WO2017018173A1 - 弁装置 - Google Patents

弁装置 Download PDF

Info

Publication number
WO2017018173A1
WO2017018173A1 PCT/JP2016/070317 JP2016070317W WO2017018173A1 WO 2017018173 A1 WO2017018173 A1 WO 2017018173A1 JP 2016070317 W JP2016070317 W JP 2016070317W WO 2017018173 A1 WO2017018173 A1 WO 2017018173A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
mesh
valve device
flow
inclined surface
Prior art date
Application number
PCT/JP2016/070317
Other languages
English (en)
French (fr)
Inventor
栄治 三橋
光雄 薄田
Original Assignee
日本ドレッサー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ドレッサー株式会社 filed Critical 日本ドレッサー株式会社
Publication of WO2017018173A1 publication Critical patent/WO2017018173A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K47/00Means in valves for absorbing fluid energy
    • F16K47/08Means in valves for absorbing fluid energy for decreasing pressure or noise level and having a throttling member separate from the closure member, e.g. screens, slots, labyrinths

Definitions

  • the present invention relates to a valve device.
  • Patent Document 1 includes a plurality of flow holes (meandering flow paths) having a right-angled bend, and pressure heads are formed by bending the flow holes.
  • a technique for suppressing noise and cavitation by dissipating energy and reducing the pressure of a high-pressure fluid is disclosed.
  • Patent Document 2 discloses a technology that suppresses generation of noise and the like by reducing the size of a jet of fluid by allowing a high-pressure fluid to pass through a large number of small holes (porous channels). .
  • the conventional pressure reducing valve is designed to suppress the noise as much as possible by using either the meandering channel or the perforated channel, but further improvement is desired to further reduce the noise. This is the current situation.
  • the present invention has been made in view of the current situation as described above, and is superior in strength to the conventional mesh structure, and also has a predetermined mesh structure, and in particular, has an excellent flow diffusion action above the fluid. It is possible to provide a valve device with excellent practicality that can be easily obtained using a metal additive manufacturing method.
  • a valve mechanism provided in the middle of the flow passage 1 and configured to open and close the valve seat 2 and the flow hole 3 provided in the valve seat 2 so as to be openable and closable;
  • a valve device comprising a decompression mechanism for decompressing a fluid passing through a flow gap between the valve body 4 and the valve seat 2 when the flow hole 3 is opened and the flow passage 1 is opened;
  • a plurality of metal crosspieces 6 integrally formed by a layered manufacturing method on a cylindrical body 5 provided so as to surround a flow gap between the valve body 4 and the valve seat 2 generated when the flow passage 1 is opened. Are provided in parallel to each other in the direction of fluid flow to provide a mesh circulation portion 10 provided in a stacked state in the fluid flow direction.
  • the present invention relates to a valve device that is configured.
  • the mesh flow section 10 is provided with a large number of pipe portions 21 that form the flow paths 22 penetrating the inside and outside of the cylindrical body 5, and the cross-sectional areas of the flow paths 22 of the respective pipe sections 21 are respectively 2.
  • the mesh 9 is formed by superimposing the inner side rows 7 and the outer side rows 8 in a slanted lattice shape, and includes an inner surface and an upper surface of the cross 6 constituting the inner side rows 7 and the outer side rows 8. 2.
  • the mesh 9 is formed by superimposing the inner side rows 7 and the outer side rows 8 in a slanted lattice shape, and includes an inner surface and an upper surface of the cross 6 constituting the inner side rows 7 and the outer side rows 8. 3.
  • a valve device according to claim 2 wherein a guide inclined surface 11 for guiding upward diffusion of the fluid passing through the mesh circulation portion 10 is provided at each of the inner upper edge portions which are boundary portions of the fluid. It is related to.
  • valve body 4 in the state where the opening on the innermost side of the upper part of the mesh circulation part 10 is closed by the valve body 4, it flows in from the opening on the innermost part of the lower part of the mesh circulation part 10 not closed by the valve body 4. 4.
  • the guiding inclined surface 11 is configured to guide the fluid to the upper region side.
  • valve body 4 in the state where the opening on the innermost side of the upper part of the mesh circulation part 10 is closed by the valve body 4, it flows in from the opening on the innermost part of the lower part of the mesh circulation part 10 not closed by the valve body 4.
  • the guiding inclined surface 11 is configured to guide the fluid to the upper region side.
  • the guiding inclined surface 11 is provided over the entire area of the inner upper edge of the crosspiece 6 according to the valve device according to claim 3.
  • the guiding inclined surface 11 is provided over the entire area of the inner upper edge of the crosspiece 6 according to the valve device according to claim 4.
  • the guiding inclined surface 11 is provided over the entire region of the inner upper edge of the crosspiece 6 according to the valve device according to claim 6.
  • valve device according to any one of claims 3 to 10, wherein the guiding inclined surface 11 is a concave curved surface.
  • the parallel arrangement interval between the rails 6 constituting the inner beam 7 and the outer beam 8 is set to 0.5 mm to 20 mm, according to any one of claims 1 to 10. This relates to the valve device.
  • the present invention is configured as described above, it is superior in strength compared to the conventional mesh structure, and by providing a predetermined mesh structure, it is possible to obtain a particularly favorable flow diffusion action above the fluid.
  • the valve device can be easily realized by using the metal additive manufacturing method and has excellent practicality.
  • FIG. 10 is an explanatory cross-sectional view of another example 1.
  • FIG. 10 is an expansion outline explanatory sectional view of the important section of this example.
  • 10 is an enlarged schematic explanatory front view of a main part of another example 2.
  • FIG. 10 is an enlarged schematic explanatory front view of a main part of another example 3.
  • the pressure can be reduced well by passing through a large number of openings between the crosspieces 6 of the mesh circulation part 10.
  • the mesh distribution section 10 is a structure in which the crosspieces 6 constituting each mesh 9 are integrally formed by the layered molding method, and has excellent strength as compared to a structure in which metal meshes are simply laminated, and with respect to a high-pressure fluid. Also demonstrates excellent durability.
  • the guiding inclined surface 11 when the guiding inclined surface 11 is provided on the inner upper edge portion of the crosspiece 6, the guiding inclined surface 11 allows the upward diffusion of the high pressure fluid to be performed well, and the vertical direction with respect to the high pressure fluid is performed.
  • the resistance force can be made minute, and a high pressure fluid can be diffused well in the mesh circulation part 10 to obtain a good pressure reduction effect while suppressing an increase in flow rate due to expansion.
  • a valve mechanism that is provided in the middle of the flow passage 1 and includes a valve seat 2 and a valve body 4 that closes the flow hole 3 provided in the valve seat 2 so as to be openable and closable;
  • a valve device comprising a pressure reducing mechanism that decompresses the fluid passing through the flow gap between the valve body 4 and the valve seat 2 when the flow passage 1 is opened by opening the flow hole 3 by opening.
  • the cylindrical body 5 provided so as to surround the flow gap between the valve body 4 and the valve seat 2 that is generated when the flow passage 1 is opened, a plurality of parts are integrally formed by an additive manufacturing method.
  • a mesh distribution section 10 is provided in which a plurality of meshes 9 formed by superimposing inner rows 7 and outer rows 8 formed by arranging metal beams 6 in an oblique lattice shape are provided in a stacked state in the fluid flow direction.
  • An inner side surface and an upper surface of the rails 6 constituting the pressure reducing mechanism and constituting the inner beam 7 and the outer beam 8 Husband inside on the edge is a boundary s, is provided with a guiding inclined surface 11 for inducing diffusion of the above said fluid passing through the mesh distribution unit 10.
  • a globe valve mechanism that is provided in the center of the flow passage 1 formed in the main body 20 and opens and closes the flow passage 1 and a fluid that passes through the opened globe valve mechanism is decompressed.
  • a pressure reducing mechanism that is used in a plant in which a high-pressure fluid flows.
  • an inlet side pipe connection part and an outlet side pipe connection part (not shown) to which pipes are respectively connected.
  • a horizontal annular valve seat 2 is provided at the center of the flow passage 1 of the main body 20, and a valve body 4 is provided so as to be movable toward and away from the valve seat 2.
  • reference numeral 15 is a valve shaft
  • 16 is a connection member
  • 17 is a connection bolt.
  • a metal cylinder 5 is provided around the valve body 4 so as to surround a flow gap generated when the valve body 4 is detached from the valve seat 2.
  • the outer diameter of the valve body 4 is the same diameter or slightly smaller than the inner diameter of the cylinder body 5 so that the valve body 4 slides on the inner peripheral surface of the cylinder body 5. . That is, the fluid does not leak from between the valve body 4 and the cylindrical body 5. Therefore, most of the fluid flowing through the flow hole 3 of the valve seat 2 and flowing into the cylindrical body 5 flows out through the mesh flow portion 10 of the cylindrical body 5 and travels toward the outlet side.
  • the cylindrical body 5 is configured by providing the frame body 12 with the mesh distribution part 10.
  • the cylindrical body 5 has a cylindrical shape that is slightly larger in diameter than the outer peripheral shape of the valve body 4, and is configured by integrally providing the mesh flow portion 10 in the frame hole of the cylindrical frame-shaped frame body 12. . That is, each mesh 9 constituting the mesh circulation part 10 exhibits the same curved shape as the whole or a part of the outer peripheral surface of the valve body 4.
  • a configuration may be adopted in which a large number of window holes 14 are provided in the cylindrical main body 13 as the cylinder 5 and the mesh circulation portions 10 are provided in the respective window holes 14.
  • the cylindrical body 5 is more excellent in strength.
  • the mesh distribution unit 10 is configured so that a mesh 9 formed by superposing an inner beam 7 and an outer beam 8 in which a plurality of beams 6 are arranged in parallel in a slanted lattice shape is flow direction of the fluid.
  • a plurality of stacked layers are provided.
  • a large number of fine meshes (openings) of the mesh 9 are continuously provided in the thickness direction of the cylindrical body 5 in the mesh distribution part 10 to form a pressure reducing flow path. Therefore, the high-pressure fluid that passes through the mesh circulation part 10 of the cylinder 5 is well decompressed by passing through a number of meshes.
  • the inner lane 7 (or the outer lane 8) of each mesh 9 is partially or entirely in front of the inner lane 7 (or the outer lane 8) of the inner and outer meshes. It is set as the structure provided so that it may overlap.
  • the inner side row 7 (or the outer side row 8) of the mesh 9 is the inner side row 7 (or the outer side row 8) of the other innermost or outer mesh. It may be configured to be arranged between the inner side rows 7 (or the outer side rows 8) of other meshes inside or outside the nearest (for example, at an intermediate position between the bars) Placement.).
  • the crosspieces 6 (18b, 19b) of the even-numbered mesh 9 are arranged between the cross-pieces 6 (18a, 19a) of the odd-numbered mesh 9, respectively. It is good also as a structure shifted alternately with the odd-numbered mesh 9.
  • an inclined surface 11 for guidance is provided on the inner upper edge of each crosspiece 6.
  • the guiding inclined surface 11 is configured as a concave curved surface in section so as not to hinder the flow of fluid as much as possible.
  • the guiding inclined surface 11 is provided over the entire area of the inner upper edge of the crosspiece 6. Accordingly, not only is the flow of fluid upward inhibited by the inner upper edge of the crosspiece 6, but also the fluid is spirally guided along the guiding inclined surface 11 to the upper end position of the mesh circulation portion 10. Is also possible. Therefore, the present embodiment has a configuration in which an upward fluid diffusing action can be obtained satisfactorily.
  • the guiding inclined surface 11 can be configured to guide the fluid that has flowed into the upper region side.
  • the cylinder 5 is made of metal with a thickness of 3 mm to 60 mm, and is formed using a layered manufacturing method (an optical modeling method, a powder sintering layered manufacturing method, a hot melt lamination method, an ink jet method, etc.) ( It is formed using a 3D printer.) That is, the frame body 12 and the mesh bars 6 of each mesh constituting the mesh distribution part 10 are integrally formed, and an intersection portion between the bars 6 and a contact portion between the bars 6 and the frame body 12 are formed. It is an integrated structure that is firmly connected.
  • a layered manufacturing method an optical modeling method, a powder sintering layered manufacturing method, a hot melt lamination method, an ink jet method, etc.
  • the interval between the rails 6 constituting the inner beam 7 and the outer beam 8 is set to 0.5 mm to 20 mm, respectively, so as to obtain a good noise reduction effect.
  • the opening area of the opening between the bars is approximately 0.25 mm 2 to 400 mm 2 .
  • the shape of the opening of the mesh is set to a square shape, but may be another polygonal shape such as a triangle or a pentagon.
  • the width (and thickness) of the crosspiece 6 is preferably set to 0.5 to 20 mm so that sufficient structural strength can be obtained.
  • the number of layers of the mesh 9 is set to 3 stages, but can be appropriately set between 2 to 15 stages.
  • a large number of pipe parts 21 that form flow paths 22 that penetrate the inside and outside of the cylindrical body 5 are provided in the mesh distribution part 10 in a juxtaposed manner.
  • the cross-sectional area of the channel 22 of 21 may be set larger than the cross-sectional area of the opening between the crosspieces 6 of the mesh 9.
  • the guiding inclined surface 11 may or may not be provided.
  • the tube portion 21 is a straight cylindrical shape and is disposed in a horizontal state, and is integrally formed with the crosspiece 6 and the like by the layered manufacturing method as described above. Further, the cross-sectional area of the flow path 22 of the pipe portion 21 is set to about 1.5 to 2.0 times the opening between the crosspieces 6 of the mesh 9. In addition, the ratio of the flow area of the mesh circulation part 10 before installation of the pipe part and the total flow area of the flow path 22 of each pipe part 21 (mesh circulation part flow area / pipe part flow area), The cross-sectional area and the number of arrangement of the pipe portion 21 are set so as to be about 1.5 to 20.
  • a plurality of pipe portions 21 (in this embodiment, a pair of upper and lower sides) aligned along the vertical direction are arranged in parallel in the circumferential direction of the cylindrical body 5. Further, the pipe portions 21 adjacent in the circumferential direction of the cylindrical body 5 are arranged in a zigzag shape with their height positions being alternately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Valves (AREA)
  • Lift Valve (AREA)

Abstract

 従来のメッシュ構造に比し強度に優れ、金属積層造形法を用いて容易に実現可能となる等、実用性に優れた弁装置の提供。流通路1の途中部に設けられ、弁座2及びこの弁座2に設けた流通孔3を開閉自在に塞ぐ弁体4から構成される弁機構と、弁体4を開放移動して流通孔3を開口して流通路1を開放した際、この弁体4と弁座2との間の流通間隙を通過する流体を減圧する減圧機構とを備えた弁装置であって、流通路1を開放した際に生じる弁体4と弁座2との流通間隙を囲うように設けられた筒体5に、積層造形法により一体に成形した、複数の金属製の桟6を並設して成る内側桟列7及び外側桟列8を格子状に重合して成るメッシュ9を流体の流通方向に複数積層状態に設けて成るメッシュ流通部10を設けて減圧機構を構成する。

Description

弁装置
 本発明は、弁装置に関するものである。
 従来から、高圧流体のための減圧調整弁が種々提案されており、例えば、特許文献1には、複数の直角屈曲を持つ流通孔(蛇行流路)を備え、この流通孔の曲りにより圧力水頭エネルギーを損失させて高圧流体の減圧を図ることで、騒音やキャビテーションの発生を抑制する技術が開示されている。
 また、例えば、特許文献2には、高圧流体を多数の小孔(多孔流路)を通過させることで、流体の噴流のサイズを小さくして騒音等の発生を抑制する技術が開示されている。
 従来の減圧調整弁は、上記蛇行流路若しくは多孔流路のいずれかを用いて騒音を可及的に抑制するように設計されてはいるが、騒音を一層小さくするための更なる改良が要望されているのが現状である。
特開2005-90555号公報 特開2011-236962号公報
 本発明は、上述のような現状に鑑みなされたもので、従来のメッシュ構造に比し強度に優れ、しかも所定のメッシュ構造を具備することで、特に流体の上方への流れの拡散作用を良好に得ることが可能で、金属積層造形法を用いて容易に実現可能な極めて実用性に優れた弁装置を提供するものである。
 添付図面を参照して本発明の要旨を説明する。
 流通路1の途中部に設けられ、弁座2及びこの弁座2に設けた流通孔3を開閉自在に塞ぐ弁体4から構成される弁機構と、前記弁体4を開放移動して前記流通孔3を開口して前記流通路1を開放した際、この弁体4と弁座2との間の流通間隙を通過する流体を減圧する減圧機構とを備えた弁装置であって、前記流通路1を開放した際に生じる前記弁体4と前記弁座2との流通間隙を囲うように設けられた筒体5に、積層造形法により一体に成形した、複数の金属製の桟6を並設して成る内側桟列7及び外側桟列8を格子状に重合して成るメッシュ9を前記流体の流通方向に複数積層状態に設けて成るメッシュ流通部10を設けて前記減圧機構を構成したことを特徴とする弁装置に係るものである。
 また、前記メッシュ流通部10に、前記筒体5の内外に貫通する流路22を形成する管部21を多数並設状態に設け、この各管部21の流路22の断面積は夫々、前記メッシュ9の各桟6間の開口部の断面積より大きいことを特徴とする請求項1に記載の弁装置に係るものである。
 また、前記メッシュ9は前記内側桟列7及び前記外側桟列8を斜め格子状に重合して成り、前記内側桟列7及び前記外側桟列8を構成する前記桟6の内側面と上面との境界部である内側上縁部に夫々、前記メッシュ流通部10を通過する前記流体の上方への拡散を誘導する誘導用傾斜面11を設けたことを特徴とする請求項1記載の弁装置に係るものである。
 また、前記メッシュ9は前記内側桟列7及び前記外側桟列8を斜め格子状に重合して成り、前記内側桟列7及び前記外側桟列8を構成する前記桟6の内側面と上面との境界部である内側上縁部に夫々、前記メッシュ流通部10を通過する前記流体の上方への拡散を誘導する誘導用傾斜面11を設けたことを特徴とする請求項2記載の弁装置に係るものである。
 また、前記メッシュ流通部10の上部領域最内側の開口部を前記弁体4により閉塞した状態で、この弁体4により閉塞されてない前記メッシュ流通部10の下部領域最内側の開口部から流入した前記流体を前記上部領域側へと誘導するように前記誘導用傾斜面11を構成したことを特徴とする請求項3に記載の弁装置に係るものである。
 また、前記メッシュ流通部10の上部領域最内側の開口部を前記弁体4により閉塞した状態で、この弁体4により閉塞されてない前記メッシュ流通部10の下部領域最内側の開口部から流入した前記流体を前記上部領域側へと誘導するように前記誘導用傾斜面11を構成したことを特徴とする請求項4に記載の弁装置に係るものである。
 また、前記誘導用傾斜面11は前記桟6の前記内側上縁部の全域にわたって設けたことを特徴とする請求項3記載の弁装置に係るものである。
 また、前記誘導用傾斜面11は前記桟6の前記内側上縁部の全域にわたって設けたことを特徴とする請求項4記載の弁装置に係るものである。
 また、前記誘導用傾斜面11は前記桟6の前記内側上縁部の全域にわたって設けたことを特徴とする請求項5記載の弁装置に係るものである。
 また、前記誘導用傾斜面11は前記桟6の前記内側上縁部の全域にわたって設けたことを特徴とする請求項6記載の弁装置に係るものである。
 また、前記誘導用傾斜面11は断面凹湾曲状面であることを特徴とする請求項3~10のいずれか1項に記載の弁装置に係るものである。
 また、前記内側桟列7及び前記外側桟列8を構成する各桟6の並設間隔は0.5mm~20mmに設定したことを特徴とする請求項1~10のいずれか1項に記載の弁装置に係るものである。
 また、前記内側桟列7及び前記外側桟列8を構成する各桟6の並設間隔は0.5mm~20mmに設定したことを特徴とする請求項11記載の弁装置に係るものである。
 本発明は上述のように構成したから、従来のメッシュ構造に比し強度に優れ、しかも所定のメッシュ構造を具備することで、特に流体の上方への流れの拡散作用を良好に得ることが可能で、金属積層造形法を用いて容易に実現可能な極めて実用性に優れた弁装置となる。
本実施例の説明断面図である。 別例1の説明断面図である。 本実施例の要部の拡大概略説明断面図である。 別例2の要部の拡大概略説明正面図である。 別例3の要部の拡大概略説明正面図である。
 好適と考える本発明の実施形態を、図面に基づいて本発明の作用を示して簡単に説明する。
 弁体4を開放移動して弁座2の流通孔3を開口して流通路1を開放すると、弁座2の流通孔3を通過した流体は、筒体5のメッシュ流通部10を通過して流出し、流通路1の出口から放出される。
 この際、高圧流体であっても、メッシュ流通部10の桟6間の多数の開口部を通過させることで良好に減圧を行うことができる。
 また、メッシュ流通部10は各メッシュ9を構成する各桟6を積層造形法により夫々一体に成形した構成であり、単に金網を積層したような構成に比し強度に優れ、高圧流体に対しても優れた耐久性を発揮する。
 また、例えば、桟6の内側上縁部に誘導用傾斜面11を設けた場合には、誘導用傾斜面11により高圧流体の上方向への拡散が良好に行われ、高圧流体に対する垂直方向の抵抗力を微小にでき、高圧流体をメッシュ流通部10で良好に拡散させて膨張による流速増加を抑制しつつ良好な減圧効果を得ることができる。
 特に、メッシュ流通部10の上部領域最内側の開口部を弁体4により閉塞した状態で、この弁体4により閉塞されてないメッシュ流通部10の下部領域最内側の開口部から流入した流体を前記上部領域側へと誘導するように誘導用傾斜面11を構成することで、弁低開度付近における騒音抑制効果が大きくなる。
 本発明の具体的な実施例について図面に基づいて説明する。
 本実施例は、流通路1の途中部に設けられ、弁座2及びこの弁座2に設けた流通孔3を開閉自在に塞ぐ弁体4から構成される弁機構と、前記弁体4を開放移動して前記流通孔3を開口して前記流通路1を開放した際、この弁体4と弁座2との間の流通間隙を通過する流体を減圧する減圧機構とを備えた弁装置であって、前記流通路1を開放した際に生じる前記弁体4と前記弁座2との流通間隙を囲うように設けられた筒体5に、積層造形法により一体に成形した、複数の金属製の桟6を並設して成る内側桟列7及び外側桟列8を斜め格子状に重合して成るメッシュ9を前記流体の流通方向に複数積層状態に設けて成るメッシュ流通部10を設けて前記減圧機構を構成し、前記内側桟列7及び前記外側桟列8を構成する前記桟6の内側面と上面との境界部である内側上縁部に夫々、前記メッシュ流通部10を通過する前記流体の上方への拡散を誘導する誘導用傾斜面11を設けたものである。
 本実施例は、図1に図示したように、本体20に形成される流通路1の中央に設けられこの流通路1を開閉するグローブ弁機構と、開放したグローブ弁機構を通過する流体を減圧する減圧機構とを備えた減圧調整弁であり、高圧流体が流通するプラント等に用いられるものである。
 本体20の流通路1の両端には、夫々配管が接続される入口側配管接続部及び出口側配管接続部(図示省略)が設けられている。
 また、本体20の流通路1の中央には、水平環状の弁座2が設けられ、この弁座2に対して弁体4が接離動自在に設けられている。図中符号15は弁軸、16は接続部材、17は接続ボルトである。
 弁体4の周囲には、弁体4を弁座2から離脱させた際に生じる流通間隙を囲うように金属製の筒体5が設けられている。具体的には、筒体5の内径に対し弁体4の外径を同一径か若しくは僅かに小さくして、筒体5の内周面を弁体4が摺動するように構成されている。即ち、弁体4と筒体5との間から流体が漏出しない構成としている。従って、弁座2の流通孔3を通過し筒体5に流入した流体は、その殆どが筒体5のメッシュ流通部10を通過して流出し出口側に向かうことになる。
 本実施例は、前記筒体5として、フレーム体12にメッシュ流通部10を設けて構成したものを採用している。具体的には、筒体5は、弁体4の外周形状より若干径大な円筒状であり、円筒枠状のフレーム体12の枠孔にメッシュ流通部10を一体に設けて構成している。即ち、メッシュ流通部10を構成する各メッシュ9は弁体4の外周面の全部若しくは一部と同様の湾曲形状を呈するものとなる。
 なお、図2に図示した別例1のように、筒体5として筒状の本体13に多数の窓孔14を設け、各窓孔14にメッシュ流通部10を設ける構成としても良い。この場合、より強度に優れた筒体5となる。
 メッシュ流通部10は、図3に図示したように、複数の桟6を並設して成る内側桟列7及び外側桟列8を斜め格子状に重合して成るメッシュ9を前記流体の流通方向に複数積層状態に設けて構成している。
 メッシュ流通部10にはメッシュ9の微小な網目(開口部)が筒体5の厚さ方向に多数連設されて減圧用の流路が形成される。従って、筒体5のメッシュ流通部10を通過する高圧流体は、多数の網目を通過することで良好に減圧される。
 本実施例においては、各メッシュ9の内側桟列7(若しくは外側桟列8)が夫々、内側及び外側のメッシュの内側桟列7(若しくは外側桟列8)と正面視で一部若しくは全部が重なるように設ける構成としている。なお、図4に図示した別例2のように、メッシュ9の内側桟列7(若しくは外側桟列8)が直近の内側若しくは外側の他のメッシュの内側桟列7(若しくは外側桟列8)とは重ならず、直近の内側若しくは外側の他のメッシュの内側桟列7(若しくは外側桟列8)間に配置されるように構成しても良い(例えば、桟同士の間隔の中間位置に配置。)。即ち、例えば偶数番目のメッシュ9の桟6(18b,19b)が奇数番目のメッシュ9の桟6(18a,19a)間に夫々配置されるように桟6の配置構成を偶数番目のメッシュ9と奇数番目のメッシュ9とで交互にずらした構成としても良い。この場合、メッシュ9の網目を小さくしなくても流路を微細化することが可能となる。
 また、各桟6の内側上縁部には誘導用傾斜面11を設けている。具体的には、誘導用傾斜面11は断面凹湾曲状面として流体の流通を可及的に妨げない構成としている。誘導用傾斜面11は前記桟6の前記内側上縁部の全域にわたって設けている。従って、単に桟6の内側上縁部により流体の上方への流通が阻害されなくなるだけでなく、この誘導用傾斜面11に沿ってメッシュ流通部10の上端位置まで螺旋状に流体を誘導することも可能となる。よって、本実施例は、上方への流体の拡散作用を良好に得られる構成となる。
 従って、例えば、メッシュ流通部10の上部領域最内側の開口部を前記弁体4により閉塞した状態で、この弁体4により閉塞されてない前記メッシュ流通部10の下部領域最内側の開口部から流入した前記流体を前記上部領域側へと誘導するように誘導用傾斜面11を構成することができる。
 また、筒体5は厚さが3mm~60mmで金属製であり、積層造形法(光学造形方式、粉末焼結積層造形方式、熱溶解積層方式、インクジェット方式等)を用いて形成されている(3Dプリンタを用いて形成されている。)。即ち、フレーム体12とメッシュ流通部10を構成する各メッシュの各桟6とは一体に形成されることになり、各桟6同士の交点部分及び各桟6とフレーム体12との接点部分が強固に結合した一体的構造となる。
 また、前記内側桟列7及び前記外側桟列8を構成する各桟6の並設間隔は良好な騒音低減作用が得られるように夫々0.5mm~20mmに設定するのが好ましい。従って、桟間の開口部の開口面積は概ね0.25mm~400mmとなる。なお、本実施例においてはメッシュの開口部形状は正方形状に設定しているが、三角形や五角形等他の多角形状としても良い。また、桟6の幅(及び厚さ)は、十分な構造強度が得られるように0.5~20mmに設定するのが好ましい。また、本実施例においてはメッシュ9の積層数は3段に設定しているが、2~15段の間で適宜設定できる。
 また、例えば、図5に図示した別例3のように、メッシュ流通部10に筒体5の内外に貫通する流路22を形成する管部21を多数並設状態に設け、この各管部21の流路22の断面積は、前記メッシュ9の各桟6間の開口部の断面積より大きい設定としても良い。この場合、上記誘導用傾斜面11は設けても設けなくても良い。
 管部21は直線円筒状で水平状態に配置され、上記同様積層造形法により桟6等と一体に形成される。また、管部21の流路22の断面積は概ねメッシュ9の各桟6間の開口部の1.5~2.0倍程度に設定する。また、管部設置前のメッシュ流通部10の流過面積と、各管部21の流路22の流過面積の総計との比(メッシュ流通部流過面積/管部流過面積)が、1.5~20程度になるように管部21の断面積及び配設数を設定する。
 本実施例においては、垂直方向に沿って整列した複数の管部21(本実施例では上下一対)を筒体5の周方向に多数並設した構成としている。また、筒体5の周方向で隣接する管部21同士はその高さ位置を交互に異ならせてジグザグ状に配置している。
 別例3の場合、メッシュ9の目詰まりを抑制することが可能となり、また、既存の減圧機構と同等以上の騒音低減性能でより大きな流過面積を確保して装置の小型化に寄与するものとなる。
 なお、本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。

Claims (13)

  1.  流通路の途中部に設けられ、弁座及びこの弁座に設けた流通孔を開閉自在に塞ぐ弁体から構成される弁機構と、前記弁体を開放移動して前記流通孔を開口して前記流通路を開放した際、この弁体と弁座との間の流通間隙を通過する流体を減圧する減圧機構とを備えた弁装置であって、前記流通路を開放した際に生じる前記弁体と前記弁座との流通間隙を囲うように設けられた筒体に、積層造形法により一体に成形した、複数の金属製の桟を並設して成る内側桟列及び外側桟列を格子状に重合して成るメッシュを前記流体の流通方向に複数積層状態に設けて成るメッシュ流通部を設けて前記減圧機構を構成したことを特徴とする弁装置。
  2.  前記メッシュ流通部に、前記筒体の内外に貫通する流路を形成する管部を多数並設状態に設け、この各管部の流路の断面積は夫々、前記メッシュの各桟間の開口部の断面積より大きいことを特徴とする請求項1に記載の弁装置。
  3.  前記メッシュは前記内側桟列及び前記外側桟列を斜め格子状に重合して成り、前記内側桟列及び前記外側桟列を構成する前記桟の内側面と上面との境界部である内側上縁部に夫々、前記メッシュ流通部を通過する前記流体の上方への拡散を誘導する誘導用傾斜面を設けたことを特徴とする請求項1記載の弁装置。
  4.  前記メッシュは前記内側桟列及び前記外側桟列を斜め格子状に重合して成り、前記内側桟列及び前記外側桟列を構成する前記桟の内側面と上面との境界部である内側上縁部に夫々、前記メッシュ流通部を通過する前記流体の上方への拡散を誘導する誘導用傾斜面を設けたことを特徴とする請求項2記載の弁装置。
  5.  前記メッシュ流通部の上部領域最内側の開口部を前記弁体により閉塞した状態で、この弁体により閉塞されてない前記メッシュ流通部の下部領域最内側の開口部から流入した前記流体を前記上部領域側へと誘導するように前記誘導用傾斜面を構成したことを特徴とする請求項3記載の弁装置。
  6.  前記メッシュ流通部の上部領域最内側の開口部を前記弁体により閉塞した状態で、この弁体により閉塞されてない前記メッシュ流通部の下部領域最内側の開口部から流入した前記流体を前記上部領域側へと誘導するように前記誘導用傾斜面を構成したことを特徴とする請求項4に記載の弁装置。
  7.  前記誘導用傾斜面は前記桟の前記内側上縁部の全域にわたって設けたことを特徴とする請求項3記載の弁装置。
  8.  前記誘導用傾斜面は前記桟の前記内側上縁部の全域にわたって設けたことを特徴とする請求項4記載の弁装置。
  9.  前記誘導用傾斜面は前記桟の前記内側上縁部の全域にわたって設けたことを特徴とする請求項5記載の弁装置。
  10.  前記誘導用傾斜面は前記桟の前記内側上縁部の全域にわたって設けたことを特徴とする請求項6記載の弁装置。
  11.  前記誘導用傾斜面は断面凹湾曲状面であることを特徴とする請求項3~10のいずれか1項に記載の弁装置。
  12.  前記内側桟列及び前記外側桟列を構成する各桟の並設間隔は0.5mm~20mmに設定したことを特徴とする請求項1~10のいずれか1項に記載の弁装置。
  13.  前記内側桟列及び前記外側桟列を構成する各桟の並設間隔は0.5mm~20mmに設定したことを特徴とする請求項11記載の弁装置。
PCT/JP2016/070317 2015-07-27 2016-07-08 弁装置 WO2017018173A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-147683 2015-07-27
JP2015147683A JP2017026101A (ja) 2015-07-27 2015-07-27 弁装置

Publications (1)

Publication Number Publication Date
WO2017018173A1 true WO2017018173A1 (ja) 2017-02-02

Family

ID=57884560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070317 WO2017018173A1 (ja) 2015-07-27 2016-07-08 弁装置

Country Status (2)

Country Link
JP (1) JP2017026101A (ja)
WO (1) WO2017018173A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019067207A1 (en) * 2017-09-29 2019-04-04 Fisher Controls International Llc REGULATING VALVE TRIM ASSEMBLY
WO2019067208A1 (en) * 2017-09-29 2019-04-04 Fisher Controls International Llc CAGE ANTICAVITATION AT HIGH PRESSURE
WO2020005521A1 (en) * 2018-06-28 2020-01-02 Fisher Controls International Llc Valve trim apparatus for use with control valves
US10746322B2 (en) 2017-04-28 2020-08-18 Ratier-Figeac Sas Fluid flow control valves
US11156241B2 (en) 2020-03-25 2021-10-26 Fisher Controls International Llc Diffuser

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200071545A (ko) 2018-12-11 2020-06-19 현대자동차주식회사 연료전지 시스템의 배기압력조절장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622075A (ja) * 1985-06-07 1987-01-08 ハ−ペ−・ウント・ハ−ペ−・ヒエミ−−シユテルグリ−デル・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツンク ガスおよび液流体の制御機器
JP2011514483A (ja) * 2008-01-22 2011-05-06 コントロール コンポーネンツ インコーポレイテッド 直接金属レーザ焼結された流れ制御要素

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4736425Y1 (ja) * 1968-09-02 1972-11-04
JPH0627823Y2 (ja) * 1986-12-12 1994-07-27 本田技研工業株式会社 電磁式燃料噴射弁
JPH0757292B2 (ja) * 1990-03-30 1995-06-21 動力炉・核燃料開発事業団 金網焼結濾材、及びその金網焼結濾材を使用したフィルタエレメント
JP2781807B2 (ja) * 1992-06-11 1998-07-30 日本化薬株式会社 ガス発生器用ガスフィルタ
JP2840208B2 (ja) * 1995-03-30 1998-12-24 シーケーディ株式会社 カートリッジバルブ
JP3573283B2 (ja) * 2001-10-10 2004-10-06 木村工機株式会社 ストレーナ付バルブ
EP3064868B1 (en) * 2013-10-29 2021-01-20 Mitsubishi Electric Corporation Expansion valve

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS622075A (ja) * 1985-06-07 1987-01-08 ハ−ペ−・ウント・ハ−ペ−・ヒエミ−−シユテルグリ−デル・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツンク ガスおよび液流体の制御機器
JP2011514483A (ja) * 2008-01-22 2011-05-06 コントロール コンポーネンツ インコーポレイテッド 直接金属レーザ焼結された流れ制御要素

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746322B2 (en) 2017-04-28 2020-08-18 Ratier-Figeac Sas Fluid flow control valves
WO2019067207A1 (en) * 2017-09-29 2019-04-04 Fisher Controls International Llc REGULATING VALVE TRIM ASSEMBLY
WO2019067208A1 (en) * 2017-09-29 2019-04-04 Fisher Controls International Llc CAGE ANTICAVITATION AT HIGH PRESSURE
CN109578597A (zh) * 2017-09-29 2019-04-05 费希尔控制产品国际有限公司 控制阀内件组件
US10487961B2 (en) 2017-09-29 2019-11-26 Fisher Controls International Llc Control valve trim assembly
US10900591B2 (en) 2017-09-29 2021-01-26 Fisher Controls International Llc High pressure anti-cavitation cage
CN109578597B (zh) * 2017-09-29 2023-06-27 费希尔控制产品国际有限公司 控制阀内件组件
WO2020005521A1 (en) * 2018-06-28 2020-01-02 Fisher Controls International Llc Valve trim apparatus for use with control valves
US10883626B2 (en) 2018-06-28 2021-01-05 Fisher Controls International Llc Valve trim apparatus for use with control valves
US11156241B2 (en) 2020-03-25 2021-10-26 Fisher Controls International Llc Diffuser

Also Published As

Publication number Publication date
JP2017026101A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2017018173A1 (ja) 弁装置
US20200173579A1 (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
RU2586422C2 (ru) Устройство для снижения давления текучей среды (варианты)
KR100800413B1 (ko) 유체 에너지 감소 장치
RU2711718C2 (ru) Шумопонижающий затвор диффузора
JP5534928B2 (ja) ケージ型減圧装置
CN109578597B (zh) 控制阀内件组件
JP6445143B2 (ja) 伝熱プレートおよびプレート熱交換器
CN106168310A (zh) 空气动力型降噪笼
EP2997290B1 (en) Control valve trim cage having a plurality of anti-cavitation or noise abatement bars
JP5599799B2 (ja) 原子炉の冷却流体中の小片を捕らえるためのフィルター
KR20150079944A (ko) 소음 저감 섹션 및 고용량 유동 섹션 사이에 제로 데드 밴드를 갖는 밸브 케이지
JP2017020579A (ja) 調節弁
JP7256843B2 (ja) マルチループの金属冷却原子炉システムにおける逆流防止のための配管の改良
CN209325060U (zh) 控制阀内件组件和控制阀
JP2016031133A (ja) 弁装置
JP2015169309A (ja) ケージ型減圧装置
US20170341003A1 (en) Fluidic filter
EP2452110A1 (en) Fluid flow control devices and systems, and methods of flowing fluids therethrough
KR101010746B1 (ko) 유체유동제어장치
KR101266961B1 (ko) 하이브리드 고차압 제어밸브
KR102482270B1 (ko) 유체감압장치
RU2394178C2 (ru) Регулирующий клапан (варианты)
KR101451262B1 (ko) 솔레노이드 밸브용 필터
KR101356123B1 (ko) 해양플랜트용 고차압 제어밸브

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16830278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16830278

Country of ref document: EP

Kind code of ref document: A1