CN105971579B - 一种相变水力压裂工艺 - Google Patents

一种相变水力压裂工艺 Download PDF

Info

Publication number
CN105971579B
CN105971579B CN201610531410.8A CN201610531410A CN105971579B CN 105971579 B CN105971579 B CN 105971579B CN 201610531410 A CN201610531410 A CN 201610531410A CN 105971579 B CN105971579 B CN 105971579B
Authority
CN
China
Prior art keywords
phase
liquid
change liquid
phase transformation
hydraulic fracturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610531410.8A
Other languages
English (en)
Other versions
CN105971579A (zh
Inventor
杨勇
赵立强
余东合
杜娟
刘国华
罗志峰
车航
杜光焰
裴宇昕
李年银
刘平礼
徐昆
刘丙晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Co Ltd
Southwest Petroleum University
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610531410.8A priority Critical patent/CN105971579B/zh
Priority to US15/775,384 priority patent/US10301919B2/en
Priority to PCT/CN2016/099424 priority patent/WO2018006497A1/zh
Publication of CN105971579A publication Critical patent/CN105971579A/zh
Application granted granted Critical
Publication of CN105971579B publication Critical patent/CN105971579B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/602Compositions for stimulating production by acting on the underground formation containing surfactants
    • C09K8/604Polymeric surfactants
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/665Compositions based on water or polar solvents containing inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/70Compositions for forming crevices or fractures characterised by their form or by the form of their components, e.g. foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/885Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/90Compositions based on water or polar solvents containing organic compounds macromolecular compounds of natural origin, e.g. polysaccharides, cellulose
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/30Viscoelastic surfactants [VES]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

本发明公开了一种相变水力压裂工艺,包括:(1)向地层注入清水或常规压裂液,使地层产生裂缝;(2)将非相变液体M和相变液体N置于不同的配液罐中,同时向井筒注入,液体M与液体N注入体积比为0~0.7:0.3~1;(3)向井筒内注入顶替液,使井筒内的非相变液体M和相变液体N全部进入储层;(4)关井憋压30‑200min,使相变液体N生成的固相物质在裂缝中铺置;(5)泄压,施工完成。液体M是常规压裂液、海水、地层水或地面淡水,液体N由超分子构筑单元、超分子功能单元、表面活性剂、无机盐、氧化剂等组成。本发明不加入固体支撑剂就能形成地下油气渗流的通道与沟槽,大幅度提高水力压裂的裂缝导流能力,其施工操作简便、安全、高效。

Description

一种相变水力压裂工艺
技术领域
本发明涉及石油开发过程中的储层水力压裂增产技术,特别是涉及一种相变水力压裂工艺。
背景技术
水力压裂技术作为油气井增产、水井增注的主要措施已广泛应用在低渗透油气田的开发中,为油气田的稳产做出了重要贡献。水力压裂过程是通过对目的储层泵注高粘度的前置液,以高压形成裂缝并延展,而后泵注混有支撑剂的携砂液,携砂液可继续延展裂缝,同时携带支撑剂深入裂缝,再后使压裂液破胶降解为低粘度流体流向井底返排而出,在地层中留下一条由支撑剂支撑裂缝壁面所形成的高导流能力的流动通道,以利于油气从远井地层流向井底。
自1947年美国进行第1次水力压裂以来,经过60多年的发展,水力压裂技术从理论研究到现场实践都取得了惊人的发展。如裂缝扩展模型从二维发展到拟三维和全三维;压裂井动态预测模型从电模拟图版和稳态流模型发展到三维三相不稳态模型;压裂液从原油和清水发展到低、中、高温系列齐全的优质、低伤害、具有延迟交联作用的胍胶有机硼“双变”压裂液体系和清洁压裂液体系;支撑剂从天然石英砂发展到中、高强度人造陶粒;压裂设备从小功率水泥车发展到1000型、2000型以及2500型压裂车;单井压裂施工从小规模、低砂液比发展到超大型、高砂液比压裂作业;压裂应用的领域从特定的低渗油气藏发展到特低渗和中高渗油气藏(有时还有防砂压裂)并举。
然而从水力压裂技术及其发展上看,目前所有压裂技术都是基于液体压裂液压开裂缝后注入固体支撑剂至水力裂缝后,支撑裂缝保持裂缝张开,从而获得高导流能力的流体通道。
2010年斯伦贝谢提出的HIWAY高速通道流动的裂缝导流能力不受支撑剂渗透性的影响,油气并不是从支撑剂充填层通过,而是通过高导流通道流动。但其实现方式需通过对射孔工艺、泵注工艺、泵注设备等严格要求,施工成本高、工艺实施复杂,同样是需要向地层注入支撑剂张开裂缝。
常规胍胶压裂液体系与加砂压裂普遍存在以下问题:
(1)压裂液如果破胶与返排不彻底,将严重伤害形成的人工裂缝的导流能力以及降低裂缝附近的基质渗透率;
(2)面对高温深井,为在高温下保持压裂液的携砂能力,增大胍胶、交联剂等添加剂浓度,导致残渣含量进一步增加,摩阻进一步加大,更加带来了破胶、返排等问题;
(3)对于加砂压裂,为追求高导流能力,采用高砂比加砂,易导致砂堵等事故;
(4)随着施工后生产时间的延长,陶粒与石英砂等常规支撑剂的嵌入、变形、回流等问题会造成压后导流能力的显著下降,施工有效期被大大缩短。
上述问题往往导致裂缝导流能力大大降低,所以,压后试井测得裂缝渗透率常常只能达到实验室的十分之一,甚至百分之一。
为了有效提高压后渗透率、减小压裂液所造成的储层伤害、改善整体压裂效果,本发明提出了一种相变水力压裂工艺,利用相变压裂液自身产生的相态变化,形成固体支撑,而与相变压裂液一同注入的非相变压裂液在压裂结束后返排,让出裂缝内空间,形成油气渗流的通道,大幅度提高裂缝渗透率。
发明内容
本发明的目的在于提供一种相变水力压裂工艺,通过一种不含固相的复合压裂液体系实现不加入固体支撑剂就能形成地下油气渗流的通道与沟槽,大幅度提高水力压裂的裂缝导流能力,其施工操作简便、安全、高效。
为达到以上技术目的,本发明提供以下技术方案。
一种相变水力压裂工艺,依次包括以下步骤:
(1)在高于地层破裂压力下利用高压水力泵车向地层注入压裂液A剂,使地层产生裂缝,待产生的裂缝达到设计要求的裂缝几何尺寸后停泵;
(2)在作业现场将非相变液体M和相变液体N分别置于不同的配液罐中,然后在井口连接三通管线,同时向井筒注入非相变液体M和相变液体N,其中液体M与液体N向地层注入体积比为0~0.7:0.3~1。向地层注入的非相变液体M和相变液体N在储层温度下发生化学、物理作用由液相转变为固相,实现对裂缝的支撑,非相变液体M和相变液体N的注入总量按裂缝设计几何尺寸体积计算;
(3)向井筒内注入顶替液,使井筒内的非相变液体M和相变液体N全部进入储层后,停泵、关井、憋压,所述顶替液为柴油、汽油或3质量%的氯化铵溶液、3质量%的氯化钾溶液;
(4)关井憋压30min-200min,使相变液体N生成的固相物质在裂缝中铺置(而不是在还没有完全反应完的状态下被裂缝闭合挤出地层);
(5)泄压,施工完成。
本发明所述A剂为清水或常规压裂液,所述常规压裂液为胍胶压裂液、纤维素压裂液或聚丙烯酰胺压裂液。
本发明所述液体M是常规压裂液、海水、地层水或地面淡水。
本发明所述液体N由以下各组分按重量百分比组成:超分子构筑单元10-40%,超分子功能单元0-40%,表面活性剂0.5-2%,无机盐0-5%,氧化剂0.5-2%,助溶剂0-2%,其余为溶剂;所述超分子构筑单元为三聚氰胺、三烯丙基异氰脲酸酯或其混合物;所述超分子功能单元为乙酸乙烯酯、丙烯腈或其混合物。
所述表面活性剂为十二烷基苯磺酸钠、吐温20、吐温40、十六烷基三甲基溴化铵其中一种或多种。
所述无机盐为磷酸钠、氯化钙、氯化镁其中一种或多种。
所述氧化剂为双氧水、过硫酸铵或重铬酸钠。
所述助溶剂为聚乙二醇、聚乙烯吡咯烷酮或其混合物。
所述溶剂为甲苯、乙基苯、邻二甲苯、间二甲苯或对二甲苯。
在施工过程中,液体M是不会发生相变的,液体N是用于实现相变压裂工艺的关键液体,只有当液体N在地下发生了转相即液相转变为固相,该相变压裂工艺才是成功的。
相变液体和非相变液体同时注入地层,在相变液体相变成固相后,就会就地支撑裂缝,而非相变材料可以继续流动,这样施工完成后就可以在地层中形成一定的流动通道,实现压裂工艺的高导流能力。
本发明提出一种全新的水力压裂工艺措施—无固相自支撑相变压裂技术,适用于常规砂岩油藏、碳酸盐油藏以及其他复杂油气藏的压裂增产增注改造。其原理是利用不混相的复合压裂液体系压开并形成一定几何尺寸的人工裂缝,通过物理方法和化学方法让裂缝中流体之一或之二形成众多独立的“固体大堤”支撑裂缝,从而形成高渗透能力的“渠道式流道”,提高裂缝的导流能力,从而提高产量。
与现有技术相比,本发明的有益效果如下:
与常规水力压力相比,不用向地层中注入固相支撑剂,而是向压出裂缝的地层注入一种相变压裂液,该相变压裂液在地面以及注入过程中是可流动的液相,进入储层后在超分子化学、物理的作用下,相变压裂液形成固相物质支撑裂缝。由于无固相注入,可有效地降低管柱摩阻,对施工设备、地面管线及井口和施工管柱要求降低,有效降低施工成本,同时降低施工风险及安全隐患。
附图说明
图1是实施例1、实施例2的裂缝导流能力曲线图。
具体实施方式
下面根据附图和实施例进一步说明本发明。
实施例1
以地面露头作为实验材料,采用岩芯裂缝导流能力模拟装置进行室内实验模拟。
首先按设备需求将露头切成岩板(8cm×5cm×1.75cm),将两块岩板重叠放入岩芯夹持器。模拟压裂施工过程,在温度90℃下,改变注入压力及围压进行岩板裂缝导流能力实验。按照“注压裂液A剂→从两个注酸罐中同时注入液体M和液体N→注顶替液将管线中的相变压裂液驱替至岩板中→憋压60min→泄压”,改变闭合压力测试裂缝导流能力变化数据。模拟在相变压裂施工过程中裂缝被相变材料支撑后裂缝所具有的导流能力,岩板实验开始前测得初始导流能力为2.6(μm2·cm)。
测试裂缝导流能力所用各入井液重量百分比:
A剂:常规压裂液:1%胍胶,99%水。
非相变液体M与相变液体N体积比为1:1。M为0.5%胍胶、99.5%水。N为邻二甲苯50g、三聚氰胺12g、乙酸乙烯酯10g、丙烯腈2g、十二烷基苯磺酸钠0.5g、吐温20(0.5g)、磷酸钠2g、过硫酸铵0.5g。
顶替液:3%氯化铵水溶液。
实验结果见图1,岩板经过相变压裂裂缝导流能力实验后,由初始的2.6μm2·cm达到19.8μm2·cm,说明相变压裂实现裂缝支撑是成功的。同时随着裂缝闭合压力的升高,裂缝导流能力有所降低,但相比初始渗透率还是高出很多倍,当闭合压力达到60MPa时,裂缝导流能力还有12.3μm2·cm,说明本发明提供的相变压裂工艺能满足地下的高压条件,当施工完成,相变后的固相材料实现了对地层裂缝的支撑。
实施例2
以地面露头作为实验材料,采用岩芯裂缝导流能力模拟装置进行室内实验模拟。
首先按设备需求将露头切成岩板(8cm×5cm×1.75cm),将两块岩板重叠放入岩芯夹持器。模拟压裂施工过程,在温度80℃下,改变注入压力及围压进行岩板裂缝导流能力实验。按照“注压裂液A剂→从两个注酸罐中同时注入液体M和液体N→注顶替液将管线中的相变压裂液驱替至岩板中→憋压90min→泄压”,改变闭合压力测试裂缝导流能力变化数据。模拟在相变压裂施工过程中裂缝被相变材料支撑后裂缝所具有的导流能力,岩板实验开始前测得初始导流能力为2.8(μm2·cm)。
测试裂缝导流能力所用各入井液重量百分比:
A剂:常规压裂液:1%胍胶,99%水。
非相变液体M与相变液体N体积比为3:7。M为华北油田地层水。N为乙基苯50g、三聚氰胺10g、三烯丙基异氰脲酸酯4g、丙烯腈10g、十二烷基苯磺酸钠0.5g、十六烷基三甲基溴化铵0.5g、氯化钙2g、双氧水1g、聚乙烯吡咯烷酮1g。
顶替液:3%氯化钾水溶液。
实验结果见图1,岩板经过相变压裂裂缝导流能力实验后,由初始的2.8μm2·cm达到22.1μm2·cm,说明相变压裂实现裂缝支撑是成功的。同时随着裂缝闭合压力的升高,裂缝导流能力有所降低,但相比初始渗透率还是高出很多倍,当闭合压力达到60MPa时,裂缝导流能力还有14.5μm2·cm,说明本发明提供的相变压裂工艺能满足地下的高压条件,当施工完成,相变后的固相材料实现了对地层裂缝的支撑。

Claims (6)

1.一种相变水力压裂工艺,依次包括以下步骤:
(1)在高于地层破裂压力下向地层注入压裂液A剂,使地层产生裂缝,待产生的裂缝达到设计要求的裂缝几何尺寸后停泵,所述A剂为清水或常规压裂液,所述常规压裂液为胍胶压裂液、纤维素压裂液或聚丙烯酰胺压裂液;
(2)在作业现场将非相变液体M和相变液体N分别置于不同的配液罐中,同时向井筒注入非相变液体M和相变液体N,其中液体M与液体N向地层注入体积比为0~0.7:0.3~1,非相变液体M和相变液体N的注入总量按裂缝设计几何尺寸体积计算;所述非相变液体M是常规压裂液、海水、地层水或地面淡水,所述相变液体N由以下各组分按重量百分比组成:超分子构筑单元10-40%,超分子功能单元0-40%,表面活性剂0.5-2%,无机盐0-5%,氧化剂0.5-2%,助溶剂0-2%,其余为溶剂;所述超分子构筑单元为三聚氰胺、三烯丙基异氰脲酸酯或其混合物;所述超分子功能单元为乙酸乙烯酯、丙烯腈或其混合物;所述溶剂为甲苯、乙基苯、邻二甲苯、间二甲苯或对二甲苯;
(3)向井筒内注入顶替液,使井筒内的非相变液体M和相变液体N全部进入储层后,停泵、关井、憋压;
(4)关井憋压30min-200min,使相变液体N生成的固相物质在裂缝中铺置;
(5)泄压,施工完成。
2.如权利要求1所述的一种相变水力压裂工艺,其特征在于,所述顶替液为柴油、汽油或3质量%的氯化铵溶液、3质量%的氯化钾溶液。
3.如权利要求1所述的一种相变水力压裂工艺,其特征在于,所述表面活性剂为十二烷基苯磺酸钠、吐温20、吐温40、十六烷基三甲基溴化铵其中一种或多种。
4.如权利要求1所述的一种相变水力压裂工艺,其特征在于,所述无机盐为磷酸钠、氯化钙、氯化镁其中一种或多种。
5.如权利要求1所述的一种相变水力压裂工艺,其特征在于,所述氧化剂为双氧水、过硫酸铵或重铬酸钠。
6.如权利要求1所述的一种相变水力压裂工艺,其特征在于,所述助溶剂为聚乙二醇、聚乙烯吡咯烷酮或其混合物。
CN201610531410.8A 2016-07-07 2016-07-07 一种相变水力压裂工艺 Active CN105971579B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610531410.8A CN105971579B (zh) 2016-07-07 2016-07-07 一种相变水力压裂工艺
US15/775,384 US10301919B2 (en) 2016-07-07 2016-09-20 Phase-change hydraulic fracturing process
PCT/CN2016/099424 WO2018006497A1 (zh) 2016-07-07 2016-09-20 一种相变水力压裂工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610531410.8A CN105971579B (zh) 2016-07-07 2016-07-07 一种相变水力压裂工艺

Publications (2)

Publication Number Publication Date
CN105971579A CN105971579A (zh) 2016-09-28
CN105971579B true CN105971579B (zh) 2018-05-08

Family

ID=56955190

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610531410.8A Active CN105971579B (zh) 2016-07-07 2016-07-07 一种相变水力压裂工艺

Country Status (3)

Country Link
US (1) US10301919B2 (zh)
CN (1) CN105971579B (zh)
WO (1) WO2018006497A1 (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107575186B (zh) * 2017-09-12 2019-08-06 西南石油大学 一种过筛管防砂工艺
CN108266222A (zh) * 2018-01-10 2018-07-10 中国矿业大学 一种溶剂抽提、湿润反转、脉动压裂三位一体煤体增透方法
CN108561111B (zh) * 2018-03-28 2020-04-10 中国石油天然气股份有限公司 一种压裂方法
CN108587029B (zh) * 2018-03-28 2020-09-08 中国石油天然气股份有限公司 一种相变材料液及其所形成的固相支撑剂
CN108915658B (zh) * 2018-07-26 2023-12-12 中国石油大学(北京) 多裂缝起裂装置
CN109372466B (zh) * 2018-10-10 2020-10-27 中国石油天然气股份有限公司华北油田分公司 利用天然地温场实现液-固-液相态转化的暂堵转向方法
CN109113698A (zh) * 2018-10-20 2019-01-01 西南石油大学 一种基于温控相变材料的调剖方法
CN109723423B (zh) * 2019-03-07 2021-04-13 西南石油大学 一种利用相变材料支撑裂缝前缘的复合酸压方法
CN110439527B (zh) * 2019-07-18 2022-03-11 西南石油大学 一种碳酸盐岩储层自降滤酸压方法
CN110529084B (zh) * 2019-07-31 2021-11-02 中国海洋石油集团有限公司 一种高渗砂岩储层长井段转向分流酸化方法
CN110511306A (zh) * 2019-09-04 2019-11-29 西南石油大学 一种基于超分子材料的超低密度支撑剂的生产方法
CN110591684B (zh) * 2019-09-24 2021-09-21 中国海洋石油集团有限公司 一种两相温度响应相变压裂液体系
CN110593838B (zh) * 2019-09-24 2022-01-11 中国海洋石油集团有限公司 一种两相温度响应相变压裂工艺
CN110805429A (zh) * 2019-10-09 2020-02-18 大港油田集团有限责任公司 一种动态裂缝自支撑压裂工艺研究装置及其导流测定方法
CN112727428B (zh) * 2019-10-28 2022-07-05 中国石油天然气股份有限公司 用于非常规储层的自支撑压裂工艺
CN112727429B (zh) * 2019-10-28 2022-07-05 中国石油天然气股份有限公司 用于非常规储层主裂缝段改造的自支撑压裂液体系
CN111410948A (zh) * 2019-12-30 2020-07-14 浙江工业大学 一种温度响应型相变压裂液及其使用方法
CN111271037A (zh) * 2020-03-11 2020-06-12 西南石油大学 一种煤层气智能转向压裂工艺
CN113835137B (zh) * 2020-06-23 2023-08-22 中国石油天然气股份有限公司 一种预测盆地深层油气相态的方法及装置
CN111706311B (zh) * 2020-07-22 2022-02-22 青岛大地新能源技术研究院 一种液体自支撑高速通道压裂施工工艺
CN111827950B (zh) * 2020-07-22 2022-02-22 青岛大地新能源技术研究院 一种实现液体自支撑高速通道的脉冲式压裂施工工艺
CN114482963A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种用于水力压裂的储层改造方法与应用
CN113530515A (zh) * 2021-07-14 2021-10-22 中国石油大学(华东) 一种超声波辅助生热剂激励相变压裂液稠油层增产的工艺方法
CN114059974A (zh) * 2021-11-17 2022-02-18 北京大学 海域水合物藏径向井复合液固相变材料的防砂方法、装置及实验方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225739A (zh) * 2007-01-17 2008-07-23 普拉德研究及开发股份有限公司 用于对地下地层中的重油进行采样的方法和设备
CN104265354A (zh) * 2014-08-07 2015-01-07 中国矿业大学 一种低透气性煤层水力相变致裂强化瓦斯抽采方法
CN105715243A (zh) * 2014-12-02 2016-06-29 中国石油天然气股份有限公司 对煤岩进行造缝的方法
CN105715244A (zh) * 2014-12-02 2016-06-29 中国石油天然气股份有限公司 改造煤储层的设计方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892147A (en) * 1987-12-28 1990-01-09 Mobil Oil Corporation Hydraulic fracturing utilizing a refractory proppant
US5900451A (en) * 1997-05-15 1999-05-04 Reichhold Chemicals, Inc. Collaidally stabilized butadiene emulsions
CA2257028C (en) * 1998-12-24 2003-11-18 Fracmaster Ltd. Liquid co2/hydrocarbon oil emulsion fracturing system
US7195065B2 (en) 2004-08-05 2007-03-27 Baker Hughes Incorporated Stabilizing crosslinked polymer guars and modified guar derivatives
US8703659B2 (en) * 2005-01-24 2014-04-22 Halliburton Energy Services, Inc. Sealant composition comprising a gel system and a reduced amount of cement for a permeable zone downhole
CA2640359C (en) * 2006-01-27 2012-06-26 Schlumberger Technology B.V. Method for hydraulic fracturing of subterranean formation
US8498852B2 (en) * 2009-06-05 2013-07-30 Schlumberger Tehcnology Corporation Method and apparatus for efficient real-time characterization of hydraulic fractures and fracturing optimization based thereon
US20140083702A1 (en) * 2012-09-21 2014-03-27 Schlumberger Technology Corporation In situ polymerization for completions sealing or repair
US20140174736A1 (en) * 2012-12-21 2014-06-26 Halliburton Energy Services, Inc. Wellbore Servicing Materials and Methods of Making and Using Same
US9567841B2 (en) * 2014-07-01 2017-02-14 Research Triangle Institute Cementitious fracture fluid and methods of use thereof
CN105134284B (zh) * 2015-08-03 2017-05-31 中国矿业大学 一种基于水平定向钻孔液氮循环冻融增透抽采瓦斯方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225739A (zh) * 2007-01-17 2008-07-23 普拉德研究及开发股份有限公司 用于对地下地层中的重油进行采样的方法和设备
CN104265354A (zh) * 2014-08-07 2015-01-07 中国矿业大学 一种低透气性煤层水力相变致裂强化瓦斯抽采方法
CN105715243A (zh) * 2014-12-02 2016-06-29 中国石油天然气股份有限公司 对煤岩进行造缝的方法
CN105715244A (zh) * 2014-12-02 2016-06-29 中国石油天然气股份有限公司 改造煤储层的设计方法

Also Published As

Publication number Publication date
CN105971579A (zh) 2016-09-28
US20190003294A1 (en) 2019-01-03
US10301919B2 (en) 2019-05-28
WO2018006497A1 (zh) 2018-01-11

Similar Documents

Publication Publication Date Title
CN105971579B (zh) 一种相变水力压裂工艺
US10989030B2 (en) Synthetic sweet spots in tight formations by injection of nano encapsulated reactants
CN110685636B (zh) 形成高效率地热井筒的方法
CN106190086B (zh) 一种用于相变压裂的相变压裂液体系
Jafarpour et al. Increasing the stimulation efficiency of heterogeneous carbonate reservoirs by developing a multi-bached acid system
CN104031625B (zh) 用于低渗非均质砂岩油藏的解堵剂及使用方法
CN108561111A (zh) 一种相变压裂方法
CN106640000B (zh) 稠油油藏蒸汽驱深部封窜可膨胀石墨堵剂体系及注入方法
Alhuraishawy et al. Areal sweep efficiency improvement by integrating preformed particle gel and low salinity water flooding in fractured reservoirs
US20150175879A1 (en) Tight gas stimulation by in-situ nitrogen generation
CN103321606B (zh) 一种低渗裂缝性油藏油井堵水屏蔽方法
CN103937475B (zh) 二氧化碳酸化解堵剂及酸化后残液不返排工艺
US20130146288A1 (en) Method and apparatus to increase recovery of hydrocarbons
CN106194145A (zh) 一种多级暂堵深度网络酸压方法
CN107575186B (zh) 一种过筛管防砂工艺
CN102562012B (zh) 一种提高水驱开发普通稠油油藏采收率的方法
Sun et al. Combining preformed particle gel and low salinity waterflooding to improve conformance control in fractured reservoirs
CN104087275A (zh) 一种抗高温高盐微细凝胶颗粒调剖剂及其制备方法和应用
CN105505360A (zh) 一种氟硼酸解堵剂及酸化解堵方法
CN101915079B (zh) 一种堵解一体化增产工艺
CN102926701B (zh) 一种连续混配型堵水工艺方法
CN104762072A (zh) 渗透选择性堵剂及其制备方法和使用方法
Zhao et al. Importance of conformance control in reinforcing synergy of CO2 EOR and sequestration
Wiese et al. Near well-bore sealing in the Bečej CO2 reservoir: Field tests of a silicate based sealant
CN109630066A (zh) 低渗油田高含水油井堵水与酸化联合作业的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20201012

Address after: No. 8 Road, Xindu Xindu District of Chengdu city of Sichuan Province in 610000

Patentee after: SOUTHWEST PETROLEUM University

Patentee after: PetroChina Co.,Ltd.

Address before: No. 8 Road, Xindu Xindu District of Chengdu city of Sichuan Province in 610500

Patentee before: Zhao Liqiang

Patentee before: Yang Yong

Patentee before: Yu Donghe

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: Intercontinental building, 16 ande Road, Dongcheng District, Beijing

Patentee after: PetroChina Co.,Ltd.

Patentee after: SOUTHWEST PETROLEUM University

Address before: No.8 Xindu Avenue, Xindu District, Chengdu, Sichuan 610000

Patentee before: SOUTHWEST PETROLEUM University

Patentee before: PetroChina Co.,Ltd.

CP03 Change of name, title or address