WO2017018487A1 - 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子 - Google Patents

電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子 Download PDF

Info

Publication number
WO2017018487A1
WO2017018487A1 PCT/JP2016/072195 JP2016072195W WO2017018487A1 WO 2017018487 A1 WO2017018487 A1 WO 2017018487A1 JP 2016072195 W JP2016072195 W JP 2016072195W WO 2017018487 A1 WO2017018487 A1 WO 2017018487A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
content
electronic
ratio
copper alloy
Prior art date
Application number
PCT/JP2016/072195
Other languages
English (en)
French (fr)
Inventor
牧 一誠
広行 森
洋介 中里
大樹 山下
Original Assignee
三菱マテリアル株式会社
三菱伸銅株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 三菱伸銅株式会社 filed Critical 三菱マテリアル株式会社
Priority to KR1020187002582A priority Critical patent/KR20180033197A/ko
Priority to CN201680041266.8A priority patent/CN107923001B/zh
Publication of WO2017018487A1 publication Critical patent/WO2017018487A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/02Single bars, rods, wires, or strips

Definitions

  • the present invention is for a Cu-Zn-Sn based electronic / electrical device used as a conductive part for an electronic / electrical device such as a connector of a semiconductor device, other terminals, a movable conductive piece of an electromagnetic relay, or a lead frame.
  • the present invention relates to a copper alloy, a copper alloy thin plate for electronic / electric equipment, a conductive component for electronic / electric equipment, and a terminal using the copper alloy.
  • Cu—Zn alloys have been widely used from the viewpoint of strength, workability, and cost balance.
  • the surface of the base material (base plate) made of Cu—Zn alloy should be used with tin (Sn) plating.
  • Sn tin
  • Cu-Zn-Sn alloys are used for conductive parts such as connectors with a Cu-Zn alloy as the base material and Sn plating on the surface to improve the recyclability of Sn-plated materials and the strength. There is a case.
  • conductive parts for electronic and electrical equipment such as connectors are generally formed into a predetermined shape by punching a thin plate (rolled plate) having a thickness of about 0.05 to 3.0 mm, and at least a part thereof. It is manufactured by bending. In this case, it is used to contact the mating conductive member near the bent portion to obtain an electrical connection with the mating conductive member, and to maintain the contact state with the mating conductive material by the spring property of the bent portion. .
  • Patent Documents 1 to 4 propose methods for improving the heat resistance and stress relaxation resistance of Cu—Zn—Sn alloys.
  • Patent Document 1 states that the stress relaxation resistance can be improved by adding Ni to a Cu—Zn—Sn alloy to produce a Ni—P compound, and the addition of Fe can also reduce stress relaxation. It has been shown to be effective in improving the characteristics.
  • Patent Document 2 describes that strength, elasticity, and heat resistance can be improved by adding Ni and Fe together with P to a Cu—Zn—Sn alloy to form a compound.
  • Patent Document 3 describes that stress relaxation resistance can be improved by adding Ni to a Cu—Zn—Sn alloy and adjusting the Ni / Sn ratio within a specific range. Further, it is described that the addition of a small amount of Fe is effective in improving the stress relaxation resistance. Furthermore, in Patent Document 4 for lead frame materials, Ni and Fe are added together with P to a Cu—Zn—Sn alloy, and the atomic ratio of (Fe + Ni) / P is within a range of 0.2-3. It is described that the stress relaxation resistance can be improved by adjusting to the above and generating Fe-P compounds, Ni-P compounds, and Fe-Ni-P compounds.
  • JP-A-5-33087 JP 2006-283060 A Japanese Patent No. 3953357 Japanese Patent No. 3717321
  • Patent Documents 1 and 2 disclose the individual contents of Ni, Fe, and P, and the adjustment of such individual contents does not necessarily ensure the stress relaxation resistance.
  • Patent Document 3 discloses that the Ni / Sn ratio is adjusted, but the relationship between the P compound and the stress relaxation resistance is not considered at all.
  • Patent Document 4 although only the total amount of Fe, Ni, and P and the atomic ratio of (Fe + Ni) / P are adjusted, the heat resistance can be improved, but the stress relaxation resistance is sufficiently improved. It was not possible to plan.
  • the conventionally proposed methods could not sufficiently improve the heat resistance and stress relaxation resistance of the Cu—Zn—Sn alloy. For this reason, in the connector having the above-described structure, the residual stress is relaxed over time, particularly in a high temperature environment, and the contact pressure with the counterpart conductive member is not maintained, and inconveniences such as poor contact are likely to occur at an early stage. There was a problem. In order to avoid such a problem, conventionally, the thickness of the material has to be increased, leading to an increase in material cost and weight. Therefore, further improvement of heat resistance and stress relaxation resistance is desired.
  • the present invention has been made in the background as described above, and has a heat resistance and stress relaxation resistance that is surely and sufficiently excellent, and a copper alloy for electronic and electrical equipment having excellent strength, It is an object of the present invention to provide a copper alloy thin plate for electronic / electric equipment, a conductive component for electronic / electric equipment, and a terminal.
  • the present inventors have added an appropriate amount of Ni, P, and Fe to a Cu—Zn—Sn alloy, and precipitate it according to heat treatment conditions.
  • Ni, Fe Ni, Fe
  • —P By adjusting the Fe / Ni ratio of the alloy and the Fe / Ni ratio of the entire alloy within an appropriate range, a copper alloy having excellent strength and bending workability as well as reliably and sufficiently improving heat resistance and stress relaxation resistance can be obtained. I found out that I could get it.
  • the copper alloy for electronic / electrical equipment according to the present invention is more than 2 mass% of Zn and 36.5 mass% or less, Sn is 0.1 mass% or more and 0.9 mass% or less, and Ni is 0.15 mass% or more and less than 1.0 mass%.
  • Ni + Fe Ni + Fe
  • P is contained in an amount of 0.005 mass% or more and 0.1 mass% or less
  • Fe is contained in an amount of 0.001 mass% or more and 0.1 mass% or less
  • the remainder is made of Cu and inevitable impurities
  • the ratio (Ni + Fe) / P to the content satisfies an atomic ratio of 3 ⁇ (Ni + Fe) / P ⁇ 30, and the ratio of the Sn content to the total content of Ni and Fe Sn / (Ni + Fe) Satisfies 0.3 ⁇ Sn / (Ni + Fe) ⁇ 2.7 in atomic ratio, and the ratio of Fe content to Ni content [Fe / Ni] is 0.002 ⁇ [Fe Ni] ⁇ 0.6
  • the matrix has [Ni, Fe] -P-based precipitates containing Fe, Ni and P, and this [Ni, Fe] -P-based atomic ratio [Fe / Ni] P in content and Ni of
  • Ni and Fe are added together with P, and the addition ratio among Sn, Ni, Fe and P is regulated, and the precipitate is precipitated from the parent phase (mainly ⁇ phase).
  • [Ni, Fe] -P-based precipitates containing Ni, Fe and P the atomic ratio [Fe / Ni] P between the Fe content and the Ni content in the [Ni, Fe] -P-based precipitate is defined as the Fe content and the Ni content atom in the whole alloy.
  • the ratio [Fe / Ni] satisfies 5 ⁇ [Fe / Ni] P / [Fe / Ni] ⁇ 200, the number density of [Ni, Fe] -P-based precipitates in the alloy Is ensured, and the coarsening of the precipitate is suppressed, and the heat resistance and the stress relaxation resistance are excellent.
  • the [Ni, Fe] -P-based precipitates are Ni—Fe—P ternary precipitates, and other elements such as Cu, Zn, Sn, and impurities of the main component are also included. It may contain multi-component precipitates containing O, S, C, Cr, Mo, Mn, Mg, Zr, Ti and the like.
  • the [Ni, Fe] -P-based precipitates exist in the form of phosphides or alloys in which phosphorus is dissolved.
  • the copper alloy for electronic / electrical equipment according to the present invention is more than 2 mass% of Zn and 36.5 mass% or less, Sn is 0.1 mass% or more and 0.9 mass% or less, and Ni is 0.15 mass% or more and 1.0 mass%.
  • P is contained in an amount of 0.005 mass% to 0.1 mass%, Fe and Co are contained, and the total content of Fe and Co is 0.001 mass% to 0.1 mass% (provided that Fe is added).
  • the balance is made of Cu and inevitable impurities, and the ratio of the total content of Ni, Fe and Co to the content of P (Ni + Fe + Co) / P is An atomic ratio satisfying 3 ⁇ (Ni + Fe + Co) / P ⁇ 30, and the ratio of Sn content to the total content of Ni, Fe and Co Sn / (N + Fe + Co) satisfies an atomic ratio of 0.3 ⁇ Sn / (Ni + Fe + Co) ⁇ 2.7, and the ratio of the total content of Fe and Co to the content of Ni (Fe + Co) / Ni is an atomic ratio.
  • Ni, Fe, and Co are added together with P, and the addition ratio among Sn, Ni, Fe, Co, and P is regulated, and the parent phase ( ⁇ phase) (Ni, (Fe, Co))-P-based precipitates containing at least one of Fe and Co precipitated from Ni and P, and Ni and P.
  • the atomic ratio [(Fe + Co) / Ni] P of the total content of Fe and Co to the content of Ni in the [Ni, (Fe, Co)]-P-based precipitates is defined as Fe and Co in the entire alloy.
  • the [Ni, (Fe, Co)]-P-based precipitates are Ni—Fe—P, Ni—Co—P ternary precipitates, or Ni—Fe—Co—P quaternary precipitates.
  • the [Ni, Fe] -P-based precipitate containing Fe, Ni and P has an average particle size of 100 nm or less.
  • the average particle diameter of the [Ni, (Fe, Co)]-P-based precipitates containing at least one of Fe and Co and Ni and P is It is preferable to be 100 nm or less.
  • the average particle diameter of [Ni, Fe] -P-based precipitates containing Fe, Ni and P, or containing at least one of Fe and Co and Ni and P [Ni, ( Fe, Co)]-P-based precipitates have an average particle size of 100 nm or less, so fine [Ni, Fe] -P-based precipitates or [Ni, (Fe, Co)]-P-based precipitates Are distributed with a sufficient number density, and the heat resistance and the stress relaxation resistance can be reliably improved.
  • the copper alloy thin plate for electronic / electrical equipment of the present invention is made of the above-mentioned rolled material of copper alloy for electronic / electrical equipment, and has a thickness in the range of 0.05 mm to 3.0 mm.
  • the rolled sheet thin plate (strip material) having such a thickness can be suitably used for connectors, other terminals, movable conductive pieces of electromagnetic relays, lead frames, and the like.
  • the conductive component for electronic / electrical equipment of the present invention is characterized by comprising the above-described copper alloy thin plate for electronic / electrical equipment.
  • the conductive parts for electronic / electrical equipment in the present invention include terminals, connectors, relays, lead frames and the like.
  • the terminal of the present invention is characterized by comprising the above-described copper alloy thin plate for electronic and electrical equipment.
  • the terminals in the present invention include connectors and the like. According to the conductive parts and terminals for electronic and electrical equipment having these configurations, the heat resistance and the stress relaxation resistance are particularly excellent, so that they can be used well even in a high temperature environment.
  • the heat resistance and the stress relaxation resistance are surely and sufficiently excellent, and the copper alloy for electronic / electric equipment having excellent strength, the copper alloy thin plate for electronic / electric equipment using the same, Conductive components and terminals for electrical equipment can be provided.
  • the copper alloy for electronic and electric apparatuses which is one Embodiment of this invention is demonstrated.
  • the copper alloy for electronic / electric equipment according to the present embodiment is more than 2 mass% of Zn and 36.5 mass% or less, Sn is 0.1 mass% or more and 0.9 mass% or less, and Ni is 0.15 mass% or more and 1.0 mass% or less. Less than P, 0.005 mass% or more and 0.1 mass% or less of P, 0.001 mass% or more and 0.1 mass% or less of Fe, and the balance of Cu and inevitable impurities.
  • the ratio of the total content of Ni and Fe to the content of P (Ni + Fe) / P is the atomic ratio as the content ratio between the alloy elements, and the following equation (1) 3 ⁇ (Ni + Fe ) / P ⁇ 30 (1)
  • the filling, Furthermore, the ratio Sn / (Ni + Fe) between the Sn content and the total content of Ni and Fe is the atomic ratio, and the following formula (2): 0.3 ⁇ Sn / (Ni + Fe) ⁇ 2.7 (2) 2) While satisfying Ratio of Fe content and Ni content Fe / Ni is an atomic ratio expressed by the following equation (3): 0.002 ⁇ Fe / Ni ⁇ 0.6 (3) It is determined to satisfy.
  • [Ni, Fe] -P-based precipitates containing Fe, Ni, and P exist in the matrix, and this [ The atomic ratio [Fe / Ni] P between the Fe content and the Ni content in the Ni, Fe] -P-based precipitate is the atomic ratio [Fe / Ni] between the Fe content and the Ni content of the entire alloy. / Ni], the following equation (4) 5 ⁇ [Fe / Ni] P / [Fe / Ni] ⁇ 200 (4) Meet.
  • the copper alloy for electronic / electric equipment according to the present embodiment may contain Co in addition to the above Zn, Sn, Ni, P, and Fe.
  • the total content of Fe and Co is set to 0.001 mass% to 0.1 mass% (provided that Fe is contained in an amount of 0.001 mass% to 0.1 mass%).
  • the ratio of the total content of Ni, Fe and Co to the content of P (Ni + Fe + Co) / P is an atomic ratio
  • the ratio Sn / (Ni + Fe + Co) between the Sn content and the total content of Ni, Fe, and Co is an atomic ratio expressed by the following formula (2 ′): 0.3 ⁇ Sn / (Ni + Fe + Co) ⁇ 2.7 ⁇ ⁇ Satisfy (2 ')
  • the ratio (Fe + Co) / Ni of the total content of Fe and Co and the content of Ni is an atomic ratio
  • Ni, (Fe, Co)]-P-based precipitates containing at least one of Fe and Co and Ni and P are present in the matrix.
  • Ni, (Fe, Co)]-P atomic ratio of the total content of Fe and Co to the Ni content in the precipitate [(Fe + Co) / Ni] P is the total content of Fe and Co in the entire alloy
  • the atomic ratio [(Fe + Co) / Ni] of the amount and the content of Ni the following (4 ′) formula 5 ⁇ [(Fe + Co) / Ni] P / [(Fe + Co) / Ni] ⁇ 200 -Satisfies (4 ').
  • Zn is a basic alloy element in the copper alloy which is the subject of this embodiment, and is an element effective in improving strength and springiness. Moreover, since Zn is cheaper than Cu, it is effective in reducing the material cost of the copper alloy. If Zn is 2 mass% or less, the effect of reducing the material cost cannot be sufficiently obtained. On the other hand, if Zn exceeds 36.5 mass%, corrosion resistance will fall and cold rolling property will also fall. Therefore, the Zn content is within the range of more than 2 mass% and not more than 36.5 mass%. The Zn content is preferably in the range of 5 mass% to 33 mass%, more preferably in the range of 7 mass% to 27 mass%, even within the above range. More preferably, it is within the range of 7 mass% or more and 12 mass% or less.
  • Sn 0.1 mass% or more and 0.9 mass% or less
  • Sn is effective in improving the strength and is advantageous in improving the recyclability of the Cu-Zn alloy material with Sn plating. Furthermore, it has been found by the present inventors that if Sn coexists with Ni, it contributes to the improvement of stress relaxation resistance. If Sn is less than 0.1 mass%, these effects cannot be sufficiently obtained. On the other hand, if Sn exceeds 0.9 mass%, hot workability and cold rollability are deteriorated, and hot rolling and cold rolling are performed. May cause cracking, and the electrical conductivity is also lowered. Therefore, the Sn content is set within a range of 0.1 mass% to 0.9 mass%. The Sn content is particularly preferably in the range of 0.2 mass% to 0.8 mass% even within the above range.
  • Ni can be added together with P to precipitate Ni—P-based precipitates from the matrix (mainly ⁇ -phase), and when added together with Fe and P, [Ni, Fe] —P-based precipitation
  • the [Ni, (Fe, Co)]-P-based precipitate can be precipitated from the parent phase (mainly ⁇ -phase).
  • the crystal grain size can be controlled, and the strength, bending workability, and stress corrosion cracking resistance can be improved. Furthermore, the presence of these precipitates can greatly improve the stress relaxation resistance.
  • Ni can be improved by solid solution strengthening by coexisting with Sn, Fe, P and, if necessary, Co.
  • the addition amount of Ni is less than 0.15 mass%, the stress relaxation resistance cannot be sufficiently improved.
  • the addition amount of Ni becomes 1.0 mass% or more, the solid solution Ni increases and the conductivity decreases, and the cost increases due to an increase in the amount of expensive Ni raw materials used. Therefore, the Ni content is in the range of 0.15 mass% or more and less than 1.0 mass%.
  • Ni—P-based precipitates can be precipitated, and by adding together with Fe and P, [Ni, Fe]
  • the [Ni, (Fe, Co)]-P based precipitate can be precipitated from the parent phase (mainly ⁇ -phase).
  • the stress relaxation resistance can be improved by the presence of these Ni—P based precipitates, [Ni, Fe] —P based precipitates, and [Ni, (Fe, Co)] — P based precipitates.
  • the content of P is set in the range of 0.005 mass% to 0.1 mass%.
  • the content of P is particularly preferably in the range of 0.01 mass% to 0.08 mass% even within the above range.
  • P is an element which is inevitably mixed from the melting raw material of the copper alloy, it is desirable to appropriately select the melting raw material in order to regulate the P content as described above. .
  • the presence of these precipitates can greatly improve both the stress relaxation resistance and heat resistance characteristics.
  • the Fe content is less than 0.001 mass%, the effect of improving both the stress relaxation resistance and the heat resistance by adding Fe cannot be obtained.
  • the Fe content exceeds 0.1 mass%, the effect of improving both the stress relaxation resistance and the heat resistance cannot be obtained, the amount of solid solution Fe increases, the conductivity decreases, and cold rolling is performed. The nature will also decline. Therefore, in the present embodiment, when Fe is added, the content of Fe is set in the range of 0.001 mass% to 0.1 mass%. In addition, it is preferable to make content of Fe into the range of 0.002 mass% or more and 0.08 mass% or less especially also in said range.
  • Total content of Fe and Co 0.001 mass% or more and 0.1 mass% or less
  • Co total content of Fe and Co: 0.001 mass% or more and 0.1 mass% or less
  • [Ni, (Fe, Co)]-P-based precipitates can be precipitated from the matrix (mainly ⁇ phase).
  • the average grain size can be controlled by the effect of pinning the grain boundary during recrystallization by this [Ni, (Fe, Co)]-P-based precipitate, and the strength, bending workability, stress resistance can be controlled. Corrosion cracking can be improved.
  • the presence of the [Ni, (Fe, Co)]-P-based precipitates can greatly improve both the stress relaxation resistance and the heat resistance characteristics.
  • the total content of Fe and Co is less than 0.001 mass%, the effect of improving both the stress relaxation resistance and the heat resistance by adding Fe and Co cannot be sufficiently obtained.
  • the total content of Fe and Co exceeds 0.1 mass%, further improvement effects of both the stress relaxation resistance and the heat resistance cannot be obtained, and the amount of solid solution Fe and solid solution Co increases and the conductivity is increased. Decreases, and the cold rolling property also decreases. Therefore, in the present embodiment, when both Fe and Co are added, the Fe content is 0.001 mass% or more and 0.1 mass% or less, and the total content of Fe and Co is 0.001 mass% or more and 0. Within the range of 1 mass% or less.
  • the total content of Fe and Co is particularly preferably in the range of 0.002 mass% to 0.08 mass% even within the above range.
  • the balance of the above elements may basically be Cu and inevitable impurities.
  • inevitable impurities include Co, Al, Ag, B, Ba, Hf, V, Nb, Ta, Mo, W, Re, Ru, Os, O, S, Se, Rh, Ir, Pd, and Pt. , Au, Cd, Ga, In, Li, Ge, As, Sb, Tl, Pb, Bi, C, Be, N, H, Hg, Mg, Ti, Cr, Zr, Ca, Sr, Y, Mn, Te , Si, Sc, and rare earth elements.
  • These inevitable impurities are desirably small, and even when scrap is used as a raw material, the total amount is desirably 0.3 mass% or less.
  • the more desirable total amount of unavoidable impurities is 0.2 mass% or less, and the most desirable total amount is 0.1 mass% or less.
  • the mutual ratio of the content of each element is an atomic ratio. It is important to regulate the ratio so as to satisfy the expressions (1) to (4). In addition, when adding Co, it is important to regulate so as to satisfy the expressions (1 ′) to (4 ′). Therefore, the reasons for limiting the equations (1) to (4) and (1 ′) to (4 ′) will be described below.
  • the [Fe / Ni] P / [Fe / Ni] ratio is regulated within the above range.
  • the [Fe / Ni] P / [Fe / Ni] ratio is particularly preferably in the range of 10 or more and 100 or less even in the above range. More preferably, it is in the range of more than 15 and 75 or less.
  • the (Ni + Fe + Co) / P ratio is regulated within the above range.
  • the (Ni + Fe + Co) / P ratio is preferably in the range of more than 3 and 20 or less even in the above range. More preferably, it is in the range of more than 3 and 15 or less.
  • the [(Fe + Co) / Ni] P / [(Fe + Co) / Ni] ratio is particularly preferably in the range of 10 to 100, even within the above range. More preferably, it is in the range of more than 15 and 75 or less.
  • each alloy element is adjusted not only to the individual content but also to the ratio between each element so that the formulas (1) to (3) or (1 ′) to (3 ′) are satisfied.
  • [Ni, Fe] -P-based precipitates or [Ni, (Fe, Co)]-P-based precipitates are dispersed and precipitated from the parent phase (mainly ⁇ -phase). .
  • the composition ratio in the precipitate so as to satisfy the above formula (4) or (4 ′), the [Ni, Fe] -P-based precipitate or [Ni, (Fe, Co) It is considered that the size of the —P-based precipitate is miniaturized and the number density is secured, and the stress relaxation resistance and heat resistance are surely improved.
  • the [Ni, Fe] -P-based precipitate containing Fe, Ni, and P has an average particle size of 100 nm or less.
  • the average particle size of [Ni, (Fe, Co)]-P-based precipitates containing Fe, Co, Ni, and P is 100 nm or less.
  • the average particle diameter of the [Ni, Fe] -P-based precipitate and the average particle diameter of the [Ni, (Fe, Co)]-P-based precipitate are reduced to 100 nm or less. It is considered that the stress relaxation characteristics and heat resistance are surely improved.
  • the average particle size of the precipitate is more preferably 5 nm or more and 50 nm or less.
  • a molten copper alloy having the above-described component composition is melted.
  • the copper raw material it is desirable to use 4NCu (oxygen-free copper or the like) having a purity of 99.99 mass% or more, but scrap may be used as a raw material.
  • an atmospheric furnace may be used for melting, but an atmosphere furnace having a vacuum furnace, an inert gas atmosphere, or a reducing atmosphere may be used in order to suppress oxidation of the additive element.
  • the component-adjusted copper alloy melt is cast by an appropriate casting method using a vertical casting furnace or a horizontal casting furnace, for example, a batch casting method such as die casting, a continuous casting method, a semi-continuous casting method, or the like.
  • a batch casting method such as die casting, a continuous casting method, a semi-continuous casting method, or the like.
  • an ingot for example, a slab-like ingot is obtained.
  • Heating step: S02 Thereafter, if necessary, a homogenization heat treatment is performed in order to eliminate segregation of the ingot and make the ingot structure uniform. Alternatively, a solution heat treatment is performed to dissolve the crystallized product and the precipitate. There are no particular limitations on the conditions for these heat treatments, but usually heating may be performed at 600 ° C. to 1000 ° C. for 1 second to 24 hours. If the holding temperature is less than 600 ° C. or the holding time is less than 5 minutes, a sufficient homogenizing effect or solution effect may not be obtained. On the other hand, if the holding temperature exceeds 1000 ° C., a part of the segregation site may be dissolved, and if the holding time exceeds 24 hours, only the cost increases. The cooling conditions after the heat treatment may be determined as appropriate, but usually water quenching may be performed. In addition, after the heating step S02, chamfering is performed as necessary.
  • hot working may be performed on the ingot after the heating step S02 described above.
  • the conditions for this hot working are not particularly limited, but it is usually preferable that the starting temperature is 600 ° C. or higher and 1000 ° C. or lower, the end temperature is 300 ° C. or higher and 850 ° C. or lower, and the processing rate is 10% or higher and 99% or lower.
  • the ingot heating up to the hot working start temperature may also serve as the heating step S02 described above. That is, the hot working may be started at the above-described hot working start temperature without cooling to near room temperature after heating in the heating step S02.
  • Cooling conditions after hot working may be determined as appropriate, but usually water quenching may be performed. In addition, after hot processing, it chamfers as needed.
  • the hot working method is not particularly limited, but when the final shape is a plate or strip, hot rolling may be applied and rolled to a thickness of about 0.5 mm to 50 mm. Further, extrusion or groove rolling may be applied when the final shape is a wire or bar, and forging or pressing may be applied when the final shape is a bulk shape. Moreover, about the ingot produced with the horizontal type continuous casting method, it is usually unnecessary to perform a hot working process.
  • intermediate plastic working is performed on the ingot subjected to the homogenization treatment in the heating step S02 or the hot work material subjected to the hot working step S03 such as hot rolling.
  • the temperature condition in the intermediate plastic working step S04 is not particularly limited, but is preferably in the range of ⁇ 200 ° C. to + 200 ° C. that is cold or warm working.
  • the processing rate of the intermediate plastic processing is not particularly limited, but is usually about 10% to 99%.
  • the processing method is not particularly limited, but when the final shape is a plate or strip (a shape wound in a coil shape), rolling may be applied to a thickness of about 0.05 mm to 15 mm. Further, extrusion or groove rolling can be applied when the final shape is a wire or bar, and forging or pressing can be applied when the final shape is a bulk shape.
  • Intermediate heat treatment step: S05 an intermediate heat treatment that also serves as a solution heat treatment is performed after the intermediate plastic working step S04.
  • fine [Ni, Fe] -P-based precipitates or [Ni, (Fe, Co)]-P-based precipitates are formed into a solution in the matrix.
  • a batch-type heating furnace may be used, or a continuous annealing line may be used.
  • the heating ultimate temperature is set to 650 ° C. or more and 1000 ° C. or less, and the temperature within this range is not maintained or is maintained for 1 second or more and 5 minutes or less. It is preferable.
  • the heat treatment conditions in the intermediate heat treatment step S05 vary depending on the specific means for performing the heat treatment.
  • the atmosphere for the intermediate heat treatment is preferably a non-oxidizing atmosphere (nitrogen gas atmosphere, inert gas atmosphere, or reducing atmosphere).
  • the cooling condition after the intermediate heat treatment is not particularly limited, but it may be normally cooled at a cooling rate of about 2000 ° C./second to 100 ° C./hour. Note that the intermediate plastic processing step S04 and the intermediate heat treatment step S05 may be repeated for thorough solution.
  • finish plastic working process After the intermediate heat treatment step S05, finish plastic working is performed up to the final dimension and final shape.
  • the processing method in finish plastic working is not particularly limited, but when the final product form is a plate or strip, rolling (cold rolling) is applied and rolled to a thickness of about 0.05 mm to 3.0 mm. That's fine.
  • forging, pressing, groove rolling, or the like may be applied depending on the final product form.
  • the processing rate may be appropriately selected according to the final plate thickness and final shape, but is preferably in the range of 1% to 80%. If the processing rate is less than 1%, the effect of improving the proof stress cannot be obtained sufficiently.
  • the processing rate is preferably 5% to 80%, more preferably 10% to 80%. After the finish plastic working, it may be used as a product as it is, but it is usually preferable to perform a finish heat treatment.
  • a finish heat treatment step S07 is performed as necessary to improve the stress relaxation resistance and heat resistance and to perform low-temperature annealing hardening or to remove residual strain.
  • the finish heat treatment is desirably performed at a temperature in the range of 250 ° C. to 600 ° C. for 1 hour to 48 hours. If the heat treatment temperature is high, heat treatment for a short time may be performed, and if the heat treatment temperature is low, heat treatment for a long time may be performed. If the temperature of the finish heat treatment is less than 250 ° C. or the finish heat treatment time is less than 1 hour, there is a possibility that a sufficient effect of removing the strain cannot be obtained.
  • the atomic ratio between the Fe content and the Ni content in the [Ni, Fe] -P-based precipitate is controlled by the temperature rising rate.
  • the temperature raising rate is desirably 0.1 ° C./min or more and 10 ° C./min or less.
  • the Cu—Zn—Sn alloy material in the final product form can be obtained.
  • a Cu—Zn—Sn alloy thin plate strip material
  • Such a thin plate may be used as it is for a conductive part for electronic or electrical equipment, but Sn plating with a film thickness of about 0.1 to 10 ⁇ m is applied to one or both sides of the plate surface, and Sn plating is provided.
  • the copper alloy strip is usually used for conductive parts for electronic and electrical equipment such as connectors and other terminals.
  • the Sn plating method is not particularly limited. In some cases, a reflow treatment may be performed after electrolytic plating.
  • the [Ni, Fe] -P-based precipitates are appropriately present from the parent phase mainly composed of the ⁇ phase, and at the same time, [Ni , Fe] —P atomic ratio [Fe / Ni] of Fe content to Ni content [Fe / Ni] P is the atomic ratio of Fe content to Ni content of the entire alloy [Fe / Ni].
  • Ni] is in the range of 5 or more and 200 or less, so that the stress relaxation resistance and heat resistance are sufficiently excellent, and the strength (proof strength) is also high.
  • the copper alloy thin plate for electronic / electric equipment according to the present embodiment is made of a rolled material of the above-mentioned copper alloy for electronic / electric equipment, it has excellent stress relaxation resistance and heat resistance, connectors, other terminals, It can be suitably used for bus bars, movable conductive pieces of electromagnetic relays, lead frames, and the like.
  • the conductive member and terminal for electronic / electrical equipment according to the present embodiment are composed of the above-described copper alloy for electronic / electrical equipment and copper alloy thin plate for electronic / electrical equipment, so it has excellent stress relaxation resistance and heat resistance. Therefore, stress relaxation is less likely to occur over time or in a high temperature environment, and the strength (hardness) does not decrease significantly at high temperatures. In addition, it is possible to reduce the thickness of the conductive parts for electronic and electrical equipment and the terminals.
  • this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
  • the present invention is not limited to this, and the finally obtained copper alloy for electronic / electric equipment has the composition range and the composition of precipitates defined in the present invention. It only has to be satisfied.
  • a raw material composed of Cu-40 mass% Zn master alloy and oxygen free copper (ASTM B152 C10100) having a purity of 99.99 mass% or more was prepared, and this was charged into a high purity graphite crucible, and in an N 2 gas atmosphere Melting was performed using a horizontal continuous casting furnace.
  • Various additive elements were added into the molten copper alloy to melt molten alloy having the composition shown in Tables 1 to 3, and an ingot was produced using a carbon mold. Then, it cut
  • each cut ingot was subjected to water quenching as a heat treatment (homogenization treatment) in an Ar gas atmosphere at 800 ° C. for 4 hours.
  • intermediate plastic working and intermediate heat treatment were performed. Specifically, in the roughing, cold rolling was performed at a rolling rate of 95% so that the length direction of the ingot was the rolling direction. Thereafter, the intermediate heat treatment for the solution treatment was performed at 700 ° C. for a predetermined time so that the average crystal grain size after the intermediate heat treatment was about 20 ⁇ m, followed by water quenching. Thereafter, the rolled material was cut, and surface grinding was performed to remove the oxide film.
  • test method and measurement method for each evaluation item are as follows.
  • the crystal grain size after the intermediate heat treatment was measured as follows. Using the surface perpendicular to the rolling width direction, that is, the TD surface (Transverse direction) as the observation surface, mechanical polishing is performed using water-resistant abrasive paper and diamond abrasive grains, and then final polishing is performed using a colloidal silica solution. It was. After polishing, etching was performed using a mixed solution of sulfuric acid and nitric acid as a corrosive solution, and the metal structure was observed with an optical microscope.
  • the crystal grain size conforms to the cutting method of JIS H 0501 (corresponding to ISO2624-1973), draws line segments of predetermined lengths in the vertical and horizontal directions, and counts the number of crystal grains to be completely cut.
  • the average length was defined as the average crystal grain size.
  • TEM transmission electron microscope
  • EDX analyzer manufactured by Noran, EDX analyzer SYSTEM SIX
  • Object observation was performed. After mechanical polishing using water-resistant abrasive paper and diamond abrasive grains from the front and back surfaces of the rolled material, a TEM observation sample was prepared by a twin jet method using an electrolytic solution. The TEM observation sample was produced from two places which entered 1/4 in the thickness direction from each of two places on the front and back surfaces of the rolled material.
  • Electron beam diffraction is performed on 10 or more precipitates having a particle size of about 10 nm to 50 nm, and these precipitates are hexagonal crystals (space group: P-62m) having a Fe 2 P-based or Ni 2 P-based crystal structure. 189)) or a Co 2 P-based or Fe 2 P-based orthorhombic crystal (space group: P-nma (62)).
  • each precipitate was analyzed for the composition of the precipitate using EDX (energy dispersive X-ray spectroscopy). As a result, the precipitate was obtained from Fe, Co, and Ni.
  • the heat resistance was evaluated according to JCBA T315: 2002 “Annealing and softening property test of copper and copper alloy strips” at a semi-softening temperature when heat treatment was performed for 1 hour at each temperature.
  • the semi-softening temperature is the sum of the hardness of the strip for property evaluation and the hardness of the strip heat-treated at 700 ° C. for 1 hour in an electric furnace, and the temperature at which the hardness becomes half of the sum. It was.
  • the actual semi-softening temperature was determined by plotting the hardness at a temperature range of 200 to 700 ° C. in 50 ° C. increments every 1 hour, creating a hardness-temperature curve.
  • Stress relaxation resistance The stress relaxation resistance test was performed by applying a stress according to a method according to the cantilevered screw method of Japan Copper and Brass Association Technical Standard JCBA-T309: 2004, and a Zn amount exceeding 2 mass% and less than 15 mass% (Table 4).
  • samples having a Zn content of 15 mass% or more and 36.5 mass% or less after holding at a temperature of 150 ° C. for 500 hours see “15” in Tables 4 to 6).
  • the residual stress ratio after holding for 500 hours at a temperature of 120 ° C. was measured.
  • Residual stress rate (%) (1 ⁇ t / ⁇ 0 ) ⁇ 100
  • ⁇ t Permanent deflection displacement after holding at 120 ° C. for 500 h or after holding at 150 ° C. for 500 h (mm)
  • ⁇ 0 Initial deflection displacement (mm) It is. Those having a residual stress rate of 80% or more were evaluated as ⁇ , and those having a residual stress ratio of less than 80% were evaluated as ⁇ .
  • the atomic ratio [Fe / Ni] P between the Fe content and the Ni content in the [Ni, Fe] -P-based precipitate, the Fe content and the Ni content in the entire alloy [Fe / Ni] P / [Fe / Ni], which is a ratio to the atomic ratio [Fe / Ni], is higher than the range of the present invention, and the heat resistance and the stress relaxation resistance were insufficient.
  • Comparative Example 103 the Fe content was larger than the range of the present invention, and the heat resistance and the stress relaxation resistance were insufficient.
  • Comparative Example 104 P and Fe were not added, and heat resistance and stress relaxation resistance were insufficient.
  • Comparative Example 105 P was not added, and heat resistance and stress relaxation resistance were insufficient.
  • Comparative Example 106 the Ni content is less than the range of the present invention, and the atomic ratios of (Ni + Fe) / P, Sn / (Ni + Fe) and Fe / Ni are also outside the range of the present invention, and heat resistance and stress resistance The relaxation properties were insufficient.
  • each alloy element is within the range defined by the present invention, but also the ratio between each alloy component is within the range defined by the present invention, and [Ni, Atomic ratio of Fe content to Ni content in Fe] -P precipitate [Fe / Ni] P, and the atomic ratio of Fe content to Ni content of the entire alloy [Fe / Ni] [Fe / Ni] P / [Fe / Ni], or the atomic ratio of the total content of Fe and Co to the Ni content in the [Ni, (Co, Fe)]-P-based precipitates [(Fe + Co) / Ni] P is the ratio of the total content of Fe and Co in the whole alloy to the atomic ratio [(Fe + Co) / Ni] of the Ni content [[Fe + Co) / Ni] P / [
  • (Fe + Co) / Ni] is within the scope of the present invention, Is excellent in heat and stress relaxation property, it is fully applicable confirmed the connector and
  • this invention example No. In 41 Sn / (Ni + Fe + Co) is shown as 0.30, which is a value shown with other values aligned with the decimal point, and is exactly 0.3003. That is, Example No. of the present invention.
  • the Sn / (Ni + Fe + Co) of 41 is within the scope of the present invention.

Abstract

この電子・電気機器用銅合金では、Znを2mass%超えて36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Pを0.005mass%以上0.1mass%以下、Feを0.001mass%以上0.1mass%以下、含有し、残部がCuおよび不可避的不純物からなり、原子比で、3<(Ni+Fe)/P<30、0.3<Sn/(Ni+Fe)<2.7、0.002≦〔Fe/Ni〕<0.6を満たし、さらに、FeとNiとPとを含有する〔Ni,Fe〕-P系析出物中のFeの含有量とNiの含有量の原子比〔Fe/Ni〕が、合金全体のFeの含有量とNiの含有量の原子比〔Fe/Ni〕に対して、5≦〔Fe/Ni〕/〔Fe/Ni〕≦200を満たす。

Description

電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子
 本発明は、半導体装置のコネクタや、その他の端子、あるいは電磁リレーの可動導電片や、リードフレームなどの電子・電気機器用導電部品として使用されるCu-Zn―Sn系の電子・電気機器用銅合金と、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子に関する。
 本願は、2015年7月30日に、日本に出願された特願2015-150338号に基づき優先権を主張し、その内容をここに援用する。
 上述の電子・電気用導電部品として、強度、加工性、コストのバランスなどの観点から、Cu-Zn合金が従来から広く使用されている。
 また、コネクタなどの端子の場合、相手側の導電部材との接触の信頼性を高めるため、Cu-Zn合金からなる基材(素板)の表面に錫(Sn)めっきを施して使用することがある。Cu-Zn合金を基材としてその表面にSnめっきを施したコネクタなどの導電部品においては、Snめっき材のリサイクル性を向上させるとともに、強度を向上させるため、Cu-Zn―Sn系合金を使用する場合がある。
 ここで、例えばコネクタ等の電子・電気機器用導電部品は、一般に、厚みが0.05~3.0mm程度の薄板(圧延板)に打ち抜き加工を施すことによって所定の形状とし、その少なくとも一部に曲げ加工を施すことによって製造される。この場合、曲げ部分付近で相手側導電部材と接触させて相手側導電部材との電気的接続を得るとともに、曲げ部分のバネ性により相手側導電材との接触状態を維持させるように使用される。
 曲げ加工を施してその曲げ部分のバネ性により、曲げ部分付近で相手側導電材との接触状態を維持するように使用されるコネクタなどの場合は、耐熱性および耐応力緩和特性が優れていることが要求される。
 そこで、例えば特許文献1~4には、Cu-Zn―Sn系合金の耐熱性および耐応力緩和特性を向上させるための方法が提案されている。
 特許文献1には、Cu-Zn―Sn系合金にNiを含有させてNi-P系化合物を生成させることによって耐応力緩和特性を向上させることができるとされ、またFeの添加も耐応力緩和特性の向上に有効であることが示されている。
 特許文献2においては、Cu-Zn―Sn系合金に、Ni、FeをPとともに添加して化合物を生成させることにより、強度、弾性、耐熱性を向上させ得ることが記載されている。
 また、特許文献3においては、Cu-Zn―Sn系合金にNiを添加するとともに、Ni/Sn比を特定の範囲内に調整することにより耐応力緩和特性を向上させることができると記載され、またFeの微量添加も耐応力緩和特性の向上に有効である旨、記載されている。
 さらに、リードフレーム材を対象とした特許文献4においては、Cu-Zn―Sn系合金に、Ni、FeをPとともに添加し、(Fe+Ni)/Pの原子比を0.2~3の範囲内に調整して、Fe―P系化合物、Ni―P系化合物、Fe―Ni―P系化合物を生成させることにより、耐応力緩和特性の向上が可能となる旨、記載されている。
特開平5-33087号公報 特開2006-283060号公報 特許第3953357号公報 特許第3717321号公報
 ところで、最近、電子・電気機器のさらなる小型化および軽量化が図られており、電子・電気機器用導電部品に用いられる電子・電気機器用銅合金においては、さらなる強度、曲げ加工性、耐熱性、耐応力緩和特性の向上が求められている。
 しかしながら、特許文献1、2においては、Ni、Fe、Pの個別の含有量が考慮されているだけであり、このような個別の含有量の調整だけでは、必ずしも耐応力緩和特性を確実かつ十分に向上させることができなかった。
 また、特許文献3においては、Ni/Sn比を調整することが開示されているが、P化合物と耐応力緩和特性との関係については全く考慮されていない。
 さらに、特許文献4においては、Fe、Ni、Pの合計量と、(Fe+Ni)/Pの原子比とを調整しただけであり、耐熱性の向上は図れるものの、耐応力緩和特性の十分な向上を図ることができなかった。
 以上のように、従来から提案されている方法では、Cu-Zn―Sn系合金の耐熱性および耐応力緩和特性を十分に向上させることができなかった。このため、上述した構造のコネクタ等においては、経時的に、特に高温環境において、残留応力が緩和されて相手側導電部材との接触圧が維持されず、接触不良などの不都合が早期に生じやすいという問題があった。このような問題を回避するために、従来は材料の肉厚を大きくせざるを得ず、材料コストの上昇、重量の増大を招いていた。そこで、耐熱性および耐応力緩和特性のより一層の改善が望まれている。
 本発明は、以上のような事情を背景としてなされたものであって、耐熱性と耐応力緩和特性が確実かつ十分に優れているとともに、強度に優れた電子・電気機器用銅合金、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子を提供することを課題としている。
 本発明者らは、鋭意実験・研究を重ねたところ、Cu-Zn―Sn系合金に、Ni、P、Feを適量添加し、熱処理条件によって析出する〔Ni,Fe〕-P系析出物中のFe/Ni比と合金全体のFe/Ni比を適切な範囲内に調整することにより、耐熱性と耐応力緩和特性を確実かつ十分に向上させると同時に強度、曲げ加工性優れた銅合金が得られることを見い出した。
 同様に、Cu-Zn―Sn系合金に、Ni、P、Fe、Coを適量添加し、〔Ni,(Co,Fe)〕-P系析出物中の(Fe+Co)/Ni比と合金全体の(Fe+Co)/Ni比を適切な範囲内に調整することにより、耐熱性と耐応力緩和特性を確実かつ十分に向上させると同時に強度、曲げ加工性優れた銅合金が得られることを見い出した。
 本発明は、これらの知見に基づいてなされたものである。
 本発明に係る電子・電気機器用銅合金は、Znを2mass%超えて36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Pを0.005mass%以上0.1mass%以下、Feを0.001mass%以上0.1mass%以下、含有し、残部がCuおよび不可避的不純物からなり、NiおよびFeの合計含有量とPの含有量との比(Ni+Fe)/Pが、原子比で、3<(Ni+Fe)/P<30を満たし、かつ、Snの含有量とNiおよびFeの合計含有量との比Sn/(Ni+Fe)が、原子比で、0.3<Sn/(Ni+Fe)<2.7を満たすとともに、Feの含有量とNiの含有量との比〔Fe/Ni〕が、原子比で、0.002≦〔Fe/Ni〕<0.6を満たし、さらに、母相中に、FeとNiとPとを含有する〔Ni,Fe〕-P系析出物を有しており、この〔Ni,Fe〕-P系析出物中のFeの含有量とNiの含有量の原子比〔Fe/Ni〕が、合金全体のFeの含有量とNiの含有量の原子比〔Fe/Ni〕に対して、5≦〔Fe/Ni〕/〔Fe/Ni〕≦200を満たすことを特徴としている。
 前述の構成の電子・電気機器用銅合金によれば、NiとFeをPとともに添加し、Sn、Ni、FeおよびPの相互間の添加比率を規制し、母相(α相主体)から析出したNiとFeとPとを含有する〔Ni,Fe〕-P系析出物を有している。ここで、前記〔Ni,Fe〕-P系析出物中のFeの含有量とNiの含有量の原子比〔Fe/Ni〕が、合金全体のFeの含有量とNiの含有量の原子比〔Fe/Ni〕に対して、5≦〔Fe/Ni〕/〔Fe/Ni〕≦200を満足していることから、合金中の〔Ni,Fe〕-P系析出物の個数密度が確保されるとともに、析出物の粗大化が抑制されることになり、耐熱性および耐応力緩和特性に優れている。
 なお、ここで〔Ni,Fe〕-P系析出物とは、Ni-Fe―Pの3元系析出物であり、さらにこれらに他の元素、例えば主成分のCu、Zn、Sn、不純物のO、S、C、Cr、Mo、Mn、Mg、Zr、Tiなどを含有した多元系析出物を含むことがある。また、この〔Ni、Fe〕―P系析出物は、リン化物、もしくはリンを固溶した合金の形態で存在する。
 また、本発明に係る電子・電気機器用銅合金は、Znを2mass%超えて36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Pを0.005mass%以上0.1mass%以下、含有するとともに、FeとCoを含有し、FeおよびCoの合計含有量が0.001mass%以上0.1mass%以下(但し、Feを0.001mass%以上0.1mass%以下含有する)とされ、残部がCuおよび不可避的不純物からなり、Ni、FeおよびCoの合計含有量とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、3<(Ni+Fe+Co)/P<30を満たし、かつ、Snの含有量とNi、FeおよびCoの合計含有量との比Sn/(Ni+Fe+Co)が、原子比で、0.3<Sn/(Ni+Fe+Co)<2.7を満たすとともに、FeおよびCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、0.002≦(Fe+Co)/Ni<0.6を満たし、さらに、母相中に、FeおよびCoの少なくとも1種以上とNiとPとを含有する〔Ni,(Fe,Co)〕-P系析出物を有しており、この〔Ni,(Fe,Co)〕-P系析出物中のFeおよびCoの合計含有量とNiの含有量の原子比〔(Fe+Co)/Ni〕が、合金全体のFeおよびCoの合計含有量とNiの含有量の原子比〔(Fe+Co)/Ni〕に対して、5≦〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕≦200を満たすことを特徴としている。
 前述の構成の電子・電気機器用銅合金によれば、NiとFeとCoをPとともに添加し、Sn、Ni、Fe、CoおよびPの相互間の添加比率を規制し、母相(α相主体)から析出したFeおよびCoの少なくとも1種以上とNiとPとを含有する〔Ni,(Fe,Co)〕-P系析出物を有している。ここで、前記〔Ni,(Fe,Co)〕-P系析出物中のFeおよびCoの合計含有量とNiの含有量の原子比〔(Fe+Co)/Ni〕が、合金全体のFeおよびCoの合計含有量とNiの含有量の原子比〔(Fe+Co)/Ni〕に対して、5≦〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕≦200を満足していることから、合金中の〔Ni,(Fe,Co)〕-P系析出物の個数密度が確保されるとともに、析出物の粗大化が抑制されることになり、耐熱性および耐応力緩和特性に優れている。
 なお、ここで〔Ni,(Fe,Co)〕-P系析出物とは、Ni―Fe―P、Ni―Co―Pの3元系析出物、あるいはNi-Fe―Co―Pの4元系析出物であり、さらにこれらに他の元素、例えば主成分のCu、Zn、Sn、不純物のO、S、C、Cr、Mo、Mn、Mg、Zr、Tiなどを含有した多元系析出物を含むことがある。また、この〔Ni,(Fe,Co)〕-P系析出物は、リン化物、もしくはリンを固溶した合金の形態で存在する。
 ここで、本発明の電子・電気機器用銅合金においては、FeとNiとPとを含有する〔Ni,Fe〕-P系析出物の平均粒径が100nm以下とされていることが好ましい。
 また、本発明の電子・電気機器用銅合金においては、FeおよびCoの少なくとも1種以上とNiとPとを含有する〔Ni,(Fe,Co)〕-P系析出物の平均粒径が100nm以下とされていることが好ましい。
 これらの場合、FeとNiとPとを含有する〔Ni,Fe〕-P系析出物の平均粒径、あるいは、FeおよびCoの少なくとも1種以上とNiとPとを含有する〔Ni,(Fe,Co)〕-P系析出物の平均粒径が100nm以下とされているので、微細な〔Ni,Fe〕-P系析出物あるいは〔Ni,(Fe,Co)〕-P系析出物が十分な個数密度で分布しており、確実に耐熱性および耐応力緩和特性を向上させることができる。
 本発明の電子・電気機器用銅合金薄板は、上述の電子・電気機器用銅合金の圧延材からなり、厚みが0.05mm以上3.0mm以下の範囲内にあることを特徴とする。
 このような厚みの圧延板薄板(条材)は、コネクタ、その他の端子、電磁リレーの可動導電片、リードフレームなどに好適に使用することができる。
 本発明の電子・電気機器用導電部品は、上述の電子・電気機器用銅合金薄板からなることを特徴とする。なお、本発明における電子・電気機器用導電部品とは、端子、コネクタ、リレー、リードフレーム等を含むものである。
 本発明の端子は、上述の電子・電気機器用銅合金薄板からなることを特徴とする。なお、本発明における端子は、コネクタ等を含むものである。
 これらの構成の電子・電気機器用導電部品および端子によれば、耐熱性および耐応力緩和特性に特に優れているので、高温環境下においても良好に使用することができる。
 本発明によれば、耐熱性と耐応力緩和特性が確実かつ十分に優れているとともに、強度に優れた電子・電気機器用銅合金、それを用いた電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子を提供することができる。
本発明の電子・電気機器用銅合金の製造方法の工程例を示すフローチャートである。
 以下に、本発明の一実施形態である電子・電気機器用銅合金について説明する。
 本実施形態である電子・電気機器用銅合金は、Znを2mass%超えて36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Pを0.005mass%以上0.1mass%以下、Feを0.001mass%以上0.1mass%以下、含有し、残部がCuおよび不可避的不純物からなる組成を有する。
 そして、各合金元素の相互間の含有量比率として、NiおよびFeの合計含有量とPの含有量との比(Ni+Fe)/Pが、原子比で、次の(1)式
 3<(Ni+Fe)/P<30 ・・・(1)
を満たし、
 さらにSnの含有量とNiおよびFeの合計含有量との比Sn/(Ni+Fe)が、原子比で、次の(2)式
 0.3<Sn/(Ni+Fe)<2.7 ・・・(2)
を満たすとともに、
 Feの含有量とNiの含有量との比 Fe/Niが、原子比で、次の(3)式
 0.002≦Fe/Ni<0.6 ・・・(3)
を満たすように定められている。
 ここで、本実施形態である電子・電気機器用銅合金においては、母相中に、FeとNiとPとを含有する〔Ni,Fe〕-P系析出物が存在しており、この〔Ni,Fe〕-P系析出物中のFeの含有量とNiの含有量との原子比〔Fe/Ni〕が、合金全体のFeの含有量とNiの含有量との原子比〔Fe/Ni〕に対して、次の(4)式
 5≦〔Fe/Ni〕/〔Fe/Ni〕≦200 ・・・(4)
を満たしている。
 また、本実施形態である電子・電気機器用銅合金においては、上記のZn、Sn、Ni、P、Feのほかに、Coを含有していてもよい。この場合、FeおよびCoの合計含有量が0.001mass%以上0.1mass%以下(但し、Feを0.001mass%以上0.1mass%以下含有する)とされる。
 この場合、各合金元素の相互間の含有量比率として、Ni、FeおよびCoの合計含有量とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、次の(1´)式
  3<(Ni+Fe+Co)/P<30  ・・・(1´)
を満たし、
 さらにSnの含有量とNi、FeおよびCoの合計含有量との比Sn/(Ni+Fe+Co)が、原子比で、次の(2´)式
  0.3<Sn/(Ni+Fe+Co)<2.7 ・・・(2´)を満たし、
 さらにFeおよびCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、次の(3´)式
  0.002≦(Fe+Co)/Ni<0.6  ・・・(3´)を満たすように定められている。
 また、Coを添加した場合には、母相中に、FeおよびCoの少なくとも1種以上とNiとPとを含有する〔Ni,(Fe,Co)〕-P系析出物が存在し、〔Ni,(Fe,Co)〕-P系析出物中のFeおよびCoの合計含有量とNiの含有量との原子比〔(Fe+Co)/Ni〕が、合金全体のFeおよびCoの合計含有量とNiの含有量との原子比〔(Fe+Co)/Ni〕に対して、次の(4´)式
 5≦〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕≦200・・・(4´)を満たしている。
 ここで、合金の成分組成および析出物中の組成を、上述のように規定した理由を以下に説明する。
(Zn:2mass%超えて36.5mass%以下)
 Znは、本実施形態で対象としている銅合金において基本的な合金元素であり、強度およびばね性の向上に有効な元素である。また、ZnはCuより安価であるため、銅合金の材料コストの低減にも効果がある。Znが2mass%以下では、材料コストの低減効果が十分に得られない。一方、Znが36.5mass%を超えれば、耐食性が低下するとともに、冷間圧延性も低下してしまう。
 したがって、Znの含有量は2mass%超えて36.5mass%以下の範囲内とした。なお、Znの含有量は、上記の範囲内でも5mass%以上33mass%以下の範囲内が好ましく、7mass%以上27mass%以下の範囲内がさらに好ましい。より好ましくは、7mass%以上12mass%以下の範囲内が好ましい。
(Sn:0.1mass%以上0.9mass%以下)
 Snの添加は強度向上に効果があり、Snめっき付きCu-Zn合金材のリサイクル性の向上に有利となる。さらに、SnがNiと共存すれば、耐応力緩和特性の向上にも寄与することが本発明者等の研究により判明している。Snが0.1mass%未満ではこれらの効果が十分に得られず、一方、Snが0.9mass%を超えれば、熱間加工性および冷間圧延性が低下し、熱間圧延や冷間圧延で割れが発生してしまうおそれがあり、導電率も低下してしまう。
 したがって、Snの含有量は0.1mass%以上0.9mass%以下の範囲内とした。なお、Snの含有量は、上記の範囲内でも特に0.2mass%以上0.8mass%以下の範囲内が好ましい。
(Ni:0.15mass%以上1.0mass%未満)
 Niは、Pとともに添加することにより、Ni-P系析出物を母相(α相主体)から析出させることができ、また、FeおよびPとともに添加することにより〔Ni,Fe〕-P系析出物を、FeおよびCoとPとともに添加することにより、〔Ni,(Fe,Co)〕-P系析出物を母相(α相主体)から析出させることができる。これらNi-P系析出物、〔Ni,Fe〕-P系析出物、〔Ni,(Fe,Co)〕-P系析出物によって再結晶の際に結晶粒界をピン止めする効果により、平均結晶粒径を制御することができ、強度、曲げ加工性、耐応力腐食割れ性を向上させることができる。さらに、これらの析出物の存在により、耐応力緩和特性を大幅に向上させることができる。加えて、NiをSn、Fe、Pおよび必要に応じてCoと共存させることで、固溶強化によっても向上させることができる。ここで、Niの添加量が0.15mass%未満では、耐応力緩和特性を十分に向上させることができない。一方、Niの添加量が1.0mass%以上となれば、固溶Niが多くなって導電率が低下し、また高価なNi原材料の使用量の増大によりコスト上昇を招く。
 したがって、Niの含有量は0.15mass%以上1.0mass%未満の範囲内とした。なお、Niの含有量は、上記の範囲内でも特に0.2mass%以上0.8mass%未満の範囲内とすることが好ましい。
(P:0.005mass%以上0.1mass%以下)
 Pは、Niとの結合性が高く、Niとともに適量のPを含有させれば、Ni-P系析出物を析出させることができ、また、FeおよびPとともに添加することにより〔Ni,Fe〕-P系析出物を、FeおよびCoとPとともに添加することにより、〔Ni,(Fe,Co)〕-P系析出物を母相(α相主体)から析出させることができる。これらNi-P系析出物、〔Ni,Fe〕-P系析出物、〔Ni,(Fe,Co)〕-P系析出物の存在によって耐応力緩和特性を向上させることができる。ここで、P量が0.005mass%未満では、Ni-P系析出物、〔Ni,Fe〕-P系析出物、〔Ni,(Fe,Co)〕-P系析出物を十分に析出させることが困難となり、耐応力緩和特性を十分に向上させることができなくなる。一方、P量が0.1mass%を超えれば、合金中のP固溶量が多くなって、導電率が低下するとともに圧延性が低下して冷間圧延割れが生じやすくなってしまう。
 したがって、Pの含有量は、0.005mass%以上0.1mass%以下の範囲内とした。Pの含有量は、上記の範囲内でも特に0.01mass%以上0.08mass%以下の範囲内が好ましい。
 なお、Pは、銅合金の溶解原料から不可避的に混入することが多い元素であることから、Pの含有量を上述のように規制するためには、溶解原料を適切に選定することが望ましい。
(Fe:0.001mass%以上0.1mass%以下)
 Feは、Ni、Pとともに添加すれば、〔Ni,Fe〕-P系析出物を母相(α相主体)から析出させることができ、さらに少量のCoを添加することにより、〔Ni,(Fe,Co)〕-P系析出物を母相(α相主体)から析出させることができる。これら〔Ni,Fe〕-P系析出物もしくは〔Ni,(Fe,Co)〕-P系析出物によって再結晶の際に結晶粒界をピン止めする効果により、平均結晶粒径を制御することができ、強度、曲げ加工性、耐応力腐食割れ性を向上させることができる。さらに、これらの析出物の存在により、耐応力緩和特性と耐熱性の両特性を大幅に向上させることができる。ここで、Feの含有量が0.001mass%未満では、Fe添加による耐応力緩和特性と耐熱性の両特性の向上効果が得られない。一方、Feの含有量が0.1mass%を超えれば、耐応力緩和特性と耐熱性の両特性の向上効果が得られず、固溶Feが多くなって導電率が低下し、また冷間圧延性も低下してしまう。
 そこで、本実施形態では、Feを添加する場合には、Feの含有量を0.001mass%以上0.1mass%以下の範囲内とした。なお、Feの含有量は、上記の範囲内でも特に0.002mass%以上0.08mass%以下の範囲内とすることが好ましい。
(FeおよびCoの合計含有量:0.001mass%以上0.1mass%以下)
 Coを添加した場合、Feの一部がCoに置換したものと考えられる。FeとCoを添加することにより、〔Ni,(Fe,Co)〕-P系析出物を母相(α相主体)から析出させることができる。この〔Ni,(Fe,Co)〕-P系析出物によって再結晶の際に結晶粒界をピン止めする効果により、平均結晶粒径を制御することができ、強度、曲げ加工性、耐応力腐食割れ性を向上させることができる。さらに、この〔Ni,(Fe,Co)〕-P系析出物の存在により、耐応力緩和特性と耐熱性の両特性を大幅に向上させることができる。ここで、FeおよびCoの合計含有量が0.001mass%未満では、FeとCo添加による耐応力緩和特性と耐熱性の両特性の向上効果が十分に得られない。一方、FeおよびCoの合計含有量が0.1mass%を超えれば、耐応力緩和特性と耐熱性の両特性のさらなる向上効果が得られず、固溶Feおよび固溶Coが多くなって導電率が低下し、また冷間圧延性も低下してしまう。
 そこで、本実施形態では、FeとCoを両方添加する場合には、Feの含有量を0.001mass%以上0.1mass%以下、かつ、FeおよびCoの合計含有量を0.001mass%以上0.1mass%以下の範囲内とした。なお、FeおよびCoの合計含有量は、上記の範囲内でも特に0.002mass%以上0.08mass%以下の範囲とすることが好ましい。
 以上の各元素の残部は、基本的にはCuおよび不可避的不純物とすればよい。ここで、不可避的不純物としては、Co,Al,Ag,B,Ba,Hf,V,Nb,Ta,Mo,W,Re,Ru,Os,O,S,Se,Rh,Ir,Pd,Pt,Au,Cd,Ga,In,Li,Ge,As,Sb,Tl,Pb,Bi,C,Be,N,H,Hg、Mg,Ti,Cr,Zr,Ca,Sr,Y,Mn,Te,Si,Scおよび希土類元素等が挙げられる。これらの不可避不純物は、少ないことが望ましく、スクラップを原料として用いた場合であっても、総量で0.3mass%以下であることが望ましい。不可避的不純物のより望ましい総量は0.2mass%以下であり、最も望ましい総量は0.1mass%以下である。
 さらに、本実施形態である電子・電気機器用銅合金においては、各合金元素の個別の添加量範囲を上述のように調整するばかりではなく、それぞれの元素の含有量の相互の比率が、原子比で、前記(1)~(4)式を満たすように規制することが重要である。また、Coを添加する場合には、(1´)~(4´)式を満たすように規制することが重要である。そこで、以下に(1)~(4)式および(1´)~(4´)式の限定理由を説明する。
(1)式: 3<(Ni+Fe)/P<30
 (Ni+Fe)/P比が3以下では、固溶Pの割合の増大に伴って耐応力緩和特性と耐熱性が低下し、また同時に固溶Pにより導電率が低下するとともに、圧延性が低下して冷間圧延割れが生じやすくなり、さらに曲げ加工性も低下する。一方、(Ni+Fe)/P比が30以上となれば、固溶したNi、Feの割合の増大により導電率が低下するとともに高価なNiの原材料使用量が相対的に多くなってコスト上昇を招く。そこで、(Ni+Fe)/P比を上記の範囲内に規制することとした。なお、(Ni+Fe)/P比は、上記の範囲内でも、好ましくは3を超え、20以下の範囲内が望ましい。さらに好ましくは3を超え、15以下の範囲内が望ましい。
(2)式: 0.3<Sn/(Ni+Fe)<2.7
 Sn/(Ni+Fe)比が0.3以下では、十分な耐応力緩和特性と耐熱性向上効果が発揮されず、一方、Sn/(Ni+Fe)比が2.7以上の場合、相対的にNi量が少なくなって、Ni-P系析出物の量が少なくなり、耐応力緩和特性と耐熱性の両特性の向上が得られない。そこで、Sn/(Ni+Fe)比を上記の範囲内に規制することとした。
なお、Sn/(Ni+Fe)比は、上記の範囲内でも、特に0.3超え、1.5以下の範囲内が望ましい。
(3)式: 0.002≦Fe/Ni<0.6
 Fe/Ni比が0.002未満の場合には、強度が低下するとともに高価なNiの原材料使用量が相対的に多くなってコスト上昇を招く。一方、Fe/Ni比が0.6以上の場合には、十分な耐応力緩和特性と耐熱性向上効果が発揮されない。そこで、Fe/Ni比は、上記の範囲内に規制することとした。なお、Fe/Ni比は、上記の範囲内でも、特に0.002以上0.4以下の範囲内が望ましい。さらに好ましくは0.002以上0.2以下の範囲内が望ましい。
(4)式: 5≦〔Fe/Ni〕/〔Fe/Ni〕≦200
 〔Ni,Fe〕-P系析出物中のFeの含有量とNiの含有量との原子比〔Fe/Ni〕と、合金全体のFeの含有量とNiの含有量との原子比〔Fe/Ni〕も重要となる。〔Fe/Ni〕/〔Fe/Ni〕比が5未満の場合には、〔Ni,Fe〕-P系析出物の個数密度が低くなり、耐応力緩和特性と耐熱性の十分な向上が得られない。一方、〔Fe/Ni〕/〔Fe/Ni〕比が200より大きい場合は、析出物がFe-P系析出物となり、析出物のサイズが大きくなり、個数密度も低くなるため、耐応力緩和特性と耐熱性の両特性の向上が得られない。そこで、〔Fe/Ni〕/〔Fe/Ni〕比は、上記の範囲に規制することとした。なお、〔Fe/Ni〕/〔Fe/Ni〕比は、上記の範囲内でも、特に10以上100以下の範囲内が望ましい。さらに好ましくは15を超え、75以下の範囲内が望ましい。
(1´)式: 3<(Ni+Fe+Co)/P<30
 FeとCoを添加した場合、Feの一部がCoで置き換えられたものを考えればよく、(1´)式も基本的には(1)式に準じている。ここで、(Ni+Fe+Co)/P比が3以下では、固溶Pの割合の増大に伴って耐応力緩和特性と耐熱性が低下し、また同時に固溶Pにより導電率が低下するとともに、圧延性が低下して冷間圧延割れが生じやすくなり、さらに曲げ加工性も低下する。一方、(Ni+Fe+Co)/P比が30以上となれば、固溶したNi、Fe、Coの割合の増大により導電率が低下するとともに高価なCoやNiの原材料使用量が相対的に多くなってコスト上昇を招く。そこで、(Ni+Fe+Co)/P比を上記の範囲内に規制することとした。なお、(Ni+Fe+Co)/P比は、上記の範囲内でも、好ましくは3を超え、20以下の範囲内が望ましい。さらに好ましくは3を超え、15以下の範囲内が望ましい。
(2´)式: 0.3<Sn/(Ni+Fe+Co)<2.7
 FeとCoを添加した場合の(2´)式も、前記(2)式に準じている。Sn/(Ni+Fe+Co)比が0.3以下では、十分な耐応力緩和特性と耐熱性の向上効果が発揮されず、一方、Sn/(Ni+Fe+Co)比が2.7以上となれば、相対的に(Ni+Fe+Co)量が少なくなって、〔Ni,(Fe,Co)〕-P系析出物の量が少なくなり、耐応力緩和特性と耐熱性が低下してしまう。そこで、Sn/(Ni+Fe+Co)比を上記の範囲内に規制することとした。なお、Sn/(Ni+Fe+Co)比は、上記の範囲内でも、特に0.3を超え、1.5以下の範囲内が望ましい。
(3´)式: 0.002≦(Fe+Co)/Ni<0.6
 FeとCoを添加した場合には、FeとCoの含有量の合計とNiの含有量との比も重要となる。(Fe+Co)/Ni比が0.6以上の場合には、耐応力緩和特性と耐熱性が低下するとともに高価なCo原材料の使用量の増大によりコスト上昇を招く。(Fe+Co)/Ni比が0.002未満の場合には、強度が低下するとともに高価なNiの原材料使用量が相対的に多くなってコスト上昇を招く。そこで、(Fe+Co)/Ni比は、上記の範囲内に規制することとした。なお、(Fe+Co)/Ni比は、上記の範囲内でも、特に0.002以上0.4以下の範囲内が望ましい。さらに好ましくは0.002以上0.2以下の範囲内が望ましい。
(4´)式: 5≦〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕≦200
 FeとCoを添加した場合には、〔Ni,(Fe,Co)〕-P系析出物中のFeおよびCoの合計含有量とNiの含有量との原子比〔(Fe+Co)/Ni〕と、合金全体のFeおよびCoの合計含有量とNiの含有量との原子比〔(Fe+Co)/Ni〕も重要となる。〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕比が5未満の場合には、〔Ni,(Fe,Co)〕-P系析出物の個数密度が低くなり、耐応力緩和特性と耐熱性の向上が得られない。一方、〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕比が200より大きい場合は、析出物が(Fe,Co)-P系析出物となり、析出物のサイズが大きくなり、個数密度も低くなるため、耐応力緩和特性と耐熱性の向上が得られない。
 そこで、〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕比は、上記の範囲に規制することとした。なお、〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕比は、上記の範囲内でも、特に10以上100以下の範囲内が望ましい。さらに好ましくは15を超え、75以下の範囲内が望ましい。
 以上のように各合金元素を、個別の含有量だけではなく、各元素相互の比率として、(1)~(3)式もしくは(1´)~(3´)式を満たすように調整した電子・電気機器用銅合金においては、〔Ni,Fe〕-P系析出物もしくは〔Ni,(Fe,Co)〕-P系析出物が、母相(α相主体)から分散析出したものとなる。そして、上述の(4)式もしくは(4´)式を満たすように、析出物中の組成比を規定することにより、〔Ni,Fe〕-P系析出物もしくは〔Ni,(Fe,Co)〕-P系析出物のサイズが微細化されるとともに個数密度が確保され、耐応力緩和特性と耐熱性が確実に向上するものと考えられる。
 また、本実施形態においては、FeとNiとPとを含有する〔Ni,Fe〕-P系析出物の平均粒径が100nm以下とされている。また、FeとCoとNiとPとを含有する〔Ni,(Fe,Co)〕-P系析出物の平均粒径が100nm以下とされている。
 このように、〔Ni,Fe〕-P系析出物の平均粒径および〔Ni,(Fe,Co)〕-P系析出物の平均粒径が100nm以下と微細にされていることにより、耐応力緩和特性と耐熱性を確実に向上すると考えられる。析出物の平均粒径はより好ましくは5nm以上50nm以下である。
 次に、前述のような実施形態の電子・電気機器用銅合金の製造方法の好ましい例について、図1に示すフローチャートを参照して説明する。
〔溶解・鋳造工程:S01〕
 まず、前述した成分組成の銅合金溶湯を溶製する。銅原料としては、純度が99.99mass%以上の4NCu(無酸素銅等)を使用することが望ましいが、スクラップを原料として用いてもよい。また、溶解には、大気雰囲気炉を用いてもよいが、添加元素の酸化を抑制するために、真空炉、不活性ガス雰囲気又は還元性雰囲気とされた雰囲気炉を用いてもよい。
 次いで、成分調整された銅合金溶湯を、縦型鋳造炉や横型鋳造炉を用いた適宜の鋳造方法、例えば金型鋳造などのバッチ式鋳造法、あるいは連続鋳造法、半連続鋳造法などによって鋳造して鋳塊(例えばスラブ状鋳塊)を得る。
〔加熱工程:S02〕
 その後、必要に応じて、鋳塊の偏析を解消して鋳塊組織を均一化するために均質化熱処理を行う。または晶出物、析出物を固溶させるために溶体化熱処理を行う。これらの熱処理の条件は特に限定しないが、通常は600℃以上1000℃以下において1秒以上24時間以下加熱すればよい。保持温度が600℃未満、あるいは保持時間が5分未満では、十分な均質化効果または溶体化効果が得られないおそれがある。一方、保持温度が1000℃を超えれば、偏析部位が一部溶解してしまうおそれがあり、さらに保持時間が24時間を超えることはコスト上昇を招くだけである。熱処理後の冷却条件は、適宜定めればよいが、通常は水焼入れすればよい。なお、加熱工程S02後には、必要に応じて面削を行う。
〔熱間加工工程:S03〕
 次いで、粗加工の効率化と組織の均一化のために、前述の加熱工程S02の後に、鋳塊に対して熱間加工を行ってもよい。この熱間加工の条件は特に限定されないが、通常は、開始温度600℃以上1000℃以下、終了温度300℃以上850℃以下、加工率10%以上99%以下程度とすることが好ましい。なお、熱間加工開始温度までの鋳塊加熱は、前述の加熱工程S02と兼ねてもよい。すなわち、加熱工程S02で加熱した後に室温近くまで冷却せずに、上述の熱間加工開始温度において熱間加工を開始してもよい。熱間加工後の冷却条件は、適宜定めればよいが、通常は水焼入れすればよい。なお、熱間加工後には、必要に応じて面削を行う。熱間加工の加工方法については、特に限定されないが、最終形状が板や条の場合は熱間圧延を適用して、0.5mm以上50mm以下程度の板厚まで圧延すればよい。また、最終形状が線や棒の場合には押出や溝圧延を、最終形状がバルク形状の場合には鍛造やプレスを適用すればよい。また、横型連続鋳造法にて作製した鋳塊については、通常、熱間加工工程を行わなくてもよい。
〔中間塑性加工工程:S04〕
 次に、加熱工程S02で均質化処理を施した鋳塊、あるいは熱間圧延などの熱間加工工程S03を施した熱間加工材に対して、中間塑性加工を施す。この中間塑性加工工程S04における温度条件は特に限定はないが、冷間又は温間加工となる-200℃から+200℃の範囲内とすることが好ましい。中間塑性加工の加工率も特に限定されないが、通常は10%以上99%以下程度とする。加工方法は特に限定されないが、最終形状が板、条(コイル状に巻かれた形状)の場合は、圧延を適用して0.05mm以上15mm以下程度の板厚まで圧延すればよい。また、最終形状が線や棒の場合には押出や溝圧延、最終形状がバルク形状の場合には鍛造やプレスを適用することができる。
〔中間熱処理工程:S05〕
 次に、中間塑性加工工程S04の後に、溶体化熱処理を兼ねた中間熱処理を施す。この中間熱処理を実施することで、微細な〔Ni,Fe〕-P系析出物もしくは〔Ni,(Fe,Co)〕-P系析出物を母相中に溶体化させる。ここで、中間熱処理においては、バッチ式の加熱炉を用いてもよいし、連続焼鈍ラインを用いてもよい。そして、バッチ式の加熱炉を用いて中間熱処理を実施する場合には、600℃以上1000℃以下の温度で5分以上24時間以下加熱することが好ましい。また、連続焼鈍ラインを用いて中間熱処理を実施する場合には、加熱到達温度を650℃以上1000℃以下とし、かつこの範囲内の温度で、保持なし、若しくは1秒以上5分以下程度保持することが好ましい。以上のように、中間熱処理工程S05における熱処理条件は、熱処理を実施する具体的手段によって異なることになる。
 また、中間熱処理の雰囲気は、非酸化性雰囲気(窒素ガス雰囲気、不活性ガス雰囲気、あるいは還元性雰囲気)とすることが好ましい。
 中間熱処理後の冷却条件は、特に限定しないが、通常は2000℃/秒~100℃/時間程度の冷却速度で冷却すればよい。
なお、溶体化の徹底のために、中間塑性加工工程S04および中間熱処理工程S05を繰り返してもよい。
〔仕上塑性加工工程:S06〕
 中間熱処理工程S05の後には、最終寸法、最終形状まで仕上塑性加工を行う。仕上塑性加工における加工方法は特に限定されないが、最終製品形態が板や条である場合には、圧延(冷間圧延)を適用して0.05mm以上3.0mm以下程度の板厚に圧延すればよい。その他、最終製品形態に応じて、鍛造やプレス、溝圧延などを適用してもよい。加工率は最終板厚や最終形状に応じて適宜選択すればよいが、1%以上80%以下の範囲内が好ましい。加工率が1%未満では、耐力を向上させる効果が十分に得られず、一方、80%を超えれば、実質的に再結晶組織が失われて加工組織となり、曲げ加工性が低下してしまうおそれがある。なお、加工率は、好ましくは5%以上80%以下、より好ましくは、10%以上80%以下とする。仕上塑性加工後は、これをそのまま製品として用いてもよいが、通常は、さらに仕上熱処理を施すことが好ましい。
〔仕上熱処理工程:S07〕
 仕上塑性加工後には、必要に応じて、耐応力緩和特性と耐熱性の向上および低温焼鈍硬化のために、または残留ひずみの除去のために、仕上熱処理工程S07を行う。この仕上熱処理は、250℃以上600℃以下の範囲内の温度で、1時間以上48時間以下行うことが望ましい。熱処理温度が高温の場合は短時間の熱処理、熱処理温度が低温の場合は長時間の熱処理を実施すればよい。仕上熱処理の温度が250℃未満、または仕上熱処理の時間が1時間未満では、十分な歪み取りの効果が得られなくなるおそれがある。一方、仕上熱処理の温度が600℃を超える場合は再結晶のおそれがあり、さらに仕上熱処理の時間が48時間を超えることは、コスト上昇を招くだけである。
 また、本実施形態では、昇温速度によって〔Ni,Fe〕-P系析出物中のFeの含有量とNiの含有量の原子比を制御した。昇温速度は0.1℃/分以上10℃/分以下で行うことが望ましい。
 以上のようにして、最終製品形態のCu-Zn―Sn系合金材を得ることができる。特に、加工方法として圧延を適用した場合、板厚0.05mm以上3.0mm以下程度のCu-Zn―Sn系合金薄板(条材)を得ることができる。
 このような薄板は、これをそのまま電子・電気機器用導電部品に使用してもよいが、板面の一方、もしくは両面に、膜厚0.1~10μm程度のSnめっきを施し、Snめっき付き銅合金条として、コネクタその他の端子などの電子・電気機器用導電部品に使用するのが通常である。この場合のSnめっきの方法は特に限定されない。また、場合によっては電解めっき後にリフロー処理を施してもよい。
 以上のような構成とされた本実施形態である電子・電気機器用銅合金においては、α相主体の母相から〔Ni,Fe〕-P系析出物を適切に存在させると同時に、〔Ni,Fe〕-P系析出物中のFeの含有量とNiの含有量との原子比〔Fe/Ni〕が、合金全体のFeの含有量とNiの含有量との原子比〔Fe/Ni〕に対して、5以上200以下の範囲内とされているので、耐応力緩和特性と耐熱性が十分に優れ、しかも強度(耐力)も高くなる。
 また、FeとCoを添加した場合も同様に、α相主体の母相から〔Ni,(Fe,Co)〕-P系析出物を適切に存在させると同時に、〔Ni,(Fe,Co)〕-P系析出物中の(Fe+Co)の含有量とNiの含有量との原子比〔(Fe+Co)/Ni〕が、合金全体の(Fe+Co)の含有量とNiの含有量との原子比〔(Fe+Co)/Ni〕に対して、5以上200以下の範囲内とされているので、耐応力緩和特性と耐熱性が十分に優れ、しかも強度(耐力)も高くなる。
 本実施形態である電子・電気機器用銅合金薄板は、上述の電子・電気機器用銅合金の圧延材からなることから、耐応力緩和特性と耐熱性に優れており、コネクタ、その他の端子、バスバー、電磁リレーの可動導電片、リードフレームなどに好適に使用することができる。
 本実施形態である電子・電気機器用導電部材および端子は、上述の電子・電気機器用銅合金および電子・電気機器用銅合金薄板で構成されているので、耐応力緩和特性と耐熱性に優れており、経時的にもしくは高温環境で応力緩和が生じにくく、高温下での強度(硬度)の低下も少ないため、信頼性に優れている。また、電子・電気機器用導電部品および端子の薄肉化を図ることができる。
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。
 例えば、製造方法の一例を挙げて説明したが、これに限定されることはなく、最終的に得られた電子・電気機器用銅合金が、本発明で規定した組成範囲および析出物の組成を満足していればよい。
 以下、本発明の効果を確認すべく行った確認実験の結果を本発明の実施例として、比較例とともに示す。なお、以下の実施例は、本発明の効果を説明するためのものであって、実施例に記載された構成、プロセス、条件が本発明の技術的範囲を限定するものでない。
 まず、Cu-40mass%Zn母合金および純度99.99mass%以上の無酸素銅(ASTM B152 C10100)からなる原料を準備し、これを高純度グラファイト坩堝内に装入して、Nガス雰囲気において横型連続鋳造炉を用いて溶解した。銅合金溶湯内に、各種添加元素を添加して、表1~表3に示す成分組成の合金溶湯を溶製し、カーボン鋳型を用いて、鋳塊を製出した。その後、厚さ約11mm×幅約80mm×長さ約200mmに切断した。
 次に、切断した各鋳塊について、加熱処理(均質化処理)として、Arガス雰囲気中において、800℃で4時間保持後、水焼き入れを実施した。
 その後、表面研削を実施し、中間塑性加工および中間熱処理を実施した。具体的には、粗加工は鋳塊の長さ方向が圧延方向となるようにして圧延率95%の冷間圧延を行った。
 その後、溶体化処理のための中間熱処理について、中間熱処理後の平均結晶粒径が約20μmとなるように、700℃で所定時間実施し、水焼入れした。その後、圧延材を切断し、酸化被膜を除去するために表面研削を実施した。
 次に、仕上塑性加工として、圧延率50%で冷間圧延を実施した。その後、350℃まで、表4~6に示した昇温速度で昇温し、所定時間仕上げ熱処理を行い、水焼入れした。そして、切断および表面研磨を実施し、厚さ0.25mm×幅約180mmの特性評価用条材を製出した。
 これらの特性評価用条材について、機械的特性(耐力)を調べるとともに、耐応力緩和特性と耐熱性を調べ、さらに組織観察を行った。各評価項目についての試験方法、測定方法は次の通りである。
〔結晶粒径観察〕
 中間熱処理(中間焼鈍)後の結晶粒径は次のようにして測定した。圧延の幅方向に対して垂直な面、すなわちTD面(Transverse direction)を観察面として、耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、コロイダルシリカ溶液を用いて仕上げ研磨を行った。研磨後、腐食液として硫酸と硝酸の混合液を用いてエッチングを行い、光学顕微鏡にて金属組織を観察した。結晶粒径は、JIS H 0501(ISO2624-1973に対応)の切断法に準拠し、縦、横の所定長さの線分を5本ずつ引き、完全に切られる結晶粒数を数え、その切断長さの平均値を平均結晶粒径とした。
〔析出物の観察〕
 各特性評価用条材について、透過型電子顕微鏡(TEM:日立製作所製、H-800、HF-2200をおよびEDX分析装置(Noran製、EDX分析装置SYSTEM SIX)を用いて、次のように析出物観察を実施した。
 圧延材の表面および裏面から耐水研磨紙、ダイヤモンド砥粒を用いて機械研磨を行った後、電解液を用いたツインジェット法にてTEM観察試料を作製した。TEM観察試料は圧延材の表面と裏面の2箇所それぞれから厚み方向で1/4入った2箇所から作製した。
 粒子径が10nmから50nm程度の析出物10個以上について電子線回折を行い、これらの析出物が、FeP系またはNiP系の結晶構造を持つ六方晶(space group:P-62m(189))もしくはCoP系またはFeP系の斜方晶(space group:P-nma(62))であることを確認した。電子線回折を行った後、さらに、それぞれの析出物についてEDX(エネルギー分散型X線分光法)を用いて、析出物の組成を分析した結果から、その析出物が、FeとCoとNiからなる群から選択される少なくとも一種の元素とPとを含有するもの、すなわち既に定義した〔Ni,(Fe,Co)〕-P系析出物の一種であることを確認した。また、EDXの析出物の組成分析結果から、析出物中のFe/Ni比、もしくは(Fe+Co)/Ni比を算出した。
〔耐熱性の評価〕
 耐熱性は、JCBA T315:2002「銅及び銅合金板条の焼鈍軟化特性試験」に従い、各温度で1時間の熱処理を行った時の半軟化温度で評価した。半軟化温度は、特性評価用条材の硬度と、電気炉にて700℃で1時間熱処理した条材の硬度との和を算出し、その和に対して、半分の硬度となるときの温度とした。実際の半軟化温度は、200~700℃の温度範囲で50℃刻みに各1時間で実施したときの硬度をプロットし、硬度-温度曲線を作成し、その曲線から決定した。
 また、硬度については、JIS-Z2248(ISO7438:2005, Metallic Materials -Bend test (MOD))に規定されている微小硬さ試験方法に準拠し、特性評価用条材の表面すなわちND面(Normal Direction)に対して試験加重1.96N(=0.2kgf)でビッカース硬さを測定した。
〔機械的特性〕
 特性評価用条材からJIS Z 2201(ISO6892に対応)に規定される13B号試験片を採取し、JIS-Z 2241(ISO6892‐1:2009, Metallic Materials -Tensile testing -Part 1: Method of test at room temperature (MOD))のオフセット法により、ヤング率E、0.2%耐力σ0.2を測定した。なお、試験片は、引張試験の引張方向が特性評価用条材の圧延方向に対して直交する方向となるように採取した。
 得られたヤング率Eは、耐応力緩和特性試験を行う際に使用した。
〔耐応力緩和特性〕
 耐応力緩和特性試験は、日本伸銅協会技術標準JCBA-T309:2004の片持はりねじ式に準じた方法によって応力を負荷し、Zn量が2mass%を超えて15mass%未満の試料(表4~6の「2-15Zn評価」の欄に記入したもの)については、150℃の温度で500時間保持後、Zn量が15mass%以上36.5mass%以下の試料(表4~6の「15-36.5Zn評価」の欄に記入したもの)については、120℃の温度で500時間保持後の残留応力率を測定した。
 試験方法としては、各特性評価用条材から圧延方向に対して直交する方向に試験片(幅10mm)を採取し、試験片の表面最大応力が耐力の80%となるよう、初期たわみ変位を2mmと設定し、スパン長さを調整した。上記表面最大応力は次式で定められる。
 表面最大応力(MPa)=1.5Etδ/Ls
ただし、
 E:ヤング率(MPa)
 t:試料の厚み(t=0.25mm)
 δ:初期たわみ変位(2mm)
 Ls:スパン長さ(mm)
である。
 また、残留応力率は次式を用いて算出した。
 残留応力率(%)=(1-δt/δ)×100
ただし、
 δt:120℃で500h保持後、もしくは150℃で500h保持後の永久たわみ変位(mm)-常温で24h保持後の永久たわみ変位(mm)
 δ:初期たわみ変位(mm)
である。
 残留応力率が、80%以上のものを○、80%未満のものを×と評価した。
 上記の各評価結果について、表4,5,6中に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 比較例101においては、〔Ni,(Co,Fe)〕-P系析出物中のFeおよびCoの合計含有量とNiの含有量の原子比〔(Fe+Co)/Ni〕と、合金全体のFeおよびCoの合計含有量とNiの含有量の原子比〔(Fe+Co)/Ni〕との比である〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕が本発明の範囲よりも低く、耐熱性および耐応力緩和特性が不十分であった。
 比較例102においては、〔Ni,Fe〕-P系析出物中のFeの含有量とNiの含有量の原子比〔Fe/Ni〕と、合金全体のFeの含有量とNiの含有量の原子比〔Fe/Ni〕との比である〔Fe/Ni〕/〔Fe/Ni〕が本発明の範囲よりも高く、耐熱性および耐応力緩和特性が不十分であった。
 比較例103においては、Feの含有量が本発明の範囲よりも多く、耐熱性および耐応力緩和特性が不十分であった。
 比較例104においては、PとFeを添加しておらず、耐熱性および耐応力緩和特性が不十分であった。
 比較例105においては、Pを添加しておらず、耐熱性および耐応力緩和特性が不十分であった。
 比較例106においては、Niの含有量が本発明の範囲よりも少なく、(Ni+Fe)/P、Sn/(Ni+Fe)及びFe/Niの原子比も本発明の範囲外となり、耐熱性および耐応力緩和特性が不十分であった。
 これに対して、各合金元素の個別の含有量が本発明で規定する範囲内であるばかりでなく、各合金成分の相互間の比率が本発明で規定する範囲内とされ、さらに〔Ni,Fe〕-P系析出物中のFeの含有量とNiの含有量の原子比〔Fe/Ni〕と、合金全体のFeの含有量とNiの含有量の原子比〔Fe/Ni〕との比である〔Fe/Ni〕/〔Fe/Ni〕、または、〔Ni,(Co,Fe)〕-P系析出物中のFeおよびCoの合計含有量とNiの含有量の原子比〔(Fe+Co)/Ni〕と、合金全体のFeおよびCoの合計含有量とNiの含有量の原子比〔(Fe+Co)/Ni〕との比である〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕が本発明の範囲の範囲内とされた本発明例においては、いずれも耐熱性および耐応力緩和特性に優れており、コネクタやその他の端子に十分に適用可能であることが確認された。
 なお、表2に示される本発明例No.41において、Sn/(Ni+Fe+Co)が0.30と示されているが、これは他の値と小数点を揃えて示される値であり、正確には0.3003である。即ち、本発明例No.41のSn/(Ni+Fe+Co)は本発明の範囲内である。

Claims (5)

  1.  Znを2mass%超えて36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Pを0.005mass%以上0.1mass%以下、Feを0.001mass%以上0.1mass%以下、含有し、残部がCuおよび不可避的不純物からなり、
     NiおよびFeの合計含有量とPの含有量との比(Ni+Fe)/Pが、原子比で、
      3<(Ni+Fe)/P<30
    を満たし、
     かつ、Snの含有量とNiおよびFeの合計含有量との比Sn/(Ni+Fe)が、原子比で、
      0.3<Sn/(Ni+Fe)<2.7
    を満たすとともに、
     Feの含有量とNiの含有量との比〔Fe/Ni〕が、原子比で、
      0.002≦〔Fe/Ni〕<0.6
    を満たし、
     さらに、母相中に、FeとNiとPとを含有する〔Ni,Fe〕-P系析出物を有しており、この〔Ni,Fe〕-P系析出物中のFeの含有量とNiの含有量の原子比〔Fe/Ni〕が、合金全体のFeの含有量とNiの含有量の原子比〔Fe/Ni〕に対して、
      5≦〔Fe/Ni〕/〔Fe/Ni〕≦200
    を満たすことを特徴とする電子・電気機器用銅合金。
  2.  Znを2mass%超えて36.5mass%以下、Snを0.1mass%以上0.9mass%以下、Niを0.15mass%以上1.0mass%未満、Pを0.005mass%以上0.1mass%以下、含有するとともに、FeとCoを含有し、FeおよびCoの合計含有量が0.001mass%以上0.1mass%以下(但し、Feを0.001mass%以上0.1mass%以下含有する)とされ、残部がCuおよび不可避的不純物からなり、
     Ni、FeおよびCoの合計含有量とPの含有量との比(Ni+Fe+Co)/Pが、原子比で、
      3<(Ni+Fe+Co)/P<30
    を満たし、
     かつ、Snの含有量とNi、FeおよびCoの合計含有量との比Sn/(Ni+Fe+Co)が、原子比で、
      0.3<Sn/(Ni+Fe+Co)<2.7
    を満たすとともに、
     FeおよびCoの合計含有量とNiの含有量との比(Fe+Co)/Niが、原子比で、
      0.002≦(Fe+Co)/Ni<0.6
    を満たし、
     さらに、母相中に、FeおよびCoの少なくとも1種以上とNiとPとを含有する〔Ni,(Fe,Co)〕-P系析出物を有しており、この〔Ni,(Fe,Co)〕-P系析出物中のFeおよびCoの合計含有量とNiの含有量の原子比〔(Fe+Co)/Ni〕が、合金全体のFeおよびCoの合計含有量とNiの含有量の原子比〔(Fe+Co)/Ni〕に対して、
      5≦〔(Fe+Co)/Ni〕/〔(Fe+Co)/Ni〕≦200
    を満たすことを特徴とする電子・電気機器用銅合金。
  3.  請求項1または請求項2に記載の電子・電気機器用銅合金の圧延材からなり、
     厚みが0.05mm以上3.0mm以下の範囲内にあることを特徴とする電子・電気機器用銅合金薄板。
  4.  請求項3に記載の電子・電気機器用銅合金薄板からなることを特徴とする電子・電気機器用導電部品。
  5.  請求項3に記載の電子・電気機器用銅合金薄板からなることを特徴とする端子。
PCT/JP2016/072195 2015-07-30 2016-07-28 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子 WO2017018487A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020187002582A KR20180033197A (ko) 2015-07-30 2016-07-28 전자·전기기기용 구리 합금, 전자·전기기기용 구리 합금 박판, 전자·전기기기용 도전 부품 및 단자
CN201680041266.8A CN107923001B (zh) 2015-07-30 2016-07-28 电子电气设备用铜合金、电子电气设备用铜合金薄板、电子电气设备用导电部件及端子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-150338 2015-07-30
JP2015150338A JP6101750B2 (ja) 2015-07-30 2015-07-30 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子

Publications (1)

Publication Number Publication Date
WO2017018487A1 true WO2017018487A1 (ja) 2017-02-02

Family

ID=57884479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/072195 WO2017018487A1 (ja) 2015-07-30 2016-07-28 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子

Country Status (5)

Country Link
JP (1) JP6101750B2 (ja)
KR (1) KR20180033197A (ja)
CN (1) CN107923001B (ja)
TW (1) TWI693291B (ja)
WO (1) WO2017018487A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079507A1 (ja) * 2016-10-28 2018-05-03 Dowaメタルテック株式会社 銅合金板材およびその製造方法
CN113774250A (zh) * 2021-09-24 2021-12-10 佛山市顺德区精艺万希铜业有限公司 一种高强度高导热高耐蚀铜合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533087A (ja) * 1991-07-31 1993-02-09 Furukawa Electric Co Ltd:The 小型導電性部材用銅合金
JP2006283060A (ja) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd 銅合金材料およびその製造法
JP2014205903A (ja) * 2013-03-18 2014-10-30 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP2015034333A (ja) * 2013-07-10 2015-02-19 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100792653B1 (ko) * 2005-07-15 2008-01-09 닛코킨조쿠 가부시키가이샤 전기 전자기기용 동합금 및 그의 제조 방법
TWI539013B (zh) * 2010-08-27 2016-06-21 Furukawa Electric Co Ltd Copper alloy sheet and method of manufacturing the same
JP5088425B2 (ja) * 2011-01-13 2012-12-05 三菱マテリアル株式会社 電子・電気機器用銅合金、銅合金薄板および導電部材
JP5572754B2 (ja) * 2012-12-28 2014-08-13 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
EP3020838A4 (en) * 2013-07-10 2017-04-19 Mitsubishi Materials Corporation Copper alloy for electronic and electrical equipment, copper alloy thin sheet for electronic and electrical equipment, and conductive component for electronic and electrical equipment, terminal
JP2015034332A (ja) * 2013-07-10 2015-02-19 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533087A (ja) * 1991-07-31 1993-02-09 Furukawa Electric Co Ltd:The 小型導電性部材用銅合金
JP2006283060A (ja) * 2005-03-31 2006-10-19 Dowa Mining Co Ltd 銅合金材料およびその製造法
JP2014205903A (ja) * 2013-03-18 2014-10-30 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP2015034333A (ja) * 2013-07-10 2015-02-19 三菱マテリアル株式会社 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018079507A1 (ja) * 2016-10-28 2018-05-03 Dowaメタルテック株式会社 銅合金板材およびその製造方法
US11293084B2 (en) 2016-10-28 2022-04-05 Dowa Metaltech Co., Ltd. Sheet matertal of copper alloy and method for producing same
CN113774250A (zh) * 2021-09-24 2021-12-10 佛山市顺德区精艺万希铜业有限公司 一种高强度高导热高耐蚀铜合金及其制备方法

Also Published As

Publication number Publication date
KR20180033197A (ko) 2018-04-02
TWI693291B (zh) 2020-05-11
CN107923001B (zh) 2019-10-29
JP6101750B2 (ja) 2017-03-22
CN107923001A (zh) 2018-04-17
JP2017031449A (ja) 2017-02-09
TW201718888A (zh) 2017-06-01

Similar Documents

Publication Publication Date Title
JP5088425B2 (ja) 電子・電気機器用銅合金、銅合金薄板および導電部材
JP5045784B2 (ja) 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材
JP5712585B2 (ja) 電子機器用銅合金、電子機器用銅合金の製造方法及び電子機器用銅合金圧延材
JP6226098B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片
JP5690979B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5572754B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
WO2017170699A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金板条材、電子・電気機器用部品、端子、バスバー、及び、リレー用可動片
JP5417523B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
WO2015087624A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金塑性加工材、電子・電気機器用部品及び端子
JP5417539B1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP5572753B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
WO2015004940A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP2016132816A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
WO2017018487A1 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品および端子
JP2015034332A (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304864B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP7187989B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP7172089B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP7172090B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304867B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304865B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子
JP6304863B2 (ja) 電子・電気機器用銅合金、電子・電気機器用銅合金薄板、電子・電気機器用導電部品及び端子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187002582

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830592

Country of ref document: EP

Kind code of ref document: A1