CN113027407B - 一种泡沫-气体复合分段压裂地层方法 - Google Patents

一种泡沫-气体复合分段压裂地层方法 Download PDF

Info

Publication number
CN113027407B
CN113027407B CN202110432277.1A CN202110432277A CN113027407B CN 113027407 B CN113027407 B CN 113027407B CN 202110432277 A CN202110432277 A CN 202110432277A CN 113027407 B CN113027407 B CN 113027407B
Authority
CN
China
Prior art keywords
fracturing
foam
fluid
gas
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110432277.1A
Other languages
English (en)
Other versions
CN113027407A (zh
Inventor
李文达
梁卫国
阎纪伟
武鹏飞
姜玉龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN202110432277.1A priority Critical patent/CN113027407B/zh
Publication of CN113027407A publication Critical patent/CN113027407A/zh
Application granted granted Critical
Publication of CN113027407B publication Critical patent/CN113027407B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/11Perforators; Permeators
    • E21B43/114Perforators using direct fluid action on the wall to be perforated, e.g. abrasive jets
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

本发明涉及一种泡沫—气体复合分段压裂地层方法,属于水力压裂技术领域;包括以下步骤:1)通井处理;2)注液处理:储气罐车经增压泵将液态N2或者空气通过环空注入井筒;3)射孔处理:连续管输送并喷射水基含砂射孔液;4)泡沫压裂处理:注入流体换为水+起泡剂+稳泡剂,与环空气体紊流混合成泡沫压裂液;5)支撑处理:加入支撑剂实现压裂裂缝支撑;6)分段压裂处理:顺次或交错拖动连续管完成所有段压裂;7)气体压裂处理:向井筒注入液态N2或者空气;8)焖井返排:本发明的泡沫压裂液在井下混合且分段压裂免去了其连续管内高管流摩阻,并利用其高粘特性封堵已压裂裂缝再注入气体实现裂缝解堵,解决了压裂效果不佳和工作效率低的问题。

Description

一种泡沫-气体复合分段压裂地层方法
技术领域
本发明属于水力压裂技术领域,具体涉及一种泡沫—气体复合分段压裂地层方法。
背景技术
我国非常规油气资源丰富,但其低渗特性使得需要压裂等储层改造方法实现工业化开采。凝胶、滑溜水、泡沫压裂液、超临界二氧化碳(SCCO2)等压裂液体系已用于油气藏压裂施工。其中,凝胶等高粘压裂液携砂能力强、易形成长直宽裂缝,然而易对储层渗透率造成伤害;滑溜水粘度低易形成复杂裂缝,但用水量大,且携砂能力弱;专利CN 108165249A、CN 109111910A、CN 102766450B等公布了CO2、空气、N2泡沫压裂液的制备方法,未涉及现场压裂施工方法;复合压裂方面,专利CN 105888641A公布了一种交替注入液态CO2与减阻水压裂液的复合压裂方法,未涉及分段压裂内容;专利CN 110735622A公开了一种先使用SCCO2后用水基压裂液的复合压裂开采煤层气的方法,并使用封隔桥塞进行分段封隔;专利CN 104563999A公开了低压低渗透储层煤层气井氮气泡沫压裂方法中在地面压裂管汇中通过水、起泡剂与N2混合形成N2泡沫压裂液,注入煤层实现泡沫压裂;专利CN 104564000B公开了煤层气井活性水—氮气泡沫复合压裂增产方法中先使用活性水压裂再使用N2泡沫压裂液压裂,并且两者顺序不可颠倒。以上泡沫压裂液制备均在地面管线实现,在向地下运输流动的过程中因粘度较大,连续管内流动摩阻大,导致地面压裂泵施工压力大且压裂效果不佳。
针对喷射分段压裂方法,主要包括拖动管柱式与投球滑套式喷射压裂方法,已压开裂缝的封堵是通过连续管泵入混有暂堵剂的封堵液暂堵地层裂缝,进而下一段压裂不重复压裂已压开裂缝,例如公布号为CN 102536187A、CN 109184651A的专利,上述分段压裂方法工作效率较低,封堵效果差。
发明内容
本发明克服了现有技术的不足,提出一种泡沫—气体复合分段压裂地层方法,解决目前泡沫压裂地层过程中存在的泡沫压裂液连续管流动摩阻大导致的压裂效果不佳和工作效率较低的问题,并利用泡沫压裂液高粘特性封堵已压裂裂缝再注入气体的方法实现裂缝解堵。
为了达到上述目的,本发明是通过如下技术方案实现的。
一种泡沫—气体复合分段压裂地层方法,其特征在于,包括以下步骤:
步骤一)通井处理:使用通径规通井,然后洗井;
步骤二)注液处理:储气罐车经增压泵将液态N2或者空气通过环空注入井筒,驱替出井筒内洗井流体,连续管外为裸眼地层或固井套管,连续管与地层(或套管)之间的空间为环空;
步骤三)射孔处理:将水与射流磨料混合成水基含砂射孔液,通过连续管向井底输送并喷射水基含砂射孔液,所述水基含砂射孔液卷吸环空气体形成非淹没射流建立沟通储层的射流孔道;
步骤四)泡沫压裂处理:连续管注入流体换为混合液体(水+起泡剂+稳泡剂),经喷嘴射出后与环空气体紊流混合在射流孔道内形成泡沫压裂液,压裂地层形成长直宽的泡沫压裂裂缝,射流增压实现封隔;
步骤五)支撑处理:微地震监测泡沫压裂裂缝扩展至储层上下界后,加入支撑剂实现泡沫压裂裂缝支撑;
步骤六)分段压裂处理:压裂完一段后,顺次或交错式拖动连续管完成所有段压裂,高粘泡沫压裂液在压裂一段的同时封堵前一段压裂完的压裂裂缝,实现分段压裂;
步骤七)气体压裂处理:起出连续管,向井筒注入液态N2或者空气压裂储层泡沫压裂缝外的区域,气体混入泡沫压裂液形成低粘雾流实现压裂缝的解堵并有利于返排;
步骤八)焖井返排处理:焖井至井筒内CH4含量无变化后缓慢降低井筒压力实现返排,完成作业。
进一步的,步骤二中所述液态N2或空气替换为液态二氧化碳;
步骤二替换为注液处理:储气罐车经增压泵将液态二氧化碳通过环空注入井筒,驱替出井筒内洗井流体,液态二氧化碳经地层加热后转变为超临界二氧化碳;
步骤七替换为气体压裂处理:起出连续管,向井筒注入液态二氧化碳压裂储层泡沫压裂缝外的区域,通过地层加热转变成超临界二氧化碳(SCCO2)气体混入泡沫压裂液形成低粘雾流实现压裂缝的解堵,并有利于返排。
进一步的,步骤三、步骤四与步骤五中通过环空注液保持环空液柱压力小于地层起裂扩展压力0.5-1Mpa。
进一步的,步骤七中当超临界二氧化碳注入体积占总注入流体体积的95%以上时,超临界二氧化碳混合之前注入的CO2泡沫液形成低粘度CO2雾流,解堵压裂缝并有利于泡沫压裂液返排。
进一步的,步骤三中所述磨料加量占混合流体的5-8%,常用60-120目的石英砂。
本发明相对于现有技术所产生的有益效果为:
1、采用连续管注入水基工作液,环空注入液态CO2(或N2、空气)实现非淹没喷砂射孔,其射孔深度及直径远大于目前常规连续管与环空同种流体的喷砂射孔方法;
2、本发明通过连续管与环空分注方法在射流孔道内制备泡沫压裂液,相比于目前现场施工过程中泡沫压裂液是在地面压裂管汇中形成,并通过井筒注入压裂地层的常规方法免去了连续管内泡沫压裂液管流摩阻,降低了地面施工压力;
3、本发明高粘度泡沫压裂液封堵已压开裂缝,进而下一段压裂不会重复压裂已压开裂缝段,实现分段封隔,最后起出连续管注入CO2,混合泡沫压裂液形成低粘度雾流实现裂缝解堵,而现有方法中需要额外使用暂堵剂封堵裂缝的步骤且封堵效果与其用量相关。其中,地层温度压力条件下的CO2(或N2、空气)是水注入量的19倍以上,以实现低粘度雾流利于返排;
4、本发明利用拖动式连续管的灵活性,根据上一级裂缝的弯曲程度采用交替式压裂方式或增加裂缝间距,相比于现有的顺次回退连续管完成压裂方法压裂储层的效果更佳。
附图说明
(下面结合附图对本发明做进一步描述:)
图1是本发明所述喷射压裂结构示意图;
图2是本发明所述泡沫压裂处理示意图;
图3是本发明所述交错式分段压裂示意图;
其中,1—水压裂车;2—水混砂车;3—二氧化碳罐车;4—二氧化碳增压泵车;5—绝热高压管线;6—连续管;7—环空;8—喷射压裂装置;9—喷嘴;10—射流孔道;11—泡沫压裂裂缝;12—储层;13—超临界二氧化碳(SCCO2);14—混合液体(水+起泡剂+稳泡剂)。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,结合实施例和附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。下面结合实施例及附图详细说明本发明的技术方案,但保护范围不被此限制。
本实施例提供了一种泡沫—气体复合分段压裂地层方法,包括以下步骤:
步骤一)通井处理:使用通径规通井,用清水或洗井液洗井,防止工具遇阻;
步骤二)注液处理:二氧化碳罐车3经过二氧化碳增压泵车4增压,通过绝热高压管线5将液态二氧化碳通过环空7注入井筒,驱替出井筒内洗井流体,连续管6与井壁(或者套管)之间的空间为环空7,通过环空回压阀控制环空液柱压力,液态二氧化碳经地层加热后转变为超临界二氧化碳;
步骤三)射孔处理:如图1所示,进行第一段分段压裂时,将喷射压裂工具8下入井底预定位置;将水与射流磨料混合成水基含砂射孔液,其磨料加量占混合流体的5-8%,常用60-120目的石英砂,经过水压裂车1加压后通过连续管6输送到井底喷射压裂工具8,然后通过喷嘴9喷射水基含砂射孔液,水基含砂射孔液卷吸环空的超临界二氧化碳(SCCO2)13形成非淹没射流来射穿套管(套管井)或储层形成一定尺寸射流孔道10;相比常规喷射压裂施工,本发明的环空流体为超临界二氧化碳(SCCO2)13,喷射处为非淹没射流,形成的孔眼深度及孔径均大于环空为水的淹没射流情况,射孔时间一般为10-15min;
步骤四)泡沫压裂处理:喷砂射孔完成后,连续管6注入流体换为混合液体(水+起泡剂+稳泡剂)14,通过连续管6大排量(2-4方/分钟,每一段压裂时间为10-30分钟)注入活性水与起泡剂、稳泡剂的混合液体14,该射流经喷嘴9射出后紊流混合环空7中的超临界二氧化碳(SCCO2)13在射流孔道10内形成泡沫压裂液,压裂储层形成长直宽的泡沫压裂裂缝11,如图2所示;射流增压实现封隔,相比地面管汇制备泡沫压裂液免去了连续管管流摩阻;当需要高质量分数的泡沫压裂液时,适当降低连续管6排量,增加环空7液态CO2排量,通过地层加热液态二氧化碳转变为超临界二氧化碳(SCCO2)13,当地层加热速度不足时有必要在地面绝热高压管线5后连接加热设备;
步骤五)支撑处理:微地震监测泡沫压裂裂缝11长度达到预定位置时即扩展至储层上下界后,开启混砂车,向混合液体14中泵入压裂用支撑剂,实现泡沫压裂裂缝支撑,该过程相比于现有技术不需要SCCO2携砂压裂所用的大排量(5-9方/分钟)即可避免支撑剂沉降,支撑剂用量占含砂压裂液总重量的20%,且射孔处理、泡沫压裂处理与支撑处理阶段通过环空7注CO2保持环空液柱压力小于地层起裂扩展压裂0.5-1MPa,支撑剂用量为压裂液总质量的5-20%,借助高粘特性泡沫液可实现20%的支撑剂运移,使用常规的20-40目石英砂作为支撑剂。;
步骤六)分段压裂处理:压裂完一段后,顺次上提或交替上提下放拖动连续管6实现分段压裂,根据微地震监测第N裂缝弯曲程度,当裂缝弯曲程度大时意味着裂缝间干扰强、裂缝间排斥力大,可采用先上提压裂第N+1条裂缝、再下放管柱压裂N+2条裂缝实现交错压裂,以此来降低缝间干扰程度,如图3所示;
步骤七)气体压裂处理:起出连续管6和喷射压裂装置8,注入液态二氧化碳,通过地层加热转变成超临界二氧化碳(SCCO2)13,当超临界二氧化碳(SCCO2)13注入体积占总注入流体(即超临界二氧化碳(SCCO2)13+混合液体(水+起泡剂+稳泡剂)14)体积的95%以上时,超临界二氧化碳(SCCO2)13混合之前注入的CO2泡沫液形成低粘度CO2雾流,粘度显著降低有利于压裂液返排。此外,超临界二氧化碳(SCCO2)13进入射流孔道10后,通过泡沫压裂裂缝11壁面进入储层12未压裂区域,沟通起裂天然裂缝进一步增加储层12改造体积,形成泡沫-气体复合压裂方法;
步骤八)焖井返排处理:焖井一段时间后监测井筒7内的CH4含量,当其浓度基本不变时降低井筒压力返排,利用CO2吸附性能强于CH4的特性实现CO2地质封存,当井筒CH4含量变化很小时说明CO2驱替CH4基本完成,作业完毕。
本发明的CO2来源可从电厂、钢厂等产生的尾气中提取,并由二氧化碳罐车储存运输,其运输压力一般在3—5MPa,温度在-20—5℃。此外,SCCO2穿透性强,需要将橡胶制品密封垫换为金属密封垫,本发明的环空注入CO2可替换成N2或者空气,而N2、空气压裂过程没有其要求。本发明的CO2、N2或空气形成的泡沫压裂液粘度高、滤失量低,能形成长直宽裂缝,且返排能力强储层伤害低,CO2、N2、空气等气体粘度更低,相比滑溜水能沟通起裂更多天然裂缝,增加储层改造体积,本发明综合泡沫与气体压裂液各自的优势,实现(CO2、N2或空气)高粘度泡沫压裂液+低粘气体复合压裂储层,能实现更大区域的储层体积改造,并尽可能降低储层伤害,同时工程实践表明大部分CO2并未返排至地面,实现了CO2地质封存,针对分段压裂施工方法,现场常采用的射流增压方法不需要桥塞、封隔器等工具实现封隔,显著降低施工量和封隔失效风险。
本发明的技术方案分段压裂处理微地震监测裂缝扩展位置直至储层边界,并根据本段裂缝的弯曲程度确定下一段压裂位置或采取交替压裂来减小多裂缝缝间应力干扰。当裂缝间距较小时,裂缝相互排斥形成弯曲裂缝,使得裂缝非均匀分布,储层改造体积减小。交错压裂方式,相比只连续上提管柱的次序压裂,交替上提和下放连续管实现大间距的分段压裂方式,使得泡沫压裂过程尽量形成长直主裂缝,最终实现直裂缝均匀排布。此外,本发明过程相比纯SCCO2压裂,其连续管内的水基工作液携砂能力强,不易沉砂。支撑剂用量为压裂液总质量的5-20%,借助高粘特性泡沫液可实现20%的支撑剂运移,使用常规的20-40目石英砂作为支撑剂。
本发明的技术方案气体压裂处理过程中起出连续管,使用光套管注入,其优点在于横截面积大,不易堵塞,且地层加热速度相比连续管注入方式快,并且保证最终SCCO2注入量为水的19倍以上以形成低粘CO2雾流,不需要额外注入破胶剂破胶实现压裂液的快速返排。此外,CO2(或N2、空气)通过泡沫压裂裂缝壁面扩散进入储层未压裂区域,沟通起裂天然裂缝进一步增加储层改造体积,提高单井产量。当然,当泡沫压裂效果满足施工要求时,可不采取气体压裂处理这一步。
现有技术中泡沫压裂液是在地面管汇合制备,并通过连续管、射流(射孔)孔道压裂地层;然而,泡沫压裂液粘度高,其在连续管内流动摩阻大,使得地面压裂泵施工压力升高,现有分段压裂方法中,连续管与环空流体一致,本发明通过连续管喷嘴高速喷射形成的紊流,实现连续管水基流体与环空流体的充分混合进而在射流孔道内形成泡沫压裂液,免去了连续管泡沫压裂液的流动摩阻,地面压裂泵施工压力可显著降低,相比常规的连续管注入,其摩阻更低且加热效率更高。本发明适用于高滤失的裂缝性储层压裂改造,例如裂缝性页岩和煤岩等,通过连续管喷射水基工作液,连续管与套管的环空注入CO2、N2或者空气,实现低管流摩阻、非淹没射流开窗、高粘泡沫液封堵已压裂裂缝与注入气体解堵、泡沫与气体复合压裂的多重效果。
本发明可应用于单段压裂,也可用于两段以上的压裂。当多段压裂时,需要对已经压裂的裂缝进行隔离,现有技术中使用暂堵液或隔离液进行隔离,其具有高粘度和低滤失性能减小下一段压裂过程中的这一段裂缝的压裂液注入损失,但其隔离效果与暂堵液用量相关,本发明利用高粘度泡沫压裂液实现已压裂缝全部长度的封堵,并在最后注入超临界CO2(或N2、空气),进而泡沫液混合注入气体形成低粘雾流,实现封堵裂缝的解堵与复合压裂施工的高返排效率。当进行单段压裂时,不需要分段压裂处理的步骤。
以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施方式仅限于此,对于本发明所属技术领域的普通技术人员来说,在不脱离本发明的前提下,还可以做出若干简单的推演或替换,都应当视为属于本发明由所提交的权利要求书确定专利保护范围。

Claims (5)

1.一种泡沫—气体复合分段压裂地层方法,其特征在于,包括以下步骤:
步骤一)通井处理:使用通径规通井,然后洗井;
步骤二)注液处理:储气罐车经增压泵将液态N2或者空气通过环空注入井筒,驱替出井筒内洗井流体,连续管外为裸眼地层或固井套管,连续管与地层或套管之间的空间为环空;
步骤三)射孔处理:将水与射流磨料混合成水基含砂射孔液,通过连续管向井底输送并喷射水基含砂射孔液,所述水基含砂射孔液卷吸环空气体形成非淹没射流建立沟通储层的射流孔道;
步骤四)泡沫压裂处理:连续管注入流体换为混合液体,经喷嘴射出后与环空气体紊流混合在射流孔道内形成泡沫压裂液,压裂地层形成长直宽的泡沫压裂裂缝,射流增压实现封隔,所述混合液体为水+起泡剂+稳泡剂;
步骤五)支撑处理:微地震监测泡沫压裂裂缝扩展至储层上下界后,加入支撑剂实现泡沫压裂裂缝支撑;
步骤六)分段压裂处理:压裂完一段后,顺次或交错式拖动连续管完成所有段压裂,高粘泡沫压裂液在压裂一段的同时封堵前一段压裂完的压裂裂缝,实现分段压裂;
步骤七)气体压裂处理:起出连续管,向井筒注入液态N2或者空气压裂储层泡沫压裂缝外的区域,气体混入泡沫压裂液形成低粘雾流实现压裂缝的解堵并有利于返排;
步骤八)焖井返排处理:焖井至井筒内CH4含量无变化后缓慢降低井筒压力实现返排,完成作业。
2.根据权利要求1所述的一种泡沫—气体复合分段压裂地层方法,其特征在于,步骤二中所述液态N2或空气替换为液态二氧化碳;
步骤二替换为注液处理:储气罐车经增压泵将液态二氧化碳通过环空注入井筒,驱替出井筒内洗井流体,液态二氧化碳经地层加热后转变为超临界二氧化碳;
步骤七替换为气体压裂处理:起出连续管,向井筒注入液态二氧化碳压裂储层泡沫压裂缝外的区域,通过地层加热转变成超临界二氧化碳SCCO2气体混入泡沫压裂液形成低粘雾流实现压裂缝的解堵,并有利于返排。
3.根据权利要求1或2所述的一种泡沫—气体复合分段压裂地层方法,其特征在于,步骤三、步骤四与步骤五中通过环空注液保持环空液柱压力小于地层起裂扩展压力0.5-1Mpa。
4.根据权利要求2所述的一种泡沫—气体复合分段压裂地层方法,其特征在于,步骤七中当超临界二氧化碳注入体积占总注入流体体积的95%以上时,超临界二氧化碳混合之前注入的CO2泡沫液形成低粘度CO2雾流,解堵压裂缝实现泡沫压裂液返排。
5.根据权利要求1或2所述的一种泡沫—气体复合分段压裂地层方法,其特征在于,步骤三中所述磨料加量占混合流体的5-8%,常用60-120目的石英砂。
CN202110432277.1A 2021-04-21 2021-04-21 一种泡沫-气体复合分段压裂地层方法 Active CN113027407B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110432277.1A CN113027407B (zh) 2021-04-21 2021-04-21 一种泡沫-气体复合分段压裂地层方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110432277.1A CN113027407B (zh) 2021-04-21 2021-04-21 一种泡沫-气体复合分段压裂地层方法

Publications (2)

Publication Number Publication Date
CN113027407A CN113027407A (zh) 2021-06-25
CN113027407B true CN113027407B (zh) 2022-04-05

Family

ID=76457222

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110432277.1A Active CN113027407B (zh) 2021-04-21 2021-04-21 一种泡沫-气体复合分段压裂地层方法

Country Status (1)

Country Link
CN (1) CN113027407B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114592845B (zh) * 2022-02-21 2024-05-10 太原理工大学 一种可重复的水力喷射割缝压裂联作装置及使用方法
CN115539130B (zh) * 2022-10-28 2024-02-23 中国矿业大学 一种不可采煤层强化煤层气开采及co2封存的方法
CN115822539B (zh) * 2022-11-22 2024-04-19 西南石油大学 一种超临界二氧化碳喷射复合泡沫携砂压裂方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6439310B1 (en) * 2000-09-15 2002-08-27 Scott, Iii George L. Real-time reservoir fracturing process
CN102168545A (zh) * 2011-03-30 2011-08-31 中国石油大学(北京) 连续油管超临界co2喷射压裂方法
CN102213083A (zh) * 2011-04-19 2011-10-12 中国石油化工集团公司 负压射孔与泵抽超负压生产一体化生产工艺
WO2014029000A1 (en) * 2012-08-23 2014-02-27 Enfrac Inc. Reduced emissions method for recovering product from a hydraulic fracturing operation
CN105507871A (zh) * 2016-01-06 2016-04-20 西南石油大学 一种煤层气水平井液氮冰晶暂堵分段压裂方法
CN109538177A (zh) * 2018-10-19 2019-03-29 中国石油大学(北京) 一种超临界co2压裂的新工艺
CN110331972A (zh) * 2019-06-26 2019-10-15 中国石油集团渤海钻探工程有限公司 低压致密气藏液态co2及co2泡沫体系混合压裂工艺
CN111119828A (zh) * 2019-12-18 2020-05-08 东营汇聚丰石油科技有限公司 利用氮气泡沫压裂液对煤层气藏进行压裂的方法
CN111119826A (zh) * 2018-11-01 2020-05-08 中石化石油工程技术服务有限公司 一种连续油管分段压裂管柱及管柱压裂方法
CN111334268A (zh) * 2020-03-13 2020-06-26 西安石油大学 一种底水油藏多段塞封堵剂及其封堵方法
CN111894541A (zh) * 2020-06-23 2020-11-06 中国矿业大学 一种负压后退式注入低温流体分段循环压裂方法
CN112145163A (zh) * 2019-06-26 2020-12-29 中国石油化工股份有限公司 一种模拟分段压裂水平井泡排工艺的实验装置及实验方法
CN212958583U (zh) * 2020-07-17 2021-04-13 杰瑞能源服务有限公司 一种分层注气分层压裂管柱

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6439310B1 (en) * 2000-09-15 2002-08-27 Scott, Iii George L. Real-time reservoir fracturing process
CN102168545A (zh) * 2011-03-30 2011-08-31 中国石油大学(北京) 连续油管超临界co2喷射压裂方法
CN102213083A (zh) * 2011-04-19 2011-10-12 中国石油化工集团公司 负压射孔与泵抽超负压生产一体化生产工艺
WO2014029000A1 (en) * 2012-08-23 2014-02-27 Enfrac Inc. Reduced emissions method for recovering product from a hydraulic fracturing operation
CN105507871A (zh) * 2016-01-06 2016-04-20 西南石油大学 一种煤层气水平井液氮冰晶暂堵分段压裂方法
CN109538177A (zh) * 2018-10-19 2019-03-29 中国石油大学(北京) 一种超临界co2压裂的新工艺
CN111119826A (zh) * 2018-11-01 2020-05-08 中石化石油工程技术服务有限公司 一种连续油管分段压裂管柱及管柱压裂方法
CN110331972A (zh) * 2019-06-26 2019-10-15 中国石油集团渤海钻探工程有限公司 低压致密气藏液态co2及co2泡沫体系混合压裂工艺
CN112145163A (zh) * 2019-06-26 2020-12-29 中国石油化工股份有限公司 一种模拟分段压裂水平井泡排工艺的实验装置及实验方法
CN111119828A (zh) * 2019-12-18 2020-05-08 东营汇聚丰石油科技有限公司 利用氮气泡沫压裂液对煤层气藏进行压裂的方法
CN111334268A (zh) * 2020-03-13 2020-06-26 西安石油大学 一种底水油藏多段塞封堵剂及其封堵方法
CN111894541A (zh) * 2020-06-23 2020-11-06 中国矿业大学 一种负压后退式注入低温流体分段循环压裂方法
CN212958583U (zh) * 2020-07-17 2021-04-13 杰瑞能源服务有限公司 一种分层注气分层压裂管柱

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Feasibility study of enhanced biogenic coalbed methane production by super-critical CO 2 extraction;Hongguang Guo,Yujie Zhang 等;《 Energy》;20210131;1-9页 *
水与超临界CO_2致裂煤体的压裂特征与增渗效果对比;李畅,梁卫国,侯东升,姚宏波,宋晓夏;《太原理工大学学报》;20191231;485-491页 *
煤系地层超临界CO_2压裂现状及研究进展;梁卫国,武鹏飞,王磊,姜玉龙;《同煤科技》;20191231;1-4+8+61页 *
页岩气致密油气水平井分段压裂对环境的影响及发展趋势;朱凯,李娟;《中外能源》;20161231;96-99页 *

Also Published As

Publication number Publication date
CN113027407A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN113027407B (zh) 一种泡沫-气体复合分段压裂地层方法
CN108661617B (zh) 一种增加高温地层人工缝网复杂程度的压裂方法
CN102168545B (zh) 连续油管超临界co2喷射压裂方法
CN107255027B (zh) 一种碳酸盐岩储层复合改造方法
CN108009670B (zh) 一种提高超临界二氧化碳干法压裂效果的优化设计方法
CN101575983B (zh) 煤矿井下定向压裂增透消突方法及压裂增透消突装置
CN110761765B (zh) 一种大范围激活天然裂缝的体积压裂方法
CN106223922B (zh) 页岩气水平井支撑剂缝内屏蔽暂堵分段压裂工艺
CN103306660B (zh) 一种页岩气藏水力压裂增产的方法
CN104989361B (zh) 一种辅助水平井人工裂缝转向改造的方法
WO2017028559A1 (zh) 非常规油气层渗透性水泥石压裂开采方法
US7866395B2 (en) Hydraulic fracture initiation and propagation control in unconsolidated and weakly cemented sediments
CN105625946A (zh) 煤层气水平井超临界co2射流造腔及多段同步爆燃压裂方法
CA3000260C (en) Methods for performing fracturing and enhanced oil recovery in tight oil reservoirs
CN112832728B (zh) 一种基于甲烷多级燃爆的页岩储层压裂方法
CN105089600A (zh) 暂堵转向材料辅助水平井进行拖动式水力喷射改造的方法
CN111810109B (zh) 一种潮汐式铺砂压裂方法
CN112453047A (zh) 一种浅层污染土壤的增渗方法
CN114737940A (zh) 一种三维井带渗流暂堵体积压裂方法
CN109025940B (zh) 一种针对致密油藏的co2压裂驱油一体化采油方法
CN114059980B (zh) 一种页岩储层压裂方法
RU2457323C1 (ru) Способ гидроразрыва низкопроницаемого пласта с глинистыми прослоями
CN110608027B (zh) 巷道定向超长钻孔大规模水力压裂增透预抽瓦斯治理工艺
CN110439528B (zh) 一种用于低渗非均质碳酸盐岩气藏的二氧化碳酸压方法
CN112814641A (zh) 一种储层的压裂方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant