WO2017016112A1 - 水龙头温度调节装置及水龙头 - Google Patents

水龙头温度调节装置及水龙头 Download PDF

Info

Publication number
WO2017016112A1
WO2017016112A1 PCT/CN2015/095441 CN2015095441W WO2017016112A1 WO 2017016112 A1 WO2017016112 A1 WO 2017016112A1 CN 2015095441 W CN2015095441 W CN 2015095441W WO 2017016112 A1 WO2017016112 A1 WO 2017016112A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
faucet
temperature
water
power generation
Prior art date
Application number
PCT/CN2015/095441
Other languages
English (en)
French (fr)
Inventor
王福永
Original Assignee
深圳市雅恩卫浴洁具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市雅恩卫浴洁具有限公司 filed Critical 深圳市雅恩卫浴洁具有限公司
Publication of WO2017016112A1 publication Critical patent/WO2017016112A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/005Electrical or magnetic means for measuring fluid parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • H02N11/002Generators

Definitions

  • the invention relates to the field of faucets, in particular to a faucet temperature adjusting device and a faucet.
  • the temperature regulating device of the faucet generally consists of a faucet control module, a driving power source, an electronic display screen, a temperature sensor and a control circuit.
  • the control circuit starts to work, the temperature sensor contacts the flowing water to transmit the detected water temperature value to the control circuit, and the control circuit drives the electronic display to display the temperature value of the water temperature. Displaying the temperature of the water flowing out of the faucet can effectively reduce the probability of the elderly and children being burnt by hot water.
  • the temperature regulating device of the existing faucet is generally powered by a battery or a turbine type micro hydroelectric motor, and the battery needs to be frequently replaced for the battery power supply mode, and the turbine type hydroelectric motor is susceptible to external use conditions, and has a short life and poor stability. Difficulties in maintenance, and can not completely avoid the user's sudden increase in water temperature caused by sudden changes in water pressure during use to burn the user.
  • a faucet temperature adjusting device comprises a faucet control module, a thermoelectric power generation module, a heat conduction module, a heat dissipation module, a water temperature detection module, a power boost module, a central processing module and an electronic display module;
  • the faucet control module is used for regulating the flow Passing the flow rate of the cold water in the heat dissipation module and the flow rate of the hot water flowing through the heat conduction module to control the temperature of the water flowing out of the faucet,
  • the faucet control module includes a plurality of water outlet channels;
  • the temperature difference power generation module is located The heat conduction module and the heat dissipation module are configured to generate an electromotive force according to a temperature difference between the heat conduction module and the heat dissipation module; and the input end of the power source voltage boosting module is connected to the power output end of the temperature difference power generation module,
  • the output of the power boosting module is connected to the central processing module for boosting the voltage output by the thermoelectric power generation module;
  • a faucet includes the above faucet temperature adjusting device.
  • thermoelectric power generation module is located between the heat conducting module and the heat dissipating module, and is configured to generate an electromotive force according to a temperature difference between the heat conducting module and the heat dissipating module to supply power, without frequently The battery is replaced to supply power.
  • the electronic display module can accurately display the temperature value of the water, and the user can accurately control the temperature of the water through the faucet control module.
  • Figure 1 is a block diagram of a faucet temperature adjusting device in an embodiment
  • Figure 2 is a perspective view of a faucet temperature adjusting device in an embodiment
  • FIG 3 is an exploded view of the faucet temperature adjusting device of the embodiment shown in Figure 2;
  • FIG. 4 is a longitudinal cutaway view of a heat conducting module in an embodiment
  • Figure 5 is a cross-sectional view of a heat conducting module in an embodiment
  • FIG. 6 is an assembled view of a heat conducting module and a heat dissipation module in an embodiment
  • Figure 7 is an assembled view of a faucet temperature adjusting device in an embodiment
  • Figure 8 is an assembled view of a faucet in an embodiment.
  • a faucet temperature adjustment device 200 of an embodiment includes a thermoelectric power generation module 220 , a heat conduction module 240 , a heat dissipation module 230 , a water temperature detection module 270 , a power supply boosting module 260 , a central processing module 250 , an electronic display module 280 , and a faucet .
  • Control module 290 The thermoelectric power generation module 220 , a heat conduction module 240 , a heat dissipation module 230 , a water temperature detection module 270 , a power supply boosting module 260 , a central processing module 250 , an electronic display module 280 , and a faucet .
  • Control module 290 Control module 290.
  • the thermoelectric power generation module 220 is located between the heat conduction module 240 and the heat dissipation module 230 for generating an electromotive force according to a temperature difference between the heat conduction module 240 and the heat dissipation module 230.
  • the input end of the power boost module 260 is connected to the power output end of the temperature difference power generation module 220, and the output end of the power boost module 260 is connected to the central processing module 250.
  • the water temperature detecting module 270 is built in the water outlet channel of the faucet control module 290 for detecting the temperature value of the water flowing out of the faucet and transmitting the temperature value to the central processing module 250.
  • the central processing module 250 is configured to be displayed by the electronic display module 280 according to the detected temperature value of the water.
  • the faucet temperature adjusting device 200 further includes a rechargeable battery 210 , and the rechargeable battery 210 is used as a backup power source for being respectively connected to the power boosting module 260 and the central processing module 250 .
  • the power boosting module 260 and the rechargeable battery 210 are connected in parallel to the central processing module 250, thereby implementing dual power supply redundant power supply of the thermoelectric power generation module 220 and the rechargeable battery 210.
  • the thermoelectric power generation module 220 includes a hot end electrode 222 and a cold end electrode 224.
  • the hot end electrode 222 is connected to the heat conduction module 240, and the cold end electrode 224 is connected to the heat dissipation module 230.
  • the thermoelectric power generation module 220 is a semiconductor thermoelectric power generation chip including a hot end electrode 222 and a cold end electrode 224. It can be understood that, in other embodiments, according to the actual working power consumption requirement of the central processing module 250, more than two semiconductor thermoelectric power generation chips may be used, wherein two or more semiconductor thermoelectric power generation chips are connected in series or in parallel. . For example, when a larger power output is required, a multi-chip semiconductor thermoelectric power generation chip can be used.
  • the cooling module 230 adopts a cold water heat dissipation method, including a cold water inlet joint 232, a cold water outlet joint 234, and a cold water passage 236 (the specific internal structure is the same as the hot water passage 246 in FIGS. 4 and 5), and the cold water inlet joint 232 is used for
  • the cold water supply pipe in the water supply system is connected, and the cold water flows through the cold water passage 236 and enters the cold water inlet passage of the faucet control module 290 via the cold water outlet joint 234.
  • the surface of the heat dissipation module 230 is provided with a heat conduction medium 238 for bonding with the temperature difference power generation module 220.
  • the heat transfer medium 238 is a thermal grease.
  • the heat transfer module 240 includes a hot water inlet joint 242, a hot water outlet joint 244, a hot water passage 246 (shown in Figures 4 and 5), and a heat transfer medium 242 for connecting the heat in the water supply system.
  • the water supply pipe, the hot water flows through the hot water passage 246 and enters the hot water inlet channel of the faucet control module 290 via the hot water outlet joint 244, and the surface of the heat conduction module 240 is provided with a heat conducting medium (not shown) for It is attached to the thermoelectric power generation module 220.
  • the heat conductive medium is a thermal grease.
  • the heat dissipation module 230 and the heat conduction module 240 are all or partially made of one or more materials having high thermal conductivity.
  • the heat dissipation module 230 can also be replaced by air heat dissipation.
  • the assembly diagram of the heat conduction module 240 and the heat dissipation module 230 can be referred to FIG.
  • a fixing lug 248 with a through hole is disposed at a position corresponding to both sides of the heat conducting module 240 and the heat dissipating module 230.
  • the fixing hole is inserted into the through hole in the fixing lug 248, and the thermoelectric power generation module 220 is pressed against the heat conducting. Between the module 240 and the heat dissipation module 230.
  • the central processing module 250 includes a programmable single chip microcomputer.
  • the internal program of the single chip microcomputer drives the electronic display module 280 to display the temperature of the detected water.
  • the central processing module 250 can also use digital and analog circuits to control the electronic display module 280 instead of the single chip in the embodiment.
  • the input end of the power boost module 260 is connected to the power output end of the temperature difference power generation module 220, and the output end of the power boost module 260 is connected to the central processing module 250.
  • the power boosting module 260 uses the analog electronic circuit to boost the voltage output by the thermoelectric power generation module 220. It can be understood that, in other embodiments, when the thermoelectric power generation module 220 uses a plurality of semiconductor thermoelectric power generation chips to serially or directly adopt a single-chip high-voltage output semiconductor thermoelectric power generation chip, the power supply boosting module 260 may be omitted.
  • the water temperature detection module 270 is coupled to the central processing module 250 via a cable 310.
  • the electronic display module 280 is disposed on the central processing module 250.
  • the water temperature detecting module 270 is further provided with a sealing member 320 and a lock nut 330 for conveniently connecting the water temperature detecting module 270 into the water outlet channel of the faucet control module 290.
  • the water temperature detecting module 270 is a temperature sensor
  • the electronic display module 280 is an LCD liquid crystal screen. It can be understood that in other embodiments, the water temperature detecting module 270 can also be any other device similar in function to the temperature sensor, and the electronic display module 280 can also be replaced with an LED display.
  • the faucet control module 290 includes a valve body 292, a water mixing control spool 294, and a water distribution spool 296. Specifically, the water mixing control spool 294 and the water dividing spool 296 are respectively mounted on the valve body 292.
  • the water mixing control spool 294 is used to control the temperature and flow rate of the water flowing out of the faucet, and the water dividing spool 296 is used to switch between the two or more outlet channels.
  • the water outlet channels of the faucet are two or more, so it is necessary to increase the matching water distribution valve core 296 to switch between the water outlet channels.
  • the water outlet channel of the faucet control module 290 is one, and the faucet control module 290 does not need to perform the water outlet channel switching, then the faucet control module 290 does not need a water distribution valve core, only the valve body and Mixed water control spool.
  • the water mixing control spool 294 in the faucet control module 290 is a ceramic core mixing valve.
  • the ceramic core mixing valve is a pressure balanced valve core.
  • the pressure balanced spool is a special mechanical device that senses the pressure of the hot and cold water inlet passage and automatically compensates for the pressure to stabilize the temperature of the mixed water.
  • the pressure balance spool can automatically adjust the sudden change of the hot and cold water pressure during the process of using the faucet, effectively avoiding the user being burnt by the hot water that is instantaneously ejected.
  • the hot water in the hot water pipe of the water supply system is connected to the hot water inlet joint 242 in the heat conducting module 240, and flows into the hot water inlet channel of the valve body 292 through the hot water outlet joint 244, and simultaneously in the cold water pipe of the water supply system.
  • the cold water is connected to the cold water inlet joint 232 in the heat dissipation module 230, and flows out through the cold water outlet joint 234 into the cold water inlet passage of the valve body 292, and the hot water flows through the hot water flow passage 246 in the heat conduction module 240.
  • the heat is conducted to the hot end electrode 222 of the thermoelectric power generation module 220, and the heat dissipating module 230 carries the heat on the cold end electrode 224 of the thermoelectric power generation module 220 through the cold water.
  • the central processing module 250 starts to operate, and the temperatures of the cold water and the hot water are respectively transmitted to the thermoelectric power generation module 220 to form a temperature difference to generate a temperature difference electromotive force.
  • the obtained electromotive force (voltage) is connected to the power source boosting module 260 for boosting processing, a stable driving current can be formed.
  • the central processing module 250 displays the water temperature value returned by the temperature detecting module 270 built into the water outlet channel of the faucet control module 290 and is displayed on the electronic display module 280.
  • the user performs feedback adjustment based on the water temperature value displayed by the electronic display module 280. For example, if the water temperature value displayed by the electronic display module 280 is 60 degrees Celsius and the water temperature required by the user is about 40 degrees Celsius, the user can adjust the water mixing control valve 294 to reduce the flow rate of the hot water, and increase the flow rate of the cold water to control the faucet. The temperature of the water flowing out.
  • the central processing module 250 automatically switches to the rechargeable battery 210 to supply power.
  • the central processing module 250 automatically switches to the thermoelectric power generation module 220 to directly supply power and simultaneously charges the rechargeable battery 210.
  • the central processing module 250 circuit controls the electronic display module 280 to turn off or enter the low power consumption mode, and the thermoelectric power generation module 220 continues to charge the rechargeable battery 210 by using the temperature difference between the heat conduction module 240 and the heat dissipation module 230 until the temperature difference power generation module 220 No current is generated and the central processing module 250 stops operating.
  • a faucet including the faucet temperature adjustment device described above.
  • the faucet can be installed in the bathroom for precise water temperature control of the shower or bath.
  • the assembly drawing of the faucet is shown in Figure 8.
  • thermoelectric power generation module is located between the heat conducting module and the heat dissipating module, and is configured to generate an electromotive force according to a temperature difference between the heat conducting module and the heat dissipating module to supply power, without frequently The battery is replaced to supply power.
  • the electronic display module can accurately display the temperature value of the water, and the user can accurately control the temperature of the water through the faucet control module.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Domestic Plumbing Installations (AREA)

Abstract

一种水龙头温度调节装置,包括水龙头控制模组(290)、温差发电模块(220)、导热模块(240)、散热模块(230)、水温检测模块(270)、电源升压模块(260)、中央处理模块(250)以及电子显示模块(280)。水龙头控制模组(290)用于调节流经散热模块(230)中的冷水的流量和流经导热模块(240)中的热水的流量以控制水龙头流出的水的温度。温差发电模块(220)用于根据导热模块(240)与散热模块(230)之间的温度差产生电动势。电源升压模块(260)用于将温差发电模块(220)输出的电压作升压处理。水温检测模块(270)用于将水龙头流出的水的温度值传送给中央处理模块(250)。中央处理模块(250)用于驱动电子显示模块(280)显示所述温度值。还提供一种带有温度调节装置的水龙头。

Description

水龙头温度调节装置及水龙头
【技术领域】
本发明涉及水龙头领域,尤其涉及一种水龙头温度调节装置及水龙头。
【背景技术】
水龙头的温度调节装置一般由水龙头控制模组、驱动电源、电子显示屏、温度传感器和控制电路组成。当开启水龙头有水流出时,控制电路开始工作,温度传感器与流出的水接触以将探测到的水温值传到控制电路,控制电路驱动电子显示屏将水温的温度值显示出来。显示水龙头中流出来的水的温度,可有效降低老人、小孩被热水烫伤的概率。
然而,现有的水龙头的温度调节装置一般采用电池或涡轮式微型水力发电电机进行供电,对于电池供电模式需要频繁更换电池,而涡轮式水力发电电机易受外界使用条件影响,寿命短、稳定性差、维护困难,且还不能完全避免用户在使用过程中水压突然变化造成的水温急剧升高灼伤用户。
【发明内容】
有鉴于此,有必要提供一种无需频繁更换电池的水龙头温度调节装置及水龙头。
一种水龙头温度调节装置,包括水龙头控制模组、温差发电模块、导热模块、散热模块、水温检测模块、电源升压模块、中央处理模块以及电子显示模块;所述水龙头控制模组用于调节流经所述散热模块中的冷水的流量和流经所述导热模块中的热水的流量以控制水龙头流出的水的温度,所述水龙头控制模组包括多个出水通道;所述温差发电模块位于所述导热模块与所述散热模块之间,用于根据导热模块与散热模块之间的温度差产生电动势;所述电源升压模块的输入端接所述温差发电模块的电源输出端,所述电源升压模块的输出端接所述中央处理模块,用于将所述温差发电模块输出的电压作升压处理;所述水温检测模块内置在所述水龙头控制模组的出水通道中,用于检测水龙头流出的水的温度值并传送给所述中央处理模块;所述中央处理模块用于驱动所述电子显示模块显示所述温度值。
一种水龙头,包括上述的水龙头温度调节装置。
上述水龙头温度调节装置及水龙头,所述温差发电模块位于所述导热模块与所述散热模块之间,用于根据导热模块与散热模块之间的温度差产生电动势来进行供电,而不需要频繁地更换电池来进行供电;另外,该电子显示模块可以精确地显示水的温度值,用户通过水龙头控制模组就能精确地控制水的温度。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为一实施例中水龙头温度调节装置的模块图;
图2为一实施例中水龙头温度调节装置的立体图;
图3为图2所示实施例中水龙头温度调节装置的爆炸图;
图4为一实施例中导热模块的纵切图;
图5为一实施例中导热模块的横切图;
图6为一实施例中导热模块与散热模块的装配图;
图7为一实施例中水龙头温度调节装置的装配图;以及
图8为一实施例中水龙头的装配图。
【具体实施方式】
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参照图1,一实施例的水龙头温度调节装置200包括温差发电模块220、导热模块240、散热模块230、水温检测模块270、电源升压模块260、中央处理模块250、电子显示模块280以及水龙头控制模组290。
温差发电模块220位于导热模块240与散热模块230之间,用于根据导热模块240与散热模块230之间的温度差产生电动势。电源升压模块260的输入端接温差发电模块220的电源输出端,电源升压模块260的输出端接中央处理模块250。水温检测模块270内置在水龙头控制模组290的出水通道中,用于检测水龙头流出的水的温度值并将该温度值传送给中央处理模块250。中央处理模块250用于根据所述检测到的水的温度值通过电子显示模块280显示出来。
具体请结合图2和图3,水龙头温度调节装置200还包括充电电池210,充电电池210作为后备电源用于分别与电源升压模块260、中央处理模块250连接。具体地,电源升压模块260和充电电池210并联后与中央处理模块250连接,从而实现了温差发电模块220和充电电池210的双电源冗余供电。
温差发电模块220包括热端电极222和冷端电极224,热端电极222与导热模块240连接,冷端电极224与散热模块230连接。在本实施例中,温差发电模块220为1片包括热端电极222和冷端电极224的半导体温差发电芯片。可以理解,在其他实施例中,根据中央处理模块250的实际工作功耗的要求,还可以采用两片以上的半导体温差发电芯片,其中两片以上的半导体温差发电芯片通过串联或并联的方式连接。比如,要求较大功率输出时,就可以采用多片半导体温差发电芯片。
散热模块230采用冷水散热的方式,包括冷水进水接头232、冷水出水接头234以及冷水通道236(具体内部结构与图4、图5中的热水通道246相同),冷水进水接头232用于连接供水系统中的冷水供水管,冷水流过冷水通道236后经冷水出水接头234进入水龙头控制模组290的冷水进水通道中。散热模块230的表面设有导热媒介238,用于与温差发电模块220贴合。在本实施例中,导热媒介238为导热硅脂。
导热模块240包括热水进水接头242、热水出水接头244、热水通道246(图4、5中有示出)以及导热媒介238,热水进水接头242用于连接供水系统中的热水供水管,热水流过热水通道246后经热水出水接头244进入水龙头控制模组290的热水进水通道中,导热模块240的表面设有导热媒介(图未示),用于与温差发电模块220贴合。在本实施例中,所述导热媒介为导热硅脂。
在本实施例中,散热模块230和导热模块240全部或部分采用一种及一种以上的高热导率的材料制成。
可以理解,在其他实施例中散热模块230还可以采用空气散热的方式替代。导热模块240和散热模块230的装配图可参照图6。导热模块240和散热模块230上两侧对应的位置都设置有带有通孔的固定耳248,装配时,利用固定螺丝穿进固定耳248中的通孔,将温差发电模块220压紧在导热模块240和散热模块230之间。
中央处理模块250包括可编程的单片机,当水温检测模块270将水龙头混合水的温度值传送到所述单片机时,所述单片机的内部程序驱动电子显示模块280显示探测到的水的温度。可以理解,在其他实施例中,中央处理模块250还可以采用数字及模拟电路来替代本实施例中的单片机对电子显示模块280进行控制。
电源升压模块260的输入端接温差发电模块220的电源输出端,电源升压模块260的输出端接中央处理模块250。在本实施例中,电源升压模块260采用模拟电子电路将温差发电模块220输出的电压作升压处理。可以理解,在其他实施例,当温差发电模块220采用多片半导体温差发电芯片进行串联或直接采用单片高压输出的半导体温差发电芯片时,则电源升压模块260可省略。
水温检测模块270通过线缆310与中央处理模块250连接。电子显示模块280置于中央处理模块250上,在水温检测模块270上还设有密封件320和锁紧螺母330,方便将水温检测模块270无缝接入水龙头控制模组290的出水通道中。
在本实施例中,水温检测模块270为温度传感器,电子显示模块280为LCD液晶屏。可以理解,在其他实施例中,水温检测模块270还可以为与温度传感器功能相似的其他任意器件,电子显示模块280还可以采用LED显示屏来替代。
水龙头控制模组290包括阀体292、混水控制阀芯294和分水阀芯296。具体地,混水控制阀芯294和分水阀芯296分别安装在阀体292上。混水控制阀芯294用于控制水龙头流出的水的温度和流量,分水阀芯296用于实现两路以上的出水通道之间的切换。在本实施例中,水龙头的出水通道为两个以上,所以需要增加相匹配的分水阀芯296进行出水通道之间的切换。
可以理解,在其他实施例中,水龙头控制模组290的出水通道为一个,水龙头控制模组290无需进行出水通道切换,那么水龙头控制模组290就不需要分水阀芯,只包括阀体和混水控制阀芯。
在一个实施例中,水龙头控制模组290中的混水控制阀芯294为陶瓷芯混水阀。进一步地,所述陶瓷芯混水阀为压力平衡阀芯。压力平衡阀芯是一种通过感应冷热水进水通道的压力,并对所述压力做出自动补偿以稳定混合出水温度的一种特殊机械装置。压力平衡阀芯可以在使用水龙头的过程中对冷热水压力的突然变化自动做出快速调节,有效避免用户被瞬间喷出的高温热水烫伤。
上述水龙头温度调节装置200的装配图具体可参照图7。
请再次参阅图3,以说明该水龙头温度调节装置200的工作原理:
将供水系统热水管中的热水接入导热模块240中的热水进水接头242,并通过热水出水接头244流入阀体292的热水进水通道中,同时将供水系统冷水管中的冷水接入散热模块230中的冷水进水接头232,并通过冷水出水接头234流出接入阀体292的冷水进水通道中,热水流经导热模块240中的热水流通道246后将热量传导到温差发电模块220的热端电极222上,散热模块230将温差发电模块220的冷端电极224上的热量通过冷水带走。当开启水龙头后,中央处理模块250开始工作,冷水和热水的温度分别传递到温差发电模块220形成温度差从而产生温差电动势。将所获得的电动势(电压)连接电源升压模块260进行升压处理后,即可形成稳定的驱动电流。中央处理模块250根据内置在水龙头控制模组290的出水通道中的温度检测模块270传回的水温值并通过在电子显示模块280显示出来。
另一方面,用户根据电子显示模块280显示的水温值进行反馈式调节。例如,若电子显示模块280显示的水温值为60摄氏度,而用户需要的水温为40摄氏度左右,那么用户就可以调节混水控制阀294将热水的流量调小,冷水流量调大来控制水龙头流出的水的温度。
进一步地,由于采用了并联后备充电电池210的方式来实现双电源冗余供电电路,当温差发电模块220短时间内无充足电能产生时,中央处理模块250会自动切换到充电电池210供电,一旦温差发电模块220产生充足电能时,中央处理模块250自动切换到温差发电模块220直接供电并同时给充电电池210充电。当关闭水龙头时,中央处理模块250电路控制电子显示模块280关闭或者进入低功耗模式,温差发电模块220利用导热模块240和散热模块230余热的温差继续为充电电池210充电,直到温差发电模块220无电流产生,中央处理模块250停止工作。
另外,在一个实施例中还提供一种水龙头,包括上述的水龙头温度调节装置。该水龙头可安装于浴室以实现精确水温控制的淋浴或坐浴等。水龙头的装配图如图8所示。
上述水龙头温度调节装置及水龙头,所述温差发电模块位于所述导热模块与所述散热模块之间,用于根据导热模块与散热模块之间的温度差产生电动势来进行供电,而不需要频繁地更换电池来进行供电;另外,该电子显示模块可以精确地显示水的温度值,用户通过水龙头控制模组就能精确地控制水的温度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种水龙头温度调节装置,其特征在于,包括水龙头控制模组、温差发电模块、导热模块、散热模块、水温检测模块、电源升压模块、中央处理模块以及电子显示模块;
    所述水龙头控制模组用于调节流经所述散热模块中的冷水的流量和流经所述导热模块中的热水的流量以控制水龙头流出的水的温度,所述水龙头控制模组包括1路以上的出水通道;
    所述温差发电模块位于所述导热模块与所述散热模块之间,用于根据导热模块与散热模块之间的温度差产生电动势;
    所述电源升压模块的输入端连接所述温差发电模块的电源输出端,所述电源升压模块的输出端连接所述中央处理模块,用于将所述温差发电模块输出的电压作升压处理;
    所述水温检测模块内置于所述水龙头控制模组的出水通道中,用于检测水龙头流出的水的温度值并传送给所述中央处理模块;
    所述中央处理模块用于驱动所述电子显示模块显示所述温度值。
  2. 根据权利要求1所述的水龙头温度调节装置,其特征在于,所述水龙头控制模组包括混水控制阀芯、分水阀芯和阀体,所述混水控制阀芯和所述分水阀芯安装在所述阀体上,所述混水控制阀芯用于控制水龙头流出的水的温度和流量,所述分水阀芯用于实现两路以上的出水通道之间的切换。
  3. 根据权利要求1所述的水龙头温度调节装置,其特征在于,所述混水控制阀芯为陶瓷芯混水阀。
  4. 根据权利要求1所述的水龙头温度调节装置,其特征在于,所述温差发电模块包括热端电极和冷端电极,所述热端电极与所述导热模块连接,所述冷端电极与所述散热模块连接。
  5. 根据权利要求1所述的水龙头温度调节装置,其特征在于,所述导热模块包括热水进水接头、热水出水接头、热水通道以及导热媒介,所述热水进水接头用于连接热水供水管,热水流过所述热水通道后经所述热水出水接头进入所述水龙头控制模组的热水进水通道中,所述导热媒介位于导热模块的表面,用于与所述温差发电模块贴合。
  6. 根据权利要求1所述的水龙头温度调节装置,其特征在于,所述散热模块包括冷水进水接头、冷水出水接头以及冷水通道以及导热媒介,所述冷水进水接头用于连接冷水供水管,冷水流过所述冷水通道后经所述冷水出水接头进入所述水龙头控制模组的冷水进水通道中,所述导热媒介位于散热模块的表面,用于与所述温差发电模块贴合。
  7. 根据权利要求1所述的水龙头温度调节装置,其特征在于,所述电子显示模块为LCD液晶屏或LED显示屏。
  8. 根据权利要求1所述的水龙头温度调节装置,其特征在于,所述温差发电模块包括1片以上的半导体温差发电芯片;其中,两片以上的半导体温差发电芯片通过串联或并联的方式连接。
  9. 根据权利要求1所述的水龙头温度调节装置,其特征在于,还包括充电电池,所述充电电池分别与所述电源升压模块、中央处理模块连接。
  10. 一种水龙头,其特征在于,包括权利要求1~9中任一项所述的水龙头温度调节装置。
PCT/CN2015/095441 2015-07-24 2015-11-24 水龙头温度调节装置及水龙头 WO2017016112A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510444633.6 2015-07-24
CN201510444633.6A CN106369216A (zh) 2015-07-24 2015-07-24 水龙头温度调节装置及水龙头

Publications (1)

Publication Number Publication Date
WO2017016112A1 true WO2017016112A1 (zh) 2017-02-02

Family

ID=57880578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095441 WO2017016112A1 (zh) 2015-07-24 2015-11-24 水龙头温度调节装置及水龙头

Country Status (2)

Country Link
CN (1) CN106369216A (zh)
WO (1) WO2017016112A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237119A (zh) * 2018-10-30 2019-01-18 江门市凤盈卫浴科技有限公司 一种led数字显示温度水龙头
EP4286612A1 (de) * 2022-06-02 2023-12-06 Ideal Standard International NV Sanitärinstallation mit thermoelektrischer vorrichtung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106910816A (zh) * 2017-03-21 2017-06-30 厦门英仕卫浴有限公司 高效全接触式水热发电装置及其水热发电淋浴器
CN111736645A (zh) * 2020-06-24 2020-10-02 大唐东北电力试验研究院有限公司 一种负压吸附式温度湿度自动调节装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102638A (ja) * 2001-10-01 2003-04-08 Inax Corp 浴 室
CN102853109A (zh) * 2012-08-17 2013-01-02 苏州启智机电技术有限公司 示温水龙头
CN103904939A (zh) * 2012-12-28 2014-07-02 上海科勒电子科技有限公司 一种用于自动水龙头的温差发电系统
CN204459292U (zh) * 2015-02-09 2015-07-08 九牧厨卫股份有限公司 一种新型淋浴龙头
CN204942733U (zh) * 2015-07-24 2016-01-06 深圳市雅恩卫浴洁具有限公司 水龙头温度调节装置及水龙头

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2452048Y (zh) * 2000-09-07 2001-10-03 黄明 电子感应全自动微电脑冷热水混合调温恒温控制器
JP2003119846A (ja) * 2001-10-16 2003-04-23 Inax Corp 給水設備
CN101267014A (zh) * 2007-03-12 2008-09-17 五邑大学 一种集制冷制热及温差发电功能的温差半导体模块
CN203477542U (zh) * 2013-09-16 2014-03-12 杭州休普电子技术有限公司 无源控温水龙头
CN204420269U (zh) * 2014-11-19 2015-06-24 尹伟 一种温差自发电数码电子水龙头
CN204554025U (zh) * 2015-01-09 2015-08-12 连云港明哲信息科技有限公司 一种带使用温差发电显示温度功能的水龙头

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003102638A (ja) * 2001-10-01 2003-04-08 Inax Corp 浴 室
CN102853109A (zh) * 2012-08-17 2013-01-02 苏州启智机电技术有限公司 示温水龙头
CN103904939A (zh) * 2012-12-28 2014-07-02 上海科勒电子科技有限公司 一种用于自动水龙头的温差发电系统
CN204459292U (zh) * 2015-02-09 2015-07-08 九牧厨卫股份有限公司 一种新型淋浴龙头
CN204942733U (zh) * 2015-07-24 2016-01-06 深圳市雅恩卫浴洁具有限公司 水龙头温度调节装置及水龙头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109237119A (zh) * 2018-10-30 2019-01-18 江门市凤盈卫浴科技有限公司 一种led数字显示温度水龙头
EP4286612A1 (de) * 2022-06-02 2023-12-06 Ideal Standard International NV Sanitärinstallation mit thermoelektrischer vorrichtung

Also Published As

Publication number Publication date
CN106369216A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2017016112A1 (zh) 水龙头温度调节装置及水龙头
TWI544320B (zh) 具有雙電池之可拆卸計算系統
CN102709616A (zh) 一种电池模块的分布式热管理系统
ITMI20040079U1 (it) Perfezionamenti alle pompe di calore termoelettriche
CN102306903A (zh) 一种数字式大功率半导体激光电源
TWI387180B (zh) 可攜式電子裝置的電源切換電路
TW201537911A (zh) 乙太網供電設備
CN204942733U (zh) 水龙头温度调节装置及水龙头
CN203379209U (zh) 激光治疗设备
WO2019201085A1 (zh) 一种电池管理装置和移动终端
TWI699069B (zh) 手持裝置之電源系統
CN207096756U (zh) 一种智能恒温电动自行车座
CN105680113B (zh) 电动汽车动力电池温度管理控制系统
CN101799335A (zh) 基于ZigBee技术的无线热计量表
CN205564917U (zh) 电动汽车动力电池温度管理控制系统
CN206595293U (zh) 高效全接触式水热发电装置及其水热发电淋浴器
CN105827103A (zh) 一种预防冲击电流的电路和供电电源
CN201555393U (zh) 微型控温用温差电致冷器
CN107160664A (zh) 节能热弯机的加热结构及节能热弯机
TWM481536U (zh) 具順序充/放電模式的擴充模組及充/放電裝置
CN218104899U (zh) 基于半导体温差制冷的烟具表面温度控制装置
CN209115723U (zh) 一种利用温差发电的带数显装置的一体化恒温淋浴龙头
CN103209270A (zh) 医用通讯呼叫设备主机
CN213658906U (zh) 一种用于SLD和pump-LD光源驱动电路的性能检查装置
CN202587409U (zh) 不规则加热器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/05/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15899464

Country of ref document: EP

Kind code of ref document: A1