas layers such as tight oil and gas, shale gas, coalbed methane and combustible ice, which is a mixture of supercritical carbon dioxide (SC-CO2) and oil well cement slurry.
  • SC-CO2 supercritical carbon dioxide
  • the artificial and natural network cracks injected into the oil and gas layer automatically form permeable cement stone, which not only effectively supports the artificial cracks and natural cracks in the fixed oil and gas layer, but also effectively communicates the oil and gas layers and the wellbore to achieve the purpose of fracturing stimulation and efficient environmental protection.
  • the fracturing mining method does not need conventional fracturing proppant, does not use conventional fracturing fluid, can achieve no return flow, less water, less material, small equipment, small well site, low cost, good effect, environmental protection, wide adaptability Technical effects.
  • the unconventional oil and gas layer permeable cement stone fracturing mining method of the present invention mainly comprises the following supporting processes:
  • Supercritical carbon dioxide transport storage pumping process Supercritical carbon dioxide (SC-CO2) is transported or pipelined to the well site by special tanker. It must maintain a pressure higher than 7.38Mpa, a temperature lower than the supercritical state of 31.05 °C, and then use one or more supercritical carbon dioxide. The pump is pumped;
  • the oil well cement compatible with the well depth, the well temperature and the formation, the control agent for controlling the solidification time, the viscosity control agent for controlling the flow viscosity, the drag reducing agent for reducing the flow friction resistance, the filter, and the like, are transported and stored in the well. Field, then use one or more cement pumps for mixing and pumping;
  • Supercritical carbon dioxide and cement slurry mixing process Supercritical carbon dioxide and cement slurry mixing process.
  • Supercritical carbon dioxide and fracturing cement slurry are pumped into the high-pressure mixer according to the single well design ratio, control temperature and pressure, and then mixed continuously with a special instrument.
  • the on-line detection is carried out with special instruments to record and control the temperature, pressure, density and other technical parameters of the mixture.
  • enter the high-pressure insulation buffer irrigation to ensure the subsequent process quality, especially the porosity, permeability and strength of cement stone;
  • FIG. 1 The process principle of forming a penetrating cement stone underground in an unconventional oil and gas layer is shown in Figure 1, which consists of four stages.
  • the first stage supercritical carbon dioxide and cement slurry are uniformly mixed into the artificial and natural cracks of the unconventional oil and gas layer;
  • the second stage with the automatic heat exchange of the fracturing cement slurry and the formation temperature, the supercritical carbon dioxide is automatically heated and heated to be vaporized into Compressed carbon dioxide small bubbles;
  • the third stage the internal pressure automatically decreases when the cement slurry enters the initial condensation weight loss state, and the compressed carbon dioxide small bubbles rapidly become larger pores;
  • the fourth stage after the cement slurry is finally solidified, part Carbon dioxide dissolved in bound water and free water to form carbonic acid, acid-soluble, acid-etching and leaching of pores and pores of cement stone, further improving the porosity and permeability of cement stone, effectively supporting and fixing fracturing artificial cracks and Natural cracks effectively communicate and connect the strata and wellbore to achieve
  • the cement slurry used in the unconventional fracturing method of permeable cement stone is all solidified into artificial stone with pores and cracks, which not only maintains high effective permeability, but also supports artificial cracks and natural cracks.
  • the curing is stable, soft, easy to collapse, and easy to sand the formation, increasing the output and having a long effective period. All cement stone and most of the carbon dioxide remain in the formation forever sealed, without proppant and no return fluid.
  • Cement stone can prevent geological disasters such as collapse, sand production and landslide, and does not pollute the groundwater, surface water, land and air and other natural environments, and has a high level of environmental protection.
  • the unconventional fracturing method of permeable cement stone uses 100 square meters of cement slurry (30-50% water) and 25 square meters of supercritical carbon dioxide to form the total volume of artificial support cracks, which is equivalent to conventional fracturing.
  • the method uses 100-150 square ceramsite and 1000 square fracturing fluid (water accounts for 90-98%) to form the total volume of the same artificial support crack, but the overall water use Less than one-twentieth of the conventional water-based fracturing method.
  • the cement slurry density of the non-conventional fracturing method of permeable cement stone (1.85-1.95) is at least 0.8kg higher than the conventional water-based fracturing fluid density (1.01-1.05kg/cm2).
  • the unconventional fracturing method of permeable cement stone has greatly reduced the equipment and facilities for fracturing water, material transportation, storage, construction, drainage, sewage treatment, etc., and the well site occupies less land.
  • 1 is a schematic view showing the process principle of forming a permeable cement stone in an unconventional oil and gas layer
  • Figure 2 is a schematic diagram of the well field and downhole process for the unconventional oil and gas layer permeability cement stone fracturing.
  • Step 1 Single-shot pre-supercritical carbon dioxide: After completing the vertical well stratification or horizontal well completion, replace the whole wellbore with supercritical carbon dioxide below the formation fracture pressure above the formation pressure, and measure the pressure drop and inhalation. ability;
  • the third step single injection to replace supercritical carbon dioxide: according to the design of pumping supercritical carbon dioxide, the cement slurry and supercritical carbon dioxide mixture in the wellbore are all replaced into the formation crack. Repeat the second and third steps to complete the horizontal well multi-stage or vertical well multi-layer mixed cement slurry and supercritical carbon dioxide fracturing after rolling;
  • the fourth step gasification and solidification: according to the specific conditions of the single well oil and gas layer, the well is shut down before the initial setting time of the cement slurry designed by the ground test, waiting for the automatic gasification of the supercritical carbon dioxide and the automatic solidification of the cement slurry until the final setting of the cement slurry After 80% of the strength, the design of the small nozzle is used to controlly reduce the back pressure of the wellhead, preventing the pressure drop at the bottom of the well from destroying the cement stone, and causing the formation oil and gas to pass through the cement stone pores in the fracture. Flow, increase forward permeability, and further increase production;
  • Step 5 Exhaust after pressure: After the cement stone reaches the design strength of 100% in the crack of the formation, the larger pressure nozzle selected by the design is used to amplify the exhaust pressure difference at the bottom of the well to further clear the cleaning crack and the wellbore;
  • the sixth step self-spraying: the unconventional oil and gas layers such as tight oil and gas, shale gas and coalbed methane with high formation pressure and ground temperature, self-spraying, self-resolving and self-gasification are continuously discharged. Adjust the optimal nozzle and enter the production system to put into normal production or gas production until the self-spraying is stopped;
  • the unconventional oil and gas layers such as tight oil and gas, shale gas and coalbed methane with high formation pressure and ground temperature, self-spraying, self-resolving and self-gasification are continuously discharged. Adjust the optimal nozzle and enter the production system to put into normal production or gas production until the self-spraying is stopped;
  • Step 7 Throughput mining: After the pressure, the exhaust gas shows that the formation pressure and ground temperature are low, and the unconventional oil and gas layers such as tight gas and oil, shale gas, coalbed methane and combustible ice that cannot be self-gasified and self-analyzed are higher than the stratum.
  • the gas pressure is injected into the high-temperature carbon dioxide, and the well is heated and gasified, and then analyzed and then sprayed.
  • the optimal gas nozzle is adjusted, and the production system is put into normal production and gas production, and multiple rounds of hot gas can be used for gas production until the production is stopped.
  • Step 8 Gas lift mining: mining unconventional oil and gas layers with high water cut, low pressure, and self-injection stage, auxiliary gas lift drainage oil production or gas production process.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

公开了致密油气、页岩气、煤层气、可燃冰等非常规油气层渗透性水泥石压裂开采方法,该方法包括超临界二氧化碳运输储存泵送工艺、压裂水泥浆运输储存配制泵送工艺、超临界二氧化碳和水泥浆混合工艺、地面超临界二氧化碳和水泥浆压裂工艺、地下渗透性水泥石形成工艺等配套工艺和具体实施方式,实现了非常规油气层压裂开采方法,不用常规压裂支撑剂、不用常规压裂液,可达到无返排液、利环保、适应广等技术效果。

Description

非常规油气层渗透性水泥石压裂开采方法 技术领域
本发明涉及油气开采领域,尤其涉及一种非常规油气层渗透性水泥石压裂开采方法。
背景技术
发明人研究发现,现有致密油气、页岩气、煤层气等非常规油气层普遍采用常规油气层相同或类似的大规模水基液加支撑剂常规压裂增产方法,主要存在以下问题:
1、压裂液用量大,地层配伍性差,容易污染地层,压后返排液多,成分复杂,无害化处理难度大,成本高,容易污染环境。
2、增产效果较差,常规压裂不仅球形陶粒支撑剂和裂缝面是点接触,容易被压碎和嵌入软地层,有效期短,而且支撑剂相互不连接,小颗粒容易移动和反吐,造成井下、井口和地面管线系统磨损和堵塞等复杂危险问题。
3、压裂水马力大,如1口垂深3000米、水平段长1000米的页岩气水平井,常规分段压裂作业压裂车水马力在2万马力以上。
4、压裂井场大,常规压裂设备、拉运储存压裂用材料、油料、支撑剂、水等配套设备设施多、占用井场大。
5、环保风险大,常规大规模水基液加支撑剂压裂,压裂后大量的返排液无害化处理和重复利用不仅成本高,甚至可能严重污染水源、土壤和空气等自然环境。浅表层的煤层气和可燃冰大规模水基液压裂开采、可能造成地面塌陷、滑坡、地震等地质灾害。
6、开采成本高,非常规油气层用常规压裂开采的压裂液多、水马力大、占用井场大、环保费用高,增产有效期短等致使开采成本太高,制约了丰富的致密油气、页岩气、煤层气和可燃冰等非常规油气的大规模高效环保开发。
发明内容
本发明涉及致密油气、页岩气、煤层气、可燃冰等非常规油气层的一种高效环保非常规压裂开采新方法,该方法是用超临界二氧化碳(SC-CO2)和油井水泥浆混合物注入油气层的人工和天然网状裂缝,自动形成渗透性水泥石,既有效支撑固定油气层的人工裂缝和天然裂缝,又有效沟通连通油气层和井筒,达到压裂增产和高效环保开采的目的。该压裂开采方法不用常规压裂支撑剂、不用常规压裂液,可达到无返排液、用水少、材料少、设备小、井场小、成本低、效果好、利环保、适应广的技术效果。
本发明所述的非常规油气层渗透性水泥石压裂开采方法主要包括下列配套工艺:
1、超临界二氧化碳运输储存泵送工艺。超临界二氧化碳(SC-CO2)经过专用罐车拉运或管道输送、储存到井场,必须保持压力高于7.38Mpa,温度低于31.05℃的超临界状态,再用一台或多台超临界二氧化碳泵进行泵送;
2、压裂水泥浆运输储存配制泵送工艺。优选与井深、井温、地层配伍的油井水泥,添加控制凝固时间的控凝剂、控制流动黏度的控黏剂、降低流动摩擦阻力的降阻剂、降滤等外加剂,拉运储存在井场,再用一台或多台水泥泵进行混合配制和泵送;
3、超临界二氧化碳和水泥浆混合工艺。超临界二氧化碳和压裂水泥浆按照单井设计比例、控制温度和压力分别泵入高压混合器自动混合均匀后,用专用仪器进行连续在线检测,记录和控制混合物的温度、压力、密度等技术参数符合设计要求,进入高压保温缓存灌中,保证后续工艺质量,特别是水泥石的孔隙度、渗透率和强度;
4、地面超临界二氧化碳和水泥浆压裂工艺。用多台压裂泵将在线监测合格的超临界二氧化碳和水泥浆混合物注入井下的非常规油气层进行压裂,形成网状人工裂缝;
5、地下渗透性水泥石形成工艺。非常规油气层地下形成渗透性水泥石工艺原理过程见图1,包括四个阶段。第一阶段:超临界二氧化碳和水泥浆均匀混合注入非常规油气层人工和天然裂缝;第二阶段:随着压裂水泥浆和地层温度自动热交换,逐步将超临界二氧化碳自动加热升温气化成被压缩的二氧化碳小气泡;第三阶段:水泥浆进入初凝失重状态时内部压力自动降低,被压缩的二氧化碳小气泡迅速变成更大的气孔;第四阶段:在水泥浆终凝固化后,部分二氧化碳溶入束缚水和自由水形成碳酸,对水泥石气孔孔隙、孔喉进行酸溶、酸蚀和淋滤作用,进一步提高水泥石孔隙度和渗透率,既有效支撑固定了压裂人工裂缝和天然裂缝,又有效沟通连通了地层和井筒,达到增产、增效、环保开采的目的。
渗透性水泥石非常规压裂开采方法比水基液加支撑剂常规压裂工艺方法的主要技术经济环保有益效果如下:
1.提高技术和环保水平:渗透性水泥石非常规压裂开采方法用的水泥浆全部固化变成有孔隙和裂缝的人造石,既保持较高有效渗透率,支撑人工裂缝和天然裂缝,又固化稳定松软、易塌、易出砂地层,增产量大,有效期长。全部水泥石和大部分二氧化碳留到地层永远封存,无支撑剂和无返排液。水泥石可防止地层坍塌、出砂、滑坡等地质灾害,不污染地下水,地面水、土地和空气等自然环境,环境保护水平高。
2.大幅减少压裂水量:渗透性水泥石非常规压裂开采方法用水泥浆100方(水占30-50%)和超临界二氧化碳25方,形成的人工支撑裂缝总体积,相当于常规压裂方法用陶粒100-150方,压裂液1000方(水占90-98%),形成同样人工支撑裂缝的总体积,但用水总体 积不到常规水基压裂方法的二十分之一。
3.大幅减小压裂泵压:渗透性水泥石非常规压裂开采方法的水泥浆密度(1.85-1.95)比常规水基压裂液密度(1.01-1.05kg/cm2)至少高0.8kg/cm2,如垂深3000米的井,压裂施工的泵压至少可降低3000*0.8/100=24Mpa。
4.大幅减少井场设备:渗透性水泥石非常规压裂开采方法大幅减少了压裂用水、材料的运输、储存、施工、排液、污水处理等设备、设施,井场占地少。
5.大幅减少压裂开采成本:非常规油气层渗透性水泥石压裂开采用水泥和二氧化碳等材料少、用水少、无压裂支撑剂,压裂施工设备少、水马力小、井场小,压后无返排液、无污染物、增产有效期长,可大幅减少非常规油气层的压裂开采成本。
附图说明
图1是非常规油气层地下形成渗透性水泥石过程的工艺原理示意图;
图2是非常规油气层渗透性水泥石压裂实施井场与井下流程示意图。
具体实施方式
下面结合实施例及附图,对本发明作进一步地的详细说明,但本发明的实施方式不限于此。
第一步:单注前置超临界二氧化碳:完成直井分层或水平井分段完井后,将全井筒置换成低于地层破裂压力高于地层压力的超临界二氧化碳,并测压降和吸入能力;
第二步:混注水泥浆和超临界二氧化碳:参照图2非常规油气层渗透性水泥石压裂实施井场与井下流程进行准备和安装,按照单井实际设计比例、温度、排量和高于地层破裂压力,将压裂水泥浆和超临界二氧化碳混合物注入地层进行压裂,形成网状的人工裂缝;
第三步:单注顶替超临界二氧化碳:根据设计泵注超临界二氧化碳,将井筒内水泥浆和超临界二氧化碳混合物全部顶替入地层裂缝。重复第二和第三步作业,完成水平井多段或直井多层混注水泥浆和超临界二氧化碳压裂后憋压关井;
第四步:气化固化:根据单井油气层具体条件,在地面试验设计的水泥浆初凝时间之前关井,等待超临界二氧化碳自动气化和水泥浆自动固化,直到水泥浆终凝、设计强度达80%的时间后,用设计选定的小油嘴有控制地降低井口回压,既防止井底压差过大破坏水泥石,又使地层油气通过压裂人工裂缝中水泥石孔隙向井筒流动,增加正向渗透率,进一步提高增产效果;
第五步:压后排气:在地层裂缝中水泥石达到设计强度100%的时间后,用设计选定的较大油嘴放大井底压差排气,进一步疏通清洁裂缝和井筒;
第六步:自喷开采:对压后排气显示地层压力和地温较高、能自喷、自解析、自气化的致密油气、页岩气、煤层气等非常规油气层,继续放喷调整最佳油嘴,进入生产系统正常投产采油或采气,直到停止自喷;
第七步:吞吐开采:对压后排气显示地层压力和地温较低,不能自气化、自解析的致密油气、页岩气、煤层气、可燃冰等非常规油气层,高于地层吸气压力注入高温二氧化碳焖井升温气化、解析后放喷,调整最佳气嘴,进入生产系统正常投产采气,可进行多轮热气吞吐采气,直到停产。
第八步:气举开采:对开采进入高含水、低压力、不能自喷阶段的非常规油气层,辅助气举排水采油或采气工艺进行开采。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。因此,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (4)

  1. 非常规油气层渗透性水泥石压裂开采方法,其特征在于,所述方法包括以下配套工艺:
    超临界二氧化碳运输储存泵送工艺:超临界二氧化碳经过专用罐车拉运或管道输送、储存到井场,再用一台或多台超临界二氧化碳泵进行泵送;
    压裂水泥浆运输储存配制泵送工艺:优选与井深、井温、地层配伍的油井水泥、外加剂,所述外加剂包括但不限于:控凝、控粘、降阻、降滤外加剂,拉运储存在井场,再用一台或多台泵进行混合配制和泵送;
    超临界二氧化碳和水泥浆混合工艺:超临界二氧化碳和压裂水泥浆按照单井设计比例分别泵入高压混合器自动混合均匀后,进行连续在线检测和缓存;
    地面超临界二氧化碳和水泥浆压裂工艺:按照单井设计控制温度、排量、泵压,用多台压裂泵将水泥浆和超临界二氧化碳混合物注入井下油气层进行压裂,形成网状人工裂缝;
    地下渗透性水泥石形成工艺:注入非常规油气层人工裂缝和天然裂缝中的超临界二氧化碳和水泥浆混合物,经过自动温升、压降、气化、固化、碳酸溶蚀、淋滤作用形成地下渗透性水泥石。
  2. 根据权利要求1所述的方法,其特征在于,所述超临界二氧化碳的临界条件为:压力大于7.38Mpa,温度低于31.05℃。
  3. 根据权利要求1所述的方法,其特征在于,所述泵入高压混合器自动混合均匀后,用专用仪器进行连续在线检测,具体为:监测、记录和控制混合物的技术参数符合单井设计要求,以保证后续工艺质量,特别是水泥石的孔隙度、渗透率和强度。
  4. 根据权利要求1所述的方法,其特征在于,所述注入非常规油气层人工裂缝和天然裂缝中的超临界二氧化碳和水泥浆混合物,经过自动温升、压降、气化、固化、碳酸溶蚀、淋滤作用形成地下渗透性水泥石,具体为:将超临界二氧化碳和水泥浆均匀混合物注入油气层人工裂缝和天然裂缝;随着地层温度自动热交换,超临界二氧化碳被加热升温气化成压缩二氧化碳气泡;水泥浆进入初凝失重状态时内部压力自动降低,被压缩的二氧化碳气泡形成气孔;水泥浆终凝固化后,部分二氧化碳溶入束缚水和自由水成为碳酸,对水泥石孔隙、孔喉进行酸溶、酸蚀、淋滤作用,进一步提高水泥石孔隙度和渗透率。
PCT/CN2016/081638 2015-08-17 2016-05-11 非常规油气层渗透性水泥石压裂开采方法 WO2017028559A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/550,858 US10174601B2 (en) 2015-08-17 2016-05-11 Permeable cement stone fracturing exploitation method for non-conventional oil and gas layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510500540.0 2015-08-17
CN201510500540.0A CN105064975B (zh) 2015-08-17 2015-08-17 非常规油气层渗透性水泥石压裂开采方法

Publications (1)

Publication Number Publication Date
WO2017028559A1 true WO2017028559A1 (zh) 2017-02-23

Family

ID=54494455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/081638 WO2017028559A1 (zh) 2015-08-17 2016-05-11 非常规油气层渗透性水泥石压裂开采方法

Country Status (3)

Country Link
US (1) US10174601B2 (zh)
CN (1) CN105064975B (zh)
WO (1) WO2017028559A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112832728A (zh) * 2021-01-08 2021-05-25 中国矿业大学 一种基于甲烷多级燃爆的页岩储层压裂方法
CN112943185A (zh) * 2021-02-26 2021-06-11 中国地质调查局油气资源调查中心 一种基于超临界二氧化碳前置预压裂的复合压裂工艺

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10968142B2 (en) * 2014-10-15 2021-04-06 The Regents Of The University Of California Enhanced carbonation and carbon sequestration in cementitious binders
CN105064975B (zh) * 2015-08-17 2017-09-05 牛辉英 非常规油气层渗透性水泥石压裂开采方法
US11247940B2 (en) 2016-10-26 2022-02-15 The Regents Of The University Of California Efficient integration of manufacturing of upcycled concrete product into power plants
US11230473B2 (en) 2017-06-30 2022-01-25 The Regents Of The University Of California CO2 mineralization in produced and industrial effluent water by pH-swing carbonation
CA3073041A1 (en) 2017-08-14 2019-02-21 The Regents Of The University Of California Mitigation of alkali-silica reaction in concrete using readily-soluble chemical additives
CN107907464B (zh) * 2017-11-09 2020-01-24 西南石油大学 一种压裂用渗透石水泥浆性能测定装置及方法
CN109372510B (zh) * 2018-11-26 2020-08-25 武汉工程大学 一种二氧化碳和水混合流体压裂石灰岩顶板的方法
US11384029B2 (en) 2019-03-18 2022-07-12 The Regents Of The University Of California Formulations and processing of cementitious components to meet target strength and CO2 uptake criteria
CN112746833B (zh) * 2021-01-12 2022-05-27 北京百利时能源技术股份有限公司 低渗透油藏化学剂与二氧化碳复合混相压裂方法
CN112761608B (zh) * 2021-02-08 2022-06-21 西南石油大学 压驱一体化提高页岩油采收率降低压裂液返排的方法
CN112796727A (zh) * 2021-02-26 2021-05-14 中国地质调查局油气资源调查中心 一种针对陆相页岩储层的复合体积压裂系统及方法
CN112761534B (zh) * 2021-02-26 2021-11-23 中国矿业大学 位于煤矿井下大断面硐室的油气井钻井平台布置方法
CN115370339B (zh) * 2021-05-21 2024-04-16 中国石油化工股份有限公司 燃煤关键气态污染物在页岩气开采中的应用及水力压裂液和提高页岩气采收率的方法
US11859122B2 (en) * 2021-10-19 2024-01-02 Halliburton Energy Services, Inc. Enhanced carbon sequestration via foam cementing
CN115370340B (zh) * 2021-12-14 2023-06-27 中国石油大学(华东) 以油页岩灰-水泥为支撑剂的二氧化碳封存与置换开发天然气水合物一体化方法
CN116771315A (zh) * 2023-07-31 2023-09-19 中国石油大学(北京) 一种准干法二氧化碳压裂方法和二氧化碳压裂装置
CN117607398B (zh) * 2024-01-23 2024-04-12 昆明理工大学 一种砾石土边坡失稳临界含水量的预测方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374545A (en) * 1981-09-28 1983-02-22 L.H.B. Investment, Inc. Carbon dioxide fracturing process and apparatus
CN102168545A (zh) * 2011-03-30 2011-08-31 中国石油大学(北京) 连续油管超临界co2喷射压裂方法
US20120267109A1 (en) * 2011-04-25 2012-10-25 University Of Tulsa Method of treating a fractured well
CN102852508A (zh) * 2012-08-23 2013-01-02 陕西延长石油(集团)有限责任公司研究院 页岩气井液态co2压裂工艺
CN103244095A (zh) * 2013-06-05 2013-08-14 重庆大学 超临界二氧化碳压裂方法及系统
CN103924955A (zh) * 2014-04-21 2014-07-16 陕西延长石油(集团)有限责任公司研究院 一种页岩气井co2及滑溜水混合压裂工艺
CN105064975A (zh) * 2015-08-17 2015-11-18 牛辉英 非常规油气层渗透性水泥石压裂开采方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4096912A (en) * 1977-06-06 1978-06-27 The United States Of America As Represented By The United States Department Of Energy Methods for minimizing plastic flow of oil shale during in situ retorting
US5024276A (en) * 1989-11-28 1991-06-18 Shell Oil Company Hydraulic fracturing in subterranean formations
US8869889B2 (en) * 2010-09-21 2014-10-28 Palmer Labs, Llc Method of using carbon dioxide in recovery of formation deposits
CN103670357B (zh) * 2012-09-21 2017-06-06 新奥科技发展有限公司 地下含碳有机矿物储层的裂隙沟通、通道加工及地下气化方法
US9334720B2 (en) * 2013-04-08 2016-05-10 Baker Hughes Incorporated Tubless proppant blending system for high and low pressure blending
CN103540308B (zh) * 2013-10-28 2016-02-03 中国石油集团川庆钻探工程有限公司 一种基于超临界二氧化碳的压裂液体系及其用途
CN104568699B (zh) * 2014-12-29 2017-08-11 中国石油大学(华东) 测量超临界二氧化碳压裂液滤失系数的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374545A (en) * 1981-09-28 1983-02-22 L.H.B. Investment, Inc. Carbon dioxide fracturing process and apparatus
CN102168545A (zh) * 2011-03-30 2011-08-31 中国石油大学(北京) 连续油管超临界co2喷射压裂方法
US20120267109A1 (en) * 2011-04-25 2012-10-25 University Of Tulsa Method of treating a fractured well
CN102852508A (zh) * 2012-08-23 2013-01-02 陕西延长石油(集团)有限责任公司研究院 页岩气井液态co2压裂工艺
CN103244095A (zh) * 2013-06-05 2013-08-14 重庆大学 超临界二氧化碳压裂方法及系统
CN103924955A (zh) * 2014-04-21 2014-07-16 陕西延长石油(集团)有限责任公司研究院 一种页岩气井co2及滑溜水混合压裂工艺
CN105064975A (zh) * 2015-08-17 2015-11-18 牛辉英 非常规油气层渗透性水泥石压裂开采方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112832728A (zh) * 2021-01-08 2021-05-25 中国矿业大学 一种基于甲烷多级燃爆的页岩储层压裂方法
CN112832728B (zh) * 2021-01-08 2022-03-18 中国矿业大学 一种基于甲烷多级燃爆的页岩储层压裂方法
CN112943185A (zh) * 2021-02-26 2021-06-11 中国地质调查局油气资源调查中心 一种基于超临界二氧化碳前置预压裂的复合压裂工艺

Also Published As

Publication number Publication date
CN105064975A (zh) 2015-11-18
CN105064975B (zh) 2017-09-05
US10174601B2 (en) 2019-01-08
US20180238157A1 (en) 2018-08-23

Similar Documents

Publication Publication Date Title
WO2017028559A1 (zh) 非常规油气层渗透性水泥石压裂开采方法
CN102168545B (zh) 连续油管超临界co2喷射压裂方法
CN108009670B (zh) 一种提高超临界二氧化碳干法压裂效果的优化设计方法
CN107387053B (zh) 一种大通道主裂缝与复杂缝网协同压裂的方法
CN105089596B (zh) 一种非常规储层油气井的水力压裂改造方法
CN104989361B (zh) 一种辅助水平井人工裂缝转向改造的方法
CN110318674B (zh) 一种巷道顶板致裂防突的方法
CN104963672B (zh) 一种清洁转向材料暂堵炮眼形成缝网的储层改造方法
CN107255027A (zh) 一种碳酸盐岩储层复合改造方法
CN105089600B (zh) 暂堵转向材料辅助水平井进行拖动式水力喷射改造的方法
CN106194145A (zh) 一种多级暂堵深度网络酸压方法
CN107654215B (zh) 一种把煤层气井改造为煤系气井的方法
CN111119828B (zh) 利用氮气泡沫压裂液对煤层气藏进行压裂的方法
CN113027407B (zh) 一种泡沫-气体复合分段压裂地层方法
CN112453047A (zh) 一种浅层污染土壤的增渗方法
CN112878972A (zh) 液氮脉动压裂系统以及压裂方法
CN105838347B (zh) 一种提高致密油藏渗流能力的生气体系及其应用
RU2315171C1 (ru) Способ изоляции зон водопритока в скважине
CN106837284A (zh) 一种提高低渗透油藏采收率的压裂吞吐联作方法
CN105715242A (zh) 不加砂超低温过冷冷缩热胀造缝纳米压裂技术
RU2457323C1 (ru) Способ гидроразрыва низкопроницаемого пласта с глинистыми прослоями
CN107461182B (zh) 分层压裂防砂方法
CN112796727A (zh) 一种针对陆相页岩储层的复合体积压裂系统及方法
CN108457633B (zh) 一种层内选择性压裂方法
CN107558950A (zh) 用于油页岩地下原位开采区域封闭的定向堵漏方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16836424

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15550858

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16836424

Country of ref document: EP

Kind code of ref document: A1