WO2017016207A1 - 反射天线及其设计方法 - Google Patents

反射天线及其设计方法 Download PDF

Info

Publication number
WO2017016207A1
WO2017016207A1 PCT/CN2016/072568 CN2016072568W WO2017016207A1 WO 2017016207 A1 WO2017016207 A1 WO 2017016207A1 CN 2016072568 W CN2016072568 W CN 2016072568W WO 2017016207 A1 WO2017016207 A1 WO 2017016207A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflective
feed
reflection
panel
main
Prior art date
Application number
PCT/CN2016/072568
Other languages
English (en)
French (fr)
Inventor
刘若鹏
霍亮
Original Assignee
深圳光启高等理工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院 filed Critical 深圳光启高等理工研究院
Publication of WO2017016207A1 publication Critical patent/WO2017016207A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/16Reflecting surfaces; Equivalent structures curved in two dimensions, e.g. paraboloidal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces

Definitions

  • the present invention relates to the field of antennas, and in particular to a reflective antenna and a method of designing the same.
  • the reflective antenna consists of a feed and a flat reflective array.
  • the flat reflective array is a planar array composed of a large number of microstrip patch units printed on a dielectric substrate.
  • the working principle of the reflective antenna is that the electromagnetic waves emitted by the feed reach each unit on the flat reflective array along different transmission paths, and the difference of the transmission paths causes the incident fields received by different units to have different spatial phases, and each design is rationally designed.
  • the unit is configured to make different phase compensations for different incident fields, so that the reflected field forms the desired in-phase wavefront on the antenna aperture surface.
  • the feed of the existing reflective antenna is directly irradiated by a horn, and the illumination mode can be divided into vertical illumination (positive feed) and oblique incidence (bias feed).
  • 1 is a schematic diagram of electromagnetic wave power distribution when a feed horn is obliquely incident on a square flat reflective array panel according to the prior art.
  • the contour in the figure represents a normalized power density decibel value, -10 dB.
  • the contours represent the power density drop here on the flat reflective array panel as one tenth of the maximum radiant power density, where the -10 dB contour is in the case of a feed horn obliquely incident on a square flat reflective array panel.
  • the ellipse is inscribed in a square flat reflective array panel.
  • the area at the four corners of the square flat reflective array panel is not utilized, and the electromagnetic wave power is utilized.
  • the density is not evenly distributed across the square flat reflective array panel.
  • the power of the square flat reflective array panel edge is also uncontrollable. This will cause the antenna's sidelobe level to be inconsistent with the International Satellite Organization's antenna sidelobe envelope.
  • the specification, that is, the sidelobe level of the antenna may not exceed -14 dB, and the uneven distribution of the power density of the electromagnetic wave over the entire flat reflective array panel will also result in an inability to optimize the optimum phase modulation performance of the flat reflective array panel.
  • the existing reflective antenna adopts a positive feed or a bias feed mode, and the feed electromagnetic wave emitted from the flat reflective array panel has a certain degree of occlusion, which reduces the overall efficiency of the antenna.
  • the invention provides a reflective antenna and a design method thereof, so as to at least solve the flat plate inverse of the antenna in the prior art.
  • a reflective antenna comprising: a feed source for emitting electromagnetic waves; a secondary reflection curved surface on a side of the feed radiation port for shaping electromagnetic waves; and a main reflection panel located at The other side of the feed radiation port is used to modulate the shaped electromagnetic waves so that the modulated electromagnetic waves have the same phase.
  • the secondary reflection curved surface is an umbrella-shaped curved surface.
  • the middle portion of the secondary reflection curved surface is concave and is concave toward the feed direction.
  • the secondary reflection surface is divided into a plurality of sub-surfaces that are seamlessly connected to each other, and the common connection portion of the plurality of sub-surfaces is the middle of the sub-reflection surface.
  • each sub-surface is concave and concave toward the feed direction.
  • the cross-section of the secondary reflection curved surface is a polygon, and each side of the polygon is curved and curved toward the center of the polygon.
  • boundary area of the adjacent two sub-curves is convex and is recessed away from the feed.
  • the main reflection panel includes: a plurality of phase adjustment units, wherein the shaped electromagnetic waves have the same phase by adjusting each phase adjustment unit of the plurality of phase adjustment units.
  • the main reflective panel is a metamaterial reflective panel.
  • the metamaterial reflective panel comprises: a dielectric substrate; a plurality of conductive geometries disposed on the surface of the dielectric substrate; and a reflective layer disposed on the other surface of the dielectric substrate opposite the conductive geometry.
  • the reflective layer is a metal layer.
  • the shape of the metamaterial reflective panel is a rectangle.
  • the differential bin, dA f ( ⁇ , ⁇ ) is the differential bin of the feed pattern
  • is the incident angle
  • is the reflection angle
  • the incident angle is the angle between the incident direction of the electromagnetic wave and the central axis of the feed
  • the reflection is the angle between the reflection direction of the electromagnetic wave and the central axis of the feed.
  • the incident angle and the reflection angle are determined by the size of the main reflection panel and the first distance, and the first distance is the distance between the feed and the main reflection panel.
  • the power density of the shaped electromagnetic waves on the main reflective panel is annularly distributed, wherein the outer boundary of the ring is inscribed in the boundary of the main reflective panel, and the projection of the feed on the main reflective panel falls within the inner boundary of the ring. .
  • the power density of the shaped electromagnetic waves is uniformly distributed in the area of the annular distribution.
  • the feed is connected to the main reflective panel through the connecting member.
  • the connecting member is a circular waveguide or a support rod, and the feed is axially movable along the circular waveguide or the support rod.
  • a method for designing a reflective antenna comprising: obtaining a size of a main reflective panel and a first distance, wherein the first distance is a feed a distance from the main reflective panel; the secondary reflective surface is calculated according to the size of the primary reflective panel and the first distance, wherein the secondary reflective surface is used to shape the electromagnetic waves emitted by the feed, and the primary reflective panel is used to shape the shaped
  • the electromagnetic waves are modulated such that the modulated electromagnetic waves have the same phase; and the reflected antenna is obtained from the feed, the secondary reflective curved surface, and the main reflective panel.
  • calculating the secondary reflection curved surface according to the size of the main reflective panel and the first distance comprises: determining an incident angle and a reflection angle according to a size of the main reflective panel and a first distance, wherein the incident angle is an incident direction of the electromagnetic wave and the middle of the feed The angle between the axes, the reflection angle is the angle between the reflection direction of the electromagnetic wave and the central axis of the feed; the first equation and the second equation are respectively established according to the incident angle and the reflection angle; and the first equation and the second equation are jointly solved A secondary reflection curve is obtained; and a secondary reflection curved surface is obtained by rotating the secondary reflection curve.
  • K is the preset constant.
  • the power density of the shaped electromagnetic wave is distributed in a ring shape on the main reflection panel, wherein the outer boundary of the ring is inscribed in the boundary of the main reflection panel, and the projection of the feed on the main reflection panel falls on the inner boundary of the ring Inside.
  • the power density of the shaped electromagnetic waves is uniformly distributed in the area of the annular distribution.
  • the main reflective panel is a metamaterial reflective panel;
  • the metamaterial reflective panel comprises: a dielectric substrate; a plurality of conductive geometries disposed on the surface of the dielectric substrate; and a reflection disposed on the other surface of the dielectric substrate opposite to the conductive geometry Floor.
  • the secondary reflection curved surface of the reflective antenna is determined by the size of the main reflective panel and the distance between the feed and the main reflective panel, and the electromagnetic wave emitted by the feed is shaped by the secondary reflective curved surface so that the reflection is reflected to the main reflection.
  • the power density of the shaped electromagnetic waves on the panel is uniformly distributed in a ring shape, thereby achieving the purpose of improving the utilization rate of the main reflective panel, thereby realizing the technical effect of improving the overall efficiency of the reflective antenna, thereby solving the flat plate of the antenna in the prior art.
  • FIG. 1 is a schematic diagram of electromagnetic wave power distribution when a feed horn is obliquely incident on a square flat reflective array panel according to the prior art
  • FIG. 2 is a schematic diagram of a reflective antenna according to an embodiment of the present invention.
  • 3a is a schematic oblique bottom view of a feed horn according to an embodiment of the invention.
  • 3b is a schematic top plan view of a feed horn according to an embodiment of the invention.
  • 3c is a schematic cross-sectional view of a feed horn according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of an incident angle and a reflection angle according to an embodiment of the present invention.
  • Figure 5a is a schematic view of a secondary reflective curved surface in accordance with a first embodiment of the present invention
  • Figure 5b is a top plan view of a secondary reflective curved surface in accordance with a first embodiment of the present invention.
  • Figure 6a is a schematic view of a secondary reflective curved surface in accordance with a second embodiment of the present invention.
  • Figure 6b is a top plan view of a secondary reflective curved surface in accordance with a second embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a power density distribution of electromagnetic waves formed on a main reflective panel according to an embodiment of the present invention.
  • FIG. 8 is a schematic view showing the distribution of the power density of the electromagnetic wave formed by the sub-reflective curved surface of the first embodiment of the present invention on the main reflection panel;
  • Figure 9 is a schematic view showing the distribution of the power density of electromagnetic waves formed by the sub-reflective curved surface of the second embodiment of the present invention on the main reflection panel;
  • FIG. 10 is a flow chart of a method of designing a reflective antenna in accordance with an embodiment of the present invention.
  • a reflective antenna is provided.
  • 2 is a schematic diagram of a reflective antenna according to an embodiment of the present invention.
  • the reflective antenna of this embodiment includes a feed 10, a secondary reflective curved surface 20, and a primary reflective panel 30.
  • the feed 10 is for emitting electromagnetic waves.
  • the feed 10 in this embodiment is a feed horn
  • FIG. 3a is a schematic oblique view of the feed horn according to an embodiment of the present invention
  • FIG. 3b is a schematic oblique view of the feed horn according to an embodiment of the present invention
  • FIG. 3c is a schematic view A cross-sectional view of a feed horn according to an embodiment of the present invention, as shown in FIG. 3a, FIG. 3b, and FIG. 3c
  • the feed horn may include a feed section 31, a transition change section 32, and a radiant section 33 connected in sequence, wherein A metal partition 34 is provided at the center of the feed section.
  • the radiant port of the feed horn is circular, and the feed horn is symmetric about its own central axis up and down, left and right, which greatly optimizes the performance of the uniform horn of the feed horn.
  • the feed horn can be an existing profiled angle difference mode horn, the radiant port of the feed horn can be circular, and the radiant port of the feed horn can also be octagonal.
  • the secondary reflective curved surface 20 is located on the side of the radiation port of the feed 10 for shaping electromagnetic waves, wherein the secondary reflective curved surface 20 is determined by the size of the primary reflective panel 30 and the distance between the feed 10 and the primary reflective panel 30. Surface.
  • K is a preset constant
  • the point on the secondary reflection surface is the point in the polar coordinate system
  • is the polar diameter of the point on the secondary reflection surface
  • is the secondary reflection surface
  • the polar angle of the point the coordinate origin of the polar coordinate system is the phase center of the feed
  • G f ( ⁇ , ⁇ ) is the feed pattern
  • P ( ⁇ , ⁇ ) is the reflection pattern
  • dA ( ⁇ , ⁇ ) is the reflection
  • FIG. 4 is a schematic diagram of an incident angle and a reflection angle according to an embodiment of the present invention.
  • is an incident angle
  • is a reflection angle
  • the incident angle is an angle between an incident direction of the electromagnetic wave and a central axis of the feed
  • the reflection angle is an angle between the reflection direction of the electromagnetic wave and the central axis of the feed.
  • the incident angle and the reflection angle are determined by the size of the main reflection panel and the first distance, and the first distance is the distance between the feed and the main reflection panel.
  • the secondary reflection curved surface 20 is an irregular curved surface, and each point on the secondary reflective curved surface 20 satisfies the above relationship.
  • the size of the main reflective panel and the distance between the feed and the main reflective panel are different, and accordingly, the shape of the secondary reflective curved surface 20 will be different.
  • FIG. 5a is a schematic view of a secondary reflective curved surface according to a first embodiment of the present invention
  • FIG. 5b is a top plan view of a secondary reflective curved surface according to a first embodiment of the present invention
  • FIG. 6a is a secondary reflection according to a second embodiment of the present invention.
  • FIG. 6b is a top plan view of a secondary reflective curved surface according to a second embodiment of the present invention.
  • the secondary reflective curved surfaces shown in FIGS. 5a, 5b, and 6a and 6b are respectively based on two different primary reflective panels.
  • the size of the feed and the distance between the feed and the main reflective panel determine the resulting secondary reflective surface.
  • the sub-reflecting curved surface 20 is an umbrella-shaped curved surface, which can be divided into a plurality of sub-curved surfaces that are seamlessly connected to each other, and the common connecting portion of the plurality of sub-curved surfaces is the sub-reflecting curved surface 20 Central.
  • the middle portion of the secondary reflection curved surface 20 is concave and is recessed toward the feed source 10.
  • Each of the plurality of sub-curves of the sub-reflecting curved surface 20 is concave and concave toward the feeding direction, and the boundary region of the adjacent two sub-curved surfaces is convex and concave toward the direction away from the feed.
  • the cross section of the secondary reflection curved surface 20 is a polygon, and each side of the polygon is curved and curved toward the center of the polygon.
  • the sub-reflective curved surface shown in FIG. 5a, FIG. 5b, FIG. 6a and FIG. 6b is only a preferred embodiment of the secondary reflective curved surface of the present invention. According to the size of the main reflective panel and the distance between the feed and the main reflective panel, the present invention
  • the secondary reflective surface can also have a variety of different shapes, which are not illustrated here.
  • the phase center of the feed 10 in this embodiment is located at the focus of the sub-reflecting curved surface 20, and the feed source 10 and the sub-reflective curved surface 20 are connected by a connecting member such as a metal rod.
  • the electromagnetic wave emitted from the feed 10 in the reflective antenna of this embodiment is irradiated onto the sub-reflecting curved surface 20, and by controlling the spatial coordinates of each point on the sub-reflecting curved surface 20, the secondary reflecting curved surface 20 is shaped to form an electromagnetic wave, so that the shaping is performed.
  • the subsequent electromagnetic waves are reflected onto the main reflective panel 30 in the desired direction.
  • the secondary reflective curved surface 20 in this embodiment will shape the electromagnetic wave according to the following requirements: the power density of the electromagnetic wave after shaping on the main reflective panel is uniformly distributed, and the power of the shaped electromagnetic wave is uniformly distributed. The density is distributed as much as possible over the entire main reflective panel to achieve an increase in the utilization of the primary reflective panel.
  • the main reflective panel 30 is located on the other side of the radiation port of the feed 10 for adjusting the shaped electromagnetic waves to have the same phase.
  • the main reflective panel 30 in this embodiment is a metamaterial reflective panel, and the metamaterial reflective panel has a rectangular shape, such as a square metamaterial reflective panel with a side length of 1.2 meters.
  • the metamaterial reflective panel may include: a dielectric substrate; a plurality of conductive geometries disposed on a surface of the dielectric substrate; and a reflective layer disposed on the other surface of the dielectric substrate opposite to the conductive geometry, wherein the reflective layer is a metal layer.
  • the main reflective panel of the embodiment adopts a metamaterial reflective panel with a conductive geometric structure and a metal reflective layer, which is beneficial for accurately analyzing the phase information of the electric field strength on the main reflective panel, so as to effectively control the electromagnetic waves reflected by the main reflective panel to have the same phase.
  • the technical effect of improving the gain of the reflective antenna and improving the overall efficiency of the reflective antenna is achieved.
  • the use of a super-material reflective panel with a conductive geometry and a metal reflective layer as the main reflective panel can also increase the intensity of the reflected electromagnetic waves reflected by the main reflective panel, thereby increasing the intensity of the transmitted signal of the reflective antenna.
  • the feed 10 in this embodiment is connected to the main reflective panel 30 through a connecting member, wherein the connecting member may be a circular waveguide or other components such as a support rod.
  • the feed source 10 is disposed along the axial direction of the center of the main reflection panel 30 and spaced apart from the main reflection panel 30 such that the feed source 10 and the main reflection panel 30 have a certain distance, which is determined by the size of the main reflection panel.
  • the shape and size of the secondary reflection surface is arranged in the direction of the circular waveguide, and the purpose is to flexibly adjust the distance between the feed 10 and the main reflective panel 30, thereby calculating a more suitable secondary reflection curved surface, thereby improving the utilization rate of the main reflective panel. purpose.
  • the reflective antenna of this embodiment further includes: an adjustment bracket, wherein the adjustment bracket is mounted at one end of the connection member, and the main reflection panel 30 is mounted at the other end of the connection member.
  • the movable bracket is adjustable in the direction of the circular waveguide, and the feed 10 is mounted on the adjustment bracket so that the distance between the feed 10 and the main reflective panel 30 can be adjusted by adjusting the adjustment bracket.
  • the reflective antenna of this embodiment adopts a method of ring focus feedforward, and the feed source 10 and the sub-reflective curved surface 20 are integrated into one structure, and the structure becomes a shaped sub-reflecting surface ring focus feed source.
  • the shaping sub-reflecting surface ring focus feed source comprises a feed source 10 and a secondary reflection curved surface 20, and the shaped secondary reflection surface ring focus feed source is located above the center of the main reflection panel 30, through a connecting component (such as a circular waveguide or a support rod)
  • the main reflective panels 30 are connected.
  • the shaping sub-reflecting surface ring focus feed is also disposed along the axial direction of the center of the main reflection panel 30, and is spaced apart from the main reflection panel 30, and is movable along the circular waveguide direction, so that the shaping sub-reflection can be conveniently adjusted.
  • the feed source 10 and the sub-reflecting curved surface 20 are integrated into one structure, that is, the shaped sub-reflecting surface ring focus feed source reduces the size of the reflective antenna to a certain extent, and at the same time, avoids electromagnetic waves reflected from the main reflective panel. Blocked by the feed or secondary reflection surface, improving the overall efficiency of the reflective antenna.
  • the power density of the shaped electromagnetic waves on the main reflective panel 30 of the reflective antenna of this embodiment is uniformly distributed in a ring shape.
  • 7 is a schematic diagram showing a power density distribution of electromagnetic waves formed on a main reflection panel according to an embodiment of the present invention.
  • the power density of the electromagnetic waves formed on the main reflection panel 30 is annularly distributed and in a ring shape. Evenly distributed within the area.
  • the outer boundary of the ring is inscribed in the boundary of the main reflective panel 30, and the projection of the feed 10 on the main reflective panel 30 falls within the inner boundary of the ring.
  • the projection of the secondary reflective curved surface 20 on the primary reflective panel 30 also falls within the inner boundary of the ring.
  • the projections of the feed 10 and the secondary reflective curved surface 20 on the primary reflective panel 30 fall within the inner boundary of the ring in order to ensure that the shaped electromagnetic waves emitted on the primary reflective panel 30 are not affected by any objects (such as the feed 10, The secondary reflective surface 20) is occluded, thereby achieving the effect of increasing the gain of the reflective antenna.
  • the size of the main reflective panel 30 is different or the distance between the feed 10 and the main reflective panel 30 is different.
  • the shape and size of the secondary reflection curved surface 20 are different.
  • the power density of the shaped electromagnetic waves obtained by shaping the electromagnetic waves through the different secondary reflection curved surfaces 20 is different on the main reflection panel 30.
  • FIG. 8 is a schematic diagram showing the distribution of the power density of the electromagnetic wave formed by the secondary reflection curved surface of the first embodiment of the present invention on the main reflection panel
  • FIG. 9 is the electromagnetic wave after the secondary reflection curved surface of the second embodiment of the present invention. Schematic diagram of the distribution of power density on the main reflector.
  • the reflective antenna of the embodiment can improve the effective utilization of the main reflective panel, and can control the power density of the shaped electromagnetic wave to be evenly distributed on the main reflective panel. Improve the gain of the reflective antenna, reduce the sidelobe level and optimize the phase adjustment performance.
  • the main reflection panel 30 in this embodiment is composed of a plurality of phase adjustment units, wherein the shaped electromagnetic waves are controlled to have the same phase by adjusting each of the plurality of phase adjustment units. Adjusting the electromagnetic waves emitted by the reflective antenna through the main reflection panel has the same phase, which is beneficial to enhancing the antenna signal strength and improving the efficiency of the antenna.
  • the reflective antenna of this embodiment includes a feed, a sub-reflective curved surface, and a main reflective panel, wherein the secondary reflective curved surface can be determined according to the size of the main reflective panel and the distance between the feed and the main reflective panel, such that the sub-reflective curved surface is shaped.
  • the power density of the electromagnetic wave is uniformly distributed on the main reflective panel.
  • a method of designing a reflective antenna is provided, it being noted that the steps illustrated in the flowchart of the figures may be performed in a computer system such as a set of computer executable instructions, and, although The logical order is shown in the flowchart, but in some cases the steps shown or described may be performed in a different order than the ones described herein.
  • FIG. 10 is a flowchart of a method for designing a reflective antenna according to an embodiment of the present invention.
  • the reflective antenna in the method is any optional or preferred reflective antenna in the embodiment of the present invention, as shown in FIG.
  • the antenna design method includes the following steps:
  • Step S102 Obtain a size of the main reflective panel and a first distance, wherein the first distance is a distance between the feed and the main reflective panel.
  • the size of the main reflective panel and the distance between the feed and the main reflective panel can be adjusted.
  • the size of the main reflective panel includes the shape and size of the main reflective panel.
  • the main reflective panel in the design method of the reflective antenna of this embodiment is preferably a metamaterial reflective panel, and the shape of the metamaterial reflective panel is preferably rectangular, for example, a square metamaterial reflective panel having a side length of 1.2 meters.
  • the feed source in the reflective antenna is connected to the main reflective panel through a connecting component (such as a circular waveguide), the feed source is disposed along the axial direction of the center of the main reflective panel, and is spaced apart from the main reflective panel, and the feed is along the direction of the connecting component.
  • Active setting this embodiment sets the feed movably at In the direction of the connecting member, the purpose of flexibly adjusting the distance between the feed and the main reflective panel is achieved.
  • Step S104 calculating a secondary reflection curved surface according to the size of the main reflection panel and the first distance, wherein the secondary reflection curved surface is used for shaping the electromagnetic wave emitted by the feed source, and the main reflection panel is used for modulating the shaped electromagnetic wave to make modulation
  • the subsequent electromagnetic waves have the same phase.
  • the size of the main reflective panel and the distance between the feed and the main reflective panel are used as the basis for obtaining the sub-reflective surface.
  • the size of the different main reflective panels or the distance between the different feeds and the main reflective panel will determine the different secondary reflections. Surface.
  • the design method of the reflective antenna of this embodiment calculates the sub-reflective curved surface according to the size of the main reflective panel and the distance between the feed and the main reflective panel, in order to control the power density of the electromagnetic wave formed by the sub-reflective curved surface on the main reflective panel. It is evenly distributed and distributed as much as possible on the entire main reflective panel to achieve the effect of improving the utilization of the main reflective panel.
  • calculating the secondary reflective surface according to the size of the primary reflective panel and the distance between the feed and the primary reflective panel comprises the following steps:
  • Step S1 determining an incident angle and a reflection angle according to a size of the main reflection panel and a distance between the feed source and the main reflection panel.
  • the incident angle is an angle between an incident direction of the electromagnetic wave and a central axis of the feed
  • the reflection is The angle is the angle between the direction of reflection of the electromagnetic wave and the central axis of the feed.
  • step S2 the first equation and the second equation are respectively established according to the incident angle and the reflection angle.
  • the origin of the coordinate and polar coordinate system is the phase center of the feed.
  • step S3 the first and second equations are jointly solved to obtain a secondary reflection curve.
  • the coordinate values of a set of polar coordinate systems are obtained by connecting the equations together.
  • a curve that is, a secondary reflection curve, can be obtained.
  • step S4 a secondary reflection curved surface is obtained by rotating the secondary reflection curve.
  • a sub-reflection curve is obtained by rotating a sub-reflection curve in a direction parallel to the main reflection panel to obtain a sub-reflection curved surface.
  • the sub-reflective curved surface is obtained according to the size of the main reflective panel and the distance between the feed and the main reflective panel.
  • the electromagnetic wave emitted by the feed source in the reflective antenna is irradiated to the secondary reflection curved surface, and by controlling the spatial coordinates of each point on the secondary reflection curved surface, the secondary reflection curved surface is shaped to electromagnetic waves, so that the electromagnetic wave is shaped.
  • the shaped electromagnetic waves are reflected onto the main reflective panel in the desired direction.
  • the secondary reflection curved surface in this embodiment will shape the electromagnetic wave according to the following requirements: the power density of the electromagnetic wave after shaping on the main reflective panel is uniformly distributed, and the power density of the shaped electromagnetic wave As large as possible on the main reflective panel to achieve the effect of improving the utilization of the main reflective panel.
  • the power density of the electromagnetic waves shaped by the sub-reflective curved surface in the design method of the reflective antenna of this embodiment is annularly distributed on the main reflective panel and uniformly distributed in the annular region.
  • the outer boundary of the ring is inscribed in the boundary of the main reflective panel, the projection of the feed on the main reflective panel falls within the inner boundary of the ring, and the projection of the secondary reflective surface on the main reflective panel also falls on the inner boundary of the ring Therefore, it is ensured that the shaped electromagnetic wave emitted on the main reflection panel is not blocked by any object (such as a feed source and a secondary reflection surface), thereby achieving the effect of improving the gain of the reflective antenna.
  • the main reflective panel in this embodiment is a metamaterial reflective panel
  • the metamaterial reflective panel includes: a dielectric substrate; a plurality of conductive geometric structures disposed on a surface of the dielectric substrate; and a conductive geometric structure disposed on the dielectric substrate A reflective layer of the opposite surface, wherein the reflective layer is a metal layer.
  • the main reflection panel is used to modulate the shaped electromagnetic waves so that the modulated electromagnetic waves have the same phase.
  • the main reflection panel is composed of a plurality of phase adjustment units, and adjusting the modulated electromagnetic waves to have the same phase includes: acquiring phase information of an electric field intensity of the modulated electromagnetic wave on the main reflection panel; and adjusting each of the plurality of phase adjustment units according to the phase information Phase adjustment units; and the modulated electromagnetic waves that control the reflection of each phase adjustment unit have the same phase. Adjusting the electromagnetic waves emitted by the reflective antenna through the main reflection panel has the same phase, which is beneficial to enhancing the antenna signal strength and improving the efficiency of the antenna.
  • step S106 a reflective antenna is obtained from the feed, the sub-reflective curved surface and the main reflective panel.
  • the design method of the reflective antenna of this embodiment acquires a secondary reflection curved surface according to the size of the main reflective panel and the distance between the feed source and the main reflective panel, and the secondary reflective curved surface can shape the electromagnetic wave according to requirements, so that the shaped electromagnetic wave The power density is uniformly distributed in a ring shape on the main reflective panel.
  • the method for controlling the reflective antenna of the embodiment of the present invention solves the problem of low utilization of the flat reflective array panel of the antenna in the prior art, thereby improving antenna gain and efficiency, reducing sidelobe level, and optimizing phase modulation performance. Technical effect.
  • the disclosed technical contents may be implemented in other manners.
  • the device embodiments described above are only schematic.
  • the division of the unit may be a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种反射天线及其设计方法。其中,该反射天线包括:馈源(10),用于发射电磁波;副反射曲面(20),位于馈源辐射口一侧,用于对电磁波进行赋形;以及主反射面板(30),位于馈源辐射口的另一侧,用于对赋形后的电磁波进行调制,使得调制后的电磁波具有相同的相位。本发明解决了现有技术中天线的平板反射阵列面板的利用率低的技术问题。

Description

反射天线及其设计方法 技术领域
本发明涉及天线领域,具体而言,涉及一种反射天线及其设计方法。
背景技术
随着卫星通信技术的快速发展,反射天线的应用越来越广泛。反射天线由馈源和平板反射阵列组成。其中,平板反射阵列是由大量印刷于介质基片上的微带贴片单元组成的平面阵列。反射天线的工作原理为:由馈源发射的电磁波沿着不同传输路径到达平板反射阵列上的每个单元,传输路径差异导致不同单元所接收的入射场具有不同的空间相位,通过合理设计每个单元,使其对不同的入射场做出不同的相位补偿,让反射场在天线口径面上形成所需的同相位波前。
现有的反射天线的馈源采用喇叭直接照射,其照射方式可以分为垂直照射(正馈)和斜入射(偏馈)两种。图1是根据现有技术的馈源喇叭斜入射正方形平板反射阵列面板时电磁波功率分布的示意图,如图1所示,图中的等值线代表的是归一化功率密度分贝值,-10dB的等值线代表平板反射阵列面板上此处的功率密度降为辐射功率密度最大值的十分之一,其中,-10dB等值线在馈源喇叭斜入射正方形平板反射阵列面板的情况下是一个椭圆。为了获得尽量大的板反射阵列面板的利用率,将此椭圆内切于正方形平板反射阵列面板,从图1中可以看出,正方形平板反射阵列面板四角处的面积没有得到利用,而且电磁波的功率密度在整个正方形平板反射阵列面板上不是均匀分布的,正方形平板反射阵列面板边缘的功率也是不可控的,这样将会导致天线的旁瓣电平有可能不符合国际卫星组织对于天线旁瓣包络规范,即天线的旁瓣电平不可以超过-14dB,同时,电磁波的功率密度在整个平板反射阵列面板上分布不均匀也将会导致不能对平板反射阵列面板的最佳相位调制性能进行优化。此外,现有的反射天线无论采用正馈还是偏馈方式,馈源对平板反射阵列面板发出的电磁波都会有一定程度的遮挡,降低了天线的总体效率。
针对现有技术中天线的平板反射阵列面板的利用率低的问题,目前尚未提出有效的解决方案。
发明内容
本发明提供了一种反射天线及其设计方法,以至少解决现有技术中天线的平板反 射阵列面板的利用率低的技术问题。
根据本发明的一个方面,提供了一种反射天线,包括:馈源,用于发射电磁波;副反射曲面,位于馈源辐射口一侧,用于对电磁波进行赋形;以及主反射面板,位于馈源辐射口的另一侧,用于对赋形后的电磁波进行调制,使得调制后的电磁波具有相同的相位。
进一步地,副反射曲面呈伞状曲面。
进一步地,副反射曲面的中部为凹面且向馈源方向凹陷。
进一步地,副反射曲面划分为多个彼此无缝连接的子曲面,多个子曲面的公共连接部是副反射曲面的中部。
进一步地,每个子曲面为凹面且向馈源方向凹陷。
进一步地,副反射曲面的横切面为多边形,多边形的每个边为曲线且向多边形的中心弯曲。
进一步地,相邻两个子曲面的交界区域为凸面且向远离馈源的方向凹陷。
进一步地,主反射面板包括:多个相位调整单元,其中,通过调整多个相位调整单元中的每个相位调整单元控制赋形后的电磁波具有相同的相位。
进一步地,主反射面板为超材料反射面板。
进一步地,超材料反射面板包括:介质基板;设置在介质基板表面的多个导电几何结构;以及设置在介质基板的与导电几何结构相对的另一表面的反射层。
进一步地,反射层为金属层。
进一步地,超材料反射面板的形状为矩形。
进一步地,副反射曲面上的点满足如下关系:tan(θ+ψ)/2=dρ/(ρdρ);以及KP(θ,φ)dA(θ,φ)=Gf(ψ,θ)dAf(ψ,θ),其中,K为预设常数,副反射曲面上的点为极坐标系下的点,ρ为副反射曲面上的点的极径,φ为副反射曲面上的点的极角,极坐标系的坐标原点为馈源的相位中心,Gf(ψ,θ)为馈源方向图,P(θ,φ)为反射方向图,dA(θ,φ)为反射方向图的微分面元,dAf(ψ,θ)为馈源方向图的微分面元,ψ为入射角,θ为反射角,入射角为电磁波的入射方向与馈源的中轴线的夹角,反射角为电磁波的反射方向与馈源的中轴线的夹角,入射角和反射角由主反射面板的尺寸和第一距离确定,第一距离为馈源与主反射面板之间的距离。
进一步地,主反射面板上赋形后的电磁波的功率密度呈环形分布,其中,环形的外边界内切于主反射面板的边界,馈源在主反射面板上的投影落在环形的内边界内。
进一步地,赋形后的电磁波的功率密度在环形分布的区域内均匀分布。
进一步地,馈源通过连接部件与主反射面板相连接。
进一步地,连接部件为圆波导管或支撑杆,馈源沿圆波导管或支撑杆轴向可活动的设置。
根据本发明的另一方面,还提供了一种本发明实施例中任一种反射天线的设计方法,该方法包括:获取主反射面板的尺寸和第一距离,其中,第一距离为馈源与主反射面板之间的距离;根据主反射面板的尺寸和第一距离计算副反射曲面,其中,副反射曲面用于对馈源发射的电磁波赋形,主反射面板用于对赋形后的电磁波进行调制,使得调制后的电磁波具有相同的相位;以及由馈源、副反射曲面和主反射面板得到反射天线。
进一步地,根据主反射面板的尺寸和第一距离计算副反射曲面包括:根据主反射面板的尺寸和第一距离确定入射角和反射角,其中,入射角为电磁波的入射方向与馈源的中轴线的夹角,反射角为电磁波的反射方向与馈源的中轴线的夹角;按照入射角和反射角分别建立第一方程和第二方程;以及由第一方程和第二方程联立求解得到副反射曲线;以及通过旋转副反射曲线得到副反射曲面。
进一步地,第一方程为tan(θ+ψ)/2=dρ/(ρdρ),其中,ψ为入射角,θ为反射角,ρ为极坐标系下的极径,极坐标系的坐标原点为馈源的相位中心,第二方程为KP(θ,φ)dA(θ,φ)=Gf(ψ,θ)dAf(ψ,θ),其中,Gf(ψ,θ)为馈源方向图,P(θ,φ)为反射方向图,dA(θ,φ)为反射方向图的微分面元,dAf(ψ,θ)为馈源方向图的微分面元,φ为极坐标系下的极角,K为预设常数。
进一步地,赋形后的电磁波的功率密度在主反射面板上呈环形分布,其中,环形的外边界内切于主反射面板的边界,馈源在主反射面板上的投影落在环形的内边界内。
进一步地,赋形后的电磁波的功率密度在环形分布的区域内均匀分布。
进一步地,主反射面板为超材料反射面板;超材料反射面板包括:介质基板;设置在介质基板表面的多个导电几何结构;以及设置在介质基板的与导电几何结构相对的另一表面的反射层。
在本发明中,反射天线的副反射曲面由主反射面板的尺寸以及馈源与主反射面板之间的距离确定,通过副反射曲面对馈源发出的电磁波进行赋形,使得反射到主反射 面板上的赋形后的电磁波的功率密度呈均匀地环形分布,达到了提高主反射面板利用率的目的,从而实现了提高反射天线总体效率的技术效果,进而解决了现有技术中天线的平板反射阵列面板的利用率低的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据现有技术的馈源喇叭斜入射正方形平板反射阵列面板时电磁波功率分布的示意图;
图2是根据本发明实施例的反射天线的示意图;
图3a是根据本发明实施例的馈源喇叭的斜仰视示意图;
图3b是根据本发明实施例的馈源喇叭的斜俯视示意图;
图3c是根据本发明实施例的馈源喇叭的剖面示意图;
图4是根据本发明实施例的入射角和反射角的示意图;
图5a是根据本发明第一实施例的副反射曲面的示意图;
图5b是根据本发明第一实施例的副反射曲面的俯视示意图;
图6a是根据本发明第二实施例的副反射曲面的示意图;
图6b是根据本发明第二实施例的副反射曲面的俯视示意图;
图7是根据本发明实施例的主反射面板上赋形后的电磁波的功率密度分布示意图;
图8是由本发明第一实施例的副反射曲面赋形后的电磁波的功率密度在主反射面板上的分布示意图;
图9是由本发明第二实施例的副反射曲面赋形后的电磁波的功率密度在主反射面板上的分布示意图;以及
图10是根据本发明实施例的反射天线的设计方法的流程图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的 附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本发明实施例,提供了一种反射天线。图2是根据本发明实施例的反射天线的示意图,如图2所示,该实施例的反射天线包括:馈源10,副反射曲面20和主反射面板30。
馈源10,用于发射电磁波。该实施例中的馈源10为馈源喇叭,图3a是根据本发明实施例的馈源喇叭的斜仰视示意图,图3b是根据本发明实施例的馈源喇叭的斜俯视示意图,图3c是根据本发明实施例的馈源喇叭的剖面示意图,如图3a,图3b,图3c所示,馈源喇叭可以包括依次连接的馈电段31、过渡变化段32和辐射口段33,其中,在馈电段中心设置有金属隔板34。馈源喇叭的辐射口为圆形,馈源喇叭关于其自身中心轴线上下、左右均对称,这样极大地优化了馈源喇叭的发射均匀电磁波的性能。馈源喇叭可以为现有的异形变张角差模喇叭,馈源喇叭的辐射口可以为圆形,馈源喇叭的辐射口也可以为八边形。
副反射曲面20,位于馈源10辐射口一侧,用于对电磁波进行赋形,其中,副反射曲面20是由主反射面板30的尺寸以及馈源10与主反射面板30之间的距离确定的曲面。
可选地,副反射曲面20上的点满足以下关系:tan(θ+ψ)/2=dρ/(ρdρ);以及KP(θ,φ)dA(θ,φ)=Gf(ψ,θ)dAf(ψ,θ),其中,K为预设常数,副反射曲面上的点为极坐标系下的点,ρ为副反射曲面上的点的极径,φ为副反射曲面上的点的极角,极坐标系的坐标原点为馈源的相位中心,Gf(ψ,θ)为馈源方向图,P(θ,φ)为反射方向图,dA(θ,φ)为反射方向图的微分面元,dAf(ψ,θ)为馈源方向图的微分面元。图4是根据本发明实施例的入射角和反射角的示意图,如图4所示,ψ为入射角,θ为反射角,入射角为电磁波的入射方向与馈源的中轴线的夹角,反射角为电磁波的反射方向与馈源的中轴线 的夹角,入射角和反射角由主反射面板的尺寸和第一距离确定,第一距离为馈源与主反射面板之间的距离。
副反射曲面20为不规则曲面,副反射曲面20上的每个点均满足上述关系。根据实际的设计需求的不同,主反射面板的尺寸以及馈源与主反射面板之间的距离不同,相应地,副反射曲面20的形状也会不同。比如,图5a是根据本发明第一实施例的副反射曲面的示意图,图5b是根据本发明第一实施例的副反射曲面的俯视示意图,图6a是根据本发明第二实施例的副反射曲面的示意图,图6b是根据本发明第二实施例的副反射曲面的俯视示意图,图5a、图5b以及图6a、图6b中所示的副反射曲面分别是根据两种不同的主反射面板的尺寸以及馈源与主反射面板之间的距离确定得到的副反射曲面。如图5a、图5b、图6a以及图6b所示,副反射曲面20呈伞状曲面,其可划分为多个彼此无缝连接的子曲面,多个子曲面的公共连接部是副反射曲面20的中部。副反射曲面20的中部为凹面且向馈源10方向凹陷。副反射曲面20的多个子曲面中的每个子曲面为凹面且向馈源方向凹陷,且相邻两个子曲面的交界区域为凸面且向远离馈源的方向凹陷。副反射曲面20的横切面为多边形,多边形的每个边为曲线且向多边形的中心弯曲。图5a、图5b、图6a以及图6b所示的副反射曲面只是本发明副反射曲面的优选实施例,根据主反射面板的尺寸以及馈源与主反射面板之间的距离,本发明中的副反射曲面还可以有多种不同的形状,此处不再一一举例说明。
如图2所示,该实施例中的馈源10的相位中心位于副反射曲面20的焦点上,馈源10与副反射曲面20之间通过金属杆等衔接部件相连接。该实施例的反射天线中的馈源10发出的电磁波照射到副反射曲面20,通过控制副反射曲面20上的每一个点的空间坐标,实现副反射曲面20对电磁波进行赋形,使得赋形后的电磁波按照需求方向反射到主反射面板30上。为了提高反射天线的效率,该实施例中的副反射曲面20将按照以下需求对电磁波进行赋形:在主反射面板上赋形后的电磁波的功率密度均匀分布,且赋形后的电磁波的功率密度尽量地分布在整个主反射面板上,以达到提高主反射面板利用率的效果。
主反射面板30,位于馈源10辐射口的另一侧,用于调整赋形后的电磁波具有相同的相位。该实施例中的主反射面板30为超材料反射面板,且超材料反射面板的形状为矩形,比如边长为1.2米的正方形超材料反射面板。超材料反射面板可以包括:介质基板;设置在介质基板一表面的多个导电几何结构;以及设置在介质基板的与导电几何结构相对的另一表面的反射层,其中,反射层为金属层。该实施例的主反射面板采用具备导电几何结构和金属反射层的超材料反射面板,有利于准确分析主反射面板上电场强度的相位信息,以有效控制主反射面板反射的电磁波具有相同的相位,从而 达到提高反射天线增益,提高反射天线总体效率的技术效果。同时,采用具备导电几何结构和金属反射层的超材料反射面板作为主反射面板,也能够提高主反射面板反射电磁波的强度,进而提高反射天线发射信号的强度。可选地,该实施例中的馈源10通过连接部件与主反射面板30相连接,其中,连接部件可以为圆波导管,也可以为其他部件,比如支撑杆。馈源10沿主反射面板30中心的轴向设置,并与主反射面板30间隔设置,使得馈源10与主反射面板30之间具有一定的距离,该距离与主反射面板的尺寸共同决定了副反射曲面的形状以及大小。馈源10沿圆波导管方向可活动的设置,目的是为了灵活调整馈源10与主反射面板30之间的距离,进而计算得到更加符合要求的副反射曲面,达到提高主反射面板利用率的目的。
可选地,该实施例的反射天线还包括:调节支架,其中,调节支架安装在连接部件的一端,主反射面板30安装在连接部件的另一端。调节支架沿圆波导管方向可活动的设置,且馈源10安装在调节支架上,这样即可以通过调整调节支架来调节馈源10与主反射面板30之间的距离。
可选地,该实施例的反射天线采用环焦正馈的方法,将馈源10与副反射曲面20集成在一个结构中,该结构成为赋形副反射面环焦馈源。赋形副反射面环焦馈源包括馈源10和副反射曲面20,赋形副反射面环焦馈源位于主反射面板30的中心上方,通过连接部件(比如圆波导管或者支撑杆)与主反射面板30相连接。赋形副反射面环焦馈源也沿主反射面板30中心的轴向设置,并与主反射面板30间隔设置,且沿圆波导管方向可活动的设置,这样能够方便地调节赋形副反射面环焦馈源与主反射面板之间的距离。该实施例将馈源10与副反射曲面20集成在一个结构,即赋形副反射面环焦馈源,一定程度上缩小了反射天线的大小,同时,有利于避免从主反射面板反射的电磁波被馈源或者副反射曲面遮挡,提高了反射天线的总体效率。
可选地,该实施例的反射天线的主反射面板30上赋形后的电磁波的功率密度呈均匀地环形分布。图7是根据本发明实施例的主反射面板上赋形后的电磁波的功率密度分布示意图,如图7所示,主反射面板30上赋形后的电磁波的功率密度呈环形分布,且在环形区域内均匀分布。其中,环形的外边界内切于主反射面板30的边界,馈源10在主反射面板30上的投影落在环形的内边界内。可选地,副反射曲面20在主反射面板30上的投影落也落在环形的内边界内。馈源10和副反射曲面20在主反射面板30上的投影落在环形的内边界内,目的是为了确保主反射面板30上发射的赋形后的电磁波不被任何物体(比如馈源10、副反射曲面20)遮挡,从而达到提高反射天线增益的效果。
主反射面板30的尺寸不同或者馈源10与主反射面板30之间的距离不同,将会决 定副反射曲面20的形状和尺寸的不同。电磁波经过不同的副反射曲面20赋形后得到的赋形后的电磁波的功率密度在主反射面板30上的分布不同。比如,图8是由本发明第一实施例的副反射曲面赋形后的电磁波的功率密度在主反射面板上的分布示意图,图9是由本发明第二实施例的副反射曲面赋形后的电磁波的功率密度在主反射面板上的分布示意图。从图7、图8以及图9中可以看出,该实施例的反射天线能够提高主反射面板的有效利用率,能够控制赋形后的电磁波的功率密度在主反射面板上均匀分布,达到了提高反射天线增益,降低旁瓣电平以及优化相位调整性能的效果。
可选地,该实施例中的主反射面板30由多个相位调整单元组成,其中,通过调整多个相位调整单元中的每个相位调整单元控制赋形后的电磁波具有相同的相位。通过主反射面板调整反射天线发出的电磁波具有相同的相位,有利于增强天线信号强度,提高了天线的效率。
该实施例的反射天线包括馈源、副反射曲面以及主反射面板,其中,副反射曲面可以根据主反射面板的尺寸和馈源与主反射面板之间的距离确定,使得通过副反射曲面赋形后的电磁波的功率密度在主反射面板上呈均匀地环形分布,通过该实施例的反射天线解决了现有技术中天线的平板反射阵列面板的利用率低的问题,进而达到了提高天线增益,降低旁瓣电平以及优化相位调整性能的技术效果。
根据本发明实施例,提供了一种反射天线的设计方法,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图10是根据本发明实施例的反射天线的设计方法的流程图,该方法中的反射天线为本发明实施例中的任意一种可选或者优选的反射天线,如图10所示,该反射天线的设计方法包括如下步骤:
步骤S102,获取主反射面板的尺寸和第一距离,其中,第一距离为馈源与主反射面板之间的距离。
根据实际设计要求,主反射面板的尺寸和馈源与主反射面板之间的距离可以进行调整。主反射面板的尺寸包括主反射面板的形状和大小。该实施例的反射天线的设计方法中的主反射面板优选为超材料反射面板,该超材料反射面板的形状优选为矩形,比如,边长1.2米的正方形超材料反射面板。反射天线中的馈源通过连接部件(比如圆波导管)与主反射面板相连接,馈源沿主反射面板中心的轴向设置,并与主反射面板间隔设置,且馈源沿连接部件方向可活动的设置,该实施例将馈源可活动地设置在 连接部件方向上,进而达到了灵活调节馈源与主反射面板之间的距离的目的。
步骤S104,根据主反射面板的尺寸和第一距离计算副反射曲面,其中,副反射曲面用于对馈源发射的电磁波赋形,主反射面板用于对赋形后的电磁波进行调制,使得调制后的电磁波具有相同的相位。
主反射面板的尺寸和馈源与主反射面板间的距离作为获取副反射曲面的数据依据,不同的主反射面板的尺寸或者不同的馈源与主反射面板间的距离,将决定不同的副反射曲面。该实施例的反射天线的设计方法根据主反射面板的尺寸和馈源与主反射面板间的距离计算副反射曲面,是为了控制经过副反射曲面赋形后的电磁波的功率密度在主反射面板上均匀分布,且尽量地分布在整个主反射面板上,以实现提高主反射面板利用率的效果。
可选地,根据主反射面板的尺寸和馈源与主反射面板间的距离计算副反射曲面包括以下步骤:
步骤S1,根据主反射面板的尺寸和馈源与主反射面板间的距离确定入射角和反射角,如图4所示,入射角为电磁波的入射方向与馈源的中轴线的夹角,反射角为电磁波的反射方向与馈源的中轴线的夹角。
步骤S2,按照入射角和反射角分别建立第一方程和第二方程。其中,第一方程为几何光学反射原理对应的方程,即tan(θ+ψ)/2=dρ/(ρdρ),其中,ψ为入射角,θ为反射角,ρ为极坐标系下的极径,极坐标系的坐标原点为馈源的相位中心。第二方程为能量守恒原理对应的方程,即KP(θ,φ)dA(θ,φ)=Gf(ψ,θ)dAf(ψ,θ),其中,Gf(ψ,θ)为馈源方向图,P(θ,φ)为反射方向图,dA(θ,φ)为反射方向图的微分面元,dAf(ψ,θ)为馈源方向图的微分面元,φ为极坐标系下的极角,K为预设常数,根据入射功率与反射功率相等求得。
步骤S3,由第一方程和第二方程联立求解得到副反射曲线。根据几何光学反射原理对应的方程和能量守恒原理对应的方程联立求解得到的是一组极坐标系下的坐标值,通过连接这组坐标值即可以得到一条曲线,即副反射曲线。
步骤S4,通过旋转副反射曲线得到副反射曲面。在与主反射面板平行的方向上旋转一周副反射曲线得到副反射曲面。
利用该实施例的反射天线的设计方法根据主反射面板的尺寸和馈源与主反射面板间的距离获取副反射曲面。反射天线中的馈源发出的电磁波照射到副反射曲面,通过控制副反射曲面上的每一个点的空间坐标,实现副反射曲面对电磁波进行赋形,使得 赋形后的电磁波按照需求方向反射到主反射面板上。为了提高反射天线的效率,该实施例中的副反射曲面将按照以下需求对电磁波进行赋形:在主反射面板上赋形后的电磁波的功率密度均匀分布,且赋形后的电磁波的功率密度尽量大的分布在主反射面板上,以达到提高主反射面板利用率的效果。
可选地,通过该实施例的反射天线的设计方法中的副反射曲面赋形后的电磁波的功率密度在主反射面板上呈环形分布,且在环形区域内均匀分布。其中,环形的外边界内切于主反射面板的边界,馈源在主反射面板上的投影落在环形的内边界内,且副反射曲面在主反射面板上的投影也落在环形的内边界内,保证了主反射面板上发射的赋形后的电磁波不被任何物体(比如馈源、副反射曲面)遮挡,从而达到提高反射天线增益的效果。
可选地,该实施例中的主反射面板为超材料反射面板,超材料反射面板包括:介质基板;设置在介质基板一表面的多个导电几何结构;以及设置在介质基板的与导电几何结构相对的另一表面的反射层,其中,反射层为金属层。主反射面板用于对赋形后的电磁波进行调制,使得调制后的电磁波具有相同的相位。主反射面板由多个相位调整单元组成,调整调制后的电磁波具有相同的相位包括:获取主反射面板上调制后的电磁波的电场强度的相位信息;根据相位信息调整多个相位调整单元中的每个相位调整单元;以及控制每个相位调整单元反射的调制后的电磁波具有相同的相位。通过主反射面板调整反射天线发出的电磁波具有相同的相位,有利于增强天线信号强度,提高了天线的效率。
步骤S106,由馈源、副反射曲面和主反射面板得到反射天线。
该实施例的反射天线的设计方法根据主反射面板的尺寸和馈源与主反射面板之间的距离获取副反射曲面,该副反射曲面可以按照需求对电磁波赋形,使得赋形后的电磁波的功率密度在主反射面板上呈均匀地环形分布。通过本发明实施例的反射天线的控制方法,解决了现有技术中天线的平板反射阵列面板的利用率低的问题,从而达到了提高天线增益与效率,降低旁瓣电平以及优化相位调制性能的技术效果。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件 可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (23)

  1. 一种反射天线,其特征在于,包括:
    馈源,用于发射电磁波;
    副反射曲面,位于所述馈源辐射口一侧,用于对所述电磁波进行赋形;以及
    主反射面板,位于所述馈源辐射口的另一侧,用于对赋形后的电磁波进行调制,使得调制后的电磁波具有相同的相位。
  2. 根据权利要求1所述的反射天线,其特征在于,所述副反射曲面呈伞状曲面。
  3. 根据权利要求1或2所述的反射天线,其特征在于,所述副反射曲面的中部为凹面且向所述馈源方向凹陷。
  4. 根据权利要求3所述的反射天线,其特征在于,所述副反射曲面划分为多个彼此无缝连接的子曲面,多个子曲面的公共连接部是所述副反射曲面的中部。
  5. 根据权利要求4所述的反射天线,其特征在于,每个所述子曲面为凹面且向所述馈源方向凹陷。
  6. 根据权利要求4所述的反射天线,其特征在于,所述副反射曲面的横切面为多边形,所述多边形的每个边为曲线且向所述多边形的中心弯曲。
  7. 根据权利要求4所述的反射天线,其特征在于,相邻两个子曲面的交界区域为凸面且向远离所述馈源的方向凹陷。
  8. 根据权利要求1所述的反射天线,其特征在于,所述主反射面板包括:
    多个相位调整单元,其中,通过调整所述多个相位调整单元中的每个相位调整单元控制赋形后的电磁波具有相同的相位。
  9. 根据权利要求1所述的反射天线,其特征在于,所述主反射面板为超材料反射面板。
  10. 根据权利要求9所述的反射天线,其特征在于,所述超材料反射面板包括:
    介质基板;
    设置在介质基板表面的多个导电几何结构;以及
    设置在介质基板的与所述导电几何结构相对的另一表面的反射层。
  11. 根据权利要求10所述的反射天线,其特征在于,所述反射层为金属层。
  12. 根据权利要求9至11任一项所述的反射天线,其特征在于,所述超材料反射面板的形状为矩形。
  13. 根据权利要求1所述的反射天线,其特征在于,所述副反射曲面上的点满足如下关系:
    tan(θ+ψ)/2=dρ/(ρdρ);以及
    KP(θ,φ)dA(θ,φ)=Gf(ψ,θ)dAf(ψ,θ),
    其中,K为预设常数,所述副反射曲面上的点为极坐标系下的点,ρ为所述副反射曲面上的点的极径,φ为所述副反射曲面上的点的极角,所述极坐标系的坐标原点为所述馈源的相位中心,
    Gf(ψ,θ)为馈源方向图,P(θ,φ)为反射方向图,dA(θ,φ)为所述反射方向图的微分面元,dAf(ψ,θ)为所述馈源方向图的微分面元,ψ为入射角,θ为反射角,所述入射角为电磁波的入射方向与所述馈源的中轴线的夹角,所述反射角为电磁波的反射方向与所述馈源的中轴线的夹角,所述入射角和所述反射角由所述主反射面板的尺寸和第一距离确定,所述第一距离为所述馈源与所述主反射面板之间的距离。
  14. 根据权利要求1所述的反射天线,其特征在于,
    所述主反射面板上所述赋形后的电磁波的功率密度呈环形分布,
    其中,所述环形的外边界内切于所述主反射面板的边界,所述馈源在所述主反射面板上的投影落在所述环形的内边界内。
  15. 根据权利要求14所述的反射天线,其特征在于,所述赋形后的电磁波的功率密度在所述环形分布的区域内均匀分布。
  16. 根据权利要求1所述的反射天线,其特征在于,所述馈源通过连接部件与所述主反射面板相连接。
  17. 根据权利要求16所述的反射天线,其特征在于,所述连接部件为圆波导管或支撑杆,所述馈源沿所述圆波导管或支撑杆轴向活动设置。
  18. 一种权利要求1至17任一项所述的反射天线的设计方法,其特征在于,包括:
    获取主反射面板的尺寸和第一距离,其中,所述第一距离为馈源与所述主反射面板之间的距离;
    根据所述主反射面板的尺寸和所述第一距离计算副反射曲面,其中,所述副反射曲面用于对所述馈源发射的电磁波赋形,所述主反射面板用于对赋形后的电磁波进行调制,使得调制后的电磁波具有相同的相位;以及
    由所述馈源、所述副反射曲面和所述主反射面板得到所述反射天线。
  19. 根据权利要求18所述的设计方法,其特征在于,根据所述主反射面板的尺寸和所述第一距离计算副反射曲面包括:
    根据所述主反射面板的尺寸和所述第一距离确定入射角和反射角,其中,所述入射角为电磁波的入射方向与所述馈源的中轴线的夹角,所述反射角为电磁波的反射方向与所述馈源的中轴线的夹角;
    按照所述入射角和所述反射角建立第一方程和第二方程;以及
    由所述第一方程和所述第二方程联立求解得到副反射曲线;以及
    通过旋转所述副反射曲线得到所述副反射曲面。
  20. 根据权利要求19所述的设计方法,其特征在于,
    所述第一方程为tan(θ+ψ)/2=dρ/(ρdρ),
    其中,ψ为所述入射角,θ为所述反射角,ρ为极坐标系下的极径,所述极坐标系的坐标原点为所述馈源的相位中心,
    所述第二方程为KP(θ,φ)dA(θ,φ)=Gf(ψ,θ)dAf(ψ,θ),
    其中,Gf(ψ,θ)为馈源方向图,P(θ,φ)为反射方向图,dA(θ,φ)为所述反射方向图的微分面元,dAf(ψ,θ)为所述馈源方向图的微分面元,φ为所述极坐标系下的极角,K为预设常数。
  21. 根据权利要求18所述的设计方法,其特征在于,
    所述赋形后的电磁波的功率密度在所述主反射面板上呈环形分布,
    其中,所述环形的外边界内切于所述主反射面板的边界,所述馈源在所述主反射面板上的投影落在所述环形的内边界内。
  22. 根据权利要求21所述的设计方法,其特征在于,所述赋形后的电磁波的功率密度在所述环形分布的区域内均匀分布。
  23. 根据权利要求18所述的设计方法,其特征在于,所述主反射面板为超材料反射面板;所述超材料反射面板包括:
    介质基板;
    设置在介质基板表面的多个导电几何结构;以及
    设置在介质基板的与所述导电几何结构相对的另一表面的反射层。
PCT/CN2016/072568 2015-07-24 2016-01-28 反射天线及其设计方法 WO2017016207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510444248.1 2015-07-24
CN201510444248.1A CN107039780B (zh) 2015-07-24 2015-07-24 反射天线及其设计方法

Publications (1)

Publication Number Publication Date
WO2017016207A1 true WO2017016207A1 (zh) 2017-02-02

Family

ID=57884074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/072568 WO2017016207A1 (zh) 2015-07-24 2016-01-28 反射天线及其设计方法

Country Status (2)

Country Link
CN (1) CN107039780B (zh)
WO (1) WO2017016207A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086376A (zh) * 2017-06-02 2017-08-22 中国电子科技集团公司第五十四研究所 一种混合赋型大轴比椭圆波束天线及其设计方法
CN110197039A (zh) * 2019-06-06 2019-09-03 安徽工业大学 基于口面电场分布的环焦椭圆波束反射面天线设计方法
CN112329289A (zh) * 2020-10-28 2021-02-05 中国电子科技集团公司第五十四研究所 一种反射面天线的热固电磁三场耦合计算方法
CN115313063A (zh) * 2022-05-30 2022-11-08 南京星航通信技术有限公司 一种反射式面天线

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978840B (zh) * 2017-12-25 2023-10-17 合肥若森智能科技有限公司 一种双线极化天线馈源阵列组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202487779U (zh) * 2012-03-12 2012-10-10 中国电子科技集团公司第五十四研究所 一种利用频率选择表面技术实现宽频带四频段共用天线
CN102820555A (zh) * 2012-07-31 2012-12-12 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN102856664A (zh) * 2012-07-31 2013-01-02 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
US20150091768A1 (en) * 2013-10-02 2015-04-02 Winegard Company Ring focus antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014019524A1 (zh) * 2012-07-31 2014-02-06 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN203574109U (zh) * 2013-11-13 2014-04-30 深圳光启创新技术有限公司 平板卫星通讯天线及天线系统
CN205051004U (zh) * 2015-07-24 2016-02-24 深圳光启高等理工研究院 反射天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202487779U (zh) * 2012-03-12 2012-10-10 中国电子科技集团公司第五十四研究所 一种利用频率选择表面技术实现宽频带四频段共用天线
CN102820555A (zh) * 2012-07-31 2012-12-12 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
CN102856664A (zh) * 2012-07-31 2013-01-02 深圳光启创新技术有限公司 一种卡塞格伦型超材料天线
US20150091768A1 (en) * 2013-10-02 2015-04-02 Winegard Company Ring focus antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, GANG;: "Design of a High Gain and Low Sidelobe Cassegrain Antenna", RADAR SCIENCE AND TECHNOLOGY, vol. 08, no. 06, 31 December 2010 (2010-12-31), pages 568 - 569 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107086376A (zh) * 2017-06-02 2017-08-22 中国电子科技集团公司第五十四研究所 一种混合赋型大轴比椭圆波束天线及其设计方法
CN107086376B (zh) * 2017-06-02 2023-06-20 中国电子科技集团公司第五十四研究所 一种混合赋型大轴比椭圆波束天线及其设计方法
CN110197039A (zh) * 2019-06-06 2019-09-03 安徽工业大学 基于口面电场分布的环焦椭圆波束反射面天线设计方法
CN110197039B (zh) * 2019-06-06 2022-09-27 安徽工业大学 基于口面电场分布的环焦椭圆波束反射面天线设计方法
CN112329289A (zh) * 2020-10-28 2021-02-05 中国电子科技集团公司第五十四研究所 一种反射面天线的热固电磁三场耦合计算方法
CN112329289B (zh) * 2020-10-28 2022-03-01 中国电子科技集团公司第五十四研究所 一种反射面天线的热固电磁三场耦合计算方法
CN115313063A (zh) * 2022-05-30 2022-11-08 南京星航通信技术有限公司 一种反射式面天线
CN115313063B (zh) * 2022-05-30 2023-10-10 南京星航通信技术有限公司 一种反射式面天线

Also Published As

Publication number Publication date
CN107039780A (zh) 2017-08-11
CN107039780B (zh) 2023-12-15

Similar Documents

Publication Publication Date Title
WO2017016207A1 (zh) 反射天线及其设计方法
US20230318195A1 (en) Lens arrays configurations for improved signal performance
US10601141B2 (en) Artificial magnet conductor, antenna reflector, and method for calculating thickness of dielectric medium
JP6778820B2 (ja) 反射アレイアンテナおよび通信デバイス
CN109841961B (zh) 基于超表面的多波束双镜天线
US9472856B2 (en) Antenna
CN103094666B (zh) 基于圆极化喇叭的毫米波全向圆极化天线
CN108110404B (zh) 一种大口径平面消色差反射阵天线
JP4724862B2 (ja) アレーアンテナ
CN205104613U (zh) 一种五喇叭单脉冲卡塞格伦天线
JPS6135721B2 (zh)
CN205900801U (zh) 具移相作用及面状辐射场型的碟型天线
TWI580106B (zh) 用於寬頻應用的脊狀波導管陣列
CN111900550B (zh) 一种融合阻抗与相位双重调制的双源超表面高定向性天线
CN104157986A (zh) 适用于极低干扰通信系统的微波天线及其优化方法
CN110739547B (zh) 一种卡塞格伦天线
CN205051004U (zh) 反射天线
JP2016092633A (ja) リフレクトアレーアンテナ
CN107069225A (zh) 一种卡赛格伦天线馈源结构及卡赛格伦天线
CN104577345A (zh) 喇叭天线
US9835664B2 (en) Microwave antennas for extremely low interference communications systems
CN206628598U (zh) 双频复合卡赛格伦天线馈源结构及卡赛格伦天线
KR102489141B1 (ko) 무선 통신 장치
CN104319489B (zh) 一种在近场具有扁平带状波束的毫米波天线
TWM531660U (zh) 具移相作用及面狀輻射場型的碟型天線

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16829576

Country of ref document: EP

Kind code of ref document: A1