WO2017016096A1 - 一种新型垂直起降飞行器及其控制方法 - Google Patents

一种新型垂直起降飞行器及其控制方法 Download PDF

Info

Publication number
WO2017016096A1
WO2017016096A1 PCT/CN2015/093829 CN2015093829W WO2017016096A1 WO 2017016096 A1 WO2017016096 A1 WO 2017016096A1 CN 2015093829 W CN2015093829 W CN 2015093829W WO 2017016096 A1 WO2017016096 A1 WO 2017016096A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
wing
ducted fan
fan system
fuselage
Prior art date
Application number
PCT/CN2015/093829
Other languages
English (en)
French (fr)
Inventor
李忠泽
何旭东
Original Assignee
江阴市翔诺电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴市翔诺电子科技有限公司 filed Critical 江阴市翔诺电子科技有限公司
Publication of WO2017016096A1 publication Critical patent/WO2017016096A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/28Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded

Definitions

  • the invention relates to the field of aviation models, in particular to a novel vertical take-off and landing aircraft and a control method thereof.
  • the structure has a large weight. Due to the large number of structural couplings, in order to ensure the structural strength, the components are made coarse, which reduces the possibility of weight reduction.
  • the present invention solves the above problems, and provides a novel vertical hoisting and landing aircraft and a control method thereof that adopt a completely new structure, can greatly simplify the structure of the main rotor, reduce weight, reduce cost, save energy, and extend endurance.
  • a novel vertical hoisting and landing aircraft characterized by comprising an aircraft body, the aircraft body comprising a fuselage, at least one pair of wings and a tail wing, and two or two symmetrically arranged on the wing of the aircraft
  • the above tiltable spiral wing is provided with a small ducted fan system perpendicular to the fuselage on the horizontal axis of the aircraft from the horizontal axis to the rear, behind the wing, near the tail of the aircraft, the center of gravity of the aircraft
  • the propeller drive structure of the tiltable helical wing employs a fixed-wing propeller drive structure.
  • the aircraft comprises a pair of wings symmetrically disposed on the fuselage and two tiltable helical wings, the two tilting helical wings being respectively disposed at the wing tips of the two wings, the aircraft
  • the center of gravity is set between the intersection of the two tiltable helical wings and the horizontal axis of the fuselage and the point of the ducted fan system on the horizontal axis of the fuselage.
  • the ducted fan system is concealed within the body structure and does not create excessive air resistance during level flight.
  • the ducted fan system is coupled to the main power system and control system of the aircraft, and the main control system controls its switching and speed adjustment.
  • the invention also provides a control method for the above novel vertical take-off and landing aircraft, and the technical solution is as follows:
  • the control method of the above novel vertical take-off and landing aircraft is controlled by an operating system disposed inside the aircraft body:
  • the tilting rotor When the aircraft takes off vertically, the tilting rotor is controlled to be vertically fixed upward with the ground, opened to generate lift, and the ducted fan system is opened to generate an upward force;
  • the tiltable spiral wing When the aircraft is switched from vertical take-off to level flight, the tiltable spiral wing is turned horizontally forward from the ground. During this switching process, the fan speed of the ducted fan system is increased, so that the center of gravity of the aircraft is balanced and the aircraft is realized.
  • the regulation standard of the fan speed of the ducted fan system is based on the balance between the lift generated by the tiltable spiral wing and the lift generated by the ducted fan system and the gravity of the aircraft; that is, in this process, only It is necessary to manipulate the system to change the size of the rotor's ascending force and the lift of the ducted fan without changing the direction of the rotor's lift tilt, that is, the design of the variable pitch structure on the main rotor is omitted, so that the main rotor only uses the fixed-wing propeller.
  • the driving structure can be simplified, simplifies the structure in the prior art, is convenient for maintenance, is light in weight, and saves energy;
  • the tiltable spiral wing When the aircraft is flying flat, the tiltable spiral wing is fixed horizontally forward to generate forward thrust, and the ducted fan system is closed, so that the aircraft can rely on the wing to generate lift as the fixed-wing propeller aircraft;
  • the tilting spiral wing turns from the horizontal forward to the vertical upward.
  • the ducted fan system starts to start and adjusts the speed through the control system.
  • the tilting helical wing When the aircraft is hovering, the tilting helical wing is fixed upwardly to generate lift, and the ducted fan system is opened to generate an upward force.
  • the invention has the beneficial effects that the invention is ingeniously designed, and a small ducted fan system is added at the tail of the fuselage, and the center of gravity of the aircraft is moved to the middle of several power systems of the tilting wing, that is, the main rotor and the tail ducted fan system.
  • the power supply and stability of the aircraft can be changed, so that While ensuring excellent balance, the main rotor structure can be simplified compared to the previous complex variable pitch structure, thereby simplifying the simplification of the main rotor structure, and the conventional simplest fixed-wing propeller driving structure can be used; In this case, only the rotational speed of the main rotor needs to be adjusted to achieve stable control on the lateral side of the model, and the pitch control is realized by the rotational speed of the tail culvert fan. This has greatly simplified the structural complexity and weight of the main rotor and reduced the cost.
  • the ducted fan system can also be cleverly concealed in the body structure, and does not generate excessive air resistance during level flight; after switching to horizontal flight, the tail ducted fan system can be closed by the control system, and thus Does not consume extra energy.
  • control method of the invention is specially and skillfully matched with the design of the invention, fully utilizing the setting of the ducted fan system and the resetting of the center of gravity, and the main rotor based on the simplest common structure perfectly utilizes the mechanical balance principle to realize the high stability of the aircraft.
  • the problem of flying and the most rational use of energy is extremely practical and worth promoting.
  • This invention is not limited to the Osprey simulation remote control model. It is also applicable to the same control scheme with two main propellers plus one ducted fan system. It has the leading structural performance advantage in today's vertical takeoff and landing aircraft design. And has a broad practical application prospects.
  • FIG. 1 is a perspective view showing a three-dimensional structure of an aircraft in a state of flying in an embodiment of the present invention
  • FIG. 2 is a schematic front view showing the structure of the aircraft in a state of flying in an embodiment of the present invention
  • FIG. 3 is a perspective view showing a three-dimensional structure of an aircraft in a vertical take-off state according to an embodiment of the present invention
  • FIG. 4 is a schematic front view showing the structure of the aircraft in a vertical take-off state according to an embodiment of the present invention
  • a novel vertical take-off and landing aircraft as shown in FIGS. 1-4 characterized in that it comprises an aircraft body 1 comprising a fuselage 2, a pair of wings 3 and a tail 4 on the aircraft Machine
  • an aircraft body 1 comprising a fuselage 2, a pair of wings 3 and a tail 4 on the aircraft Machine
  • two tilting helical wings 5 are symmetrically arranged, on the horizontal axis of the aircraft body 2 from the rear, behind the wing 3, near the center of the aircraft tail 4, perpendicular to the fuselage
  • a small ducted fan system 6 is provided, the center of gravity of which is set at the intersection of the line connecting the two tiltable helical wings 5 with the horizontal axis of the fuselage and the point of the ducted fan system 6 on the horizontal axis of the fuselage Between these two points is located above the horizontal axis of the fuselage 2, and the propeller driving structure of the tilting helical wing 5 employs a fixed-wing propeller driving structure.
  • the ducted fan system 6 is concealed within the body structure and does not generate excessive air resistance during level flight.
  • the ducted fan system 6 is connected to the main power system and control system of the aircraft, and the main control system controls its switching and speed adjustment.
  • the control method of the above novel vertical take-off and landing aircraft is controlled by an operating system disposed inside the aircraft body:
  • the tilting rotor 5 When the aircraft takes off vertically, the tilting rotor 5 is controlled to be vertically fixed upward with the ground, open to generate lift, and the ducted fan system 6 is opened to generate an upward force, that is, take off vertically like a helicopter, and the aircraft takes off vertically.
  • the front view in the state is shown in Figure 2;
  • the tiltable spiral wing 5 When the aircraft is switched from vertical take-off to level flight, the tiltable spiral wing 5 is turned horizontally forward from the ground. During this switching process, the fan speed of the ducted fan system 6 is increased, so that the center of gravity of the aircraft is balanced.
  • the pitch control of the aircraft, the adjustment criterion of the speed of the ducted fan system fan 6 is based on the balance between the lift generated by the tiltable spiral wing 5 and the lift generated by the ducted fan system 6 and the gravity of the aircraft; that is, In this process, only the operating system needs to change the magnitude of the tilting force of the tilting rotor and the lift of the ducted fan, without changing the direction of the tilting of the tilting of the tilting helix, ie eliminating the need in the prior art.
  • the design of the variable pitch structure on the main rotor makes the main rotor only adopt the conventional fixed-wing propeller driving structure, which simplifies the structure in the prior art. For maintenance, light weight and energy saving;
  • the tiltable spiral wing 5 When the aircraft is flying flat, the tiltable spiral wing 5 is fixed horizontally forward to generate forward thrust, and the ducted fan system 6 is closed, so that the aircraft can rely on the wing to generate lift flying like a fixed-wing propeller aircraft;
  • the tilting rotor 5 When the aircraft needs to be raised or lowered from the leveling to the vertical takeoff and landing, the tilting rotor 5 is turned from the horizontal forward to the vertical upward. During the switching process, the ducted fan system 6 starts to start and passes through the control system. Adjusting the rotational speed to maintain the stability of the pitch attitude of the fuselage, when it is required to fall, by simultaneously reducing the thrust of the tiltable helical wing 5 propeller and the ducted fan system;
  • the tilting helical wing 5 When the aircraft is hovering, the tilting helical wing 5 is fixed upwardly to generate lift, and the ducted fan system is opened to generate an upward force.
  • the invention is ingeniously designed, adding a small ducted fan system at the rear of the fuselage, and moving the center of gravity of the aircraft to the middle of the tiltable wing 5, that is, the main rotor and the tail fan, respectively, due to the setting of the ducted fan system and
  • the resetting of the center of gravity in the prior art, the center of gravity of the aircraft is in a straight line or close to the main rotor of the aircraft
  • the power supply and stability of the aircraft can be changed, so that while ensuring excellent balance, the main
  • the rotor structure can be simplified compared with the previous complicated variable pitch structure, thereby simplifying the simplification of the main rotor structure, and the conventional simplest fixed-wing propeller driving structure can be used.
  • the stability control of the lateral side of the model is realized, and the pitch control is realized by the rotational speed of the tail duct fan.
  • the benefits of this greatly simplify the structural complexity and weight of the main rotor, reduce the cost, save energy, and extend the life time. At the same time, it improves the stability of the flight of the product, and is easy to maintain, safe and reliable; the ducted fan system can also Cleverly hidden within the body structure, without excessive air resistance in level flight; after switching to the horizontal flight, the tail of the ducted fan by the control system can turn off the system, so that no additional energy is consumed.
  • This invention is not limited to the Osprey simulation remote control model. It is also applicable to the same control scheme with two main propellers plus one ducted fan system. It has the leading structural performance advantage in today's vertical takeoff and landing aircraft design. And has a broad practical application prospects.
  • the invention is not limited to the specific embodiments described above.
  • the invention extends to any new feature or any new combination disclosed in this specification, as well as any novel method or process steps or any new combination disclosed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Toys (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种新型垂直起降飞行器及其控制方法,所述飞行器包含飞行器本体(1),所述飞行器本体(1)上包含机身(2)、至少一对机翼(3)和尾翼(4),在所述飞行器的机翼(3)上,对称设有两个或两个以上可倾转螺旋翼(5),在飞行器的机身(2)从前往后的水平轴线上,在机翼(3)之后、靠近飞行器尾翼(4)的中央,垂直于机身(2)设置有一个小型的涵道风扇系统(6),所述飞行器的重心设置于可倾转螺旋翼(5)与涵道风扇系统(6)这几个动力系统之间并位于机身(2)水平轴线之上,所述可倾转螺旋翼(5)的螺旋桨驱动结构采用固定翼的螺旋桨驱动结构。因为涵道风扇系统的设置和重心的重新设置,使得主旋翼结构可以进行简化,降低了结构复杂性、重量和成本,同时提高了产品飞行的稳定性,动力稳定,安全可靠。

Description

一种新型垂直起降飞行器及其控制方法 技术领域
本发明涉及航空模型领域,尤其是涉及一种新型垂直起降飞行器及其控制方法。
背景技术
现有的垂直起降并具备水平固定翼飞行模式的飞机的结构,如美国的鱼鹰运输机,其在垂直起飞模式下的俯仰控制是采用两个主旋翼上的变螺距结构实现的,其基本原理和现有的直升机是完全一样的,并没有任何的技术上的创新,这种结构虽然能有效控制俯仰,但是有以下明显的缺点:
1结构过于复杂,加工精度要求高,不便于维护。
2结构重量大,由于结构联接件多,为了保证结构强度必然将部件做得很粗大,从而降低了减重的可能性。
发明内容
本发明为解决以上问题,为此提供了一种采用全新结构的能大大简化主旋翼的结构、降低重量、降低成本、节能、可延长续航能力的新型垂直起降飞行器及其控制方法。
为实现以上目的,本发明的技术方案如下:
一种新型垂直起降飞行器,其特征在于,包含飞行器本体,所述飞行器本体上包含机身、至少一对机翼和尾翼,在所述飞行器的机翼上,对称设有两个或两个以上可倾转螺旋翼,在飞行器的机身从前往后的水平轴线上,在机翼之后、靠近飞行器尾翼的中央,垂直于机身设置有一个小型的涵道风扇系统,所述飞行器的重心设置于可倾转螺旋翼与涵道风扇系统这几个动力系统之间并 位于机身水平轴线之上,所述可倾转螺旋翼的螺旋桨驱动结构采用固定翼的螺旋桨驱动结构。
作为优选,所述飞行器包含一对对称设置在机身上的机翼和两个可倾转螺旋翼,所述两个可倾转螺旋翼分别设置在两个机翼的翼尖,所述飞行器的重心设置于两个可倾转螺旋翼的连线与机身水平轴线的交点与涵道风扇系统在机身水平轴线上的点这两点之间。
作为优选,所述涵道风扇系统隐藏在机体结构内,在平飞时不会产生过多的空气阻力。
作为优选,所述涵道风扇系统连接飞行器的主电力系统和控制系统,由主控制系统控制其开关和转速调节。
本发明还提供了上述新型垂直起降飞行器的控制方法,技术方案如下:
上述新型垂直起降飞行器的控制方法,由设置在飞行器本体内部的操作系统控制:
当飞行器垂直起飞时,控制可倾转螺旋翼与地面垂直固定朝上,开启,以产生升力,涵道风扇系统开启以产生向上的力;
当飞行器从垂直起飞向平飞切换时,可倾转螺旋翼由与地面垂直向上转向水平向前,在此切换过程中,涵道风扇系统的风扇转速提高,使得飞行器的重心得以平衡,实现飞行器的俯仰控制,所述涵道风扇系统风扇转速的调节标准以可倾转螺旋翼产生的升力同涵道风扇系统所产生的升力与飞行器重力之间相平衡为标准;即,在这个过程中,只需要操纵系统改变旋翼上升力的大小和涵道风扇的升力,而不需要改变旋翼升力倾斜的方向,即省去了在主旋翼上设置变螺距结构的设计,使得主旋翼只采用固定翼的螺旋桨驱动结构即可,简化了现有技术中的结构,利于维护,重量轻,节约能源;
当飞行器平飞时,可倾转螺旋翼固定水平朝前以产生向前的推力,涵道风扇系统关闭,使飞行器像固定翼螺旋桨飞机一样依靠机翼产生升力飞行;
当飞行器在平飞过程中出现横侧即左右方向不稳时,要实现飞行器的横侧稳定控制时,通过调整可倾转螺旋翼的转速实现;
当飞行器从平飞需要提高或降低高度向垂直起降切换时,可倾转螺旋翼由水平向前转向垂直向上,在此切换过程中,涵道风扇系统开始启动,并通过控制系统,调节转速来保持机身俯仰姿态的稳定,当需要降落时,通过同时合理的减小可倾转螺旋翼螺旋桨和涵道风扇系统的推力来实现;
当飞行器悬停时,可倾转螺旋翼方向固定朝上以产生升力,涵道风扇系统开启以产生向上的力。
本发明的有益效果是:本发明设计巧妙,在机身尾部增加一个小型的涵道风扇系统,并将飞行器重心移至可倾转机翼即主旋翼与尾部的涵道风扇系统几个动力系统中间,正因为涵道风扇系统的设置和重心的重新设置(现有技术中飞机的重心与飞机主旋翼在一条直线上或靠得很近),飞行器的动力提供和稳定的方式可发生改变,使得在保证优良的平衡性的同时,主旋翼结构可以较以前的复杂的变螺距结构简化,由此巧妙的实现主旋翼结构的简化,即可采用常规的最简单的固定翼的螺旋桨驱动结构;飞行时,只需要调整主旋翼的转速来实现模型横侧的稳定控制,而俯仰控制通过尾涵道风扇的转速来实现,这样做的好处大大简化了主旋翼的结构复杂性和重量,降低了成本,也节约能源,延长了续航时间,同时提高了产品飞行的稳定性,并且易于维护,安全性好;涵道风扇系统还可以巧妙的隐藏在机体结构内,在平飞时不会产生过多的空气阻力;在切换成水平飞行后,尾部的涵道风扇系统可以通过控制系统关闭,这样并不消耗额外的能量。
本发明的控制方法,特殊巧妙地配合了本发明的设计,充分应用涵道风扇系统的设置和重心的重新设置,基于最简单普通结构的主旋翼完美利用力学平衡原理实现了飞行器的高稳定性飞行和最合理使用能量的问题,实用性极强,值得推广。
此发明方案不局限鱼鹰仿真遥控模型,也同样适用于相同的含有两个主螺旋桨加一个涵道风扇系统的动力的控制方案,在当今垂直起降飞行器设计中,居有领先的结构性能优势,并具有广阔的实际应用前景。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1是本发明实施例的飞行器平飞状态下的立体结构示意图;
图2是本发明实施例的飞行器平飞状态下的前视结构示意图;
图3是本发明实施例的飞行器垂直起飞状态下的立体结构示意图;
图4是本发明实施例的飞行器垂直起飞状态下的前视结构示意图;
图中:1、飞行器本体;2、机身;3、机翼;4、尾翼;5、可倾转螺旋翼;6、涵道风扇系统。
具体实施方式
本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。
本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。
如图1-4所示的一种新型垂直起降飞行器,其特征在于,包含飞行器本体1,所述飞行器本体1上包含机身2、一对机翼3和尾翼4,在所述飞行器的机 翼3的翼尖上,对称设有两个可倾转螺旋翼5,在飞行器的机身2从前往后的水平轴线上,在机翼3之后、靠近飞行器尾翼4的中央,垂直于机身设置有一个小型的涵道风扇系统6,所述飞行器的重心设置于两个可倾转螺旋翼5的连线与机身水平轴线的交点与涵道风扇系统6在机身水平轴线上的点这两点之间并位于机身2水平轴线之上,所述可倾转螺旋翼5的螺旋桨驱动结构采用固定翼的螺旋桨驱动结构。
所述涵道风扇系统6隐藏在机体结构内,在平飞时不会产生过多的空气阻力。
所述涵道风扇系统6连接飞行器的主电力系统和控制系统,由主控制系统控制其开关和转速调节。
上述新型垂直起降飞行器的控制方法,由设置在飞行器本体内部的操作系统控制:
当飞行器垂直起飞时,控制可倾转螺旋翼5与地面垂直固定朝上,开启,以产生升力,涵道风扇系统6开启以产生向上的力,即像直升机一样垂直起飞,所述飞行器垂直起飞状态下的前视图如图2所示;
当飞行器从垂直起飞向平飞切换时,可倾转螺旋翼5由与地面垂直向上转向水平向前,在此切换过程中,涵道风扇系统6的风扇转速提高,使得飞行器的重心得以平衡,实现飞行器的俯仰控制,所述涵道风扇系统风扇6转速的调节标准以可倾转螺旋翼5产生的升力同涵道风扇系统6所产生的升力与飞行器重力之间相平衡为标准;即,在这个过程中,只需要操纵系统改变可倾转螺旋翼上升力的大小和涵道风扇的升力,而不需要改变可倾转螺旋翼升力倾斜的方向,即省去了现有技术中的需要在主旋翼上设置变螺距结构的设计,使得主旋翼只采用常规的固定翼的螺旋桨驱动结构即可,简化了现有技术中的结构,利 于维护,重量轻,节约能源;
当飞行器平飞时,可倾转螺旋翼5固定水平朝前以产生向前的推力,涵道风扇系统6关闭,使飞行器像固定翼螺旋桨飞机一样依靠机翼产生升力飞行;
当飞行器在平飞过程中出现横侧即左右方向不稳时,要实现飞行器的横侧稳定控制时,通过调整可倾转螺旋翼5的转速实现;
当飞行器从平飞需要提高或降低高度向垂直起降切换时,可倾转螺旋翼5由水平向前转向垂直向上,在此切换过程中,涵道风扇系统6开始启动,并通过控制系统,调节转速来保持机身俯仰姿态的稳定,当需要降落时,通过同时合理的减小可倾转螺旋翼5螺旋桨和涵道风扇系统的推力来实现;
当飞行器悬停时,可倾转螺旋翼5方向固定朝上以产生升力,涵道风扇系统开启以产生向上的力。
本发明设计巧妙,在机身尾部增加一个小型的涵道风扇系统,并将飞行器重心移至可倾转机翼5即主旋翼与尾风扇三个动力系统中间,正因为涵道风扇系统的设置和重心的重新设置(现有技术中飞机的重心与飞机主旋翼在一条直线上或靠得很近),飞行器的动力提供和稳定的方式可发生改变,使得在保证优良的平衡性的同时,主旋翼结构可以较以前的复杂的变螺距结构简化,由此巧妙的实现主旋翼结构的简化,即可采用常规的最简单的固定翼的螺旋桨驱动结构,飞行时,只需要调整主旋翼的转速来实现模型横侧的稳定控制,而俯仰控制通过尾涵道风扇的转速来实现,这样做的好处大大简化了主旋翼的结构复杂性和重量,降低了成本,也节约能源,延长了续航时间,同时提高了产品飞行的稳定性,并且易于维护,安全性好,可靠性高;涵道风扇系统还可以巧妙的隐藏在机体结构内,在平飞时不会产生过多的空气阻力;在切换成水平飞行后,尾部的涵道风扇系统可以通过控制系统关闭,这样并不消耗额外的能量。
这个方案经过实用化的仿真模型实际试飞,已经完全达到同样的飞行效果,证明了该发明的可行性。
此发明方案不局限鱼鹰仿真遥控模型,也同样适用于相同的含有两个主螺旋桨加一个涵道风扇系统的动力的控制方案,在当今垂直起降飞行器设计中,居有领先的结构性能优势,并具有广阔的实际应用前景。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (5)

  1. 一种新型垂直起降飞行器,其特征在于,包含飞行器本体(1),所述飞行器本体(1)上包含机身(2)、至少一对机翼(3)和尾翼(4),在所述飞行器的机翼(3)上,对称设有两个或两个以上可倾转螺旋翼(5),在飞行器的机身(2)从前往后的水平轴线上,在机翼(3)之后、靠近飞行器尾翼(4)的中央,垂直于机身设置有一个小型的涵道风扇系统(6),所述飞行器的重心设置于可倾转螺旋翼(5)与涵道风扇系统(6)这几个动力系统之间并位于机身(2)水平轴线之上,所述可倾转螺旋翼(5)的螺旋桨驱动结构采用固定翼的螺旋桨驱动结构。
  2. 根据权利要求1所述的新型垂直起降飞行器,其特征在于,所述飞行器包含一对对称设置在机身上的机翼(3)和两个可倾转螺旋翼(5),所述两个可倾转螺旋翼(5)分别设置在两个机翼(3)的翼尖,所述飞行器的重心设置于两个可倾转螺旋翼(5)的连线与机身水平轴线的交点与涵道风扇系统(6)在机身水平轴线上的点这两点之间。
  3. 根据权利要求1所述的新型垂直起降飞行器,其特征在于,所述涵道风扇系统(6)隐藏在机体结构内。
  4. 根据权利要求1所述的新型垂直起降飞行器,其特征在于,所述涵道风扇系统(6)连接飞行器的主电力系统和控制系统,由主控制系统控制其开关和转速调节。
  5. 根据要求要求1~4任意一项所述的新型垂直起降飞行器的控制方法,其特征在于:由设置在飞行器本体内部的操作系统控制:
    当飞行器垂直起飞时,控制可倾转螺旋翼(5)与地面垂直固定朝上,开启,以产生升力,涵道风扇系统(6)开启以产生向上的力;
    当飞行器从垂直起飞向平飞切换时,可倾转螺旋翼(5)由与地面垂直向上转向水平向前,在此切换过程中,涵道风扇系统(6)的风扇转速提高,使得飞行器的重心得以平衡,实现飞行器的俯仰控制,所述涵道风扇系统风扇(6)转速的调节标准以可倾转螺旋翼(5)产生的升力同涵道风扇系统(6)所产生的升力与飞行器重力之间相平衡为标准;
    当飞行器平飞时,可倾转螺旋翼(5)固定水平朝前以产生向前的推力,涵道风扇系统(6)关闭,使飞行器像固定翼螺旋桨飞机一样依靠机翼产生升力飞行;
    当飞行器在平飞过程中出现横侧即左右方向不稳时,要实现飞行器的横侧稳定控制时,通过调整可倾转螺旋翼(5)的转速实现;
    当飞行器从平飞需要提高或降低高度向垂直起降切换时,可倾转螺旋翼(5)由水平向前转向垂直向上,在此切换过程中,涵道风扇系统(6)开始启动,并通过控制系统,调节转速来保持机身俯仰姿态的稳定,当需要降落时,通过同时合理的减小可倾转螺旋翼(5)螺旋桨和涵道风扇系统的推力来实现;
    当飞行器悬停时,可倾转螺旋翼(5)方向固定朝上以产生升力,涵道风扇系统开启以产生向上的力。
PCT/CN2015/093829 2015-07-27 2015-11-05 一种新型垂直起降飞行器及其控制方法 WO2017016096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510445342.9 2015-07-27
CN201510445342.9A CN105035319A (zh) 2015-07-27 2015-07-27 一种新型垂直起降飞行器及其控制方法

Publications (1)

Publication Number Publication Date
WO2017016096A1 true WO2017016096A1 (zh) 2017-02-02

Family

ID=54442419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093829 WO2017016096A1 (zh) 2015-07-27 2015-11-05 一种新型垂直起降飞行器及其控制方法

Country Status (2)

Country Link
CN (1) CN105035319A (zh)
WO (1) WO2017016096A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107021208A (zh) * 2017-04-21 2017-08-08 陆艳辉 一种利用涵道的尾坐式垂直起降无人机及控制方法
CN107128489A (zh) * 2017-05-10 2017-09-05 优飞科技(苏州)有限公司 一种油电混合的垂直起降固定翼飞机
CN107310720A (zh) * 2017-07-25 2017-11-03 郑州航空工业管理学院 一种可灵活变姿的倾转动力球形结构无人飞行器
CN107336833A (zh) * 2017-07-05 2017-11-10 天津曙光天成科技有限公司 一种复合无人机及控制方法
CN107380427A (zh) * 2017-09-04 2017-11-24 陈超 一种机翼两用式倾转翼无人机
CN107826247A (zh) * 2017-11-15 2018-03-23 江苏航空职业技术学院 一种带固定机翼两倾转涵道四旋翼无人飞行器
CN108100252A (zh) * 2018-01-19 2018-06-01 北京韩品航通科技发展有限公司 一种三桨涵道式倾转双模飞行无人机
CN109436332A (zh) * 2019-01-03 2019-03-08 朱文武 大仰角平飞二段翼无人植保机
WO2019180304A1 (en) * 2018-03-20 2019-09-26 Lentola Logistics Oy A structure construction for an aircraft and aircraft comprising the structure construction
CN110356549A (zh) * 2018-04-09 2019-10-22 南京拓步智能科技有限公司 一种基于可控导流板的单涵道共轴反转式双旋翼飞行器
CN110422327A (zh) * 2019-08-26 2019-11-08 南京灵龙旋翼无人机系统研究院有限公司 一种倾转旋翼无人机三角形动力配置方法及结构
CN113148136A (zh) * 2021-04-29 2021-07-23 辽宁北兴激光技术有限公司 一种具有固定翼和多旋翼切换功能的无人机
CN113459742A (zh) * 2021-08-24 2021-10-01 复旦大学 一种陆空两栖多旋翼无人机
CN113619337A (zh) * 2021-08-06 2021-11-09 朱上翔 一种直升平飞车
CN113753230A (zh) * 2021-10-11 2021-12-07 广东汇天航空航天科技有限公司 飞行器、机翼组件及飞行汽车
CN113895612A (zh) * 2021-09-08 2022-01-07 武汉思众空间信息科技有限公司 一种飞行器及其使用方法
CN114148516A (zh) * 2021-12-06 2022-03-08 浙江大学 一种分布式倾转涵道垂直起降飞行器及其控制方法
CN114291251A (zh) * 2022-01-21 2022-04-08 桂林电子科技大学 一种新型可变翼无人机
CN114706416A (zh) * 2022-01-21 2022-07-05 中国空气动力研究与发展中心计算空气动力研究所 一种倾转四旋翼飞机的过渡飞行控制方法
CN115092390A (zh) * 2022-04-22 2022-09-23 中国航空研究院 一种涡桨垂直起降固定翼飞机总体气动布局

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105539835A (zh) * 2016-01-18 2016-05-04 成都纵横自动化技术有限公司 一种复合翼垂直起降飞行器
CN105882952A (zh) * 2016-04-20 2016-08-24 羊丁 一种架空线路垃圾自动清理无人机
CN106314789A (zh) * 2016-08-31 2017-01-11 张峣 一种机翼、定翼机及定翼机起升方法
CN106882371A (zh) * 2017-03-07 2017-06-23 北京天宇新超航空科技有限公司 一种混合式倾转旋翼无人机
CN108190012B (zh) * 2018-01-26 2021-02-26 深圳一电航空技术有限公司 飞行器及其控制方法
CN108313264A (zh) * 2018-01-26 2018-07-24 易瓦特科技股份公司 用于固定翼无人机的可调式旋翼动力机身系统
CN108609172A (zh) * 2018-06-12 2018-10-02 翟占超 飞行器
CN108639331A (zh) * 2018-06-29 2018-10-12 长沙市云智航科技有限公司 一种倾转双旋翼飞行器
CN108688803A (zh) * 2018-07-26 2018-10-23 杨福鼎 一种可垂直起降的飞行器
CN109353495A (zh) * 2018-11-30 2019-02-19 南京航空航天大学 一种可垂直起降的无人自转旋翼机
CN109533319A (zh) * 2018-12-07 2019-03-29 湖北航天飞行器研究所 一种具有搭接翼的倾转旋翼无人飞行器结构系统
CN111164011A (zh) * 2019-05-30 2020-05-15 四川灼识科技股份有限公司 一种动力控制的飞行器推力转向方法,以及对应的飞机
CN110588967A (zh) * 2019-10-21 2019-12-20 武汉思众空间信息科技有限公司 飞行器和飞行器系统
CN110949654B (zh) * 2019-12-25 2021-07-27 彭振根 一种飞行器
CN111792027A (zh) * 2020-07-03 2020-10-20 中国空气动力研究与发展中心 一种双机身串列翼垂直起降布局的飞行器
CN112498679B (zh) * 2020-12-14 2022-10-28 江西洪都航空工业股份有限公司 一种倾转复合动力飞行器
CN112896500A (zh) * 2021-03-08 2021-06-04 四川腾盾科技有限公司 一种四涵道倾转布局的飞行器
CN113460300B (zh) * 2021-08-16 2022-12-23 江西洪都航空工业股份有限公司 一种适用于单人飞行的运载设备
CN113665803B (zh) * 2021-09-02 2022-04-08 涵涡智航科技(玉溪)有限公司 一种飞行器
CN114194385A (zh) * 2021-11-26 2022-03-18 中电科芜湖通用航空产业技术研究院有限公司 飞行器及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011691A1 (en) * 2000-02-09 2001-08-09 Provost Michael J. Engine arrangement
CN202006875U (zh) * 2011-01-21 2011-10-12 许群伟 一种涵道风扇
CN103158856A (zh) * 2013-04-12 2013-06-19 北京航空航天大学 可短距起降的轻型螺旋桨飞翼飞机
CN103171766A (zh) * 2011-12-20 2013-06-26 北京航空航天大学 短距起降无人飞翼
CN103538714A (zh) * 2013-11-06 2014-01-29 张明 一种垂直起降航模无人机
DE102012018499A1 (de) * 2012-09-18 2014-03-20 Innovative Dragon Ltd. Antriebssystem für und daraus resultierende Gesamtauslegung von Flugzeugen
CN104477373A (zh) * 2014-12-15 2015-04-01 佛山市神风航空科技有限公司 一种半转机构升力翼低速飞机

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2132289C1 (ru) * 1996-10-24 1999-06-27 Клименко Алексей Геннадьевич Летательный аппарат с вертикальным взлетом и посадкой
US7874513B1 (en) * 2005-10-18 2011-01-25 Smith Frick A Apparatus and method for vertical take-off and landing aircraft
US20110180673A1 (en) * 2008-10-04 2011-07-28 Chaeho Lim Taking off and landing airplane using variable rotary wings
CN101643116B (zh) * 2009-08-03 2012-06-06 北京航空航天大学 一种使用双螺旋桨垂直涵道控制的倾转旋翼飞机
CN101875399B (zh) * 2009-10-30 2013-06-19 北京航空航天大学 一种采用并列式共轴双旋翼的倾转旋翼飞机
CN201744174U (zh) * 2010-01-21 2011-02-16 罗之洪 垂直起降的模型飞机
EP2625098A4 (en) * 2010-10-06 2018-01-17 Donald Orval Shaw Aircraft with wings and movable propellers
CN103832583A (zh) * 2012-11-26 2014-06-04 罗傲 一种带有升力平衡风扇的可以倾斜旋翼的飞机
CN103010463A (zh) * 2012-12-26 2013-04-03 南京航空航天大学 高速共轴倾转双旋翼飞翼机
CN104176250B (zh) * 2013-05-23 2016-08-10 中国直升机设计研究所 一种机翼内置涵道的垂直起降旋翼飞行器
CN104554733A (zh) * 2013-10-14 2015-04-29 姜文睿 喷气发动机机身相对于飞机机身的角度的灵活改变
CN103693194B (zh) * 2013-12-17 2015-11-18 南京航空航天大学 一种可倾转四旋翼飞行器
CN103935511A (zh) * 2014-04-15 2014-07-23 西安交通大学 一种倾转三旋翼飞行器
CN204489181U (zh) * 2015-03-10 2015-07-22 广州天翔航空科技有限公司 可变电机角度四轴垂直起降固定翼复合无人机
CN204979227U (zh) * 2015-07-27 2016-01-20 江阴市翔诺电子科技有限公司 一种新型垂直起降飞行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010011691A1 (en) * 2000-02-09 2001-08-09 Provost Michael J. Engine arrangement
CN202006875U (zh) * 2011-01-21 2011-10-12 许群伟 一种涵道风扇
CN103171766A (zh) * 2011-12-20 2013-06-26 北京航空航天大学 短距起降无人飞翼
DE102012018499A1 (de) * 2012-09-18 2014-03-20 Innovative Dragon Ltd. Antriebssystem für und daraus resultierende Gesamtauslegung von Flugzeugen
CN103158856A (zh) * 2013-04-12 2013-06-19 北京航空航天大学 可短距起降的轻型螺旋桨飞翼飞机
CN103538714A (zh) * 2013-11-06 2014-01-29 张明 一种垂直起降航模无人机
CN104477373A (zh) * 2014-12-15 2015-04-01 佛山市神风航空科技有限公司 一种半转机构升力翼低速飞机

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107021208A (zh) * 2017-04-21 2017-08-08 陆艳辉 一种利用涵道的尾坐式垂直起降无人机及控制方法
CN107128489A (zh) * 2017-05-10 2017-09-05 优飞科技(苏州)有限公司 一种油电混合的垂直起降固定翼飞机
CN107336833A (zh) * 2017-07-05 2017-11-10 天津曙光天成科技有限公司 一种复合无人机及控制方法
CN107336833B (zh) * 2017-07-05 2023-10-31 天津凤凰智能科技有限公司 一种复合无人机及控制方法
CN107310720B (zh) * 2017-07-25 2024-02-09 郑州航空工业管理学院 一种可灵活变姿的倾转动力球形结构无人飞行器
CN107310720A (zh) * 2017-07-25 2017-11-03 郑州航空工业管理学院 一种可灵活变姿的倾转动力球形结构无人飞行器
CN107380427A (zh) * 2017-09-04 2017-11-24 陈超 一种机翼两用式倾转翼无人机
CN107380427B (zh) * 2017-09-04 2023-06-20 陈超 一种机翼两用式倾转翼无人机
CN107826247A (zh) * 2017-11-15 2018-03-23 江苏航空职业技术学院 一种带固定机翼两倾转涵道四旋翼无人飞行器
CN108100252A (zh) * 2018-01-19 2018-06-01 北京韩品航通科技发展有限公司 一种三桨涵道式倾转双模飞行无人机
CN108100252B (zh) * 2018-01-19 2023-09-05 北京韩品航通科技发展有限公司 一种三桨涵道式倾转双模飞行无人机
WO2019180304A1 (en) * 2018-03-20 2019-09-26 Lentola Logistics Oy A structure construction for an aircraft and aircraft comprising the structure construction
CN110356549A (zh) * 2018-04-09 2019-10-22 南京拓步智能科技有限公司 一种基于可控导流板的单涵道共轴反转式双旋翼飞行器
CN109436332A (zh) * 2019-01-03 2019-03-08 朱文武 大仰角平飞二段翼无人植保机
CN109436332B (zh) * 2019-01-03 2024-06-04 朱文武 大仰角平飞二段翼无人植保机
CN110422327A (zh) * 2019-08-26 2019-11-08 南京灵龙旋翼无人机系统研究院有限公司 一种倾转旋翼无人机三角形动力配置方法及结构
CN113148136A (zh) * 2021-04-29 2021-07-23 辽宁北兴激光技术有限公司 一种具有固定翼和多旋翼切换功能的无人机
CN113148136B (zh) * 2021-04-29 2023-07-21 辽宁北兴激光技术有限公司 一种具有固定翼和多旋翼切换功能的无人机
CN113619337A (zh) * 2021-08-06 2021-11-09 朱上翔 一种直升平飞车
CN113459742A (zh) * 2021-08-24 2021-10-01 复旦大学 一种陆空两栖多旋翼无人机
CN113895612B (zh) * 2021-09-08 2023-08-01 武汉思众空间信息科技有限公司 一种飞行器及其使用方法
CN113895612A (zh) * 2021-09-08 2022-01-07 武汉思众空间信息科技有限公司 一种飞行器及其使用方法
CN113753230B (zh) * 2021-10-11 2023-08-18 广东汇天航空航天科技有限公司 飞行器、机翼组件及飞行汽车
CN113753230A (zh) * 2021-10-11 2021-12-07 广东汇天航空航天科技有限公司 飞行器、机翼组件及飞行汽车
CN114148516A (zh) * 2021-12-06 2022-03-08 浙江大学 一种分布式倾转涵道垂直起降飞行器及其控制方法
CN114291251B (zh) * 2022-01-21 2023-05-23 桂林电子科技大学 一种新型可变翼无人机
CN114706416A (zh) * 2022-01-21 2022-07-05 中国空气动力研究与发展中心计算空气动力研究所 一种倾转四旋翼飞机的过渡飞行控制方法
CN114706416B (zh) * 2022-01-21 2023-08-11 中国空气动力研究与发展中心计算空气动力研究所 一种倾转四旋翼飞机的过渡飞行控制方法
CN114291251A (zh) * 2022-01-21 2022-04-08 桂林电子科技大学 一种新型可变翼无人机
CN115092390A (zh) * 2022-04-22 2022-09-23 中国航空研究院 一种涡桨垂直起降固定翼飞机总体气动布局
CN115092390B (zh) * 2022-04-22 2024-05-31 中国航空研究院 一种涡桨垂直起降固定翼飞机

Also Published As

Publication number Publication date
CN105035319A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
WO2017016096A1 (zh) 一种新型垂直起降飞行器及其控制方法
WO2016184358A1 (zh) 基于双飞控系统的固定结构式垂直起降飞机及其控制方法
CN204250360U (zh) 涵道式倾转飞行器
CN104401480A (zh) 涵道式倾转飞行器
CN207773470U (zh) 一种矢量动力尾座式双侧翼无人机
CN106043696A (zh) 一种无人机飞行系统
CN208746231U (zh) 一种分布式涵道螺旋桨动力垂直起降无人机
CN102001446B (zh) 一种垂直起降旋翼式飞行器结构
WO2013056493A1 (zh) 固定翼与电动多旋翼组成的复合飞行器
CN204355275U (zh) 具有安全推进系统的飞行器
CN103587683A (zh) 一种可倾转旋翼小型飞行器
CN201712787U (zh) 电动倾转旋翼无人机
CN106915459A (zh) 一种混合式倾转旋翼无人机
WO2013056492A1 (zh) 固定翼与电动多桨组成的具有直升机功能的复合飞行器
CN103832583A (zh) 一种带有升力平衡风扇的可以倾斜旋翼的飞机
CN106927039A (zh) 矢量拉力装置及垂直起降无人机矢量拉力控制方法
CN204197290U (zh) 一种新型倾转旋翼飞行器
CN103754360B (zh) 一种类飞碟式旋翼机
CN203638093U (zh) 一种可倾转四旋翼飞行器
CN107352029A (zh) 一种电动多轴倾转旋翼无人机系统
CN106005394A (zh) 一种救援飞行器
CN112896499A (zh) 一种倾转涵道与固定螺旋桨组合布局的垂直起降飞行器
CN209176908U (zh) 一种复合驱动的旋翼固定翼无人机
CN211281472U (zh) 一种涵道尾坐式垂直起降无人机
CN204979227U (zh) 一种新型垂直起降飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899448

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899448

Country of ref document: EP

Kind code of ref document: A1