WO2017018506A1 - 身体状況検知装置、身体状況検知方法及びベッドシステム - Google Patents
身体状況検知装置、身体状況検知方法及びベッドシステム Download PDFInfo
- Publication number
- WO2017018506A1 WO2017018506A1 PCT/JP2016/072325 JP2016072325W WO2017018506A1 WO 2017018506 A1 WO2017018506 A1 WO 2017018506A1 JP 2016072325 W JP2016072325 W JP 2016072325W WO 2017018506 A1 WO2017018506 A1 WO 2017018506A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subject
- load
- gravity
- center
- period
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61G—TRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
- A61G7/00—Beds specially adapted for nursing; Devices for lifting patients or disabled persons
- A61G7/05—Parts, details or accessories of beds
Definitions
- the present invention relates to a physical condition detection device using a load detector and a bed system including the physical condition detection device.
- the present invention also relates to a body condition detection method using a load detector.
- a system for remotely managing patients and caregivers on the bed is used in hospitals and nursing care facilities. For example, if a system for detecting the presence / absence of a patient in a hospital is used, the nurse at the nurse station can check whether the patient is on the bed of the patient room without visiting the patient room.
- Patent Document 1 discloses an in-bed detection method in which a load detection unit is disposed under each of four legs of a bed and whether or not a subject is present on the bed based on an output from the load detection unit. Disclosure. Patent Document 2 discloses a motion detection device that specifies the position of the center of gravity of a subject on a bed based on outputs from four load sensors arranged under the four legs of the bed.
- the presence detection method described in Patent Literature 1 and the motion detection device described in Patent Literature 2 can know the subject's presence / absence and center of gravity, but the subject's body and head orientation, It is difficult to judge physical conditions such as posture. It would be extremely useful to improve symptoms such as sleep apnea syndrome and snoring if such physical condition information, particularly information on the physical condition of the subject at bedtime, can be obtained without using a recording device. .
- an object of the present invention is to provide a physical condition detection device, a physical condition detection method, and a bed system that can detect in detail the physical condition of a subject on a bed based on detection by a load sensor.
- a physical condition detection device for detecting the physical condition of a subject on a bed, A plurality of load detectors that are provided under the bed or under the legs of the bed and detect changes in load according to the breathing of the subject; There is provided a physical condition detection device including a physical condition detection unit that determines a direction in which the body axis of the subject extends and / or an arrangement of the subject's head based on the detected change in load.
- the physical condition detection device may further include a center-of-gravity position calculation unit that obtains a temporal change in the center-of-gravity position of the subject based on the detected change in the load.
- the direction in which the subject's body axis extends and / or the placement of the subject's head may be determined based on the temporal change in the position of the center of gravity of the subject.
- the physical condition detection unit determines a direction in which the body axis of the subject extends in accordance with a change in the detected load or a temporal change in the gravity center position of the subject.
- a direction determining unit, and a head arrangement determining unit that determines the arrangement of the subject's head in the determined direction based on a change in the detected load or a temporal change in the gravity center position of the subject.
- the physical condition detection unit or the head arrangement determination unit is configured to detect the subject based on a waveform indicating a change in the detected load or a temporal change in the gravity center position of the subject.
- the arrangement of the head may be determined.
- the waveform includes an inspiration period indicating rising or falling according to the subject's inspiration, an expiration period indicating rising or falling according to the subject's expiration, and an inspiration period and expiration.
- the body condition detection unit or the head placement determination unit determines the placement of the subject's head based on at least one of an inspiration period, an expiration period, and a hold period. May be.
- the physical condition detection apparatus may further include a sleeping posture determination unit that determines the sleeping posture of the subject based on a waveform indicating a change in the detected load or a temporal change in the gravity center position of the subject. Good.
- a physical condition detection method for detecting a physical condition of a subject on a bed Detecting a change in load according to the breathing of the subject by a plurality of load detectors installed under the bed or under the legs of the bed;
- a method is provided that includes determining a direction in which the subject's body axis extends and / or placement of the subject's head based on the detected change in load.
- the method according to the third aspect may further include obtaining a temporal change in the position of the center of gravity of the subject based on the change in the detected load, and the direction in which the body axis of the subject extends in accordance with the change in the detected load. And / or determining the placement of the subject's head is to determine a direction in which the subject's body axis extends and / or a placement of the subject's head based on a temporal change in the position of the subject's center of gravity. Also good.
- a direction in which a subject's body axis extends is determined based on a change in the detected load or a temporal change in the center of gravity of the subject, and then the change in the detected load or the The placement of the subject's head in the determined direction may be determined based on the temporal change in the position of the subject's center of gravity.
- the placement of the head of the subject may be determined based on a waveform indicating the change in the detected load or the temporal change in the position of the center of gravity of the subject.
- the waveform includes an inspiration period indicating rising or falling according to inhalation of the subject, an expiration period indicating rising or falling according to the expiration of the subject, and an inspiration period and expiration.
- a hold period between periods may be included, and the placement of the subject's head may be determined based on at least one of an inhalation period, an expiration period, and a hold period.
- the physical condition detection method may further include determining the sleeping posture of the subject based on the waveform indicating the change in the detected load or the temporal change in the position of the center of gravity of the subject.
- a physical condition detection device for detecting the physical condition of a subject on a bed, A plurality of load detectors that are provided under the bed or under the legs of the bed and detect changes in load according to the breathing of the subject; A physical condition detection device is provided that includes a physical condition detection unit that determines a direction in which the body axis of the subject extends based on the detected change in load.
- the physical condition of the subject on the bed can be detected in detail based on detection by the load detector.
- FIG. 1 is a block diagram showing an overall configuration of a physical condition detection device according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing an operation flow according to the embodiment of the present invention.
- FIG. 3 is an explanatory diagram showing the arrangement of the load detector with respect to the bed.
- FIG. 4 is an explanatory diagram showing the arrangement of four load detection areas defined on the upper surface of the bed.
- FIG. 5 shows an example of a load signal from the load detector.
- FIG. 6 is an explanatory diagram showing movement of the center of gravity position of the subject on the bed.
- FIGS. 7A to 7D are explanatory views showing the movement of the center of gravity of the subject on the bed and the direction in which the body axis of the subject extends.
- FIGS. 1 is a block diagram showing an overall configuration of a physical condition detection device according to an embodiment of the present invention.
- FIG. 2 is a flowchart showing an operation flow according to the embodiment of the present invention.
- FIG. 3 is
- FIG. 7A, 7B, and 7C show the positions of the centers of gravity of the subject at times t 20 , t 21 , and t 22 , respectively.
- FIG. 7D shows the direction in which the body axis of the subject extends in the position of the center of gravity of the subject at each time.
- 8 (a) and 8 (b) show a schematic state of fluctuation of the detection value of the load detector accompanying the subject's breathing, and FIG. 8 (a) shows the load arranged on the head side of the subject.
- FIG. 8 (b) shows the state of fluctuation of the detection value from the detector
- FIG. 8B shows the state of fluctuation of the detection value from the load detector arranged on the subject's leg side.
- FIGS. 11 (a) and 11 (c) show another example of the schematic state of the variation of the detection value of the load detector accompanying the subject's breathing, and FIG. 9 (a) shows the head side of the subject.
- FIG. 9B shows another example of how the detected value fluctuates from the load detector arranged on the leg side of the subject.
- Indicates. 10A shows an example of a load signal from the load detector
- FIG. 10B shows an example of a respiratory waveform extracted from the load signal of FIG. 10A.
- FIGS. 11 (a) to 11 (c) show a schematic view of fluctuations in detection values from a load detector arranged on the head side of the subject, and FIG. 11 (a) shows that the subject lies supine.
- FIG. 11 (a) shows that the subject lies supine.
- FIG. 11B shows the state of fluctuation when the subject is lying
- FIG. 11C shows the state of fluctuation when the subject is lying
- 12 (a) to 12 (c) show other examples of schematic states of fluctuations in detection values from the load detector arranged on the subject's head
- FIG. 12 (a) shows the subject.
- FIG. 12B shows another example of the change when the subject is lying
- FIG. 12C shows the other example of the change when the subject is lying
- FIG. 13 shows an example of information displayed on the display device.
- FIG. 14 is a flowchart showing a flow of operations according to the modification of the present invention.
- FIG. 15 is an explanatory diagram showing a state in which the load value is periodically detected during the detection period T1.
- FIG. 16 is an explanatory diagram illustrating an example of a method for calculating the body axis direction.
- FIG. 17 is an explanatory diagram illustrating another example of a method for calculating the body axis direction.
- FIG. 18 is an explanatory diagram for explaining a method of obtaining a waveform based on the movement of the gravity center position.
- FIG. 19A is an example of a waveform based on the movement of the gravity center position
- FIG. 19B is a waveform obtained by simplifying the waveform of FIG. 20A shows an example of the subject's center of gravity locus
- FIG. 20B shows the center of gravity locus obtained by converting the center of gravity locus shown in FIG. 20A to a low sampling frequency.
- FIG. 21 (a), 21 (b), and 21 (c) remove the locus of the center of gravity movement caused by the large body movement of the subject from the center of gravity locus of the subject on the bed shown in FIG. 20 (a). Shows the trajectory.
- FIG. 22 is an explanatory diagram showing a state in which the locus of gravity center is broken down into a respiratory component and a small body motion component.
- FIG. 23 shows the respiratory component extracted from the barycentric locus shown in FIG.
- FIG. 24 is a block diagram showing the overall configuration of the bed system according to the embodiment of the present invention.
- the body condition detection apparatus 100 of the present embodiment mainly includes a load detection unit 1, a control unit 3, a storage unit 4, and a display unit 5.
- the load detection unit 1 and the control unit 3 are connected via an A / D conversion unit 2. Further, a notification unit 6 and an input unit 7 are connected to the control unit 3.
- the load detector 1 includes four load detectors 11, 12, 13, and 14. Each of the load detectors 11, 12, 13, and 14 is a load detector that detects a load using, for example, a beam-type load cell. Such a load detector is described in, for example, Japanese Patent No. 4829020 and Japanese Patent No. 4002905. Each of the load detectors 11, 12, 13, and 14 is connected to the A / D converter 2 by wiring.
- the A / D converter 2 includes an A / D converter that converts an analog signal from the load detector 1 into a digital signal, and is connected to the load detector 1 and the controller 3 by wiring.
- the control unit 3 is a dedicated or general-purpose computer, and a center-of-gravity position calculation unit 31, a body axis direction determination unit 32, a head arrangement determination unit 33, and a sleeping posture determination unit 34 are built therein.
- the storage unit 4 is a storage device that stores data used in the physical condition detection device 100, and for example, a hard disk (magnetic disk) can be used.
- the display unit 5 is a monitor such as a liquid crystal monitor that displays information output from the control unit 3 to the user of the physical condition detection device 100.
- the notification unit 6 includes a device that performs predetermined notification visually or audibly based on information from the control unit 3, for example, a speaker.
- the input unit 7 is an interface for performing a predetermined input to the control unit 3 and can be a keyboard and a mouse.
- detection of the physical condition of the subject using the physical condition detection device 100 includes a load detection step (S101) for detecting the subject's load, and a gravity center position for calculating the subject's center of gravity based on the detected load.
- Calculation step (S102) body axis direction determination step (S103) for determining the direction in which the subject's body axis extends based on the obtained center of gravity position, which side of the center of gravity the subject's head is located in the body axis direction
- the head arrangement determining step (S104) for determining the body position, the sleeping posture determining step (S105) for determining whether the subject is in the supine, lying or prone state, and the physical condition determined in the above steps are displayed.
- a display process (S106) is included.
- the four load detectors 11, 12, 13, and 14 of the load detection part 1 are arrange
- the load applied to the upper surface of the bed BD is four load detectors 11, 12, 13 and 14 are detected in a distributed manner.
- the rectangular upper surface of the bed BD is equally divided into four rectangular areas I to IV by being divided into two parts vertically and horizontally.
- the load applied to the region I where the lower left half of the subject S lying on the bed BD is mainly detected by the load detector 11, and the lower right half of the subject S in the same state is detected.
- the load applied to the region II where the is located is mainly detected by the load detector 12.
- the load applied to the region III where the upper right half of the subject S lying on the bed BD is located is mainly detected by the load detector 13, and the region IV where the upper left half of the subject S in the same state is located.
- the load applied to is mainly detected by the load detector 14.
- the load detectors 11, 12, 13, and 14 each detect a load (load change) and output it to the A / D converter 2 as an analog signal.
- the A / D conversion unit 2 converts the analog signal into a digital signal with a sampling period of 0.1 seconds, for example, and outputs the digital signal to the control unit 3 as a digital signal (hereinafter “load signal”).
- FIG. 5 shows load signals s 1 (solid line), s 2 (dashed line), and s 3 (dashed line) output from the load detectors 11, 12, 13, and 14 output from time t 10 to time t 14.
- S 4 two-dot chain line.
- the subject S lies on the center of the bed BD as shown in FIG. 4 from time t 10 to time t 11 (period P 11 ), and from time t 11 to time t 12 ( During the period P 12 ), the bed BD moves to the areas I and IV of the bed BD, and during the period from the time t 12 to the time t 13 (period P 13 ), is slightly closer to the center of the bed BD than the period P 12. It has been observed that during the period from time t 13 to time t 14 (period P 14 ), he was lying on the center of the bed BD.
- the signals s 1 and s 4 of FIG. 4 indicate smaller load values than the period P 12
- the signals s 2 and s 3 from the load detectors 12 and 13 arranged in the regions II and III are larger than the period P 12.
- the load value is shown.
- the center-of-gravity position calculation unit 31 determines the position G (X, X, G) of the center of gravity G of the subject S on the bed BD at time t based on the load signals s 1 to s 4 from the load detectors 11 to 14.
- Y) is calculated with a predetermined period T (for example, equal to the above-described sampling period of 0.1 second).
- T for example, equal to the above-described sampling period of 0.1 second.
- (X, Y) indicates coordinates on the XY coordinate plane, where X is taken in the longitudinal direction and Y is taken in the lateral direction with the center of the bed BD as the origin (FIG. 6).
- G (X, Y) represents the coordinates of the load detectors 11, 12, 13, 14 as (X 11 , Y 11 ), (X 12 , Y 12 ), (X 13 , Y 13 ), (X 14 ), respectively. , Y 14 ), and the detected load values of the load detectors 11 , 12 , 13 , and 14 are respectively calculated as W 11 , W 12 , W 13 , and W 14 according to the following equations.
- FIG. 6 shows the position G () of the center of gravity G of the subject S on the bed BD at times t 110 , t 120 , t 130 and t 140 included in the periods P 11 , P 12 , P 13 and P 14 in FIG.
- X P11 , Y P11 ), G (X P12 , Y P12 ), G (X P13 , Y P13 ), G (X P14 , Y P14 ) are shown.
- the center-of-gravity position calculation unit 31 stores the position G (X, Y) of the center-of-gravity G at each time t thus obtained in the storage unit 4, for example.
- the body axis direction determination unit 32 uses the position G (X, Y) of the center of gravity G calculated in the center of gravity position calculation step S102 based on the following principle to determine the body axis of the subject S.
- the direction in which SA extends is determined.
- the body axis direction determination unit 32 can determine the direction in which the body axis SA of the subject S extends by obtaining the direction of minute movement of the center of gravity G calculated by the center of gravity position calculation unit 31.
- the body axis direction determination unit 32 firstly stores the position G (X t20 , Y t20 ) of the center of gravity G of the subject S at time t 20 stored in the storage unit 4 in the center of gravity position calculation step S102 (FIG. 7 (a)) and a position G (X t21 , Y t21 ) of the center of gravity G of the subject S at a time t 21 (for example, 1 second after the time t 20 ) slightly after the time t 20 (FIG.
- the center of gravity G of the subject S moves along the direction in which the body axis SA of the subject S extends in accordance with the breathing of the subject S as described above. Therefore, the body axis direction determining unit 32, as described above, uses a plurality of center-of-gravity positions G (X, Y) obtained using a sampling cycle smaller than the cycle of one breath (about 3 to 5 seconds), in other words, Then, the extending direction of the body axis SA can be determined based on the positions G (X, Y) of the plurality of gravity centers G included in the time corresponding to one breath.
- the head arrangement determining unit 33 In the head arrangement determining step S104, the head arrangement determining unit 33, based on the following principle, the extending direction of the body axis SA determined in the body axis direction determining step S103 and the load signal s 1 from the load detecting unit 1 are used. ⁇ s 4 is used to determine the placement of the head of subject S.
- FIG. 8A shows a waveform of a load signal from a load detector located on the head side of the subject S (hereinafter referred to as “head side waveform HW”), and FIG. 8B shows the leg side of the subject S.
- a waveform of a load signal from a load detector located (hereinafter referred to as “leg-side waveform LW”) is shown.
- Time t 30 is the time when the subject S starts inspiration
- time t 31 is the time that the subject S is completed intake
- time t 32 is time
- the time t 33 to the subject S starts exhalation ends the subject S exhaled
- Time t34 is the time when the subject S starts the next inspiration.
- the detection value of the detector gradually decreases, while the detection value of the load detector arranged on the leg side of the subject S gradually increases. This is because the gravity center position G of the subject S moves to the leg side during inhalation.
- the head-side waveform HW and leg-side waveform LW shown in FIGS. 8A and 8B have the following characteristics.
- the head-side waveform HW and leg-side waveform LW both inspiration period P 31 of the subject S is performing the intake air is longer than the exhalation period P 33 of the subject S is performing breath. That is, in the head-side waveform HW, smaller than the rise of the slope of the waveform at the slope of the falling exhalation period P 33 of the waveform of the intake period P 31, in the leg waveform LW, the rise of the waveform in the inspiration period P 31 the slope is less than the slope of the falling of the waveform in the breath period P 33.
- the head-side waveform HW and leg-side waveform LW both intake after the holding period until the start of exhalation time t 32 from the end of the intake subject S is the time t 31 P 32 and subject S is the time t 33,
- P 32 and P 34 a substantially flat portion appears in the vicinity of the top of the waveform.
- the length of the intake after the hold period P 32 is longer than the length of the expiration after the hold period P 34.
- the head-side waveform HW and the leg-side waveform LW have the above-described characteristics, respectively, and a mountain-shaped waveform or a valley-shaped waveform representing the inspiratory period P 31 , post-inspiratory hold period P 32 , and expiratory period P 33 is the central intake after the hold period P 32 is asymmetrical waveform (back and forth in the middle). Further, when the head side waveform HW and the leg side waveform LW are compared, in the portion where the waveform rises, the rising slope is larger in the head side waveform HW than in the leg side waveform LW, and is substantially flat after the waveform rises.
- the length of the portion is shorter in the head-side waveform HW than in the leg-side waveform LW, and in the portion where the waveform falls, the slope of the fall is smaller in the head-side waveform HW than in the leg-side waveform LW.
- the head-side waveform HW is longer than the leg-side waveform LW.
- the head arrangement determination unit 33 analyzes the load signal from the load detection unit 1 and based on at least one of the inhalation period P 31 , the post-inspiration hold period P 32 , the exhalation period P 33 , and the post-exhalation hold period P 34. Thus, it can be determined whether the load signal is the head-side waveform HW or the leg-side waveform LW. And the head arrangement
- the inventors of the present invention further investigated the shapes of the head-side waveform and the leg-side waveform of a plurality of subjects.
- the head having characteristics different from the above-mentioned head-side waveform HW and leg-side waveform LW. It was discovered that it exhibits a side waveform and a leg side waveform.
- the characteristics of the head-side waveform HWm (FIG. 9 (a)) and the leg-side waveform LWm (FIG. 9 (b)) presented by the subject S are as follows.
- the head-side waveform HWm and leg-side waveform LWm both inspiration period P 31 of the subject S is performing the intake air is shorter than the expiratory period P 33 of the subject S is performing breath. That is, in the head-side waveform HWM, greater than the slope of the falling edge of the waveform of the intake period P 31 is the slope of the rise of the waveform in the breath period P 33, in the leg waveform Lwm, the rise of the waveform of the intake period P 31 slope is greater than the slope of the falling edge of the waveform in the breath period P 33.
- the head-side waveform HWm and leg-side waveform LWm both intake after the holding period until the start of exhalation time t 32 after the end of the intake subject S is the time t 31 P 32 and the subject S is the time t 33, There is a post-expiration hold period P 34 from the end of expiration to the start of inspiration at time t 34 , and a substantially flat portion appears in the vicinity of the top of the waveform in these hold periods P 32 and P 34 .
- the length of the intake after the hold period P 32 is shorter than the length of the expiration after the hold period P 34.
- the head-side waveform HWm and the leg-side waveform LWm have the above-described characteristics, respectively, and a mountain-shaped waveform or a valley-shaped waveform representing the inspiratory period P 31 , post-inspiratory hold period P 32 , and expiratory period P 33 is
- the waveform is asymmetric with respect to the center of the post-intake hold period P 32 (the midpoint between time t 31 and time t 32 ). Further, when the head side waveform HWm and the leg side waveform LWm are compared, in the portion where the waveform rises, the rising slope is smaller in the head side waveform HWm than in the leg side waveform LWm, and is substantially flat after the waveform rises.
- the length of the head portion is longer in the head-side waveform HWm than the leg-side waveform LWm, and in the portion where the waveform falls, the slope of the fall is larger in the head-side waveform HWm than in the leg-side waveform LWm.
- the head-side waveform HWm is shorter than the leg-side waveform LWm.
- the head arrangement determining unit 33 analyzes the load signal from the load detection unit 1 to analyze the inspiration period P 31 and the post-inspiration hold period P. 32 , based on at least one of the expiration period P 33 and the post-expiration hold period P 34 , it can be determined whether the load signal is the head-side waveform HWm or the leg-side waveform LWm. And the head arrangement
- FIG. 7D A case where it is determined that it extends (FIG. 7D) will be described as an example.
- the subject S exhibits a head-side waveform HW (FIG. 8A) and a leg-side waveform (FIG. 8B).
- the head arrangement determining unit 33 loads the load signal s 2 from the load detector 12 that mainly measures the load applied to the region II or the load from the load detector 14 that mainly measures the load applied to the region IV.
- the load signal s 4 from the load detector 14 is used. Shall be used.
- Head arrangement determination unit 33 selects the load signal s 4 are then from the load signal s 4, taking out the vibration of the fine detection value due to gravity center movement due to respiration (respiratory signals, or respiratory waveform).
- the load signal s 4 includes a static load due to the weight of the subject S and a load signal resulting from the center of gravity movement due to the breathing of the subject S. It is known that a person's breathing is about 12 to 20 times per minute. When this is converted into a period, it is about 3 to 5 seconds, and when converted into a frequency, it is about 0.2 Hz to 0.33 Hz.
- the head arrangement determination unit 33 for example, Fourier transform to the load signal s 4 from the load detector 14, frequency filter, performs an inverse Fourier transform, the frequency range of about 0.2 Hz ⁇ about 0.33Hz Take out the respiratory waveform.
- FIG. 10 (a) the load signal s 4 from the load detector 14 in the period P 21, in FIG. 10 (b), the respiratory waveform (respiration signal) taken out from the load signal s 4 shown in FIG. 10 (a) BW is shown.
- a period P 21 shown in FIG. 10A is a period including time t 20 to time t 22 shown in FIG.
- the subject S is substantially stationary in the supine state in which the body axis SA extends between the region II and the region IV.
- the fluctuation waveform BW appears in FIG. Absent.
- Figure 10 (b) shows the respiratory waveform BW in a period corresponding to any of 10 seconds of the period P 21.
- FIG. 10B since only the change in the load value caused by the movement of the center of gravity G due to respiration is taken out, the minute change in the load value accompanying the movement of the center of gravity G clearly appears.
- Head arrangement determination unit 33 then analyzes the respiratory waveform BW extracted, the intake period P 31 on the basis of the relationship that the longer than the exhalation period P 33, identifies a position corresponding to the intake period P 31. If the respiratory waveform BW falls at the specified position, the respiratory waveform BW is a head-side waveform HW, and it is determined that the head of the subject S exists in the region IV. On the contrary, if the respiration waveform BW has risen at the specified position, the respiration waveform BW is the leg side waveform HW, and it is determined that the head of the subject S exists in the region II.
- the placement of the head of the subject S is determined by the same procedure as described above. Can do.
- the sleeping posture determination unit 34 uses the load signals s 1 to s 4 from the load detection unit 1 according to the following principle to determine whether the subject S is lying on the back, lying down, or lying down. Determine.
- FIGS. 11 (a) to 11 (c) and FIGS. 12 (a) to 12 (c) all show the cranial waveform of the subject S, and the waveforms HWs shown in FIGS. 11 (a) and 12 (a), HWms shows the cranial waveform when the subject S is supine, and the waveforms HWr and HWmr shown in FIGS. 11 (b) and 12 (b) are the cranial waveforms when the subject S is lying. Waveforms HWp and HWmp shown in FIG. 11 (c) and FIG. 12 (c) show the temporal waveforms when the subject S is prone.
- waveforms shown in FIGS. 11 and 12 have the following characteristics, respectively.
- Waveforms HWs (FIG. 11 (a)) and HWms (FIG. 12 (a) when subject S is supine are the same as the head-side waveforms HW and HWm shown in FIGS. 8 (a) and 9 (a), respectively. And has the characteristics described in relation to FIG. 8A and FIG. 9A.
- Waveform HWp when the subject S is prone (Fig 11 (c)), in the waveform HWMP (FIG 12 (c)), the intake period P 31 is a waveform HWS, longer than the inspiratory period P 31 of HWms, intake rear hold period P 32 is a waveform HWS, shorter than the intake after the hold period P 32 of HWms, expiratory period P 33 is a waveform HWS, shorter than the expiratory period P 33 of HWms.
- the waveforms HWp and HWmp have a shape in which the peak on the valley side is shifted in the positive direction of the time axis compared to the waveforms HWs and HWms.
- waveform HWP the slope of the fall of the intake period P 31 in HWMP is a waveform HWS, smaller than the inclination of the fall of the intake period P 31 in HWms, waveform HWP, the rising slope in the breath period P 33 in HWMP, waveform HWS, greater than the rising slope in the breath period P 33 in HWms.
- the waveform HWr (FIG. 11 (b)) and the waveform HWmr (FIG. 12 (b)) when the subject S is lying are an intermediate shape between the waveform HWs and the waveform HWp, and the waveform HWms and the waveform, respectively. It has an intermediate shape of HWmp. That is, the intake period P 31 is a waveform HWS, long wave HWp the intake period P 31 of HWms, shorter than the inspiratory period P 31 of the HWMP.
- the intake After the hold period P 32 is a waveform HWS, short wave HWp the intake after the hold period P 32 of HWms, longer than the intake after the hold period P 32 of the HWMP.
- the expiration period P 33 is a waveform HWS, short wave HWp than expiration period P 33 of HWms, longer than the exhalation period P 33 of the HWMP.
- the length of the breath after the hold period P 34 even in the waveform HWp during the prone is shorter than the length of the intake after the hold period P 32.
- the length of the expiration after the hold period P 34 even in the waveform HWmp during the prone is longer than the length of the intake after the hold period P 32.
- the above-described change in waveform is similarly generated in the leg-side waveforms LW and LWm.
- the sleeping posture determination unit 34 analyzes the respiratory waveform BW included in the load signals s 1 to s 4 from the load detector 1 to determine the intake period P 31 . length, length of the intake after the hold period P 32, the length, etc. of the expiration period P 33 can determine Nesugata the subject S.
- Nesugata determination unit 34 receives the respiratory waveform BW obtained (FIG. 10 (b)) by the head arrangement determination unit 33, which was further analyzed to determine the length of the intake period P 31.
- the subject S is multiplied shorter than a predetermined value is previously stored length of the intake period P 31 determines that is the supine state, subject if approximately equal to a predetermined value length is stored in advance in the inspiration period P 31 S is determined to be a lying state, the subject S longer than a predetermined value the length of the intake period P 31 is stored in advance is determined to be prone state.
- An image processing unit (not shown) in the control unit 3 converts the information obtained by the body axis direction determination unit 32, the head arrangement determination unit 33, and the sleeping posture determination unit 34 into an image formation signal and sends it to the display unit 5. To do.
- the display unit 5 visually displays the physical condition information received from the control unit 3 (image processing unit) (S106).
- the posture of the subject S is displayed as an image on the monitor of the display unit 5. Therefore, the user can intuitively grasp the physical condition of the subject S only by looking at the display unit 5. The user can also record the temporal change of the physical condition image of the subject S through the storage unit 4.
- SAS sleep apnea syndrome
- the user can also set the notification unit 6 to notify when the subject S reaches a predetermined state. For example, the user can set so that the notification is made when the subject S continues the prone state for a certain time.
- the physical condition detection device 100 and the physical condition detection method of the present embodiment determine the direction of the body axis SA of the subject S based on the minute movement of the center of gravity G. In addition, the physical condition detection device 100 and the physical condition detection method of the present embodiment determine the arrangement of the head of the subject S based on the variation of the load signal (respiration waveform, respiration signal) caused by the minute movement of the center of gravity G. The sleeping figure (suppose, lying or lying down) is determined. Therefore, the physical condition detection device 100 and the physical condition detection method according to the present embodiment do not use the imaging device, the breath detection device, and the like, and do not place a burden on the subject S based only on the load detection by the load detection unit 1. The physical condition of the subject S can be detected well.
- the physical condition detection apparatus 100 and the physical condition detection method of the present embodiment can detect the physical condition of the subject S based on only the load detection as described above, can display this graphically, and change the physical condition with time. Can also be recorded. Therefore, it is possible to provide an appropriate diagnosis and treatment opportunity without giving resistance to a patient who feels resistance to recording the state of sleep.
- the modified method is shown in the flowchart of FIG. Similarly to the detection method of the embodiment, the detection method of this modification also includes a step of calculating the center of gravity position, a step of determining the body axis direction, a step of determining the head arrangement, and a step of determining the sleeping posture. However, processing different from the above embodiment is performed in each step. Hereinafter, each process will be described with reference to the flowchart of FIG.
- the center-of-gravity position calculation step (S201 to S206, S216) of the modified example includes the position for each predetermined detection period T1, T2,... TN in addition to the position G (X, Y) of the center of gravity G at each time t.
- FIG. 15 shows an example of load signals s 1 to s 4 from the load detectors 11 to 14 in the periods P 41 , P 42 , and P 43 from one posture change to the next posture change.
- the minute waveform on the signal conceptually indicates that the respiration waveform BW is included in the load signals s 1 to s 4 .
- this is called posture change or body movement.
- the periods P 41 , P 42 , and P 43 each correspond to a period in which the subject S is stationary with a substantially constant posture. For this reason, the load signals s 1 to s 4 show a substantially constant value throughout each period. On the other hand, the subject S changes his posture at times t 41 and t 42 . Therefore, the load signals s 1 to s 4 fluctuate at times t 41 and t 42 .
- a method for obtaining the position G0 (X0, Y0) of the average gravity center G0 for each predetermined detection period T1, T2,..., TN is as follows as an example.
- Detection period T1 in FIG. 15 are included in the period P 42 of the subject S is stationary at a substantially constant attitude. Therefore, the posture of the subject S is constant during the detection period T1.
- the center-of-gravity position calculation unit 31 detects the load values of the load signals s 1 to s 4 at times ts1, ts2,..., Tsn in the detection period T1, respectively.
- the center-of-gravity position calculation unit 31 uses the set of load values for each time detected in this way, so that the positions G1 (X1, Y1), G2 (X2, Y2),. (Xn, Yn) is calculated using Equations 1 and 2 above.
- the position G0 (X0, Y0) of the average gravity center G0 in the detection period T1 is simply the position G1 (X1, Y1), G2 (X2, Y2),..., Gn (Xn, Yn) of the gravity center G for each time. Calculated as an average.
- the detection period Tk began just before the time t 42 in FIG. 15 as an example.
- the position G1 (X1, Y1), G2 (X2, Y2),... Of the center of gravity G for each time is calculated in the same manner as in the detection period T1, but in the case of the detection period T1.
- time t 42 becomes before performing the calculating enough to determine the subjects S posture is changed (load signal s 1 ⁇ s 4 Will change).
- the time t 42 to change the posture of the subject S has occurred between the time when going back therefrom by a predetermined time as a detection period TE (having the same length as the detection period T1, T2) Then, the position G0 (X0, Y0) of the average gravity center G0 in the detection period TE is calculated by the same method as the calculation of the position G0 (X0, Y0) of the average gravity center G0 in the detection period T1 described above.
- step S202 it is determined whether or not there has been a body movement (change in posture) of the subject S. Specifically, it is determined whether any of the load signals s 1 to s 4 has changed beyond a predetermined range.
- step S205 If the center-of-gravity position calculation unit 31 determines in step S205 that the number of detections k is n, the process proceeds to step S206. Then, the position G0 (X0, Y0) of the average gravity center G0 is obtained using the n gravity center positions G1, G2,..., Gn stored at this time (step S206).
- the gravity center position calculation part 31 moves a process to process S216, when it determines with there existed the body movement of the test subject S by process S202.
- step S216 as described above, the detection period TE is set again between the time when the posture change of the subject S occurs and the time going back by a predetermined time, and the average centroid G0 of the detection period TE is set. A position G0 (X0, Y0) is obtained.
- the body axis direction determination step (S207) of the modification is different from the body axis direction determination step (S103) of the above embodiment, and the body axis direction determination unit 33 uses the position G0 (X0) of the average center of gravity G0 calculated by the above steps. , Y0), the extending direction of the body axis SA of the subject S is calculated.
- the calculation of the direction in which the body axis SA extends by the body axis direction determination unit 33 is performed, for example, by the following method.
- One example is an average centroid G0 (X0, Y0) and n centroid positions G1 (X1, Y1), ..., Gk1 (Xk1, Yk1), ... Gk2 (Xk2, Yk2), ...
- the average inclination angle a of the angle between the line segment connecting each of Gn (Xn, Yn) and the X-axis is regarded as indicating the position of the body axis SA.
- the body axis SA thus determined is shown in FIG.
- the head placement determination step (S208) of the modified example is different from the head placement determination step (S104) of the above embodiment, and the head placement determination unit 33 calculates the gravity center position G1 (X1, Y1) calculated by the above steps. ,..., Gk1 (Xk1, Yk1),..., Gk2 (Xk2, Yk2),..., Gn (Xn, Yn), and average centroid G0 (X0, Y0) Determine head placement.
- the method for determining the head arrangement is as follows.
- the head arrangement determining unit 33 calculates the temporal variation of the center of gravity G as a waveform. Specifically, as shown in FIG. 18, first, the head arrangement determining unit 33 obtains the coordinates DG1 (DX1, DY1) of the perpendicular foot drawn from the center of gravity G1 to the body axis SA, and the position of the foot and the average center of gravity G0. The distance d1 from the position G0 (X0, Y0) Ask for.
- the head arrangement determining unit 33 calculates the distances d2,..., Dn by performing the same calculation as described above for the centroids G2,.
- the value of the distance d obtained in this way is drawn in a graph with the distance d as the vertical axis and the time axis as the horizontal axis, it is as shown in FIG. 19A shows a distance d1 calculated from the center of gravity G1, a distance d2 calculated from the center of gravity G2,..., A distance dk1 calculated from the center of gravity Gk1,. dk2,..., the distance dn calculated from the center of gravity Gn is plotted from the left to the right along the time axis, and as understood from FIG.
- FIG. 19 (b) schematically shows the waveform GW of FIG. 19 (a).
- the time the time t 50 is the subject S starts inspiration
- time time t 51 is the time that the subject S is completed intake
- time t 52 is the subject S starts expiration
- time t 53 is time the subject S is completed exhalation
- time t 54 is the time when the subject S to disclose the following intake.
- the inventor of the present invention observed the waveform GW of FIG. 19 under various conditions, and found that the following common features were found.
- the inhalation period P 51 in which the subject S is inhaling is longer than the expiration period P 53 in which the subject S is inhaling. long.
- the waveform GW when the subject S exhibits the head side waveform HWm or the leg side waveform LWm, the waveform GW also has the same characteristics as the head side waveform HWm or the leg side waveform LWm.
- the waveform GW has the above-described characteristics, and a mountain-shaped waveform or a valley-shaped waveform representing the inspiration period P 51 , the post-inspiration hold period P 52 , and the expiration period P 53 is in the center of the post-inspiration hold period P 52 in the time axis direction.
- the waveform is asymmetric (before and after the center). This is because the waveform GW is also a wave based on movement of the center of gravity due to the breathing of the subject S, like the head-side waveforms HW and HWm and the leg-side waveforms LW and LWm.
- the head arrangement determining unit 33 analyzes the waveform GW and based on at least one of the inspiration period P 51 , the post-inspiration hold period P 52 , the expiration period P 53 , and the post-expiration hold period P 54 , the head of the subject S The arrangement of the parts can be determined.
- a head arrangement determination unit 33 can determine that by analyzing the waveform GW shown in FIG. 19 (b), the intake after the hold period P 52 appearing on the positive side. That the intake after the hold period P 52 appearing on the positive side, the center of gravity G after intake which means that they are moved to the positive side. Therefore, the head arrangement determining unit 33 is such that the leg side of the subject S is placed on the positive side of the X axis in FIG. 18 where the center of gravity moves after inhalation, and the head of the subject S is on the negative side opposite thereto. It can be determined that it is placed.
- the sleeping posture determination step (S209) of the modified example is performed by the sleeping posture determination unit 34 based on the waveform GW calculated by the above steps. Determine the appearance.
- the waveform GW also shows the same waveform change as the head-side waveforms HW and HWm shown in FIGS. 11 and 12 when the sleeping posture of the subject S changes to supine, lying down and prone. Therefore Nesugata determination unit 34, for example, determine the length of the period P 51 analyzes the waveform GW, the subject S if the length is less than the predetermined value is supine, substantially the length and the predetermined value If they are equal, the subject S is lying, and if this length is greater than a predetermined value, it can be determined that the subject S is prone.
- step S210 it is finally determined whether or not the measurement is completed in step S210 (FIG. 14). If the measurement is not completed, the process returns to step S201.
- the direction in which the subject's body axis extends, the arrangement of the head, and the sleeping posture are determined based on the temporal change in the center of gravity position, but the center of gravity position is determined by a plurality of load detectors. It is calculated based on the detected load. Therefore, the direction in which the subject's body axis extends based on the temporal change in the center of gravity position, the placement of the head, and the sleeping posture are also determined by the direction in which the subject's body axis extends based on the change in the load detected by the load detector, Included in the placement of the department and the determination of sleeping.
- the head arrangement determination unit 33 an intake period P 31 on the basis of the relationship that the long (or shorter) than the expiration period P 33, to identify the position corresponding to the intake period P 31 which it was, but how to determine the position of the intake period P 31 is not limited thereto.
- the respiratory waveform BW is minutely vibrate I found out that Therefore, when the position of occurrence of minute vibrations of short-period due to snoring by analyzing the respiratory waveform BW (high frequency) can be identified it can identify the position of the intake period P 31 based thereon.
- the head arrangement determination unit 33 in a respiratory waveform BW is cranial waveform HW is either leg waveform LW by identifying the position corresponding to the intake period P 31 of the respiratory waveform BW
- the head-side waveform HW and the leg-side waveform LW have a feature that the post-inspiration hold period P 32 is longer than the post-expiration hold period P 34 , but do they appear on the mountain side or the valley side? Is different.
- both the head-side waveform HWm and the leg-side waveform LWm are characterized in that the post-inspiration hold period P 32 is shorter than the post-expiration hold period P 34 , but whether or not they appear on the peak side or on the valley side is different.
- the head arrangement determination unit 33 distinguish intake after the hold period P 32 and expiration after the hold period P 34, based on the length of the length of the period, identify how these appear in or valley appearing in the mountain of the waveform By doing so, it may be determined whether the respiratory waveform BW is the head-side waveform HW, HWm or the leg-side waveform LW, LWm.
- reference waveforms corresponding to the head-side waveforms HW and HWm and leg-side waveforms LW and LWm are stored in the storage unit 4, and the head arrangement determining unit 33 analyzes the shape of the respiratory waveform BW Without determining whether the respiratory waveform BW is the head-side waveform HW, HWm or the leg-side waveform LW, LWm based on the comparison between the reference waveform stored in the storage unit 4 and the respiratory waveform BW. Also good.
- Nesugata determination unit 34 had determined the Nesugata of the subject S by comparing the length of the intake period P 31 by analyzing the respiratory waveform BW as specified value.
- the method for determining the sleeping posture of the subject S by the sleeping posture determination unit 34 is not limited to this.
- the reference waveform corresponding to the supine state, the lying state, and the prone state is stored in the storage unit 4, and the sleeping posture determination unit 34 is based on the comparison between the reference waveform stored in the storage unit 4 and the respiratory waveform BW.
- the sleeping state of the subject S may be determined.
- the head arrangement determining unit 33 has determined the arrangement of the head of the subject S after the body axis direction determining unit 32 has determined the direction in which the body axis SA of the subject S extends. Not limited to.
- the head arrangement determining unit 33 can also determine the arrangement of the head of the subject S without determining the direction in which the body axis SA of the subject S extends.
- the head arrangement determining unit 33 analyzes the load signals s 1 to s 4 from the load detecting unit 1, and determines whether the respiration waveform BW included in each of them is the head side waveform HW, HWm or the leg side It is determined whether the waveforms are LW and LWm. Then, the head of the subject S is arranged in a region corresponding to the load detector that is the transmission source of the respiratory waveform BW determined to be the head-side waveforms HW, HWm, and the leg waveforms LW, LWm. It is determined that the legs of the subject S are arranged in a region corresponding to the load detector that is the transmission source of the determined respiratory waveform BW.
- the sleeping posture determination unit 34 determines the sleeping posture of the subject S after the position of the head of the subject S is determined, but is not limited thereto.
- the sleeping posture determination unit 34 may determine the sleeping posture of the subject S without determining the direction in which the body axis SA of the subject S extends and / or the position of the head of the subject S.
- the difference in sleeping posture represents a characteristic difference in the load waveform, so that it may be discriminated only from the load signal.
- extraction of the respiratory waveform BW from the load signal may be performed by the sleeping figure determination unit 34 instead of the head arrangement determination unit 33.
- the physical condition detection device 100 includes all of the body axis direction determination unit 32, the head arrangement determination unit 33, and the sleeping posture determination unit 34.
- the structure provided with only one or two may be sufficient.
- Each of the body axis direction determination unit 32, the head arrangement determination unit 33, and the sleeping posture determination unit 34 is a specific example of the body condition detection unit of the present invention.
- the center-of-gravity position calculation unit 31 of the physical condition detection device 100 of the above embodiment may obtain a movement locus (center-of-gravity locus) of the center of gravity G using the calculated position of the center of gravity G at each time t.
- the obtained center-of-gravity locus may be stored in the storage unit 4.
- a respiration rate calculation unit for obtaining the respiration rate of the subject S may be constructed.
- the respiration rate calculation unit can extract the respiration rate of the center of gravity caused by respiration from the center of gravity locus obtained by the gravity center position calculation unit 31 and analyze the vibration frequency of this locus to obtain the respiration rate of the subject S.
- Extraction of the trajectory of the center of gravity movement caused by respiration can be performed by regarding the center of gravity trajectory that periodically oscillates in a specific direction as the center of gravity trajectory due to respiration and extracting such a center of gravity trajectory.
- Extraction of the locus of center of gravity movement caused by respiration can be performed by the following method as an example.
- the center of gravity locus GT2 of the subject S for 1 minute is taken out from the storage unit 4.
- An example of the center-of-gravity locus GT2 to be taken out is as shown in FIG.
- the center-of-gravity locus GT2 shown in FIG. 20A indicates that the subject S is reciprocating once in the left-right direction on the bed due to a large body movement (such as turning over).
- a state in which the center of gravity G of the subject S moves within the regions D, E, and F in a stable posture period in which no large body movement occurs is shown.
- the movement of the center of gravity G in the regions D, E, and F is caused by small body movement and breathing of the subject S.
- “large body movement” mainly includes rolling body movement and other discrete body movements accompanied by movement of the body part, and also occurs when it is difficult or awake.
- it means a body movement that moves the center of gravity G beyond a predetermined distance d in a certain direction within a certain period.
- Large body movement can also be regarded as movement of the center of gravity that is large enough to be relatively distinguishable from movement of the center of gravity by respiration (for example, several times or more).
- a large body motion information determining unit (not shown) included in the body motion information determining unit (not shown) determines and extracts a trajectory of the center of gravity movement caused by the large body motion of the subject S from the center of gravity trajectory GT2 (large body). Motion determination step).
- the respiration rate calculation unit moves beyond a certain distance within a certain time in a direction where the center of gravity G is present, for example, when moving so as to be displaced between regions within a certain time, a large body movement occurs. It is determined that it has occurred, and the gravity center locus GT2 during this period is extracted.
- the centroid locus GT2 shown in FIG. 20A is converted into a centroid locus GT21 converted to a lower sampling frequency (FIG. 20B). Conversion to a lower sampling frequency can be performed by thinning out the data of the gravity center position G acquired at a sampling period of 0.1 seconds or by performing a moving average process. Alternatively, it can be performed by frequency-decomposing the gravity center locus GT2 and extracting a predetermined low-frequency component by a low-pass filter.
- the respiration rate calculation unit determines that the trajectory in this section is a trajectory of a large body motion, and removes the trajectory in this section from the barycentric trajectory GT2.
- the trajectory between the point E2 and the point F1 has also moved more than 30 cm within 0.5 seconds, for example, in the left direction.
- the large body motion information determination unit determines that the trajectory in this section is a trajectory of a large body motion, and removes the trajectory in this section from the barycentric trajectory GT2.
- the movement from the point D1 to the point E1 and the movement from the point E2 to the point F1 are both movements to different areas, and this may be regarded as a large body movement.
- FIGS. 21 (a) to 21 (c) show large body motion trajectories removed from the center of gravity trajectory GT2 shown in FIG. 20 (a).
- 21A shows the center of gravity locus GT2 in the region D
- FIG. 21B shows the center of gravity locus GT2 in the region E
- FIG. These are the center-of-gravity locus GT2 in the stable posture period (period in which no large body movement occurs).
- the low sampling frequency is short enough to extract large body movements (large frequency) and is not affected by fluctuations in the center of gravity due to other factors such as small body movements and breathing. It is desirable to have a long period (small frequency). In addition, it is possible to optimize how much the body movement is determined when the distance is moved within how much time according to the characteristics of the apparatus of the biological information monitoring system 100.
- the small body motion information determining unit of the body motion information determining unit determines and extracts the trajectory of the center of gravity due to the small body motion of the subject S from the center of gravity trajectory GT2 in the stable posture period (small body motion determining step). ).
- the trajectory of the small body movement and the respiration trajectory from the barycentric locus GT2 of the region E (FIG. 21B).
- the “small body movement” is a movement in which only a part of the body, that is, a limb or a face (head) moves, not the whole body of the subject S, and the movement of the center of gravity.
- body movement that moves the center of gravity G in a range that does not exceed the predetermined distance d in a direction different from the direction of center of gravity movement caused by the breathing of the subject S.
- Small body movements can also be viewed as movements of the center of gravity that are small enough to be distinguished from large body movements (eg, a fraction of a fraction).
- the center of gravity locus that periodically vibrates in a specific direction is regarded as the center of gravity locus by respiration, and the center of gravity locus different from such a center of gravity locus Is regarded as the locus of center of gravity due to small body movements.
- the center-of-gravity locus GT2 includes portions gt1 and gt3 that represent movement of the center of gravity G due to respiration, and a portion gt2 that represents movement of the center of gravity G due to small body movement (including the movement of the center of gravity G due to respiration).
- the portion gt2 representing the movement of the center of gravity G due to small body movement is different from the center of gravity locus of the portions gt1 and gt3 representing the movement of the center of gravity G due to respiration, and has a period in a specific direction. Does not vibrate.
- the difference between the currently measured center of gravity change and the center of gravity change due to respiration is extracted as a small body motion.
- the frequency component is lost or the amplitude is abruptly changed with respect to the current center of gravity change related to this analysis, it is considered that the respiration has changed, and the difference of the center of gravity change due to respiration is not performed.
- Such a method can be carried out.
- a part (gt2) that is not a center of gravity locus that periodically vibrates in a specific direction is formed as a part of the center of gravity locus that periodically vibrates in a specific direction.
- only the part gt21 that constitutes a part of the center of gravity locus that periodically vibrates in a specific direction is returned between the parts gt1 and gt3 to obtain the center of gravity locus as shown in FIG. Respiratory component.
- the part gt22 decomposed from the part gt2 is separated and extracted as a small body motion. Such separation / extraction can be carried out by the method as described above.
- the respiratory component of the center of gravity movement extracted by the body motion information determination unit is sent to the respiration rate calculation unit, and the respiration rate calculation unit calculates the respiration rate by the same means as in the above embodiment.
- the body motion information determination unit may only determine the trajectory of the center of gravity movement due to the large body motion and the trajectory of the center of gravity movement due to the small body motion, and does not necessarily need to separate and extract these trajectories from the center of gravity trajectory.
- the respiratory rate calculation unit refers to the trajectory of the center of gravity movement due to the large body motion and the trajectory of the center of gravity movement due to the small body motion determined by the body motion information determination unit, and extracts the respiratory component from the center of gravity trajectory. You may let them.
- the respiration rate calculation unit also includes a respiration waveform BW (FIG. 10) extracted from the signals s 1 to s 4 from the load detectors 11 to 14 and a waveform GW (FIG. 19) calculated based on the movement of the center of gravity G. Based on the vibration frequency, the respiration rate of the subject S per unit time can be obtained. Since these waveforms are generated due to the breathing of the subject S, the respiratory rate of the subject S can be obtained by analyzing these waveforms.
- a respiration waveform BW (FIG. 10) extracted from the signals s 1 to s 4 from the load detectors 11 to 14
- a waveform GW (FIG. 19) calculated based on the movement of the center of gravity G. Based on the vibration frequency, the respiration rate of the subject S per unit time can be obtained. Since these waveforms are generated due to the breathing of the subject S, the respiratory rate of the subject S can be obtained by analyzing these waveforms.
- Waveform analysis is performed as follows, for example.
- the total number of reciprocating movements of the respiratory components extracted from the center of gravity locus GT2 shown in FIGS. 21 (a) to 21 (c) indicates the respiratory rate of the subject S for 1 minute. Therefore, the respiration rate calculation unit calculates the respiration rate per minute of the subject S based on the reciprocation of the respiration component.
- the respiration rate calculation unit first rotates the respiration component of the center of gravity locus GT2 of the subject S so that the vibration direction coincides with the X-axis direction.
- the respiration rate calculation unit performs multi-stage filtering on the rotated respiration component using a multistage filter bank. High-frequency components are removed as noise in each stage of filtering.
- the filtering of the next stage is performed. After performing a predetermined number of stages of filtering, the low frequency component of the final stage can be calculated as the number of breaths.
- the output from the load detection unit 1 and the data of the respiration rate calculation unit it is possible to accurately monitor whether the subject is in bed or is out of bed.
- the output of the load detection unit 1 changes even when, for example, luggage is placed on the bed, but if the respiration rate is calculated by the respiration rate calculation unit based on this output, it exists on the bed. Can be determined to be a subject rather than a baggage.
- a point located on the most positive side in the X-axis direction and a point located on the most negative side in the X-axis direction are obtained.
- An intermediate value Xm of the X coordinate is calculated. This intermediate value Xm can be regarded as the center of vibration of the center-of-gravity locus GT2 resulting from the breathing of the subject S.
- the respiration rate calculation unit obtains the number of times the center of gravity locus GT2 moves from the negative side to the positive side in the X-axis direction across the intermediate value Xm, or the number of times the subject S moves from the positive side to the negative side.
- the vibration frequency of the center of gravity locus GT2 resulting from respiration, that is, the respiration rate is calculated.
- a respiratory ventilation calculation unit (not shown) that calculates the respiratory ventilation of the subject S may be constructed.
- the respiratory ventilation amount calculation unit estimates a single ventilation amount of the subject S based on the locus of the center of gravity movement caused by the respiration extracted by the respiration rate calculation unit.
- the respiratory ventilation is a physical quantity corresponding to the depth of breathing.
- the amplitude of the trajectory of the center of gravity movement caused by respiration corresponds to one respiration.
- the diaphragm moves more than normal inspiration and falls downward, and the internal organs also move downward.
- exhaling that is, when the lungs contract
- the diaphragm moves more than normal exhalation and rises upward
- the internal organs also move greatly upward.
- breathing small and shallow the built-in movement is smaller than normal.
- the inventors of the present invention have found through research that a further change appears in the slight movement of the center of gravity G accompanying the movement of the internal organs, depending on the magnitude of respiration.
- the amplitude is larger than usual during large and deep breathing, and the amplitude is smaller than usual during small and shallow breathing.
- the tidal volume can be estimated by correlating with this amplitude. For example, the subject performs large and deep breathing in a state where the subject is lying on his / her back in bed, and the ventilation volume and amplitude at that time are recorded. Also, take a small shallow breath and record the ventilation volume and amplitude at that time. Based on the center-of-gravity locus based on the acquired respiration, the respiratory ventilation is calculated from the amplitude. It is also possible to estimate the minute ventilation for 1 minute by estimating the single ventilation. By knowing the number of breaths per minute and the minute ventilation, it is possible to monitor whether the breathing state of the subject S is in a generally good state or in a bad state.
- a heart rate calculation unit (not shown) for obtaining the heart rate of the subject may be constructed.
- the calculation of the heart rate by the heart rate calculation unit can be obtained from the center of gravity locus obtained by the center of gravity position calculation unit 31, for example. Since the heart rate has a specific periodicity in which a combination of a plurality of center-of-gravity changes is set, the heart rate calculation unit can estimate the displacement of the center of gravity considered to be due to the current heart rate based on the past calculation results. . Therefore, based on the estimated displacement of the center of gravity, it is possible to take out a locus resulting from the heartbeat from the locus of center of gravity and obtain the heart rate based on this.
- the heart rate calculation unit also extracts a signal component in the frequency band of 0.5 Hz to 2.5 Hz corresponding to the heart rate component from the signals s 1 to s 4 (FIG. 5) from the load detectors 11 to 14. A number can also be calculated.
- a body state determination unit (not shown) that determines sleep / wakefulness of the subject S may be constructed.
- the body state determination unit can determine sleep / wakefulness of the subject S based on the values of the respiratory rate and respiratory ventilation of the subject S.
- the body state determination unit may determine the body state of the subject using a combination of data of various biological information (weight, body movement, respiration, heart rate, etc.). At this time, machine learning using teacher data may be performed in order to improve the accuracy of determining the body state.
- a function representing sleep / wakefulness is created by fitting from a lot of biological information data (labeled teacher data), and various types of biological information data obtained from the biological information monitoring system 100 of the present embodiment. Is introduced into this function, the body state of sleep or awakening can be determined. That is, the sleep / wake algorithm is based on the awake or sleep-labeled teacher data taken from the subject, and is obtained from the biological information monitoring system 100, such as getting out of bed, landing, large body motion, small body motion, It can be obtained by machine learning using various types of biological information such as breathing, apnea, snoring, speech, and heartbeat and their computation (mathematical analysis including four arithmetic operations, integration, differentiation, frequency analysis, etc.).
- the body condition determination unit may detect the landing of the subject S on the bed BD and the departure from the bed BD based on the change in the load values of the signals s 1 to s 4 from the load detectors 11 to 14. it can.
- the determination of the subject S landing on the bed BD by the body condition determination unit is performed by, for example, increasing the total load value indicated by the signals s 1 to s 4 from the load detectors 11 to 14 to a predetermined value (for example, 40 kg). , 55 kg, 70 kg, etc., which can be arbitrarily set using the input unit 7 or the like).
- the determination of getting out of bed of the subject S from the bed BD is performed, for example, based on whether or not the decrease in the total load value indicated by the signals s 1 to s 4 from the load detectors 11 to 14 exceeds a predetermined value. Can do.
- the body state determination unit can also detect the landing of the subject S on the bed BD and the departure from the bed BD based on the locus of gravity. During the period when the subject S is not present on the bed BD, the load from the bed BD is evenly applied to the load sensors 11 to 14, in other words, the center of gravity G is located at the center of the bed BD. . When the subject S reaches the bed BD, the center of gravity G greatly moves toward the position where the subject S has landed. The body state determination unit can detect the landing of the subject S based on such a large movement of the center of gravity G. The leaving of the subject S can be similarly determined.
- the body condition determination unit can also detect the fall of the subject S from the bed BD. Specifically, the body state determination unit can determine that the subject S has fallen from the bed BD when the subject S is in a sleeping state and a bed break occurs. The determination result may be displayed on the display unit 5 or may be notified to the user of the body condition detection device 100 using the notification unit 6. Note that the body state determination unit may determine that the subject S has left his / her own intention when getting out of bed occurs when the subject S is in the awake state.
- the body state determination unit may determine whether the subject S is alive based on various biological information obtained by the body state detection device 100. Specifically, for example, the body information determination unit determines that the subject S has died when all of the body movement (gravity movement), breathing, and heartbeat of the subject S are stopped under certain conditions. Can do. Certain conditions can be set by the judgment of the doctor who is the user.
- the body state determination unit can also determine that the subject S is in an apnea state which is a symptom of sleep apnea syndrome.
- a patient with sleep apnea syndrome falls into apnea during sleep, breathing and body movement are stopped for a certain period, and then a large amount of inspiration is performed to cause breathing and body movement.
- the heart rate continues. Therefore, the body state determination unit can detect that an apnea state has occurred when the period in which breathing and body movement are stopped and the heart rate continues continues for a certain time or longer.
- the body state determination unit may display the determination result on the display unit 5 or may notify the user of the body state detection device 100 using the notification unit 6 (nurse call). Further, the body state determination unit may label the biological information corresponding to the period in which the apneic state has occurred when storing various measured biological information in the storage unit 4. This facilitates the subsequent observation of the symptoms of sleep apnea syndrome of subject S.
- the body state determination unit of the biological information monitoring system 100 of the above embodiment can also detect the utterance and snoring of the subject S.
- Utterance is generally done at the same time as exhalation. Therefore, for example, when a high-frequency component is generated during the expiration period during awakening or sleep, it can be determined that the high-frequency component is due to speech.
- Snoring generally occurs during inspiration. Therefore, for example, when a high frequency component is generated during the inspiration period during sleep, it can be determined that the high frequency component is caused by snoring.
- the notification unit 6 of the body state detection device 100 may perform notification (nurse call) using the notification unit 6 when the barycentric locus shows a movement different from normal and regards this as an abnormality. Good. It is possible to appropriately set what kind of movement is “unusual movement”. For example, when a predetermined body movement (movement of the center of gravity) continues continuously for a certain period of time, It is possible to make a nurse call by judging that the movements are different. A camera that reflects the nurse call signal and displays the state of the bed may be activated.
- the weight of the subject S can also be measured using the center-of-gravity position calculation unit 31.
- the measurement of the body weight of the subject S can be obtained by subtracting the weight of the bed BD stored in advance in the storage unit 4 from the total load value of the signals s 1 to s 4 . If the bed weight is not uniform in the four regions I to IV, the difference is stored as the bed weight corresponding to the load detector. In addition, it is desirable to reflect in the bed weight a situation that causes a weight other than the subject S during the actual measurement, for example, that a futon or luggage is placed.
- the weight measurement is performed by the gravity center position calculation unit 31, but the weight measurement unit may be separately provided in the control unit 3.
- the load detectors 11, 12, 13, and 14 are not limited to load sensors using beam-type load cells, and for example, force sensors can also be used.
- the number of load detectors is not limited to four. Five or more load detectors may be used with additional legs on the bed BD. Or you may arrange
- the load detector 11, 12, 13 and 14 are arranged under the bed casters C 1 attached to the lower end of the leg of the BD, C 2, C 3, C 4
- Each of the load detectors 11, 12, 13, and 14 may be provided between the four legs of the bed BD and the floor plate of the bed BD, or the four legs of the bed BD can be divided vertically. For example, it may be provided between the upper leg and the lower leg.
- the load detectors 11, 12, 13, and 14 may be integrated with the bed BD to constitute a bed system BDS including the bed BD and the physical condition detection device of the present embodiment (FIG. 24).
- the load detector provided on the bed means a load detector provided between the four legs of the bed BD and the floor plate of the bed BD as described above, an upper leg, It means a load detector provided between the lower leg.
- a signal amplification unit that amplifies the load signal from the load detection unit 1 and a filtering unit that removes noise from the load signal are provided between the load detection unit 1 and the A / D conversion unit 2. May be.
- a display part is not restricted to displaying information on a monitor so that a user can recognize visually.
- the display unit 5 may be a printer that periodically prints and outputs the physical condition of the subject S.
- the blue lamp is turned on in the supine state
- the yellow lamp is turned on in the lying state
- the red lamp is turned on in the prone state. It may be displayed using a simple visual expression.
- the display unit 5 may convey the physical condition of the subject S to the user by voice.
- the physical condition detection device 100 may not have the display unit 5 and may only have an output terminal for outputting information such as a video signal.
- a monitor (display device) or the like for performing display is connected to the physical condition detection device 100 via the output terminal.
- reporting part 6 of the said embodiment performed alerting
- reporting part 6 may be the structure which alert
- the physical condition detection apparatus 100 of the said embodiment does not need to have the alerting
- the components connected by wiring may be connected by radio
- the body condition detection device 100 determines the direction in which the body axis of the subject S extends and / or the arrangement of the head of the subject S based on the change in the load detected by the load detectors 11 to 14. is doing. Therefore, according to the physical condition detection devices 100 and 200, the physical condition of the subject S can be detected in detail.
- the head arrangement determining unit 33 determines the position of the head of the subject S based on the direction of the body axis of the subject S determined by the body axis direction determining unit 32. The arrangement can be determined in more detail. Moreover, since the sleeping posture determination part 34 is provided, the physical condition of the test subject S can be detected in more detail.
- the physical condition detection method of the above embodiment and the modification determines the extending direction of the body axis of the subject S and / or the arrangement of the head of the subject S based on the change in the load detected by the load detectors 11 to 14. ing. Therefore, according to the physical condition detection method of the present invention, the physical condition of the subject S can be detected in detail.
- the arrangement of the head of the subject S is determined after the direction in which the body axis of the subject S extends is determined, the arrangement of the head of the subject S is further determined. Can be determined in detail. Moreover, since it further includes determining the sleeping posture of the subject based on the detected change in the load, the physical condition of the subject S can be detected in more detail.
- the physical condition detection apparatus using the bed sensor according to the above embodiment simultaneously measures the state of biological information such as weight, body movement, breathing, snoring, and heartbeat and its temporal change from the time series data of the load sensor in synchronization with each other. Therefore, the determination of the physical state of the subject that changes in time series can be performed in synchronization with the biological information in accordance with each time.
- biological information such as weight, body movement, breathing, snoring, and heartbeat and its temporal change from the time series data of the load sensor in synchronization with each other. Therefore, the determination of the physical state of the subject that changes in time series can be performed in synchronization with the biological information in accordance with each time.
- the small body motion information determination unit determines small body motion from the temporal variation of the center of gravity position from which the large body motion determined by the large body motion information determination unit is removed.
- a small body motion may be determined based on the moving direction of the center of gravity position and the periodicity due to the influence of respiration.
- the results of the body weight, heart rate, and body state determination unit are also obtained in synchronization. You can also.
- the body condition determination unit may be provided with a landing / departure determination unit that determines whether or not the subject exists on the bed based on the detected load.
- the arrival / departure floor determination unit may determine not only the arrival / departure floor but also the weight of the subject and the body weight fluctuation.
- the display unit in the physical condition detection device of the present invention displays the obtained body movement information, body axis direction, respiration, heartbeat current state and temporal change of the subject as the movement history of the barycentric position on the bed. obtain.
- the present invention is not limited to the above embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .
- the physical condition of the subject can be detected in detail based only on detection by the load detector. Therefore, the state of the subject can be grasped at a low cost and without placing a burden on the subject, which can contribute to improvement of the quality of medical care and care.
- body movement information, respiratory information such as respiratory rate, and thus weight, heart rate, snoring, release bed only by a load detector provided under the bed or on the bed. Presence / absence can be detected in synchronization with the inspection item. Therefore, it is not necessary to attach a different sensor to each subject for each item or to synchronize the outputs from a plurality of sensors.
- the nursing record (vital record)
- the number of night patient checks by the nurse is reduced, and the nurse's workload is reduced.
- the quality of sleep of the patient can be improved.
- it can be used for investigating the cause of unexpected falls from the bed, respiratory arrest, cardiac arrest, or death.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Nursing (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
ベッド上の被験者の身体状況を検知する身体状況検知装置(100)が提供される。身体状況検知装置(100)は、ベッド又はベッドの脚下に設けられ、被験者の呼吸に応じた荷重の変化を検出する複数の荷重検出器(11、12、13、14)と、前記検出された荷重の変化に基づいて被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定する身体状況検知部(32、33)とを備える。
Description
本発明は、荷重検出器を使用する身体状況検知装置及びこの身体状況検知装置を備えるベッドシステムに関する。また本発明は、荷重検出器を使用する身体状況検知方法に関する。
ベッド上の患者や被介護者を遠隔地から管理するためのシステムが、病院や介護施設等で活用されている。例えば病院において患者の在床/離床を検知するシステムを使用すれば、ナースステーションの看護師は、患者が病室のベッド上にいるか否かを病室を訪れることなく確認することができる。
特許文献1は、ベッドの4本の脚の下にそれぞれ荷重検出手段を配置し、この荷重検出手段からの出力に基づきベッド上に被験者が存在しているか否かを判定する在床検知方法を開示している。また特許文献2は、ベッドの4本の脚の下に配置した4つの荷重センサからの出力に基づいて、ベッド上の被験者の重心位置を特定する動作検出装置を開示している。
しかしながら、特許文献1に記載された在床検知方法や特許文献2に記載された動作検出装置では、被験者の在床/離床や重心位置を知ることはできるが、被験者の身体や頭の向き、姿勢などの身体状況を判断することは困難である。このような身体状況の情報、特に被験者の就寝時の身体状況の情報を録画装置を使うことなく入手することができれば、睡眠時無呼吸症候群やいびきなどの症状を改善する上で極めて有用となる。
そこで本発明は、荷重センサによる検出に基づいてベッド上の被験者の身体状況を詳細に検知できる身体状況検知装置、身体状況検知方法及びベッドシステムを提供することを目的とする。
本発明の第1の態様に従えば、
ベッド上の被験者の身体状況を検知する身体状況検知装置であって、
ベッド又はベッドの脚下に設けられ、被験者の呼吸に応じた荷重の変化を検出する複数の荷重検出器と、
前記検出された荷重の変化に基づいて被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定する身体状況検知部とを備える身体状況検知装置が提供される。
ベッド上の被験者の身体状況を検知する身体状況検知装置であって、
ベッド又はベッドの脚下に設けられ、被験者の呼吸に応じた荷重の変化を検出する複数の荷重検出器と、
前記検出された荷重の変化に基づいて被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定する身体状況検知部とを備える身体状況検知装置が提供される。
第1の態様の身体状況検知装置は、前記検出された荷重の変化に基づいて被験者の重心位置の時間的変化を求める重心位置算出部を更に備えてもよく、前記身体状況検知部は、前記被験者の重心位置の時間的変化に基づいて、被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定してもよい。
第1の態様の身体状況検知装置において、前記身体状況検知部は、前記検出された荷重の変化又は前記被験者の重心位置の時間的変化に基づいて被験者の体軸の延びる方向を決定する体軸方向決定部と、前記検出された荷重の変化又は前記被験者の重心位置の時間的変化に基づいて前記決定された方向における被験者の頭部の配置を決定する頭部配置決定部とを含んでもよい。
第1の態様の身体状況検知装置において、前記身体状況検知部又は前記頭部配置決定部は、前記検出された荷重の変化又は前記被験者の重心位置の時間的変化を示す波形に基づいて被験者の頭部の配置を決定してもよい。
第1の態様の身体状況検知装置において、前記波形は、被験者の吸気に応じて立ち上がり又は立ち下がりを示す吸気期間、被験者の呼気に応じて立ち上がり又は立ち下がりを示す呼気期間、及び吸気期間と呼気期間との間のホールド期間を含んでもよく、前記身体状況検知部又は前記頭部配置決定部は、吸気期間、呼気期間、ホールド期間の少なくとも一つに基づいて被験者の頭部の配置を決定してもよい。
第1の態様の身体状況検知装置は、前記検出された荷重の変化又は前記被験者の重心位置の時間的変化を示す波形に基づいて被験者の寝姿を判定する寝姿判定部を更に備えてもよい。
本発明の第2の態様に従えば、
ベッドと、
第1の態様の身体状況検知装置とを有するベッドシステムが提供される。
ベッドと、
第1の態様の身体状況検知装置とを有するベッドシステムが提供される。
本発明の第3の態様に従えば、
ベッド上の被験者の身体状況を検知する身体状況検知方法であって、
ベッド又はベッドの脚下に設置した複数の荷重検出器により被験者の呼吸に応じた荷重の変化を検出することと、
前記検出した荷重の変化に基づいて被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定することを含む方法が提供される。
ベッド上の被験者の身体状況を検知する身体状況検知方法であって、
ベッド又はベッドの脚下に設置した複数の荷重検出器により被験者の呼吸に応じた荷重の変化を検出することと、
前記検出した荷重の変化に基づいて被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定することを含む方法が提供される。
第3の態様の方法は、前記検出した荷重の変化に基づいて被験者の重心位置の時間的変化を求めることを更に含んでもよく、前記検出した荷重の変化に基づいて被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定することは、前記被験者の重心位置の時間的変化に基づいて被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定することであってもよい。
第3の態様の身体状況検知方法において、前記検出した荷重の変化又は前記被験者の重心位置の時間的変化に基づいて被験者の体軸の延びる方向を決定し、次いで前記検出した荷重の変化又は前記被験者の重心位置の時間的変化に基づいて、前記決定された方向における被験者の頭部の配置を決定してもよい。
第3の態様の身体状況検知方法において、被験者の頭部の配置は、前記検出された荷重の変化又は前記被験者の重心位置の時間的変化を示す波形に基づいて決定されてもよい。
第3の態様の身体状況検知方法において、前記波形は、被験者の吸気に応じて立ち上がり又は立ち下がりを示す吸気期間、被験者の呼気に応じて立ち上がり又は立ち下がりを示す呼気期間、及び吸気期間と呼気期間との間のホールド期間を含んでもよく、被験者の頭部の配置は、吸気期間、呼気期間、ホールド期間の少なくとも一つに基づいて決定されてもよい。
第3の態様の身体状況検知方法は、前記検出された荷重の変化又は前記被験者の重心位置の時間的変化を示す波形に基づいて被験者の寝姿を判定することを更に含んでもよい。
本発明の第4の態様によれば、
ベッド上の被験者の身体状況を検知する身体状況検知装置であって、
ベッド又はベッドの脚下に設けられ、被験者の呼吸に応じた荷重の変化を検出する複数の荷重検出器と、
前記検出された荷重の変化に基づいて、被験者の体軸の延びる方向を決定する身体状況検知部とを備える身体状況検知装置が提供される。
ベッド上の被験者の身体状況を検知する身体状況検知装置であって、
ベッド又はベッドの脚下に設けられ、被験者の呼吸に応じた荷重の変化を検出する複数の荷重検出器と、
前記検出された荷重の変化に基づいて、被験者の体軸の延びる方向を決定する身体状況検知部とを備える身体状況検知装置が提供される。
本発明の身体状況検知装置、身体状況検知方法、ベッドシステムによれば、荷重検出器による検出に基づいてベッド上の被験者の身体状況を詳細に検知できる。
<第1実施形態>
図1~図19を参照して、本発明の実施形態について説明する。
図1~図19を参照して、本発明の実施形態について説明する。
図1に示す通り、本実施形態の身体状況検知装置100は、荷重検出部1、制御部3、記憶部4、表示部5を主に有する。荷重検出部1と制御部3とは、A/D変換部2を介して接続されている。制御部3には更に、報知部6及び入力部7が接続されている。
荷重検出部1は、4つの荷重検出器11、12、13、14を備える。荷重検出器11、12、13、14のそれぞれは、例えばビーム形のロードセルを用いて荷重を検出する荷重検出器である。このような荷重検出器は例えば、特許第4829020号や特許第4002905号に記載されている。荷重検出器11、12、13、14はそれぞれ、配線によりA/D変換部2に接続されている。
A/D変換部2は、荷重検出部1からのアナログ信号をデジタル信号に変換するA/D変換器を備え、荷重検出部1と制御部3にそれぞれ配線で接続されている。
制御部3は、専用又は汎用のコンピュータであり、内部に重心位置算出部31、体軸方向決定部32、頭部配置決定部33、及び寝姿判定部34が構築されている。
記憶部4は、身体状況検知装置100において使用されるデータを記憶する記憶装置であり、例えばハードディスク(磁気ディスク)を用いることができる。表示部5は、制御部3から出力される情報を身体状況検知装置100の使用者に表示する液晶モニタ等のモニタである。
報知部6は、制御部3からの情報に基づいて所定の報知を視覚的又は聴覚的に行う装置、例えばスピーカを備える。入力部7は、制御部3に対して所定の入力を行うためのインターフェイスであり、キーボード及びマウスにし得る。
このような身体状況検知装置100を使用してベッド上の被験者の身体状況を検知する動作について説明する。
身体状況検知装置100を使用した被験者の身体状況の検知は、図2に示す通り、被験者の荷重を検出する荷重検出工程(S101)、検出した荷重に基づいて被験者の重心位置を算出する重心位置算出工程(S102)、求めた重心位置に基づいて被験者の体軸が延びる方向を決定する体軸方向決定工程(S103)、体軸方向において被験者の頭部が重心のどちら側に配置されているかを決定する頭部配置決定工程(S104)、被験者が仰臥、横臥、伏臥のいずれの状態にあるかを判定する寝姿判定工程(S105)、及び上記の工程で決定された身体状況を表示する表示工程(S106)を含む。
<荷重検出工程>
荷重検出工程S101を行うために、荷重検出部1の4つの荷重検出器11、12、13、14は、被験者が使用するベッドの脚の下に配置される。具体的には荷重検出器11、12、13、14は、図3に示す通り、ベッドBDの四隅の脚の下端部に取り付けられたキャスターC1、C2、C3、C4の下にそれぞれ配置される。
荷重検出工程S101を行うために、荷重検出部1の4つの荷重検出器11、12、13、14は、被験者が使用するベッドの脚の下に配置される。具体的には荷重検出器11、12、13、14は、図3に示す通り、ベッドBDの四隅の脚の下端部に取り付けられたキャスターC1、C2、C3、C4の下にそれぞれ配置される。
荷重検出器11、12、13、14を、キャスターC1、C2、C3、C4の下にそれぞれ配置することにより、ベッドBDの上面に加えられる荷重は、4つの荷重検出器11、12、13、14に分散して検知される。具体的には、図4に示す通りベッドBDの矩形状の上面は、縦及び横にそれぞれ2分割されて4つの矩形領域I~IVに均等に分割される。
これにより、ベッドBD上の中央部で仰臥する(仰向けに寝る)被験者Sの左下半身が位置する領域Iに加えられる荷重は主に荷重検出器11により検出され、同状態の被験者Sの右下半身が位置する領域IIに加えられる荷重は主に荷重検出器12により検出される。同様に、ベッドBD上の中央部で仰臥する被験者Sの右上半身が位置する領域IIIに加えられる荷重は主に荷重検出器13により検出され、同状態の被験者Sの左上半身が位置する領域IVに加えられる荷重は主に荷重検出器14により検出される。
荷重検出器11、12、13、14はそれぞれ、荷重(荷重変化)を検出してアナログ信号としてA/D変換部2に出力する。A/D変換部2は、サンプリング周期を例えば0.1秒として、アナログ信号をデジタル信号に変換し、デジタル信号(以下「荷重信号」)として制御部3に出力する。
荷重信号の一例を図5に示す。図5は、時刻t10~時刻t14までの間に出力された荷重検出器11、12、13、14からの荷重信号s1(実線)、s2(破線)、s3(一点鎖線)、s4(二点鎖線)の様子を示している。被検者Sは、時刻t10~時刻t11までの間(期間P11)には図4に示す通りベッドBDの中央部に仰臥しており、時刻t11~時刻t12までの間(期間P12)にはベッドBDの領域I、IV側に移動しており、時刻t12~時刻t13までの間(期間P13)には期間P12と比べてややベッドBDの中央側に移動しており、時刻t13~時刻t14までの間(期間P14)にはベッドBDの中央部に仰臥していたことが観察されている。
期間P11には、被験者Sは図4に示す通りベッドBDの中央部に仰臥していたので、この期間P11では、被験者Sの頭側に配置された荷重検出器13、14からの信号s3、s4がほぼ等しく、被験者Sの脚側に配置された荷重検出器11、12からの信号s1、s2がほぼ等しい。
期間P12には、被験者SはベッドBDの領域I、IV側に移動していたので、この期間P12では、領域I、IVに配置された荷重検出器11、14からの信号s1、s4が期間P11に比べて大きな荷重値を示し、領域II、IIIに配置された荷重検出器12、13からの信号s2、s3は期間P11に比べて小さな荷重値を示している。
期間P13には、被験者Sは、期間P12と比べてややベッドBDの中央側に移動していたので、この期間P13では、領域I、IVに配置された荷重検出器11、14からの信号s1、s4は期間P12に比べて小さな荷重値を示し、領域II、IIIに配置された荷重検出器12、13からの信号s2、s3は期間P12に比べて大きな荷重値を示している。
期間P14には、被験者Sは、期間P11と同じくベッドBDの中央部に仰臥していたので、この期間P14における信号s1~s4は、期間P11における信号s1~s4と同じである。
<重心位置算出工程>
重心位置算出工程S102では、重心位置算出部31が荷重検出器11~14からの荷重信号s1~s4に基づいて、時刻tにおけるベッドBD上の被験者Sの重心Gの位置G(X、Y)を、所定の周期T(例えば上記のサンプリング周期0.1秒に等しい)で算出する。ここで、(X、Y)は、ベッドBDの中心部を原点として長手方向にXを、短手方向にYを取ったXY座標面上における座標を示す(図6)。
重心位置算出工程S102では、重心位置算出部31が荷重検出器11~14からの荷重信号s1~s4に基づいて、時刻tにおけるベッドBD上の被験者Sの重心Gの位置G(X、Y)を、所定の周期T(例えば上記のサンプリング周期0.1秒に等しい)で算出する。ここで、(X、Y)は、ベッドBDの中心部を原点として長手方向にXを、短手方向にYを取ったXY座標面上における座標を示す(図6)。
重心位置算出部31による重心Gの位置G(X、Y)の算出は、次の演算により行われる。すなわちG(X、Y)は、荷重検出器11、12、13、14の座標をそれぞれ(X11、Y11)、(X12、Y12)、(X13、Y13)、(X14、Y14)、荷重検出器11、12、13、14の荷重の検出値をそれぞれW11、W12、W13、W14として、次式により算出される。
重心位置算出部31で算出された重心Gの位置G(X、Y)の一例を、図6に示す。図6は、図5の期間P11、P12、P13、P14にそれぞれ含まれる時刻t110、t120、t130、t140における、ベッドBD上の被験者Sの重心Gの位置G(XP11、YP11)、G(XP12、YP12)、G(XP13、YP13)、G(XP14、YP14)を示している。重心位置算出部31は、このようにして求めた各時刻tにおける重心Gの位置G(X、Y)を、例えば記憶部4に記憶させる。
<体軸方向決定工程>
体軸方向決定工程S103では、体軸方向決定部32が、以下のような原理により、重心位置算出工程S102において算出された重心Gの位置G(X、Y)を使って被験者Sの体軸SAが延びる方向を決定する。
体軸方向決定工程S103では、体軸方向決定部32が、以下のような原理により、重心位置算出工程S102において算出された重心Gの位置G(X、Y)を使って被験者Sの体軸SAが延びる方向を決定する。
人間の呼吸は、胸郭及び横隔膜を移動させて、肺を膨張及び収縮させることにより行われる。ここで吸気時、すなわち肺が膨張する時には横隔膜は下方に下がり、内臓も下方に移動する。一方で呼気時、すなわち肺が収縮する時には横隔膜は上方に上がり、内臓も上方に移動する。本発明の発明者は研究により、この内臓移動に伴って重心Gがわずかに移動すること、及び重心Gの移動が背骨の延在方向(体軸方向)にほぼ沿っていることを見出した。
したがって体軸方向決定部32は、重心位置算出部31が算出した重心Gの微小移動の方向を求めることにより、被験者Sの体軸SAが延びる方向を決定することができる。
具体的には例えば、体軸方向決定部32はまず、重心位置算出工程S102で記憶部4に記憶された、時刻t20における被験者Sの重心Gの位置G(Xt20、Yt20)(図7(a))と、時刻t20からわずかに時間が経過した時刻t21(例えば時刻t20の1秒後)における被験者Sの重心Gの位置G(Xt21、Yt21)(図7(b))と、時刻t21からわずかに時間が経過した時刻t22(例えば時刻t21の1秒後)における被験者Sの重心Gの位置G(Xt22、Yt22)(図7(c))とを取り出し、これらを通過する直線を求めることにより体軸SAの延びる方向を決定する(図7(d))。
被験者Sの重心Gは、上述の通り、被験者Sの呼吸に応じて、被験者Sの体軸SAの延びる方向に沿って移動する。したがって、体軸方向決定部32は、上記のように、一回の呼吸の周期(約3~5秒)よりも小さいサンプリング周期を用いて得られる複数の重心位置G(X、Y)、換言すれば一回の呼吸に対応する時間に含まれる複数の重心Gの位置G(X、Y)に基づいて、体軸SAの延びる方向を決定することができる。
<頭部配置決定工程>
頭部配置決定工程S104では、頭部配置決定部33が、以下のような原理により、体軸方向決定工程S103において決定された体軸SAの延びる方向及び荷重検出部1からの荷重信号s1~s4を使って被験者Sの頭部の配置を求める。
頭部配置決定工程S104では、頭部配置決定部33が、以下のような原理により、体軸方向決定工程S103において決定された体軸SAの延びる方向及び荷重検出部1からの荷重信号s1~s4を使って被験者Sの頭部の配置を求める。
本発明の発明者が、ベッドBD上の被験者Sの呼吸が荷重検出器からの荷重信号に与える影響について研究したところ、被験者Sの頭側に位置する荷重検出器(図4に示す状況においては荷重検出器13、14に相当する)からの荷重信号と、被験者Sの脚側に位置する荷重検出器(図4に示す状況においては荷重検出器11、12に相当する)からの荷重信号が、それぞれ図8(a)、図8(b)に示す波形を有して変動することがわかった。
図8(a)は被験者Sの頭側に位置する荷重検出器からの荷重信号の波形(以下、「頭側波形HW」と呼ぶ)を示し、図8(b)は被験者Sの脚側に位置する荷重検出器からの荷重信号の波形(以下、「脚側波形LW」と呼ぶ)を示す。時刻t30は被験者Sが吸気を開始する時刻、時刻t31は被験者Sが吸気を終了する時刻、時刻t32は被験者Sが呼気を開始する時刻、時刻t33は被験者Sが呼気を終了する時刻、時刻t34は被験者Sが次の吸気を開始する時刻である。
図8(a)、(b)に示される通り、被験者Sが吸気を行っている時刻t30から時刻t31の間(吸気期間P31)においては、被験者Sの頭側に配置された荷重検出器の検出値は徐々に減少し、一方で被験者Sの脚側に配置された荷重検出器の検出値は徐々に増加している。これは、吸気時には被験者Sの重心位置Gが脚側に移動するためである。
被験者Sが呼気を行っている時刻t32から時刻t33の間(呼気期間P33)においては、被験者Sの頭側に配置された荷重検出器の検出値は徐々に増加し、一方で被験者Sの脚側に配置された荷重検出器の検出値は徐々に減少している。これは、呼気時には被験者Sの重心位置Gが頭側に移動するためである。
発明者の知見によれば、図8(a)、(b)に示す頭側波形HW及び脚側波形LWは次の特徴を有している。
まず、頭側波形HW及び脚側波形LWともに、被験者Sが吸気を行っている吸気期間P31は、被験者Sが呼気を行っている呼気期間P33よりも長い。すなわち、頭側波形HWにおいては、吸気期間P31における波形の立下りの傾斜が呼気期間P33における波形の立ち上がりの傾斜よりも小さく、脚側波形LWにおいては、吸気期間P31における波形の立ち上がりの傾斜が呼気期間P33における波形の立下りの傾斜よりも小さい。
また、頭側波形HW及び脚側波形LWともに、被験者Sが時刻t31に吸気を終了してから時刻t32に呼気を開始するまでの吸気後ホールド期間P32、及び被験者Sが時刻t33に呼気を終了してから時刻t34に吸気を開示するまでの呼気後ホールド期間P34が存在し、それらのホールド期間P32、P34において、波形の頂点近傍に略平坦な部分が現れる。そして、吸気後ホールド期間P32の長さは、呼気後ホールド期間P34の長さよりも長い。
頭側波形HWと脚側波形LWとは、それぞれ上記の特徴を有し、吸気期間P31、吸気後ホールド期間P32、呼気期間P33を表す山形波形又は谷形波形が、時間軸方向において吸気後ホールド期間P32の中央に対して(中央の前後で)非対称な波形である。また、頭側波形HWと脚側波形LWとを比較すると、波形が立ち上がる部分においては、立ち上がりの傾斜は頭側波形HWの方が脚側波形LWよりも大きく、波形が立ち上がった後の略平坦部の長さは頭側波形HWの方が脚側波形LWよりも短く、波形が立ち下がる部分においては、立ち下がりの傾斜は頭側波形HWの方が脚側波形LWよりも小さく、波形が立ち下がった後の略平坦部の長さは頭側波形HWの方が脚側波形LWよりも長い。
したがって頭部配置決定部33は、荷重検出部1からの荷重信号を分析して吸気期間P31、吸気後ホールド期間P32、呼気期間P33、呼気後ホールド期間P34の少なくとも一つに基づいて、該荷重信号が頭側波形HWであるか脚側波形LWであるかを判定することができる。そして頭部配置決定部33は、この判定に基づいて、その荷重信号に対応するベッドBD上の位置に被験者Sの頭部が配置されているか脚部が配置されているかを決定することができる。
また、本発明の発明者が、複数の被験者の頭側波形と脚側波形の形状について更に調査したところ、被験者によっては、上記の頭側波形HW及び脚側波形LWとは異なる特徴を有する頭側波形及び脚側波形を呈することが発見された。このような被験者Sの呈する頭側波形HWm(図9(a))及び脚側波形LWm(図9(b))の特徴は次の通りである。
まず、頭側波形HWm及び脚側波形LWmともに、被験者Sが吸気を行っている吸気期間P31は、被験者Sが呼気を行っている呼気期間P33よりも短い。すなわち、頭側波形HWmにおいては、吸気期間P31における波形の立下りの傾斜が呼気期間P33における波形の立ち上がりの傾斜よりも大きく、脚側波形LWmにおいては、吸気期間P31における波形の立ち上がりの傾斜が呼気期間P33における波形の立下りの傾斜よりも大きい。
また、頭側波形HWm及び脚側波形LWmともに、被験者Sが時刻t31に吸気を終了してから時刻t32に呼気を開始するまでの吸気後ホールド期間P32、及び被験者Sが時刻t33に呼気を終了してから時刻t34に吸気を開始するまでの呼気後ホールド期間P34が存在し、それらのホールド期間P32、P34において、波形の頂点近傍に略平坦な部分が現れる。そして、吸気後ホールド期間P32の長さは、呼気後ホールド期間P34の長さよりも短い。
頭側波形HWmと脚側波形LWmとは、それぞれ上記の特徴を有し、吸気期間P31、吸気後ホールド期間P32、呼気期間P33を表す山形波形又は谷形波形が、時間軸方向において吸気後ホールド期間P32の中央(時刻t31と時刻t32の中間地点)に対して非対称な波形である。また、頭側波形HWmと脚側波形LWmとを比較すると、波形が立ち上がる部分においては、立ち上がりの傾斜は頭側波形HWmの方が脚側波形LWmよりも小さく、波形が立ち上がった後の略平坦部の長さは頭側波形HWmの方が脚側波形LWmよりも長く、波形が立ち下がる部分においては、立ち下がりの傾斜は頭側波形HWmの方が脚側波形LWmよりも大きく、波形が立ち下がった後の略平坦部の長さは頭側波形HWmの方が脚側波形LWmよりも短い。
被験者Sがこのような頭側波形HWm、脚側波形LWmを呈する場合も、頭部配置決定部33は、荷重検出部1からの荷重信号を分析して吸気期間P31、吸気後ホールド期間P32、呼気期間P33、呼気後ホールド期間P34の少なくとも一つに基づいて、該荷重信号が頭側波形HWmであるか脚側波形LWmであるかを判定することができる。そして頭部配置決定部33は、この判定に基づいて、その荷重信号に対応するベッドBD上の位置に被験者Sの頭部が配置されているか脚部が配置されているかを決定することができる。なお、被験者Sが頭側波形HW及び脚側波形LWを呈するのか、頭側波形HWm及び客側波形LWmを呈するのかは、例えば予め記憶部4に記憶させておくとよい。
次に、頭部配置決定部33が被験者Sの頭部の配置を決定する具体的な手順の一例を、体軸方向決定工程S103において、体軸SAが領域IIと領域IVとの間に渡って延びていると決定された場合(図7(d))を例として説明する。ここでは、被験者Sは頭側波形HW(図8(a))及び脚側波形(図8(b))を呈するものとする。
この場合は、被験者Sの頭部は領域IIと領域IVのどちらかに配置されていると考えられる。したがって頭部配置決定部33は、領域IIに加えられる荷重を主に計測する荷重検出器12からの荷重信号s2、又は領域IVに加えられる荷重を主に計測する荷重検出器14からの荷重信号s4に基づいて頭部配置の決定を行う。どちらを用いても工程は実質的に同じであるため頭部配置決定部33は任意に選択を行ってよく、両方を用いてもよいが、ここでは荷重検出器14からの荷重信号s4を用いるものとする。
荷重信号s4を選択した頭部配置決定部33は、次いで荷重信号s4から、呼吸による重心移動に起因する微小な検出値の振動(呼吸信号、又は呼吸波形)を取り出す。荷重信号s4には、被験者Sの体重による静的な荷重と、被験者Sの呼吸による重心移動に起因する荷重信号が含まれているからである。人の呼吸は1分間におよそ12~20回程度であることが知られている。これを周期に換算すると3秒~5秒程度であり、周波数に換算すると0.2Hz~0.33Hz程度である。したがって、頭部配置決定部33は、荷重検出器14からの荷重信号s4に対して例えばフーリエ変換、周波数フィルタ処理、逆フーリエ変換を行い、周波数が約0.2Hz~約0.33Hzの範囲の呼吸波形を取り出す。
図10(a)に、期間P21における荷重検出器14からの荷重信号s4を、図10(b)に、図10(a)の荷重信号s4から取り出された呼吸波形(呼吸信号)BWを示す。図10(a)に示される期間P21は図7に示した時刻t20~時刻t22を含む期間である。この期間においては、上述の通り、被験者Sは体軸SAを領域IIと領域IVとの間に渡って延ばした仰臥状態でほぼ静止している。なお、呼吸による重心Gの移動に伴って生じる荷重値の変動は、被験者Sの体重による静的な荷重のスケールに比べてはるかに小さいため、図10(a)においては呼吸波形BWは表れていない。
図10(b)は、期間P21のうち任意の10秒間に相当する期間における呼吸波形BWを示す。図10(b)においては、呼吸による重心Gの移動に伴って生じる荷重値の変動のみを取り出しているため、重心Gの移動に伴う荷重値の微小変動が明瞭に表れている。
頭部配置決定部33は、次いで取り出した呼吸波形BWを分析して、吸気期間P31が呼気期間P33よりも長いという関係に基づいて、吸気期間P31に相当する位置を特定する。そして特定した位置において呼吸波形BWが立ち下がっていればその呼吸波形BWは頭側波形HWであり、領域IVに被験者Sの頭部が存在すると決定する。反対に、特定した位置において呼吸波形BWが立ち上がっていればその呼吸波形BWは脚側波形HWであり、領域IIに被験者Sの頭部が存在すると決定する。
なお、被験者Sが頭側波形HWm(図9(a))及び脚側波形LWm(図9(b))を呈する場合も、上記と同様の手順により被験者Sの頭部の配置を決定することができる。
<寝姿判定工程>
寝姿判定工程S105では、寝姿判定部34が、以下の原理に従って荷重検出部1からの荷重信号s1~s4を使って被験者Sが仰臥、横臥、伏臥のいずれの寝姿であるかを判定する。
寝姿判定工程S105では、寝姿判定部34が、以下の原理に従って荷重検出部1からの荷重信号s1~s4を使って被験者Sが仰臥、横臥、伏臥のいずれの寝姿であるかを判定する。
本発明の発明者が、ベッドBD上の被験者Sの呼吸を表す荷重検出部1の荷重信号を被験者Sの種々の寝姿で観察したところ、仰臥、横臥、伏臥のように異なる寝姿では荷重信号が図11、図12に示す通り相違することが分かった。
図11(a)~(c)、図12(a)~(c)はいずれも被験者Sの頭側波形を示しており、図11(a)、図12(a)に示される波形HWs、HWmsは被験者Sが仰臥している時の頭側波形を、図11(b)、図12(b)に示される波形HWr、HWmrは被験者Sが横臥している時の頭側波形を、図11(c)、図12(c)に示される波形HWp、HWmpは被験者Sが伏臥している時の頭側波形をそれぞれ示す。
それらの波形分析によれば、図11、図12に示す波形は、それぞれ次の特徴を有している。被験者Sが仰臥している時の波形HWs(図11(a))、HWms(図12(a)は、それぞれ図8(a)、図9(a)に示す頭側波形HW、HWmと同一の波形であり、図8(a)、図9(a)との関係で説明した特徴を有している。
被験者Sが伏臥している時の波形HWp(図11(c))、波形HWmp(図12(c))においては、吸気期間P31が波形HWs、HWmsの吸気期間P31よりも長く、吸気後ホールド期間P32が波形HWs、HWmsの吸気後ホールド期間P32よりも短く、呼気期間P33が波形HWs、HWmsの呼気期間P33よりも短い。換言すれば、波形HWp、HWmpは波形HWs、HWmsに比べて谷側の頂点が時間軸の正の方向にシフトした形状を有している。よって波形HWp、HWmpにおける吸気期間P31における立ち下がりの傾斜は、波形HWs、HWmsにおける吸気期間P31における立ち下がりの傾斜よりも小さく、波形HWp、HWmpにおける呼気期間P33における立ち上がりの傾斜は、波形HWs、HWmsにおける呼気期間P33における立ち上がりの傾斜よりも大きい。このような波形の変化は、被験者Sが伏臥している状態においては、胸郭が自重によりベッド面に押し付けられているため、吸気のための動作に負荷がかかり吸気の速度が遅くなることに起因すると解される。
被験者Sが横臥している時の波形HWr(図11(b))、波形HWmr(図12(b))はそれぞれ、上記した波形HWsと波形HWpの中間的な形状、上記した波形HWmsと波形HWmpの中間的な形状を有している。すなわち、吸気期間P31は、波形HWs、HWmsの吸気期間P31よりも長く波形HWp、HWmpの吸気期間P31よりも短い。また吸気後ホールド期間P32は、波形HWs、HWmsの吸気後ホールド期間P32よりも短く波形HWp、HWmpの吸気後ホールド期間P32よりも長い。また呼気期間P33は、波形HWs、HWmsの呼気期間P33よりも短く波形HWp、HWmpの呼気期間P33よりも長い。
なお、仰臥時の波形HWsにおいても、横臥時の波形HWrにおいても、伏臥時の波形HWpにおいても呼気後ホールド期間P34の長さは、吸気後ホールド期間P32の長さよりも短い。一方で、仰臥時の波形HWmsにおいても、横臥時の波形HWmrにおいても、伏臥時の波形HWmpにおいても呼気後ホールド期間P34の長さは、吸気後ホールド期間P32の長さよりも長い。また、上記した波形の変化は、脚側波形LW、LWmについても同様に生じている。
このような寝姿の波形の特異性に基づいて、寝姿判定部34は、荷重検出器1からの荷重信号s1~s4に含まれる呼吸波形BWを分析して、吸気期間P31の長さ、吸気後ホールド期間P32の長さ、呼気期間P33の長さ等から被験者Sの寝姿を判定することができる。
次に、寝姿判定部34が被験者Sの寝姿を判定する具体的な手順を説明する。
寝姿判定部34は、頭部配置決定部33によって求められた呼吸波形BW(図10(b))を受け取り、これを更に分析して、吸気期間P31の長さを求める。そして吸気期間P31の長さが予め記憶した所定値よりも短かければ被験者Sは仰臥状態であると判定し、吸気期間P31の長さが予め記憶した所定値に略同等であれば被験者Sは横臥状態であると判定し、吸気期間P31の長さが予め記憶した所定値よりも長ければ被験者Sは伏臥状態であると判定する。
<表示工程>
制御部3内の図示しない画像処理部は、体軸方向決定部32、頭部配置決定部33、及び寝姿判定部34で得られた情報を画像形成信号に変換して表示部5に送出する。表示部5は、制御部3(画像処理部)から受け取ったそれらの身体状況情報を視覚的に表示する(S106)。
制御部3内の図示しない画像処理部は、体軸方向決定部32、頭部配置決定部33、及び寝姿判定部34で得られた情報を画像形成信号に変換して表示部5に送出する。表示部5は、制御部3(画像処理部)から受け取ったそれらの身体状況情報を視覚的に表示する(S106)。
表示部5のモニタ上には、図13に示す通り、被験者Sの体位が画像で表示される。したがって使用者は、表示部5を見るだけで被験者Sの身体状況を直観的に把握することができる。また使用者は、記憶部4を通じて、被験者Sの身体状況の画像の時間的変化を録画することもできる。
睡眠時無呼吸症候群(SAS)の診断においては、医療機関に宿泊して睡眠時の身体状況(身体位置、体位)を一晩録画することも行われているが、寝相や寝顔を録画されることに対して抵抗感を示す患者も多い。本発明の表示部5を使用すれば寝顔は録画されることなく、また寝相も匿名性の高いシルエットとして記録されるため、より多くの患者に診断の機会を与えることが可能となる。また、SASの治療のため伏臥寝が推奨されているが、被験者は就寝中、どの程度の時間だけ伏臥寝を維持できているか把握できない。本発明を用いることで就寝中の寝姿を可視化できるため、伏臥寝訓練を維持する動機付けとなる。
使用者は、被験者Sが所定の状態に至ったら報知部6により報知がなされるよう設定することもできる。例えば使用者は、被験者Sが一定時間を超えて伏臥状態を継続したときに報知がなされるよう設定することができる。
本実施形態の身体状況検知装置100及び身体状況検知方法の効果を次にまとめる。
本実施形態の身体状況検知装置100及び身体状況検知方法は、重心Gの微小な移動に基づいて被験者Sの体軸SAの方向を決定している。また本実施形態の身体状況検知装置100及び身体状況検知方法は、重心Gの微小な移動に起因する荷重信号の変動(呼吸波形、呼吸信号)に基づいて被験者Sの頭部の配置を決定し寝姿(仰臥、横臥、又は伏臥)を判定している。したがって本実施形態の身体状況検知装置100及び身体状況検知方法は、撮像装置や、呼気検出装置などを用いることなく、荷重検出部1による荷重検出のみに基づいて、被験者Sに負担をかけることなく、被験者Sの身体状況を良好に検知することができる。
本実施形態の身体状況検知装置100及び身体状況検知方法は、上記の通り荷重検出のみに基づいて被験者Sの身体状況を検知でき、これをグラフィック表示することができ、また身体状況の時間的変化を録画することもできる。したがって、睡眠中の様子を録画されることに抵抗感を示す患者に対しても、抵抗感を与えることなく、適切な診断及び治療の機会を与えることができる。
<変形例>
被験者Sの身体状況を検知する上記実施形態の変形例を説明する。
被験者Sの身体状況を検知する上記実施形態の変形例を説明する。
変形例の方法を、図14のフローチャートに示す。この変形例の検知方法も、実施形態の検知方法と同様に重心位置を算出する工程、体軸方向を決定する工程、頭部配置を決定する工程、及び寝姿を判定する工程を備えているが、各工程において上記実施形態と相違する処理を行う。以下、各工程について適宜図14のフローチャートを参照して説明する。
<重心位置算出工程>
変形例の重心位置算出工程(S201~S206、S216)は、各時刻tにおける重心Gの位置G(X、Y)に加えて、所定の検出期間T1、T2、・・・、TNごとの位置G(X、Y)の平均値も求める点が上記実施形態の重心位置算出工程(S102)と異なる。
変形例の重心位置算出工程(S201~S206、S216)は、各時刻tにおける重心Gの位置G(X、Y)に加えて、所定の検出期間T1、T2、・・・、TNごとの位置G(X、Y)の平均値も求める点が上記実施形態の重心位置算出工程(S102)と異なる。
図15に、一回の姿勢の変化から次の姿勢の変化までの期間P41、P42、P43における、荷重検出器11~14からの荷重信号s1~s4の一例を示す。図15において、信号上の微小な波形は、荷重信号s1~s4に呼吸波形BWが含まれていることを概念的に示している。なお、上記実施形態の説明においても、図5を参照して時刻t11、t12、t13において被験者が移動している状況について説明したが、このようなベッド上の被験者の移動を、本明細書では、姿勢の変化、あるいは体動と呼ぶ。
期間P41、P42、P43はそれぞれ、被験者Sが略一定の姿勢で静止している期間に対応する。そのため荷重信号s1~s4は、各期間を通して略一定値を示している。一方で被験者Sは、時刻t41、t42において姿勢を変化させている。したがって荷重信号s1~s4は、時刻t41、t42において変動している。
所定の検出期間T1、T2、・・・、TNごとの平均重心G0の位置G0(X0、Y0)を求める方法は、一例として次の通りである。
図15において検出期間T1は、被験者Sが略一定の姿勢で静止している期間P42に含まれている。したがって検出期間T1の間は、被験者Sの姿勢は一定である。この場合、重心位置算出部31は、検出期間T1中の時刻ts1、ts2、・・・、tsnに、それぞれ荷重信号s1~s4の荷重値を検出する。図15の右上の囲みは、荷重信号s1に基づく荷重値の検出を時刻ts1、ts2、・・・、tsnにおいて計n回行うことを拡大して表している。
重心位置算出部31は、このようにして検出した時刻毎の荷重値のセットを用いて、時刻毎の重心Gの位置G1(X1、Y1)、G2(X2、Y2)、・・・、Gn(Xn、Yn)を、上記の数式1、数式2を用いて算出する。検出期間T1における平均重心G0の位置G0(X0、Y0)は、時刻毎の重心Gの位置G1(X1、Y1)、G2(X2、Y2)、・・・、Gn(Xn、Yn)の単純平均として求められる。
他の例として、図15の時刻t42の直前に検出期間Tkが始まった場合を例に説明する。この場合にも、上述した検出期間T1の場合と同様に時刻毎の重心Gの位置G1(X1、Y1)、G2(X2、Y2)、・・・が算出されるが、検出期間T1の場合とは異なり、平均重心G0の位置G0(X0、Y0)を求めるのに十分な数の算出を行う前に時刻t42となり、被験者Sの姿勢が変化してしまう(荷重信号s1~s4の値が変化してしまう)。
よってこの場合には、被験者Sの姿勢の変化が生じた時刻t42と、そこから所定時間だけさかのぼった時刻との間を検出期間TE(検出期間T1、T2と同じ長さを有する)として設定し直し、この検出期間TEにおける平均重心G0の位置G0(X0、Y0)を、上記した検出期間T1における平均重心G0の位置G0(X0、Y0)の算出と同じ方法で算出する。
上述のような、検出期間T1、T2、・・・、TNにおける平均重心G0を求める工程を、図14のフローチャートの工程S201~S206、S216に表す。
重心位置算出部31は、まず工程S201において、荷重信号s1~s4の荷重値の検出回数kをk=0にセットする。次いで工程S202において、被験者Sの体動(姿勢の変化)があったか否かを判定する。具体的には、荷重信号s1~s4のいずれかが所定の範囲を超えて変化したか否かを判断する。
荷重信号s1~s4に所定の範囲を超える変化がなかった場合(工程S202の「no」)、重心位置算出部31は検出回数kをk=k+1にセットする(工程S203)。そして、荷重信号s1~s4の荷重値を求めて、重心位置Gk+1を算出し、算出した重心位置Gk+1を例えば記憶部4に記憶する(工程S204)。重心位置算出部31は、次いで工程S205において検出回数kがn回以下であるか否かを判定し、n回以下であれば工程を工程S202に戻す。その後、検出回数kがn回となるか、又は被験者Sの体動があるまで工程S202~工程S205を繰り返す。
重心位置算出部31は、工程S205において検出回数kがn回であると判定したときは、工程を工程S206に移す。そしてこの時点で記憶されているn個の重心位置G1、G2、・・・、Gnを用いて平均重心G0の位置G0(X0、Y0)を求める(工程S206)。
なお、重心位置算出部31は、工程S202で被験者Sの体動があったと判定された場合には、工程を工程S216に移す。工程S216においては、上述した通り、被験者Sの姿勢の変化が生じた時刻と、そこから所定時間だけさかのぼった時刻との間を検出期間TEとして設定し直し、この検出期間TEにおける平均重心G0の位置G0(X0、Y0)を求める。
<体軸方向決定工程>
変形例の体軸方向決定工程(S207)は、上記実施形態の体軸方向決定工程(S103)と異なり、体軸方向決定部33が、上記工程により算出された平均重心G0の位置G0(X0、Y0)を用いて、被験者Sの体軸SAの延びる方向を算出する。
変形例の体軸方向決定工程(S207)は、上記実施形態の体軸方向決定工程(S103)と異なり、体軸方向決定部33が、上記工程により算出された平均重心G0の位置G0(X0、Y0)を用いて、被験者Sの体軸SAの延びる方向を算出する。
体軸方向決定部33による体軸SAの延びる方向の算出は、例えば次の方法により行われる。
一つの例は、平均重心G0(X0、Y0)とn個の重心位置G1(X1、Y1)、・・・、Gk1(Xk1、Yk1)、・・・Gk2(Xk2、Yk2)、・・・Gn(Xn、Yn)のそれぞれとを結ぶ線分と、X軸との間の角度の平均傾き角度aを、
により求め、平均重心G0(X0、Y0)を通り、X軸に対して角度aを有して延びる線分が体軸SAの位置を示すとみなす方法である。このようにして求められた体軸SAを図16に示す。
他の例は、平均重心G0を通り、且つ重心G1、・・・、Gk1、・・・、Gk2、・・・、Gk3、・・・Gnとの直線距離dh1、・・・dhk1、・・・dhk2、・・・、dhk3、・・・、dhnの標準偏差が最小となる線Haが体軸SAの位置を示すとみなす方法である。線Haの一例を図17に示す。
<頭部配置決定工程>
変形例の頭部配置決定工程(S208)は、上記実施形態の頭部配置決定工程(S104)と異なり、頭部配置決定部33が、上記工程により算出された重心位置G1(X1、Y1)、・・・、Gk1(Xk1、Yk1)、・・・、Gk2(Xk2、Yk2)、・・・、Gn(Xn、Yn)、及び平均重心G0(X0、Y0)に基づいて、被験者Sの頭部の配置を決定する。
変形例の頭部配置決定工程(S208)は、上記実施形態の頭部配置決定工程(S104)と異なり、頭部配置決定部33が、上記工程により算出された重心位置G1(X1、Y1)、・・・、Gk1(Xk1、Yk1)、・・・、Gk2(Xk2、Yk2)、・・・、Gn(Xn、Yn)、及び平均重心G0(X0、Y0)に基づいて、被験者Sの頭部の配置を決定する。
変形例の頭部配置決定工程S208において、頭部の配置を決定する方法は次の通りである。
最初に、頭部配置決定部33は、重心Gの時間的変動を波形として算出する。具体的には頭部配置決定部33は、まず、図18に示す通り重心G1から体軸SAに下した垂線の足の座標DG1(DX1、DY1)を求め、この足の位置と平均重心G0の位置G0(X0、Y0)との距離d1を
により求める。
頭部配置決定部33は、次いで重心G2、・・・、Gnについても、上記と同様の演算を行い距離d2、・・・、dnを求める。このようにして求められた距離dの値を、距離dを縦軸、時間軸を横軸とするグラフに展開して描くと図19(a)のようになる。即ち図19(a)は、重心G1から算出される距離d1、重心G2から算出される距離d2、・・・、重心Gk1から算出される距離dk1、・・・、重心Gk2から算出される距離dk2、・・・、重心Gnから算出される距離dnを、時間軸に沿って左から右にプロットしたものであり、図18から理解される通り、重心Gの、平均重心G0を中心とし、体軸SA方向に沿った時間的変動の様子を示す波形に相当する。なお、図19(a)においては、図18において平均重心G0からX軸の正側に延びる距離dが正の値をとり、X軸の負側に延びる距離dが負の値をとるものとしている。
図19(b)は、図19(a)の波形GWを概略的に示したものである。図19(b)において、時刻t50は被験者Sが吸気を開始する時刻、時刻t51は被験者Sが吸気を終了する時刻、時刻t52は被験者Sが呼気を開始する時刻、時刻t53は被験者Sが呼気を終了する時刻、時刻t54は被験者Sが次の吸気を開示する時刻である。
本発明の発明者は、種々の条件にて図19の波形GWを観察したところ、次の共通的な特徴があることが分かった。
すなわち、波形GWにおいても、上述した頭側波形HW、脚側波形LWと同様に、被験者Sが吸気を行っている吸気期間P51は、被験者Sが呼気を行っている呼気期間P53よりも長い。
また、波形GWにおいても、上述した頭側波形HW、脚側波形LWと同様に、被験者Sが時刻t51に吸気を終了してから時刻t52に呼気を開始するまでの吸気後ホールド期間P52、及び被験者Sが時刻t53に呼気を終了してから時刻t54に吸気を開始するまでの呼気後ホールド期間P54において、波形の頂点近傍に略平坦な部分が現れる。そして、吸気後ホールド期間P52の長さは、呼気後ホールド期間P54の長さよりも長い。
なお、被験者Sが頭側波形HWm又は脚側波形LWmを呈する場合には、波形GWも、頭側波形HWm又は脚側波形LWmと同様の特徴を有する。
波形GWは、上記の特徴を有し、吸気期間P51、吸気後ホールド期間P52、呼気期間P53を表す山形波形又は谷形波形が、時間軸方向において吸気後ホールド期間P52の中央に対して(中央の前後で)非対称な波形である。これは、波形GWも、頭側波形HW、HWm、脚側波形LW、LWmと同様に被験者Sの呼吸による重心移動に基づく波動だからである。したがって頭部配置決定部33は、波形GWを分析して吸気期間P51、吸気後ホールド期間P52、呼気期間P53、呼気後ホールド期間P54の少なくとも一つに基づいて、被験者Sの頭部の配置を決定することができる。
具体的には例えば、頭部配置決定部33は、図19(b)に示す波形GWを分析して、吸気後ホールド期間P52が正側に現れることを求めることができる。吸気後ホールド期間P52が正側に現れるということは、吸気後には重心Gが正側に移動していることを意味する。よって頭部配置決定部33は、吸気後に重心が移動してくる図18におけるX軸の正側に被験者Sの脚側が置かれており、その反対側である負側に被験者Sの頭部が置かれていると決定することができる。
<寝姿判定工程>
変形例の寝姿判定工程(S209)は、上記実施形態の寝姿判定工程(S105)とは異なり、寝姿判定部34が、上記工程により算出された波形GWに基づいて、被験者Sの寝姿を判定する。
変形例の寝姿判定工程(S209)は、上記実施形態の寝姿判定工程(S105)とは異なり、寝姿判定部34が、上記工程により算出された波形GWに基づいて、被験者Sの寝姿を判定する。
発明者の知見によると、波形GWも、被験者Sの寝姿が仰臥、横臥、伏臥と変化すると、図11、図12に示した頭側波形HW、HWmと同様の波形の変化を示す。したがって寝姿判定部34は、例えば波形GWを分析して期間P51の長さを求め、この長さが所定値よりも小さければ被験者Sは仰臥しており、この長さが所定値と略同等であれば被験者Sは横臥しており、この長さが所定値よりも大きければ被験者Sは伏臥していると判定することができる。
変形例の工程は、最後に工程S210(図14)において測定終了か否かを判断する。測定が終了していなければ、工程は工程S201に戻される。
ここで、変形例においては重心位置の時間的変化に基づいて、被験者の体軸の延びる方向や頭部の配置、さらには寝姿を決定しているが、重心位置は複数の荷重検出器により検出された荷重に基づいて算出されている。したがって、重心位置の時間的変化に基づく被験者の体軸の延びる方向、頭部の配置、寝姿の決定も、荷重検出器により検出された荷重の変化に基づく被験者の体軸の延びる方向、頭部の配置、寝姿の決定に含まれる。
なお、上記の実施形態においては、頭部配置決定部33は、吸気期間P31が呼気期間P33よりも長い(又は短い)という関係に基づいて、吸気期間P31に相当する位置を特定していたが、吸気期間P31の位置を特定する方法はこれには限られない。本発明の発明者の研究により、被験者Sがいびきをかいている時には、吸気期間P31に、呼吸の周期(約3~5秒)よりもはるかに短い周期で、呼吸波形BWが微少に振動することが分かった。したがって、呼吸波形BWを分析していびきに起因する短周期(高周波数)の微小振動の生じる位置が特定できた場合には、これに基づいて吸気期間P31の位置を特定できる。
なお、上記の実施形態においては、頭部配置決定部33は、呼吸波形BWの吸気期間P31に相当する位置を特定することにより呼吸波形BWが頭側波形HWであるか脚側波形LWであるかを判別していたがこれには限られない。例えば、上述の通り、頭側波形HWと脚側波形LWはともに吸気後ホールド期間P32が呼気後ホールド期間P34よりも長いという特徴を有するが、これらが山側に現れるか谷側に現れるかが相違する。同様に、頭側波形HWmと脚側波形LWmはともに吸気後ホールド期間P32が呼気後ホールド期間P34よりも短いという特徴を有するが、これらが山側に現れるか谷側に現れるかが相違する。したがって頭部配置決定部33は、期間の長さの長短に基づいて吸気後ホールド期間P32と呼気後ホールド期間P34とを見分け、これらが波形の山側に現れるか谷側に現れるかを特定することにより呼吸波形BWが頭側波形HW、HWmであるか脚側波形LW、LWmであるかを判別してもよい。
また、別の例として、記憶部4に、頭側波形HW、HWm、脚側波形LW、LWmに対応する参照用波形を記憶し、頭部配置決定部33は、呼吸波形BWの形状を分析することなく、記憶部4に記憶した参照用波形と呼吸波形BWとの比較に基づいて、呼吸波形BWが頭側波形HW、HWmであるか脚側波形LW、LWmであるかを判定してもよい。
上記の実施形態においては、寝姿判定部34は、呼吸波形BWを分析して吸気期間P31の長さを所定値と比較することにより被験者Sの寝姿を判定していた。しかしながら寝姿判定部34により被験者Sの寝姿を判定する方法はこれには限られない。例えば、記憶部4に、仰臥状態、横臥状態、伏臥状態に対応する参照用波形を記憶し、寝姿判定部34は、記憶部4に記憶した参照用波形と呼吸波形BWとの比較に基づいて被験者Sの寝姿を判定してもよい。
上記の実施形態においては、頭部配置決定部33は、体軸方向決定部32が被験者Sの体軸SAの延びる方向を決定した後に被験者Sの頭部の配置を決定していたが、これには限らない。頭部配置決定部33は、被験者Sの体軸SAの延びる方向を決定することなく、被験者Sの頭部の配置を決定することもできる。
具体的には、頭部配置決定部33は、荷重検出部1からの荷重信号s1~s4を分析し、それぞれに含まれる呼吸波形BWが頭側波形HW、HWmであるか、脚側波形LW、LWmであるかを判定する。そして、頭側波形HW、HWmであると判定された呼吸波形BWの送信元である荷重検出器に対応する領域に被験者Sの頭部が配置されており、脚部波形LW、LWmであると判定された呼吸波形BWの送信元である荷重検出器に対応する領域に被験者Sの脚部が配置されていると決定する。
上記の実施形態においては、寝姿判定部34は、被験者Sの頭部の位置が決定された後に被験者Sの寝姿を判定していたが、これには限られない。寝姿判定部34は、被験者Sの体軸SAの延びる方向及び/又は被験者Sの頭部の位置を決定することなく、被験者Sの寝姿を判定してもよい。前述のように寝姿の相違は荷重波形に特徴的な違いを表すので荷重信号のみからも判別可能な場合もある。この場合には、荷重信号からの呼吸波形BWの取り出しは、頭部配置決定部33ではなく寝姿判定部34において行ってもよい。
上記の実施形態の身体状況検知装置100は、体軸方向決定部32、頭部配置決定部33、寝姿判定部34のすべてを備えているが、身体状況検知装置100は、これらのうちいずれか1つ又は2つのみを備える構成であってもよい。体軸方向決定部32、頭部配置決定部33、寝姿判定部34はそれぞれ、本発明の身体状況検知部の具体例である。
上記実施形態の身体状況検知装置100の重心位置算出部31は、算出した各時刻tにおける重心Gの位置を用いて、重心Gの移動の軌跡(重心軌跡)を求めても良い。求めた重心軌跡は、記憶部4に記憶されてもよい。
上記実施形態の身体状況検知装置100の制御部3には、被験者Sの呼吸数を求める呼吸数算出部(不図示)が構築されていてもよい。呼吸数算出部は例えば、重心位置算出部31により求められる重心軌跡から、呼吸により生じる重心移動の軌跡を抽出し、この軌跡の振動数を分析することにより被験者Sの呼吸数を求めることができる。呼吸により生じる重心移動の軌跡の抽出は、一例として、特定の方向に周期的に振動する重心軌跡を呼吸による重心軌跡とみなし、このような重心軌跡を抽出することにより行うことができる。
呼吸により生じる重心移動の軌跡の抽出は、一例として次の方法により行うことができる。
まず、制御部3に構築された体動情報決定部(不図示)を用いて、例えば1分間における被験者Sの重心軌跡GT2を記憶部4から取り出す。取り出される重心軌跡GT2の一例は図20(a)に示す通りである。図20(a)に示す重心軌跡GT2は、被験者Sが大きな体動(寝返り等)によりベッド上を左右方向に一往復していることを示している。また、大きな体動が生じていない安定体位期間において、被験者Sの重心Gが、領域D、E、F内でそれぞれ移動する様子を示している。領域D、E、F内での重心Gの移動は、被験者Sの小さな体動及び呼吸等に起因して生じている。なお、本発明において「大きな体動」とは、寝返りや、その他の胴体部の移動を伴う離散的な体動を主に含み、苦しい時、若しくは覚醒時などにも生じる。重心の移動という観点で表すと、ある期間内に、ある方向に所定距離dを超えて重心Gを移動させる体動を意味する。したがって、被験者Sの体動のうちいずれを「大きな体動」とするかは任意であり、所定距離dの値に基づいて、いずれを「大きな体動」とするかを決定することができる。大きな体動とは、呼吸による重心移動に対して相対的に区別できる程度に(例えば数倍以上)大きい重心の移動と見ることもできる。
体動情報決定部(不図示)に含まれる大きな体動情報決定部(不図示)は、重心軌跡GT2から被験者Sの大きな体動に起因する重心移動の軌跡を決定して抽出する(大きな体動決定工程)。呼吸数算出部は、重心Gがある方向に、一定時間内に、一定距離を越えて移動した場合に、例えば、一定時間内に領域間を変位するように移動した場合に、大きな体動が生じたと判断し、この期間の重心軌跡GT2を抽出する。
大きな体動決定工程においては、重心Gがある方向に、一定時間内に、一定距離を越えて移動したか否かを、次の方法を用いて判断する。まず、図20(a)に示す重心軌跡GT2を、より低いサンプリング周波数に変換した重心軌跡GT21に変換する(図20(b))。より低いサンプリング周波数への変換は、サンプリング周期0.1秒で取得されている重心位置Gのデータを間引いたり、移動平均処理を施すことによって行うことができる。又は重心軌跡GT2を周波数分解してローパスフィルタにより所定の低周波数成分を取り出すことによっても行うことができる。
図20(b)において、点D1と点E1との間の軌跡は、例えば、右方向に、0.5秒以内に、30cmを超えて移動している。従って呼吸数算出部は、この区間における軌跡を大きな体動の軌跡であると判断し、重心軌跡GT2からこの区間における軌跡を除去する。同様に、点E2と点F1との間の軌跡も、例えば、左方向に、0.5秒以内に、30cmを超えて移動している。従って大きな体動情報決定部は、この区間における軌跡を大きな体動の軌跡であると判断し、重心軌跡GT2からこの区間における軌跡を除去する。なお点D1から点E1への移動と点E2から点F1への移動は、いずれも別の領域への移動であり、これをもって大きな体動と捉えてもよい。
図20(a)に示す重心軌跡GT2から、大きな体動の軌跡を除去したものを図21(a)~図21(c)に示す。図21(a)は領域Dにおける重心軌跡GT2、図21(b)は領域Eにおける重心軌跡GT2、図21(c)は領域Fにおける重心軌跡GT2である。これらは安定体位期間(大きな体動が生じていない期間)における重心軌跡GT2である。
なお、低いサンプリング周波数は、大きい体動を抽出するのに十分な程度に短い周期(大きい周波数)であり、且つ小さな体動や呼吸等の他の要因による重心の変動の影響を受けない程度に長い周期(小さい周波数)とすることが望ましい。また、どの程度の時間内にどの程度の距離だけ移動した場合に大きな体動と判断するかは、生体情報モニタリングシステム100の装置の特徴に合わせて最適化することができる。
次に、体動情報決定部の小さな体動情報決定部は、安定体位期間における重心軌跡GT2から被験者Sの小さな体動に起因する重心移動の軌跡を決定して抽出する(小さな体動決定工程)。安定体位期間における重心軌跡GT2から被験者Sの小さな体動に起因する重心移動の軌跡を取り除く工程について、領域Eの重心軌跡GT2(図21(b))から小さな体動の軌跡と呼吸の軌跡とを分離する手順を例に説明する。なお、本発明において「小さな体動」とは、被験者Sの身体全体が大きく移動するのではなく、身体の一部、即ち手足や顔(頭)だけが動くような移動であり、重心の移動という観点で表すと、被験者Sの呼吸に起因する重心移動の方向とは異なる方向に、所定距離dを超えない範囲で重心Gを移動させる体動を意味する。小さな体動とは、大きな体動と区別できる程度に(例えば数分の一以下)小さい重心の移動と見ることもできる。
小さな体動決定工程においては、過去の測定から呼吸数算出部によって算出される、特定の方向に周期的に振動する重心軌跡を呼吸による重心軌跡とみなし、このような重心軌跡とは異なる重心軌跡を小さな体動による重心軌跡とみなす。
図21(b)において、重心軌跡GT2は、呼吸による重心Gの移動を表す部分gt1及びgt3と、小さな体動による重心Gの移動を表す部分gt2(呼吸による重心Gの移動分も含まれていると考えている)とを含んでおり、小さな体動による重心Gの移動を表す部分gt2は、呼吸による重心Gの移動を表す部分gt1、gt3の重心軌跡とは異なり、特定の方向に周期的に振動していない。
したがって、小さな体動による重心移動の軌跡を分離して抽出する一つの方法としては、特定の方向に周期的に振動する重心軌跡(gt1、gt3)のみを抽出し、これを重心移動の呼吸成分とみなす。そしてその他の部分(gt2)を小さな体動として分離、抽出する。このような分離・抽出は例えば呼吸安定期における過去のある期間における重心変動の中から、周期的に繰り返される重心変動をフーリエ解析等の周波数解析で検出し、その周波数成分を持つ重心変化の方向を検出して、これを呼吸による重心変動とみなす。その上で、現在測定されている重心変動と呼吸による重心変動の差分を小さい体動として抽出する。この時、この分析に係わる現在の重心変動について、当該周波数成分が失われたり、振幅が急激に変化している場合は、呼吸が変化したとみなし、呼吸による重心変動の差分は行わない。このような方法により実施することができる。
他の方法としては、図22に示す通り、特定の方向に周期的に振動する重心軌跡とはなっていない部分(gt2)を、特定の方向に周期的に振動する重心軌跡の一部を構成する部分gt21と、その他の部分gt22とに分解する。そして、特定の方向に周期的に振動する重心軌跡の一部を構成する部分gt21のみを部分gt1と部分gt3との間に戻して図23に示すような重心軌跡を求め、これを重心移動の呼吸成分とする。一方で部分gt2から分解された部分gt22を小さな体動として分離・抽出する。このような分離・抽出は上記のような方法で実施することができる。
その後、体動情報決定部で抽出された重心移動の呼吸成分は、呼吸数算出部に送られ、呼吸数算出部において、上記実施形態と同様の手段によって呼吸数の算出を行う。なお、体動情報決定部は、大きな体動による重心移動の軌跡、小さな体動による重心移動の軌跡を決定するのみでもよく、必ずしも重心軌跡からこれらの軌跡を分離、抽出しなくてもよい。この場合は、例えば、呼吸数算出部に、体動情報決定部で決定された大きな体動による重心移動の軌跡、小さな体動による重心移動の軌跡を参照して、重心軌跡から呼吸成分を抽出させてもよい。
呼吸数算出部はまた、荷重検出器11~14からの信号s1~s4から取り出した呼吸波形BW(図10)や、重心Gの移動に基づいて算出される波形GW(図19)の振動数に基づいて単位時間当たりの被験者Sの呼吸数を求めることができる。これらの波形は被験者Sの呼吸に起因して生じているため、これらの波形を分析することで被験者Sの呼吸数を求めることができる。
波形の分析は、例えば次のようにして行う。
図21(a)~図21(c)に示される重心軌跡GT2から抽出された呼吸成分の往復動の合計回数が、1分間の被験者Sの呼吸数を示している。したがって呼吸数算出部は、呼吸成分の往復動に基づいて被験者Sの1分間の呼吸数を算出する。
具体的には呼吸数算出部は、まず被験者Sの重心軌跡GT2の呼吸成分を、振動方向がX軸方向と一致するように回転する。次に呼吸数算出部は、回転した呼吸成分に対して、多段フィルタバンクを用いて複数段のフィルタリングを行う。各段のフィルタリングにおいて高周波成分はノイズとして除去される。一方、各段のフィルタリングにより得られた低周波成分に対しては、次の段のフィルタリングが行われる。フィルタリングを所定の段数行った後、最終段の低周波成分を呼吸回数と算出することができる。また、前述の荷重検出部1からの出力と呼吸数算出部のデータを用いることで、被験者が在床しているか、離床しているかを正確にモニタリングできる。これは、例えばベッド上に荷物等が置かれた場合でも、荷重検出部1の出力は変化するが、この出力に基づいて呼吸数算出部において呼吸数が算出されれば、ベッド上に存在するのは荷物等ではなく被験者であると判断できる。
その他の方法も可能である。具体的には例えば、まずX軸方向に振動する重心軌跡GT2の呼吸成分から、X軸方向において最も正側に位置する点及びX軸方向において最も負側に位置する点を求め、両点のX座標の中間値Xmを算出する。この中間値Xmは、被験者Sの呼吸に起因する重心軌跡GT2の振動中心であるとみなすことができる。次いで呼吸数算出部は、重心軌跡GT2がこの中間値XmをまたいでX軸方向に負側から正側へ移動する回数、又は正側から負側へ移動する回数を求めることにより、被験者Sの呼吸に起因する重心軌跡GT2の振動数、即ち呼吸数を算出する。
上記実施形態の身体状況検知装置100の制御部3には、被験者Sの呼吸換気量を算出する呼吸換気量算出部(不図示)が構築されていてもよい。呼吸換気量算出部は、呼吸数算出部が抽出した呼吸により生じる重心移動の軌跡に基づいて、被験者Sの1回の換気量を推定する。なお、呼吸換気量とは、呼吸の深さに相当する物理量である。
呼吸により生じる重心移動の軌跡の振幅1回分が呼吸の1回に相当する。大きく深い呼吸の時、吸気時に肺が膨張する時には横隔膜は通常の吸気よりも大きく移動して下方に下がり、内臓も大きく下方に移動する。一方で呼気時、すなわち肺が収縮する時には横隔膜は通常の呼気より大きく移動して上方に上がり、内臓も大きく上方に移動する。その反対に小さく浅い呼吸の時は、内蔵の動きは通常状態より小さくなる。本発明の発明者は研究により、呼吸の大きさに応じて、この内臓移動に伴う重心Gのわずかな移動に更に変化が現れることを見出した。具体的には、大きく深い呼吸の時は、振幅が通常時より大きくなり、小さく浅い呼吸の時は、振幅が通常時より小さくなる。1回の換気量は、この振幅と相関付けを行うことで、推定できる。例えば、あらかじめ被験者がベッドで仰向けの状態で、大きく深い呼吸を行い、その時の換気量と振幅を記録しておく。また、小さく浅い呼吸を行い、その時の換気量と振幅を記録しておく。取得した呼吸に基づく重心軌跡に基づいて、振幅より呼吸換気量を算出する。一回の換気量を推定することで、1分間の分時換気量を推定することも可能になる。1分間の呼吸回数と分時換気量が解ることで、被験者Sの呼吸状態が総合的に良い状態にあるのか悪い状態にあるのかをモニターすることができる。
上記実施形態の身体状況検知装置100の制御部3には、被験者の心拍数を求める心拍数算出部(不図示)が構築されていてもよい。心拍数算出部による心拍数の算出は、例えば重心位置算出部31により求められる重心軌跡から求めることができる。心拍は複数の重心変動の組合せがセットになった特有の周期性を有するため、心拍数算出部は、過去の演算結果に基づいて現在の心拍によると考えられる重心の変位を推定することができる。したがって、推定した重心の変位に基づいて、重心軌跡から心拍に起因する軌跡を取り出し、これに基づいて心拍数を求めることもできる。
心拍数算出部はまた、荷重検出器11~14からの信号s1~s4(図5)から、心拍成分に対応する0.5Hz~2.5Hzの周波数帯域の信号成分を取り出すことにより心拍数を算出することもできる。
上記実施形態の身体状況検知装置100の制御部3には、被験者Sの睡眠/覚醒を判定する身体状態判定部(不図示)が構築されていてもよい。身体状態判定部は、一例として、被験者Sの呼吸数及び呼吸換気量の値に基づいて被験者Sの睡眠/覚醒を判定することができる。
身体状態判定部は、各種生体情報(体重、体動、呼吸、心拍等)のデータを複合的に使って、被験者の身体状態を判定してもよい。この際、身体状態を判定する精度を上げるために、教師データを用いた機械学習をおこなってもよい。
すなわち、睡眠・覚醒を表わす関数を、多くの生体情報のデータからフィティングにより作成しておき(ラベル付き教師データ)、本実施形態の生体情報モニタリングシステム100から得られる各種の各種生体情報のデータをこの関数に導入することにより、睡眠又は覚醒の身体状態を求めることができる。すなわち、睡眠・覚醒のアルゴリズムは、被験者から採られる覚醒時または睡眠時のラベルの付いた教師データを参照して生体情報モニタリングシステム100から得られる離床、着床、大きな体動、小さな体動、呼吸、無呼吸、いびき、発話、心拍のような各種生体情報とその演算(四則演算、積分、微分、周波数分析等を含む数理的解析)とを用いた機械学習により得ることができる。
身体状態判定部は、荷重検出器11~14からの信号s1~s4の荷重値の変化に基づいて、被験者SのベッドBDへの着床、及びベッドBDからの離床を検知することもできる。身体状態判定部による被験者SのベッドBDへの着床の判定は、例えば荷重検出器11~14からの信号s1~s4が示す荷重値の合計値の増加が所定の値(例えば、40kg、55kg、70kg等であり入力部7等を用いて任意に設定することができる)を超えたか否かによって行うことができる。被験者SのベッドBDからの離床の判定も同様に、例えば荷重検出器11~14からの信号s1~s4が示す荷重値の合計値の減少が所定の値を超えたか否かによって行うことができる。
身体状態判定部は、重心軌跡に基づいて被験者SのベッドBDへの着床、及びベッドBDからの離床を検知することもできる。被験者SがベッドBD上に存在していない期間においては、荷重センサ11~14にはベッドBDからの荷重が均等に加えられており、換言すれば重心GはベッドBDの中央に位置している。そして被験者SがベッドBDに着床すると、重心Gは被験者Sが着床した位置に向かって大きく移動する。身体状態判定部は、重心Gのこのような大きな移動に基づいて被験者Sの着床を検知することができる。被験者Sの離床も同様に判断できる。
身体状態判定部は、被験者SのベッドBDからの転落を検知することもできる。具体的には、身体状態判定部は、被験者Sが睡眠状態であり、且つ離床が発生した場合に被験者SがベッドBDから転落したと判定することができる。また判定結果を表示部5に表示してもよく、報知部6を用いて身体状態検知装置100の使用者に報知してもよい。なお、身体状態判定部は、被験者Sが覚醒状態である時に離床が発生した場合には、被験者Sが自らの意思で離床したと判断してもよい。
身体状態判定部は、身体状態検知装置100で求められる各種生体情報に基づいて被験者Sの生死を判定してもよい。具体的には例えば、身体情報判定部は、被験者Sの体動(重心移動)、呼吸、及び心拍のすべてがある一定の条件の下で停止した場合に、被験者Sが死亡したと判定することができる。ある一定の条件は、使用者である医師等の判断により設定することができる。
身体状態判定部は、被験者Sが睡眠時無呼吸症候群の症状である無呼吸状態にあると判定することもできる。睡眠時無呼吸症候群の患者が睡眠中に無呼吸に陥った場合には、ある期間呼吸及び体動が停止し、その後大きく吸気がなされて呼吸及び体動が生じる。その一方で心拍は継続している。したがって身体状態判定部は、呼吸及び体動が停止し心拍が継続している期間が一定時間以上続いた場合に、無呼吸状態が発生したと検知することができる。
身体状態判定部は、判定結果を表示部5に表示してもよく、報知部6を用いて身体状態検知装置100の使用者に報知(ナースコール)してもよい。また身体状態判定部は、測定された各種生体情報を記憶部4に記憶させる時に、無呼吸状態が発生した期間に対応する生体情報にラベル付を行ってもよい。これにより被験者Sの睡眠時無呼吸症候群の症状の事後観察が容易となる。
上記実施形態の生体情報モニタリングシステム100の身体状態判定部は、被験者Sの発話やいびきを検知することもできる。発話は一般的に呼気と同時に行われる。従って例えば、覚醒時又は睡眠時における呼気期間に高周波成分が生じている場合には、この高周波成分が発話に起因するものであると判定することができる。またいびきは一般的に吸気時に発生する。従って例えば、睡眠時の吸気期間に高周波成分が生じている場合には、この高周波成分がいびきに起因するものであると判定することができる。
上記実施形態の身体状態検知装置100の報知部6は、重心軌跡が通常とは異なる動きを示した場合に、これを異常と捉えて報知部6を用いた報知(ナースコール)を行ってもよい。どのような動きを「通常とは異なる動き」とするかは適宜設定することができるが、一例としては、所定の体動(重心移動)が連続的に一定時間以上継続した場合に「通常とは異なる動き」と判断してナースコールを行うことができる。ナースコール信号を受けてそのベッドの様子を映し出すカメラを作動させてもよい。
重心位置算出部31を用いて、被験者Sの体重を測定することもできる。被験者Sの体重の測定は、信号s1~s4の荷重値の合計値から予め記憶部4に記憶したベッドBDの重量を減じることで求めることができる。なお、ベッドの重量が4つの領域I~IVで均一でない場合には、その相違を荷重検出器に対応するベッド重量として記憶させておく。また、実際の計測中の被験者S以外の重量をもたらす状況、例えば、布団や荷物等が置かれたことをベッド重量に反映させるようにすることが望ましい。
上記実施形態では、体重測定は重心位置算出部31で行ったが、体重測定部を制御部3の中に別途設けてもよい。
なお、上記の実施形態において、荷重検出器11、12、13、14は、ビーム形ロードセルを用いた荷重センサに限られず、例えばフォースセンサを使用することもできる。
なお、上記の実施形態において、荷重検出器は4つに限られない。ベッドBDに追加の脚を設けて5つ以上の荷重検出器を使用してもよい。又はベッドBDの脚のうち3つのみに荷重検出器を配置してもよい。荷重検出器が3つの場合でも、これを一直線に配置しなければ、ベッドBD面上での被験者Sの重心位置Gを検出できる。あるいは、被験者の体動が拘束される状況の下では頭側と脚側の2つの荷重検出器だけでも頭の配置や寝姿を検知することが可能である。また寝姿のみを検知する場合には荷重検出器は1つであってもよい。
なお、上記の実施形態においては、荷重検出器11、12、13、14は、ベッドBDの脚の下端に取り付けられたキャスターC1、C2、C3、C4の下にそれぞれ配置されていたがこれには限られない。荷重検出器11、12、13、14はそれぞれ、ベッドBDの4本の脚とベッドBDの床板との間に設けられてもよいし、ベッドBDの4本の脚が上下に分割可能であれば、上部脚と下部脚との間に設けられても良い。また、荷重検出器11、12、13、14をベッドBDと一体型とし、ベッドBDと本実施形態の身体状況検知装置とからなるベッドシステムBDSを構成してもよい(図24)。なお、本明細書において「ベッドに設けられた荷重検出器」とは、上述のようにベッドBDの4本の脚とベッドBDの床板との間に設けられた荷重検出器や、上部脚と下部脚との間に設けられた荷重検出器を意味する。
なお、上記の実施形態において、荷重検出部1とA/D変換部2との間に、荷重検出部1からの荷重信号を増幅する信号増幅部や、荷重信号からノイズを取り除くフィルタリング部を設けても良い。
なお、上記実施形態の身体状況検知装置100において、表示部は、使用者が視覚的に認識できるようにモニタ上に情報を表示するものには限られない。例えば表示部5は、被験者Sの身体状況を定期的に印字して出力するプリンタでもよく、又は仰臥状態なら青ランプの点灯、横臥状態なら黄色ランプの点灯、伏臥状態なら赤ランプの点灯といった簡易な視覚的表現を用いて表示するものであってもよい。または表示部5は、被験者Sの身体状況を使用者に音声で伝えるものであってもよい。さらに、身体状況検知装置100は表示部5を有さなくてもよく、映像信号等の情報を出力する出力端子を有するのみであってもよい。表示を行うためのモニタ(ディスプレイ装置)等は、当該出力端子を介して身体状況検知装置100に接続される。
なお、上記実施形態の報知部6は聴覚的に報知を行っていたが、報知部6は、光の点滅等によって視覚的に報知を行う構成であってもよく、振動により報知を行う構成であってもよい。また、上記実施形態の身体状況検知装置100は、報知部6を有さなくても良い。
なお、上記実施形態の身体状況検知装置100において、配線によって接続されている構成同士は、それぞれ無線によって接続されていてもよい。
上記実施形態及び変形例の身体状況検知装置100は、荷重検出器11~14によって検出された荷重の変化に基づいて被験者Sの体軸の延びる方向及び/又は被験者Sの頭部の配置を決定している。よって身体状況検知装置100、200によれば、被験者Sの身体状況を詳細に検知することができる。
上記実施形態及び変形例の身体状況検知装置100によれば、頭部配置決定部33は体軸方向決定部32により決定された被験者Sの体軸の方向に基づいて、被験者Sの頭部の配置をより詳細に決定することができる。また、寝姿判定部34を備えるため、被験者Sの身体状況をより詳細に検知することができる。
上記実施形態及び変形例の身体状況検知方法は、荷重検出器11~14によって検出された荷重の変化に基づいて被験者Sの体軸の延びる方向及び/又は被験者Sの頭部の配置を決定している。よって本発明の身体状況検知方法によれば、被験者Sの身体状況を詳細に検知することができる。
上記実施形態及び変形例の身体状況検知方法によれば、被験者Sの体軸の延びる方向を決定した後に被験者Sの頭部の配置を決定するため、被験者Sの頭部の配置の決定をより詳細に決定することができる。また検出された荷重の変化に基づいて被験者の寝姿を判定することを更に含むため、被験者Sの身体状況をより詳細に検知することができる。
上記実施形態のベッドセンサによる身体状況検知装置は、荷重センサーの時系列データから、体重、体動、呼吸、いびき、心拍等の生体情報の状態とその時間的変化を、同時に同期して測定することができるため、時系列に変化する被験者の身体状態の判定もそれぞれの時刻に合わせて、前記生体情報と同期して行うことが可能である。
上記の身体状況検知装置において、小さな体動情報決定部は、大きな体動情報決定部により決定された大きな体動が除去された前記重心位置の時間的変動から小さな体動を決定していたが、それに加えてまたはそれに代えて重心位置の移動方向や呼吸の影響による周期性に基づいて小さな体動を決定してもよい。
上記の身体状況検知装置において、大きな体動情報、小さな体動情報及び呼吸数を同期して求めるだけでなく、それらに加えて、さらに体重、心拍及び身体状態判定部の結果を同期して求めることもできる。
上記の身体状況検知装置における身体状態判定部は、求められた被験者の体動情報及び/又は呼吸数に基づいて、被験者が睡眠状態であるか覚醒状態であるかのみならずせん妄状態であるかを判断してもよい。
上記の身体状況検知装置において身体状態判定部には、検出された荷重に基づいて被験者が前記ベッド上に存在するか否かを判定する離着床判定部を設けてもよい。離着床判定部は、離着床のみならず、被験者の体重や体重変動を判定してもよい。
本発明の身体状況検知装置における表示部は、求められた被験者の体動情報、体軸方向、呼吸、心拍の現在状態と時間的変化を、ベッド上での前記重心位置の移動履歴として表示し得る。
本発明の特徴を維持する限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
本発明の身体状況検知装置によれば、荷重検出器による検出のみに基づいて、被験者の身体状況を詳細に検知することができる。したがって安価に、且つ被験者に負担をかけることなく被験者の状態を把握することができ、医療及び介護の質の向上に資することができる。また、本発明の身体状況検知装置によれば、ベッド下またはベッドに設けた荷重検出器だけで、体動情報、呼吸数等の呼吸情報、ひいては、体重、心拍数、いびき、離着床の有無などを検査項目を同期して検出することができる。従って、各項目ごとに異なるセンサーを被験者に取り付ける必要や、複数のセンサーからの出力の同期をとる必要はない。また、看護記録(バイタル記録)への呼吸状態の自動入力・表示や看護師への呼吸状態悪化の自動送信が可能になるため、看護師の夜間患者チェックの回数を減らし、看護師の仕事量を減らし、患者の睡眠の質を改善することが可能となる。さらに、医療者が予期しないベッドからの転落、呼吸停止、心停止や死亡などが発生した場合に、その原因究明にも活用できる。
1 荷重検出部
11、12、13、14 荷重検出器
2 A/D変換部
3 制御部
31 重心位置算出部
32 体軸方向決定部
33 頭部配置決定部
34 寝姿判定部
4 記憶部
5 表示部
6 報知部
7 入力部
100 身体状況検知装置
BD ベッド
BDS ベッドシステム
S 被験者
11、12、13、14 荷重検出器
2 A/D変換部
3 制御部
31 重心位置算出部
32 体軸方向決定部
33 頭部配置決定部
34 寝姿判定部
4 記憶部
5 表示部
6 報知部
7 入力部
100 身体状況検知装置
BD ベッド
BDS ベッドシステム
S 被験者
Claims (14)
- ベッド上の被験者の身体状況を検知する身体状況検知装置であって、
ベッド又はベッドの脚下に設けられ、被験者の呼吸に応じた荷重の変化を検出する複数の荷重検出器と、
前記検出された荷重の変化に基づいて、被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定する身体状況検知部とを備える身体状況検知装置。 - 前記検出された荷重の変化に基づいて被験者の重心位置の時間的変化を求める重心位置算出部を更に備え、
前記身体状況検知部は、前記被験者の重心位置の時間的変化に基づいて、被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定する請求項1に記載の身体状況検知装置。 - 前記身体状況検知部は、前記検出された荷重の変化又は前記被験者の重心位置の時間的変化に基づいて被験者の体軸の延びる方向を決定する体軸方向決定部と、前記検出された荷重の変化又は前記被験者の重心位置の時間的変化に基づいて、前記決定された方向における被験者の頭部の配置を決定する頭部配置決定部とを含む請求項1又は2に記載の身体状況検知装置。
- 前記身体状況検知部又は前記頭部配置決定部は、前記検出された荷重の変化又は前記被験者の重心位置の時間的変化を示す波形に基づいて被験者の頭部の配置を決定する請求項1~3のいずれか一項に記載の身体状況検知装置。
- 前記波形は、被験者の吸気に応じて立ち上がり又は立ち下がりを示す吸気期間、被験者の呼気に応じて立ち上がり又は立ち下がりを示す呼気期間、及び吸気期間と呼気期間との間のホールド期間を含み、
前記身体状況検知部又は前記頭部配置決定部は、吸気期間、呼気期間、ホールド期間の少なくとも一つに基づいて被験者の頭部の配置を決定する請求項4に記載の身体状況検知装置。 - 前記検出された荷重の変化又は前記被験者の重心位置の時間的変化を示す波形に基づいて被験者の寝姿を判定する寝姿判定部を更に備える請求項1~5のいずれか一項に記載の身体状況検知装置。
- ベッドと、
請求項1~6のいずれか一項に記載の身体状況検知装置とを有するベッドシステム。 - ベッド上の被験者の身体状況を検知する身体状況検知方法であって、
ベッド又はベッドの脚下に設置した複数の荷重検出器により被験者の呼吸に応じた荷重の変化を検出することと、
前記検出した荷重の変化に基づいて被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定することを含む方法。 - 前記検出した荷重の変化に基づいて被験者の重心位置の時間的変化を求めることを更に含み、
前記検出した荷重の変化に基づいて被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定することは、前記被験者の重心位置の時間的変化に基づいて被験者の体軸の延びる方向及び/又は被験者の頭部の配置を決定することである請求項8に記載の方法。 - 前記検出した荷重の変化又は前記被験者の重心位置の時間的変化に基づいて被験者の体軸の延びる方向を決定し、次いで前記検出した荷重の変化又は前記被験者の重心位置の時間的変化に基づいて、前記決定された方向における被験者の頭部の配置を決定する請求項8又は9に記載の方法。
- 被験者の頭部の配置は、前記検出された荷重の変化又は前記被験者の重心位置の時間的変化を示す波形に基づいて決定される請求項8~10のいずれか一項に記載の方法。
- 前記波形は、被験者の吸気に応じて立ち上がり又は立ち下がりを示す吸気期間、被験者の呼気に応じて立ち上がり又は立ち下がりを示す呼気期間、及び吸気期間と呼気期間との間のホールド期間を含み、
被験者の頭部の配置は、吸気期間、呼気期間、ホールド期間の少なくとも一つに基づいて決定される請求項11に記載の方法。 - 前記検出された荷重の変化又は前記被験者の重心位置の時間的変化を示す波形に基づいて被験者の寝姿を判定することを更に含む請求項8~12のいずれか一項に記載の方法。
- ベッド上の被験者の身体状況を検知する身体状況検知装置であって、
ベッド又はベッドの脚下に設けられ、被験者の呼吸に応じた荷重の変化を検出する複数の荷重検出器と、
前記検出された荷重の変化に基づいて、被験者の体軸の延びる方向を決定する身体状況検知部とを備える身体状況検知装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK16830609.0T DK3329891T3 (da) | 2015-07-30 | 2016-07-29 | Apparat til detektering af en fysisk tilstand, fremgangsmåde til detektering af en fysisk tilstand, samt sengesystem |
CN201680044026.3A CN108289779B (zh) | 2015-07-30 | 2016-07-29 | 身体状况检查装置、身体状况检查方法以及床系统 |
EP16830609.0A EP3329891B1 (en) | 2015-07-30 | 2016-07-29 | Physical condition detecting device, physical condition detecting method and bed system |
SG11201800701RA SG11201800701RA (en) | 2015-07-30 | 2016-07-29 | Physical condition detecting device, physical condition detecting method and bed system |
US15/880,947 US10390735B2 (en) | 2015-07-30 | 2018-01-26 | Body state detecting apparatus, body state detecting method and bed system |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015151220 | 2015-07-30 | ||
JP2015-151220 | 2015-07-30 | ||
JP2015-210438 | 2015-10-27 | ||
JP2015210438 | 2015-10-27 | ||
JP2016138506A JP6122188B1 (ja) | 2015-07-30 | 2016-07-13 | 身体状況検知装置、身体状況検知方法及びベッドシステム |
JP2016-138506 | 2016-07-13 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/880,947 Continuation US10390735B2 (en) | 2015-07-30 | 2018-01-26 | Body state detecting apparatus, body state detecting method and bed system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017018506A1 true WO2017018506A1 (ja) | 2017-02-02 |
Family
ID=57884638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/072325 WO2017018506A1 (ja) | 2015-07-30 | 2016-07-29 | 身体状況検知装置、身体状況検知方法及びベッドシステム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017018506A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018126423A (ja) * | 2017-02-10 | 2018-08-16 | ミネベアミツミ株式会社 | ベッドモニタリングシステム |
JP2018166774A (ja) * | 2017-03-29 | 2018-11-01 | 住友理工株式会社 | 呼吸波形計測装置 |
WO2019107012A1 (ja) * | 2017-11-30 | 2019-06-06 | パラマウントベッド株式会社 | 異常報知装置、記録媒体及び異常報知方法 |
JP2019098069A (ja) * | 2017-12-07 | 2019-06-24 | パラマウントベッド株式会社 | 姿勢判定装置 |
JP2019097829A (ja) * | 2017-11-30 | 2019-06-24 | パラマウントベッド株式会社 | 異常報知装置及びプログラム |
CN112040865A (zh) * | 2018-04-26 | 2020-12-04 | 美蓓亚三美株式会社 | 生物体状态监测系统 |
CN114343595A (zh) * | 2022-02-24 | 2022-04-15 | 吉林建筑大学 | 一种社区智慧养老服务系统 |
US11864885B2 (en) | 2018-04-26 | 2024-01-09 | Minebe Mitsumi Inc. | Biological state monitoring system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5392577A (en) * | 1977-01-22 | 1978-08-14 | Anima Corp | Method of measuring respiration and heart motion |
JPH07327939A (ja) * | 1994-06-09 | 1995-12-19 | Matsushita Electric Ind Co Ltd | 監視装置 |
JP2003000552A (ja) * | 2001-06-25 | 2003-01-07 | Advanced Medical Kk | 生体生理検出装置 |
JP2005144042A (ja) * | 2003-11-19 | 2005-06-09 | Denso Corp | 生体情報表示装置、寝姿及び体位検出装置 |
JP2009240660A (ja) * | 2008-03-31 | 2009-10-22 | Aisin Seiki Co Ltd | ベッド |
JP2011120667A (ja) * | 2009-12-09 | 2011-06-23 | Aisin Seiki Co Ltd | 在床状態検出装置 |
JP2012011174A (ja) * | 2010-06-01 | 2012-01-19 | Aisin Seiki Co Ltd | 在床状態判定装置 |
JP2014180432A (ja) * | 2013-03-19 | 2014-09-29 | Aisin Seiki Co Ltd | 動作検出装置 |
-
2016
- 2016-07-29 WO PCT/JP2016/072325 patent/WO2017018506A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5392577A (en) * | 1977-01-22 | 1978-08-14 | Anima Corp | Method of measuring respiration and heart motion |
JPH07327939A (ja) * | 1994-06-09 | 1995-12-19 | Matsushita Electric Ind Co Ltd | 監視装置 |
JP2003000552A (ja) * | 2001-06-25 | 2003-01-07 | Advanced Medical Kk | 生体生理検出装置 |
JP2005144042A (ja) * | 2003-11-19 | 2005-06-09 | Denso Corp | 生体情報表示装置、寝姿及び体位検出装置 |
JP2009240660A (ja) * | 2008-03-31 | 2009-10-22 | Aisin Seiki Co Ltd | ベッド |
JP2011120667A (ja) * | 2009-12-09 | 2011-06-23 | Aisin Seiki Co Ltd | 在床状態検出装置 |
JP2012011174A (ja) * | 2010-06-01 | 2012-01-19 | Aisin Seiki Co Ltd | 在床状態判定装置 |
JP2014180432A (ja) * | 2013-03-19 | 2014-09-29 | Aisin Seiki Co Ltd | 動作検出装置 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018147252A1 (ja) * | 2017-02-10 | 2018-08-16 | ミネベアミツミ株式会社 | ベッドモニタリングシステム |
JP2018126423A (ja) * | 2017-02-10 | 2018-08-16 | ミネベアミツミ株式会社 | ベッドモニタリングシステム |
CN110740684A (zh) * | 2017-02-10 | 2020-01-31 | 美蓓亚三美株式会社 | 床监测系统 |
JP2018166774A (ja) * | 2017-03-29 | 2018-11-01 | 住友理工株式会社 | 呼吸波形計測装置 |
JP7034687B2 (ja) | 2017-11-30 | 2022-03-14 | パラマウントベッド株式会社 | 異常報知装置及びプログラム |
WO2019107012A1 (ja) * | 2017-11-30 | 2019-06-06 | パラマウントベッド株式会社 | 異常報知装置、記録媒体及び異常報知方法 |
JP2019097828A (ja) * | 2017-11-30 | 2019-06-24 | パラマウントベッド株式会社 | 異常報知装置、プログラム及び異常報知方法 |
JP2019097829A (ja) * | 2017-11-30 | 2019-06-24 | パラマウントベッド株式会社 | 異常報知装置及びプログラム |
CN111372507A (zh) * | 2017-11-30 | 2020-07-03 | 八乐梦床业株式会社 | 异常通知装置、记录介质及异常通知方法 |
JP7066389B2 (ja) | 2017-12-07 | 2022-05-13 | パラマウントベッド株式会社 | 姿勢判定装置 |
CN111417343A (zh) * | 2017-12-07 | 2020-07-14 | 八乐梦床业株式会社 | 姿势判定装置 |
JP2019098069A (ja) * | 2017-12-07 | 2019-06-24 | パラマウントベッド株式会社 | 姿勢判定装置 |
US11510594B2 (en) | 2017-12-07 | 2022-11-29 | Paramount Bed Co., Ltd. | Posture determination apparatus |
US11813055B2 (en) | 2017-12-07 | 2023-11-14 | Paramount Bed Co., Ltd. | Posture determination apparatus |
CN112040865A (zh) * | 2018-04-26 | 2020-12-04 | 美蓓亚三美株式会社 | 生物体状态监测系统 |
CN112040865B (zh) * | 2018-04-26 | 2021-07-30 | 美蓓亚三美株式会社 | 生物体状态监测系统 |
US11179067B2 (en) | 2018-04-26 | 2021-11-23 | Minebea Mitsumi Inc. | Biological state monitoring system |
US11864885B2 (en) | 2018-04-26 | 2024-01-09 | Minebe Mitsumi Inc. | Biological state monitoring system |
CN114343595A (zh) * | 2022-02-24 | 2022-04-15 | 吉林建筑大学 | 一种社区智慧养老服务系统 |
CN114343595B (zh) * | 2022-02-24 | 2023-09-22 | 天津大学 | 一种社区智慧养老服务系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6594399B2 (ja) | 生体情報モニタリングシステム | |
JP6122188B1 (ja) | 身体状況検知装置、身体状況検知方法及びベッドシステム | |
WO2017018506A1 (ja) | 身体状況検知装置、身体状況検知方法及びベッドシステム | |
WO2017018504A1 (ja) | 生体状態判定装置及び生体状態判定方法 | |
CN101365373A (zh) | 用于预测和监测临床发作的技术 | |
JP6321719B2 (ja) | 生体情報モニタリングシステム | |
JP6284574B2 (ja) | 生体情報モニタリングシステム | |
JP2018126436A (ja) | ベッドモニタリングシステム | |
CN110996791B (zh) | 身体活动判定系统以及生物体状态监测系统 | |
WO2018147252A1 (ja) | ベッドモニタリングシステム | |
JP6487081B2 (ja) | 生体情報モニタリングシステム | |
CN111867468B (zh) | 身体活动判定系统 | |
JP6535770B2 (ja) | 生体情報モニタリングシステム | |
CN111788614B (zh) | 在床状态监视系统以及具备其的床 | |
JP2017205409A (ja) | 在床状態モニタリングシステム | |
JP2018015209A (ja) | 在床状態モニタリングシステム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16830609 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201800701R Country of ref document: SG |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016830609 Country of ref document: EP |