WO2013056493A1 - 固定翼与电动多旋翼组成的复合飞行器 - Google Patents

固定翼与电动多旋翼组成的复合飞行器 Download PDF

Info

Publication number
WO2013056493A1
WO2013056493A1 PCT/CN2011/083305 CN2011083305W WO2013056493A1 WO 2013056493 A1 WO2013056493 A1 WO 2013056493A1 CN 2011083305 W CN2011083305 W CN 2011083305W WO 2013056493 A1 WO2013056493 A1 WO 2013056493A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
wing
aircraft
fixed
electric multi
Prior art date
Application number
PCT/CN2011/083305
Other languages
English (en)
French (fr)
Inventor
田瑜
江文彦
Original Assignee
Tian Yu
Jiang Wenyan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201110316929.1A external-priority patent/CN103043212B/zh
Priority claimed from CN 201120397886 external-priority patent/CN202728575U/zh
Application filed by Tian Yu, Jiang Wenyan filed Critical Tian Yu
Priority to EP11870167.1A priority Critical patent/EP2604519A4/en
Priority to JP2014534913A priority patent/JP2014528382A/ja
Priority to US13/704,056 priority patent/US20130092799A1/en
Publication of WO2013056493A1 publication Critical patent/WO2013056493A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0083Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by several motors of different type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/12Canard-type aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to an aircraft, and more particularly to a composite aircraft comprising a fixed wing and an electric multi-rotor.
  • Fixed-wing aircraft commonly used in the aeronautical field, because the lift is mainly used to balance the weight of the aircraft, the power system is mainly used to overcome the flight resistance of the aircraft, so the power (push and pull) far less than the weight of the aircraft can make the fixed-wing aircraft away. Lift off the ground. It has a fast flight speed, long range and long cruising time, but long take-off and long distance, requiring high-quality runways, which seriously affects and hinders the application of fixed-wing aircraft in remote and non-dedicated airport areas.
  • Rotor helicopters which are common in the aviation field, can solve the problem of vertical take-off and landing in narrow spaces.
  • multi-blade helicopters which typically change the attitude of the propeller by varying the speed of the propeller.
  • a 4-blade rotor helicopter has four blades symmetrically placed with respect to the center. Two of the blades rotate clockwise and two of the blades rotate counterclockwise.
  • the aircraft needs to turn in one direction, simply change the speed of two of the clockwise/counterclockwise propellers and reduce the speed of the other two counterclockwise/clockwise propellers to change the heading.
  • the speed of the paddle in the symmetrical position can be increased to fly in the specified direction by the lift difference.
  • the rotor that is directly connected to the power system is far less efficient than the wing of a fixed-wing aircraft, so power consumption is large. Because its forward speed is mainly provided by the component force generated by the tilting of the rotor paddle through the swash plate, the resistance of the helicopter to fly forward is also much larger than that of the fixed-wing aircraft. Therefore, its flight speed, distance and endurance are not as good as fixed-wing aircraft. For this reason, technicians in the aerospace industry have been looking for aircraft that combine the advantages of fixed-wing aircraft and helicopters.
  • the separate lift engine is simple in design, the lift engine does not work during cruising, and it takes up the internal volume, which is dead weight. Reducing or eliminating dead weight is an urgent problem for vertical landing aircraft.
  • the most straightforward way to combine cruise and lift engines is to tilt the jet engine and blow the engine directly to the ground, which of course produces direct lift. So simple, why not the first choice for vertical landing aircraft? First, tilting the engine imposes significant limitations on the position of the engine on the aircraft.
  • the tilting rotor solves this problem with a synchronous shaft, and it is almost impossible for a tilting jet engine to be compensated by the other engine when one engine fails.
  • the engine itself is very heavy, and it is easy to talk about the tilting mechanism.
  • the engine has a high demand for intake air, otherwise the engine efficiency will drop linearly, but the condition of the intake air is difficult to guarantee during the engine tilting process.
  • the fixed-wing aircraft that achieves vertical take-off and landing with tilting force.
  • V22, etc. where the propeller is 12.
  • the thrusting force of the power unit on the vertical plane of the aircraft makes the aircraft vertically off the ground, and then gradually pushes the thrusting force of the power unit in the air to the forward direction of the aircraft, so that the aircraft is like a conventional fixed-wing aircraft.
  • its steering mechanism is complex, expensive, and of poor reliability.
  • the stability and maneuverability of the special powertrain when it is turned has always been a problem for aviation technicians.
  • the rotor wing shares the aircraft.
  • This type of aircraft wing 13 can be used as a rotor to achieve vertical takeoff and landing. And tilting force aircraft As such, there are also problems such as complicated structure, expensive construction, and poor reliability.
  • the Jacques-38 fighters of the former Soviet Union had only two lift engines and one lift-cruise engine.
  • the lift engine inside the aircraft also reduced the safety threat of single-shot failure.
  • the lift engine is installed in the body and has its problems.
  • First of all, the hot air intake of the engine is very close, which is easy to cause jet back suction.
  • Second, the high-speed jet flows down the side of the body to the sides, and the air is relatively stationary above the air intake of the lift engine above the body, causing the body to adsorb to the ground, so-called suck d 0wn .
  • the high temperature gas that is ejected downwards is also quite ablated to the deck, so this type of fighter is not practical.
  • the technical problem to be solved by the present invention is to overcome the above-mentioned drawbacks in the prior art, and to provide an aircraft with both simple structure and reliable performance, which can combine the performance of a fixed-wing aircraft and a rotary-wing helicopter, and can be freely converted between two flight modes at any time. .
  • a composite aircraft consisting of a fixed wing and an electric multi-rotor, comprising a set of fixed-wing aircraft components, including a fuselage, a wing, a fixed-wing power system and a fixed-wing control system, the fixed-wing control system including fixed-wing power control A system and fixed-wing rudder control system, characterized in that the aircraft further comprises a set of electric multi-rotor power systems and a master controller, the fixed-wing power system and the electric multi-rotor power system being structurally independent from each other, the total
  • the controller includes the fixed wing control system and an electric multi-rotor control system for controlling the operation of the electric multi-rotor power system, the total controller is further configured to control the fixed wing control system and the electric multi-rotor control system to work alone or Working together; the rotor rotation plane of the electric multi-rotor power system is parallel to the central axis of the fuselage.
  • the electric multi-rotor control system is used to control the lift, attitude and heading of the aircraft.
  • the electric multi-rotor control system controls the lift of the aircraft by increasing or decreasing the rotational speed and/or pitch of all of the rotors.
  • the electric multi-rotor control system increases the rotational speed and/or pitch of the rotor in front of the center of gravity of the aircraft in the flight direction while increasing the rotational speed of the rotor behind the center of gravity of the aircraft in the flight direction and / or pitch, control the attitude of the aircraft.
  • the electric multi-rotor control system controls the heading of the aircraft by increasing the speed and/or pitch of the rotor that is opposite the direction of the aircraft steering, reducing the rotational speed and/or pitch of the rotor in the same direction as the aircraft steering.
  • the electric multi-rotor power system has at least four sets, and each set of the system comprises a power device and a rotor connected to the power device, and the rotors are respectively disposed on two sides of the fuselage and the front and rear sides of the wing.
  • the vehicle is placed symmetrically with respect to the center of gravity of the aircraft; or the electric multi-rotor power systems are integrally disposed on both sides of the fuselage and the front and rear sides of the wing, respectively, symmetrically placed with respect to the center of gravity of the aircraft.
  • each of the electric multi-rotor power systems or rotors is coupled to the fuselage or wing by a support arm.
  • each set of electric multi-rotor power systems share a support arm to the fuselage or wing.
  • the power unit is a motor.
  • the electric multi-rotor control system includes a rotor blade position control unit for controlling the position of the rotor blade of the electric multi-rotor power system when the electric multi-rotor power system is turned off and the fixed wing power system is turned on. Keep parallel to the direction of flight of the aircraft. To minimize flight resistance, flight efficiency is higher.
  • one of the cooperative working modes is: during the transition from the multi-rotor helicopter flight mode to the fixed-wing flight mode, the aircraft generates horizontal motion with the airspeed as the power is propelled from the propeller from the hovering Increasing the fixed wing gradually produces lift, while the multi-rotor gradually reduces the turn The speed is reduced to reduce the rotor lift to maintain the total lift until the airspeed is greater than the fixed wing stall speed to complete the transition from the multi-rotor helicopter flight mode to the fixed-wing flight mode.
  • the second mode of cooperative operation is: during the transition from the fixed-wing flight mode to the multi-rotor helicopter flight mode, as the horizontal propeller thrust is lowered, when the airspeed approaches the fixed-wing stall speed, the multi-rotor will start to generate lift. As the airspeed is further reduced, the multi-rotor will increase the rotational speed to increase the lift to compensate for the lift drop of the fixed wing portion, thereby achieving the total lift constant. When the propeller is completely stopped, the rotational airspeed is reduced to zero, and the rotor is completely converted into a multi-rotor. Helicopter flight mode.
  • the third mode of cooperative operation is that the fixed wing control system and the electric multi-rotor control system work together under the control of the overall controller during the entire takeoff, flight and landing process.
  • the propeller of the fixed wing power system is located at the front of the fuselage, at the rear of the fuselage or on both sides of the fuselage, or at the same time.
  • the tail structure of the aircraft is an airfoil type without a tail, " ⁇ ", "u”,
  • the fixed wing power system is an electric power system or a fuel power system.
  • the number of the fixed wing power systems is one or more sets.
  • the composite aircraft of the present invention not only combines the performance of a fixed-wing aircraft and a rotary-wing helicopter, but also has a fixed-wing power system and an electric multi-rotor power system that can be controlled independently of each other, so that it can freely convert between the two flight modes. It can take off and land vertically like a helicopter, take off and land like a fixed-wing aircraft, or use a hybrid mode of two power systems during take-off and landing.
  • the invention adopts a power system which can be controlled independently of each other, and the structure of the invention is simpler than that of a fixed-wing aircraft and a structure of a rotorcraft in a power system, and does not require a complicated steering structure. It does not affect the internal load and equipment layout.
  • the use of a separate electric multi-rotor power system is beneficial to reduce the risk of development of the power system. With proper arrangement, the lift engine can safely return the aircraft in the event of a main engine failure or war damage, realizing power backup. Because of the electric power, the weight increase is very light, so that the dead weight (the weight of the rotor helicopter part) is increased in the fixed-wing aircraft mode.
  • the noise of the whole aircraft is very small, and the airflow blown down by the rotorcraft has no high temperature, which is more environmentally friendly than other aircraft with traditional engines.
  • the use of the motor as a power unit can control the weight of the electric multi-rotor power system within 20% of the entire aircraft, which is much lighter than the traditional power system, thus making the aircraft easier to control and save energy.
  • FIG. 1 is a schematic view showing the structure of an existing aircraft combining a ducted fan and a preceding blade.
  • FIG. 2 is a schematic structural view of an aircraft that realizes vertical take-off and landing with the existing tilting force.
  • Figures 3a-3c are schematic views of the structure of an aircraft shared by existing rotor wings.
  • 4a-4c are schematic views of the structure of an existing bottom mounted lift engine.
  • Fig. 5 is a schematic structural view of an aircraft according to a first embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a power control system of an aircraft according to the present invention.
  • FIG. 7-13 are schematic views showing the structure of an aircraft of different tail types according to the present invention.
  • 14 and 15 are schematic views showing the structure of an aircraft according to a second embodiment of the present invention.
  • Figure 16 is a schematic view of the lifting, attitude and heading control of the aircraft of the present invention. detailed description
  • FIG. 5 shows a composite aircraft composed of a fixed wing and an electric multi-rotor according to the present invention, which comprises a set of fixed-wing aircraft components including a fuselage 1, a main wing 2, a tail 3 and a fixed-wing power system 4 ( Also known as a fixed-wing aircraft power system, a system that powers fixed-wing aircraft components.
  • a fixed-wing aircraft power system also known as a fixed-wing aircraft power system, a system that powers fixed-wing aircraft components.
  • the piece, called the fixed wing is relative to the rotor; it is called the main wing, in terms of the structural composition of the aircraft, relative to the tail.
  • the rotor rotation plane of the electric multi-rotor power system is parallel to the horizontal plane, where the parallel includes close to parallel conditions, such as a pitch angle of the fuselage and the horizontal plane being within 10°. It will be understood by those skilled in the art that terms such as parallel, vertical, and horizontal appearing throughout the text also include aspects that are close to parallel, vertical, and horizontal, and do not merely refer to geometrically absolute parallel, vertical, and horizontal.
  • the electric multi-rotor power system 5 includes a power unit and a rotor.
  • the rotors can be respectively disposed on both sides of the fuselage and the front and rear sides of the main wing, and are symmetrically placed with respect to the fuselage to set the power unit on the fuselage.
  • the entire set of electric multi-rotor power systems 5 are respectively disposed on both sides of the fuselage and the front and rear sides of the main wing, and are symmetrically placed with respect to the fuselage.
  • This arrangement ensures that the overall center of gravity of the aircraft is on the centerline of the fuselage, so that the aircraft is always balanced during take-off and landing and does not affect its working condition.
  • other position settings can also be used, as long as the above effects can be achieved.
  • each set of electric multi-rotor power system 5 is integrally connected to the main wing 2 by a support arm 6 as a whole or the rotor.
  • a support arm 6 as a whole or the rotor.
  • the set of systems or rotors share a support arm that is attached to the fuselage or wing.
  • the electric multi-rotor power system in this embodiment adopts an electric power system, including a motor and a rotor connected to the motor, and whether or not to add a gearbox can be determined according to actual conditions. Because of the electric power, the weight increase is very light, so that the dead weight (the weight of the rotor helicopter part) is increased in the fixed-wing aircraft mode. At the same time, due to the electric power scheme, the noise of the whole aircraft is very small, and the airflow blown down by the rotorcraft has no high temperature, which is more environmentally friendly than other aircraft with traditional engines.
  • the power of the fixed-wing power system can also be powered by electric or other power.
  • the number of fixed-wing power systems can be single or multiple sets.
  • the propellers of the fixed-wing power system are located in front of the fuselage, at the rear of the fuselage or on both sides of the fuselage, or both front and rear.
  • the fixed wing power system and the electric multi-rotor power system are structurally independent of each other, and a total controller 7 is provided to realize switching between the two modes. control.
  • the master controller 7 includes a fixed wing control system 71 including a fixed wing power control system for controlling the fixed wing power system; and a fixed wing control surface control system. Since the fixed-wing control system can be implemented using the control system structure and composition of the existing fixed-wing aircraft, it will not be described.
  • the overall controller 7 further includes an electric multi-rotor control system 72 for controlling the operation of the electric multi-rotor power system 5, the total controller 7 is also used to control the fixed wing control system 71 and the electric multi-rotor control system 72 separately. Work or work together.
  • the fixed wing control system 71 works alone, it corresponds to a fixed-wing aircraft mode.
  • the electric multi-rotor control system 72 works alone, it corresponds to a helicopter mode, which is used to control the lifting, posture and heading of the aircraft, and the two systems work together. It is called a fixed-wing aircraft helicopter hybrid mode.
  • the takeoff and landing process can be in helicopter mode, fixed-wing aircraft mode or mixed mode:
  • the two power systems can be operated simultaneously, which provides a lift that is much greater than the lift provided by a single power system, and thus has a wider range of applications, especially when the aircraft is heavily loaded.
  • the fighter jet is full of oil and weaponry in the take-off fashion.
  • the traditional fighter is only powered by the fixed-wing power system to take off, the power is limited, and the take-off speed is slow.
  • the electric multi-rotor power system also provides power, then the power Greatly increased, the takeoff speed is very fast.
  • the mixed mode takeoff process it is also applicable to the case where the runway length is insufficient.
  • the normal runway length is 500 meters, and in some cases it is limited by the geographical environment.
  • the length of the runway cannot reach 500 meters. For example, in uneven areas such as mountains or on the deck of an aircraft carrier, for example, the length of the runway is only 250 meters.
  • the hybrid mode takes off on the runway and eventually takes off at short distances.
  • Helicopter mode, fixed-wing aircraft mode and hybrid mode can also be used in the flight process:
  • the electric multi-rotor control system increases the rotational speed and/or the pitch of the rotor in front of the center of gravity of the aircraft in the flight direction while increasing the rotational speed of the rotor behind the center of gravity of the aircraft in the flight direction and/or Pitch to control the attitude of the aircraft.
  • the rotors 5a, 5c increase speed
  • the rotors 5, 5b decelerate
  • the rotors 5, 5b increase speed
  • the rotors 5a, 5c decelerate when flying to the right side: The rotors 5, 5b increase speed, and the rotors 5a, 5c decelerate.
  • the electric multi-rotor control system controls the heading of the aircraft by increasing the speed and/or pitch of the rotor that is opposite to the direction of the aircraft's steering, reducing the speed and/or pitch of the rotor in the same direction as the aircraft's steering.
  • the rotors 5, 5c increase speed, the rotors 5a, 5b decelerate
  • the rotors 5, 5c decelerate
  • the front flight the rotors 5b, 5c increase speed, the rotor 5 5a deceleration
  • after the fly the rotor 5, 5a increase speed, the rotor 5b, 5c decelerate.
  • the electronic gyro can be used to control the rotational speed of the four rotors to form a stable rotor helicopter flight platform. Change the lift of 4 rotors by changing the rotor speed And torque to control the flight and steering of the rotor helicopter in all directions.
  • the electronic gyro is a commonly used device in the field, and the technician can select the type according to the specific needs.
  • a rotor blade position control unit 721 may also be added to the electric multi-rotor control system for controlling the rotor blade position of the electric multi-rotor power system when the electric multi-rotor power system is turned off and the fixed wing power system is turned on. Keep parallel to the direction of flight of the aircraft.
  • one of the two power systems working together is:
  • the aircraft generates horizontal motion as the propeller generates power from the hovering
  • the fixed wing gradually generates lift
  • the multi-rotor gradually reduces the rotational speed to reduce the rotor lift to maintain the total lift constant until the airspeed is greater than the fixed wing stall speed to complete the conversion of the helicopter mode flight to the fixed wing mode flight.
  • controllers, control systems and control units mentioned above can be specifically produced and implemented. It is implemented by existing electronic control methods or software methods, and will not be described here.
  • the empennage structure of the fixed-wing aircraft assembly of the present invention may also be of other types, such as a flying wing type without a empennage, " ⁇ ,”, "", “", “T”, “V” shape or " ⁇ " shape and so on.
  • the difference between this embodiment and the first embodiment is mainly as follows:
  • this embodiment there are 6 sets of electric multi-rotor power systems, 4 of which are installed on the main wing, and the other two are installed in the fuselage.
  • the tail of the aircraft is equipped with a jet device 8, which can propel the aircraft forward by jet.
  • the rest is substantially the same as the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)

Abstract

一种固定翼与电动多旋翼组成的复合飞行器,包括一组电动多旋翼动力系统(5)和总控制器(7),固定翼动力系统(4)与电动多旋翼动力系统(5)在结构上相互独立,该总控制器(7)包括固定翼控制系统(71)和电动多旋翼控制系统(72),该总控制器(7)还用于控制固定翼控制系统(71)和电动多旋翼控制系统(72)单独工作或者协同工作,电动多旋翼动力系统(5)的旋翼旋转平面与机身中心轴平行。所述固定翼与电动多旋翼组成的复合飞行器既可以像直升机一样垂直起降和飞行,还可以像固定翼飞机一样起降和飞行,也可以在起降和飞行过程中使用两个动力系统混合工作。

Description

固定翼与电动多旋翼组成的复合飞行器
技术领域
本发明涉及一种飞行器,特别是涉及一种固定翼与电动多旋翼组成的复 合飞行器。 背景技术 在航空领域常见的固定翼飞机, 由于主要靠机翼产生升力平衡飞机重 量, 动力系统主要用来克服飞机飞行阻力, 因此远小于飞机重量的动力 (推 拉力) 就可以让固定翼飞机离地升空。 其飞行速度快, 航程和巡航时间长, 但起降距离长, 要求高质量的跑道, 严重影响和妨碍了固定翼飞机在偏远无 专用机场地区的应用。
在航空领域常见的旋翼直升机, 可以解决在狭小场地垂直起降的问题。 在已知的旋翼飞行器中, 除了常见的单桨直升机以外, 还有多桨直升机, 多 桨直升机一般是通过变化桨的转速来改变飞行姿态的。 如 4桨旋翼直升机, 4个桨相对于中心对称放置, 其中有 2个桨是顺时针旋转, 还有 2个桨是逆 时针方向旋转。 当飞机需要往一个方向转向时, 只要改变增加其中 2个顺时 针 /逆时针桨的转速,减少另外 2个逆时针 /顺时针桨的转速就可以改变航向。 需要倾斜飞行时, 只要减小飞行方向上的桨的转速, 增加对称位置的桨的转 速就能通过升力差向指定的方向飞行。
但直接和动力系统相连的旋翼效率远不如固定翼飞机的机翼, 因此功耗 大。 又因其前进速度主要靠旋翼桨盘通过倾斜盘的倾斜产生的分力提供, 同 时直升机前进飞行的阻力也较固定翼飞机大的多。 因此其飞行速度, 距离和 续航时间都不如固定翼飞机。为此航空领域的技术人员一直在找寻能兼有固 定翼飞机和直升机优点的飞行器。
单独的升力发动机在设计上简单, 升力发动机在巡航时不工作, 又占用 机内体积,这是死重。减少或消除死重是垂直起落飞机一个急需解决的问题。 将升力和巡航发动机合二为一, 当然就消除了专用升力发动机的死重。 巡航 和升力发动机合二为一的最直接的方法, 莫过于倾转喷气发动机, 把发动机 直接对着地面吹, 当然就产生直接的升力。 这么简单的道理, 为什么不是垂 直起落飞机的首选呢? 首先,倾转发动机对发动机在飞机上的位置带来很大 的限制, 不光机翼、 发动机的位置必须和飞机的重心一致, 也基本上只有翼 下或翼尖位置, 这样, 一旦部分升力发动机故障或瞬时出力不足, 非对称升 力容易引起灾难性的事故。 倾转旋翼用同步轴解决这个问题, 倾转喷气发动 机就基本不可能在一侧发动机失效时, 由另一侧发动机补偿。 再说, 发动机 本身十分沉重, 倾转机构谈何容易。 还有, 发动机对进气的要求很高, 否则 发动机效率直线下降,但发动机在倾转过程中,进气的条件很难保证。另外, 垂直起落要求在短时间内产生大量的推力, 巡航要求工作时间长但推力远远 要不了那么多, 两者之间在设计上很难协调。 由发动机直接产生升力, 没法 取巧。 从极端情况来说, 滑跑起飞、 用机翼产生升力, 只需要很少的推力; 但用喷气动力垂直起飞, 至少需要 1 : 1 的推重比, 动力要求高得多。
在已知的具有可垂直起降功能且有固定翼飞机功能的飞行器中, 大致分 为以下几类。一、如图 1, 将涵道风扇和前行桨叶 11结合起来的方案。 如西 科斯基的无人机 Mariner,通用公司的 XV-5等。这种飞行器的缺点是涵道增 加了较重的重量,增加较多的迎风阻力,同时妨碍了机内载荷和设备的布置, 或者减小了机翼的有效升力面积。
二、倾转动力实现垂直起降的固定翼飞机。如图 2中的 V22等, 其中螺 旋桨为 12。这类飞机在起飞时动力装置的推(拉)力垂直地面使飞机垂直离 地, 然后在空中逐渐使动力装置的推 (拉) 力, 转向飞机前进方向, 使飞机 像常规固定翼飞机一样向前飞行。 但其转向机构复杂, 造价贵, 可靠性差, 特别动力系统转向时的 (飞机无前进速度时)安定性和操纵性, 一直是困扰 航空技术人员的难题。
三、 旋翼机翼共用飞机。 如图 3a-3c中波音公司的 "蜻蜓"飞机。 这类 飞机机翼 13可以变为旋翼使用, 可以实现垂直起降。 和倾转动力飞行器一 样, 也存在结构复杂, 造价贵, 可靠性差等问题。
四、如图 4a-4c中底部安装升力发动机 14的方案。这类飞机都是为了解 决固定翼飞机垂直起降的问题,升力发动机只是为了实现垂直起降时的升力 或者兼作一部分方向控制,不具备完全的直升机飞行模式,如多尼尔 D0.231 等飞机。
五、 前苏联的雅克 -38 战机只有两台升力发动机和一台升力-巡航发动 机, 机体内的升力发动机也降低了单发失效对安全的威胁。但升力发动机安 装在机体内, 也是有其问题的。 首先, 炽热的喷气里发动机进气口很近, 容 易造成喷气回吸问题。 第二, 高速喷气在机体下延地面向两侧流动, 而机体 上方除升力发动机进气口附近外, 空气相对静止, 造成使机体向地面吸附的 效果, 即所谓 suck d0wn。 另外, 因为其要在甲板上垂直起落, 其向下喷出 的高温气体对甲板的烧蚀也相当严重, 所以这种战机很不实用。
因此航空界迫切需要寻找一种结构简单、性能可靠的兼有固定翼飞机和 旋翼直升机性能且在两种飞行模式之间能随时自由转换的飞行器。 发明内容
本发明要解决的技术问题是为了克服现有技术中的上述缺陷, 提供一种 结构简单、性能可靠的兼有固定翼飞机和旋翼直升机性能且在两种飞行模式 之间能随时自由转换的飞行器。
本发明是通过下述技术方案来解决上述技术问题的:
一种固定翼与电动多旋翼组成的复合飞行器, 包括一套固定翼飞机组 件, 该组件包括机身、 机翼、 固定翼动力系统以及固定翼控制系统, 该固定 翼控制系统包括固定翼动力控制系统及固定翼舵面控制系统, 其特点在于, 该飞行器还包括一组电动多旋翼动力系统和一个总控制器,所述固定翼动力 系统与电动多旋翼动力系统在结构上相互独立, 该总控制器包括该固定翼控 制系统和用于控制该电动多旋翼动力系统工作的电动多旋翼控制系统, 该总 控制器还用于控制该固定翼控制系统和电动多旋翼控制系统单独工作或者 协同工作; 所述电动多旋翼动力系统的旋翼旋转平面与机身中心轴平行。 优选地, 该电动多旋翼控制系统用于控制飞行器的升降、 姿态和航向。 优选地,该电动多旋翼控制系统通过增减所有旋翼的转速和 /或螺距控制 飞行器的升降。
优选地, 该电动多旋翼控制系统通过减小在飞行方向上相对于飞行器的 重心靠前的旋翼的转速和 /或螺距,同时增加在飞行方向上相对于飞行器的重 心靠后的旋翼的转速和 /或螺距, 控制飞行器的姿态。
优选地, 该电动多旋翼控制系统通过增加与飞行器转向反向的旋翼的转 速和 /或螺距, 减少与飞行器转向同向的旋翼的转速和 /或螺距, 控制飞行器 的航向。
优选地, 所述电动多旋翼动力系统至少为四套, 每套该系统包括动力装 置和与该动力装置连接的旋翼,所述各旋翼分别设置在该机身的两侧和机翼 前后侧, 相对于该该飞行器重心呈对称放置; 或者所述各电动多旋翼动力系 统整体分别设置在该机身的两侧和机翼前后侧,相对于该飞行器重心呈对称 放置。
优选地,所述每套电动多旋翼动力系统或者旋翼均通过一支撑臂连接到 该机身或者机翼上。
优选地,所述各套电动多旋翼动力系统中的若干套系统或者若干套旋翼 共用一支撑臂连接到该机身或者机翼上。
优选地, 所述动力装置为电机。
优选地, 所述电动多旋翼控制系统包括一旋翼桨叶位置控制单元, 用于 当电动多旋翼动力系统关闭、 固定翼动力系统开启时, 控制所述电动多旋翼 动力系统的旋翼桨叶位置始终保持与飞机飞行方向平行。 以最大限度的减小 飞行阻力, 让飞行效率更高。
优选地, 所述协同工作模式之一为: 在从多旋翼直升机飞行模式到固定 翼飞行模式的转换过程中, 由从悬停开始随着推进螺旋桨产生动力, 飞行器 产生水平运动, 随着空速增加固定翼逐渐产生升力, 同时多旋翼逐渐降低转 速以降低旋翼升力从而维持总升力不变直至空速大于固定翼失速速度, 以完 成多旋翼直升机飞行模式到固定翼飞行模式的转换。
优选地, 所述协同工作模式之二为: 在从固定翼飞行模式到多旋翼直升 机飞行模式转换过程中, 随着降低水平螺旋桨推力, 当空速接近固定翼失速 速度时, 多旋翼将启动产生升力, 随着空速的进一步降低多旋翼将增加转速 从而增加升力以补偿固定翼部分的升力下降, 从而达到总升力不变, 当推进 螺旋桨彻底停止转动空速降低为零时, 彻底转换成多旋翼直升机飞行模式。
优选地,所述协同工作模式之三为:在整个的起飞、飞行和降落过程中, 该固定翼控制系统和电动多旋翼控制系统在总控制器的控制下全程协同工 作。
优选地, 所述固定翼动力系统的螺旋桨位于机身前方、 机身后部或机身 两侧, 或者前后方同时设置。
优选地, 所述飞行器的尾翼结构为不带尾翼的飞翼式、 "^ "、 " u "、
"丄"形、 "T"字形、 "V"形或 " Λ,,形。
优选地, 所述固定翼动力系统为电力动力系统或者燃油动力系统。
优选地, 所述固定翼动力系统的数量为单套或者多套。
本发明的积极进步效果在于:
本发明的复合飞行器不但兼有固定翼飞机和旋翼直升机的性能, 而且因 为具有可以相互独立控制的固定翼动力系统和电动多旋翼动力系统,所以能 够在这两种飞行模式之间自由的转换, 既可以像直升机一样垂直起降和飞 行, 可以像固定翼飞机一样起降和飞行, 也可以在起降和飞行过程中使用两 个动力系统混合工作的模式实现。
本发明因为采用了可以相互独立控制的动力系统,相比于在一套动力系 统中即实现固定翼飞机又实现旋翼机的结构, 本发明结构上更加简单, 不需 要很复杂的转向结构, 也不会影响机内载荷和设备的布置。采用单独的电动 多旋翼动力系统有利于降低动力系统的研制风险, 通过适当的安排, 在主发 动机故障或战损时, 升力发动机可以使飞机安全返航, 实现了动力备份。 因为采用电动, 所以重量增加很轻, 从而使固定翼飞机模式时增加的死 重 (旋翼直升机部分的重量)很少。 同时由于是电动动力方案, 整个飞机噪 音很小, 旋翼直升机向下吹的气流无高温, 比用传统发动机的其他飞行器更 加环保。 另外, 采用电机作为动力装置, 可以使电动多旋翼动力系统的重量 控制在整个飞机的 20 %以内, 比采用传统的动力系统要轻很多,从而使飞机 更加易于控制, 节省能量。
最后, 本发明应用广泛, 包括民航领域和军事领域, 不仅适用于模型飞 机、 而且适用于无人驾驶飞机, 以及载人飞机等等。 附图说明
图 1为现有的将涵道风扇和前行桨叶结合起来的飞行器结构示意图。 图 2为现有的倾转动力实现垂直起降的飞行器结构示意图。
图 3a-3c为现有的旋翼机翼共用的飞行器结构示意图。
图 4a-4c为现有的底部安装升力发动机的飞行器结构示意图。
图 5为本发明第一实施例的飞行器结构示意图。
图 6为本发明的飞行器的动力控制系统的结构示意图。
图 7-13为本发明的不同尾翼类型的飞行器结构示意图。
图 14、 15为本发明第二实施例的飞行器结构示意图。
图 16为本发明的飞行器的升降、 姿态和航向控制示意图。 具体实施方式
下面结合附图给出本发明较佳实施例, 以详细说明本发明的技术方案。 第一实施例
如图 5所示为本发明的一种固定翼与电动多旋翼组成的复合飞行器, 其 包括一套固定翼飞机组件, 该组件包括机身 1、 主翼 2、 尾翼 3和固定翼动 力系统 4(也称固定翼飞机动力系统),即为固定翼飞机组件提供动力的系统。 本领域技术人员应当理解, 全文中出现的主翼和固定翼所指的是同一个部 件, 叫做固定翼是相对于旋翼来讲的; 叫做主翼, 是从飞机的结构组成上来 说, 相对于尾翼来讲的。 在该固定翼飞机组件的基础上, 增加了四套电动多 旋翼动力系统 5, 即为起到旋翼机功能的组件提供动力的系统, 但不限于四 套, 而电动多旋翼动力系统 5可以采用现有的直升机具体组成和结构, 所以 不再赘述。所述电动多旋翼动力系统的旋翼旋转平面与水平面平行, 此处的 平行包括接近于平行的情况, 比如机身与水平面的俯仰角在 10° 的范围内。 本领域技术人员应当理解, 全文中出现的平行、 垂直和水平等术语也包括接 近于平行、 垂直和水平的情况, 并非仅仅指几何意义上绝对的平行、 垂直和 水平。 而电动多旋翼动力系统 5包括动力装置和旋翼, 可以把旋翼分别设置 在该机身的两侧和主翼前后侧, 相对于该机身呈对称放置, 将动力装置设置 于机身上。或者将整套电动多旋翼动力系统 5分别设置在该机身的两侧和主 翼前后侧, 相对于该机身呈对称放置。 这样的设置保证了飞行器整体重心处 于机身的中心线上, 使飞机在起降和飞行过程中始终保持平衡, 不影响其工 作状态。 当然, 也可以采用其他的位置设置, 只要能达到前述效果的设置方 式皆可。 本实施例中, 每套电动多旋翼动力系统 5整体地或者旋翼单独地通 过一支撑臂 6连接到主翼 2上, 当然在其他实施例中, 也可以将各套电动多 旋翼动力系统中的若干套系统或者旋翼共用一支撑臂连接到机身或者机翼 上。
本实施例中的电动多旋翼动力系统采用电动动力系统,包括电机和与该 电机连接的旋翼, 可以根据实际情况决定是否添加变速箱。 因为采用电动, 所以重量增加很轻, 从而使固定翼飞机模式时增加的死重(旋翼直升机部分 的重量)很少。 同时由于是电动动力方案, 整个飞机噪音很小, 旋翼直升机 向下吹的气流无高温, 比用传统发动机的其他飞行器更加环保。 而固定翼动 力系统的动力也可以采用电动或者其他动力。固定翼动力系统的数量可以为 单套或者多套, 固定翼动力系统的螺旋桨位于机身前方、 机身后部或机身两 侧, 或者前后方同时设置均可。 为保证本发明的飞行器在两种模式之间自由的切换, 从结构上来讲固定 翼动力系统与电动多旋翼动力系统相互独立设置, 配备一个总控制器 7以实 现在两种模式之间的切换控制。该总控制器 7包括一固定翼控制系统 71, 该 固定翼控制系统包括固定翼动力控制系统, 用于控制固定翼动力系统; 以及 固定翼舵面控制系统。因为固定翼控制系统可以采用现有的固定翼飞机的控 制系统结构和组成来实现, 所以不做赘述。
该总控制器 7还包括一用于控制该电动多旋翼动力系统 5工作的电动多 旋翼控制系统 72, 该总控制器 7还用于控制该固定翼控制系统 71和电动多 旋翼控制系统 72单独工作或者协同工作。 这里, 固定翼控制系统 71单独工 作时对应的是固定翼飞机模式, 电动多旋翼控制系统 72单独工作时对应的 是直升机模式, 用于控制飞行器的升降、 姿态和航向, 而两个系统协同工作 时称之为固定翼飞机直升机混合模式。
为便于本领域技术人员的理解,下面从整个飞机的起降过程和飞行过程 来详细描述这三种模式的具体工作原理。 需要明确的是, 飞行过程是指飞机 在起飞之后降落之前的水平飞行过程,而升降过程是指飞机起飞和降落的过 程。
其中起降过程可以采用直升机模式、 固定翼飞机模式或者混合模式:
1、 在直升机模式起降时, 关闭固定翼动力系统, 开启 4组 (或者更多 组) 的电动多旋翼动力系统, 电动多旋翼控制系统通过增减所有旋翼的转速 和 /或螺距控制飞行器的垂直起降。使用垂直起降功率消耗较大,但使用电动 多旋翼动力系统时间很短, 起降消耗能量占整个飞行能耗能量比例不大, 故 是此飞行器主要起降模式, 此时飞机像一般直升机一样起降。如图 16, 升降 时 4个旋翼全部增加或者减小转速。
2、 在固定翼飞机模式起降时, 关闭 4组 (或者更多组) 电动多旋翼动 力系统, 只开启固定翼动力系统, 飞机就可以像一般固定翼飞机一样在跑道 上起降。
3、 在混合模式起降时, 固定翼动力系统和电动多旋翼动力系统都开启。 优缺点介于直升机模式和固定翼飞机模式之间。
在混合模式起飞过程中, 可以使两种动力系统同时工作, 这样提供的升 力就远远大于单独一个动力系统提供的升力, 从而应用范围更加广泛, 尤其 是飞机载荷很大的情况。 比如战斗机在起飞时装满了油和武器装备, 传统的 战斗机只是通过定翼动力系统提供动力实现起飞, 动力有限, 起飞速度慢, 而本发明中同时电动多旋翼动力系统也提供动力, 则动力大大增加, 起飞速 度很快。
在混合模式起飞过程中, 对于跑道长度不够的情况也适用。 比如正常的 跑道长度是 500米,而某些场合受到地理环境的限制,跑道长度无法达到 500 米, 比如山区等不平坦地区或者航空母舰的甲板上, 例如跑道长度只有 250 米, 此时就可以用混合模式在跑道上滑行起飞, 最终实现短距离起飞。
而飞行过程也可以采用直升机模式、 固定翼飞机模式和混合模式:
1、 在直升机模式飞行时, 关闭固定翼动力系统、 开启 4组 (或以上) 电动多旋翼动力系统,飞行器可以完成所有直升机的功能,从而能完成航拍、 固定位置侦查等任务, 此时飞机像一般直升机一样飞行。 其中, 电动多旋翼 控制系统通过减小在飞行方向上相对于飞行器的重心靠前的旋翼的转速和 / 或螺距, 同时增加在飞行方向上相对于飞行器的重心靠后的旋翼的转速和 / 或螺距, 来控制飞行器的姿态。 如图 16, 向左侧飞时: 旋翼 5a、 5c增速, 旋翼 5、 5b减速。 向右侧飞时: 旋翼 5、 5b增速, 旋翼 5a、 5c减速。
电动多旋翼控制系统通过增加与飞行器转向反向的旋翼的转速和 /或螺 距, 减少与飞行器转向同向的旋翼的转速和 /或螺距, 控制飞行器的航向。如 图 16, 左转向时: 旋翼 5、 5c增速, 旋翼 5a、 5b减速; 右转向时: 旋翼 5a、 5b增速, 旋翼 5、 5c减速; 前飞: 旋翼 5b、 5c增速, 旋翼 5、 5a减速; 后 飞: 旋翼 5、 5a增速, 旋翼 5b、 5c减速。
具体来讲, 就是使其中一半的旋翼顺时针方向旋转, 另一半旋翼逆时针 方向旋转, 在直升机模式下, 可以利用电子陀螺控制 4个旋翼的转速, 形成 一个稳定的旋翼直升机飞行平台。通过改变旋翼转速, 改变 4个旋翼的升力 和扭矩, 从而控制旋翼直升机向各个方向的飞行及转向。 其中电子陀螺为本 领域常用的装置, 技术人员可根据具体需要自己选择其类型。
2、 在固定翼飞机模式飞行时, 关闭 4组 (或者更多组) 旋翼, 只开启 固定翼动力系统。 可以完成所有固定翼飞机的功能。 优点是功耗小, 飞行距 离和时间长。 此模式是此飞行器的主要飞行模式, 此时飞机像一般固定翼飞 机一样飞行。
3、 在混合模式飞行时, 固定翼动力系统和电动多旋翼动力系统都开启。 优缺点介于直升机模式和固定翼飞机模式之间。
在混合模式中, 为了保证旋翼部分停止转动以后保持和飞行器飞行方向 平行, 以最大限度的减小飞行阻力, 让飞行效率更高。 也可以在电动多旋翼 控制系统中添加一旋翼桨叶位置控制单元 721, 用于当电动多旋翼动力系统 关闭、 固定翼动力系统开启时, 控制所述电动多旋翼动力系统的旋翼桨叶位 置始终保持与飞机飞行方向平行。
在混合模式中, 前述两个动力系统协同工作的一种情形为: 在从直升机 模式飞行到固定翼模式飞行的转换过程中, 由从悬停开始随着推进螺旋桨产 生动力, 飞行器产生水平运动, 随着空速增加固定翼逐渐产生升力, 同时多 旋翼逐渐降低转速以降低旋翼升力从而维持总升力不变直至空速大于固定 翼失速速度, 以完成直升机模式飞行到固定翼模式飞行的转换。
在混合模式中, 前述两个动力系统协同工作的另一种情形为: 在从固定 翼模式飞行到直升机模式飞行的转换过程中, 随着降低水平螺旋桨推力, 当 空速接近固定翼失速速度时, 多旋翼将启动产生升力, 随着空速的进一步降 低多旋翼将增加转速从而增加升力以补偿固定翼部分的升力下降,从而达到 总升力不变, 当推进螺旋桨彻底停止转动空速降低为零时, 彻底转换成直升 机模式飞行。协同工作的又一种情形为:在整个的起飞、飞行和降落过程中, 该固定翼控制系统和电动多旋翼控制系统在总控制器的控制下全程协同工 作。
以上提到的总控制器、各控制系统和各控制单元的具体制作与实现均可 通过现有的电子控制方式或者软件方式来实现, 在此不做赘述。
如图 7-13 所示, 本发明的固定翼飞机组件的尾翼结构还可以为其他类 型,如不带尾翼的飞翼式、 "丄,,形、 " "、 " "、 "T"字形、 "V"形或" Λ " 形等等。
第二实施例
如图 14、 15, 本实施例与第一实施例的不同之处主要在于: 本实施例中 有 6套电动多旋翼动力系统, 其中 4套安装在主翼上, 而另外两套安装在机 身上靠近尾翼的位置处。图 15中的飞机尾部安装有喷气装置 8,可以以喷气 为动力推进飞机向前飞行。 其余部分与第一实施例基本相同。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理 解, 这些仅是举例说明, 本发明的保护范围是由所附权利要求书限定的。 本 领域的技术人员在不背离本发明的原理和实质的前提下, 可以对这些实施方 式做出多种变更或修改, 但这些变更和修改均落入本发明的保护范围。

Claims

权利要求
1、 一种固定翼与电动多旋翼组成的复合飞行器, 包括一套固定翼飞机 组件, 该组件包括机身、 机翼、 固定翼动力系统以及固定翼控制系统, 该固 定翼控制系统包括固定翼动力控制系统及固定翼舵面控制系统, 其特征在 于, 该飞行器还包括一组电动多旋翼动力系统和一个总控制器, 所述固定翼 动力系统与电动多旋翼动力系统在结构上相互独立, 该总控制器包括该固定 翼控制系统和用于控制该电动多旋翼动力系统工作的电动多旋翼控制系统, 该总控制器还用于控制该固定翼控制系统和电动多旋翼控制系统单独工作 或者协同工作; 所述电动多旋翼动力系统的旋翼旋转平面与机身中心轴平 行。
2、 如权利要求 1所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 该电动多旋翼控制系统用于控制飞行器的升降、 姿态和航向。
3、 如权利要求 2所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于,该电动多旋翼控制系统通过增减所有旋翼的转速和 /或螺距控制飞行 器的升降。
4、 如权利要求 2所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 该电动多旋翼控制系统通过减小在飞行方向上相对于飞行器的重心 靠前的旋翼的转速和 /或螺距,同时增加在飞行方向上相对于飞行器的重心靠 后的旋翼的转速和 /或螺距, 控制飞行器的姿态。
5、 如权利要求 2所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 该电动多旋翼控制系统通过增加与飞行器转向反向的旋翼的转速和 /或螺距, 减少与飞行器转向同向的旋翼的转速和 /或螺距, 控制飞行器的航 向。
6、 如权利要求 1所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 所述电动多旋翼动力系统至少为四套, 每套该系统包括动力装置和 与该动力装置连接的旋翼,所述各旋翼分别设置在该机身的两侧和机翼前后 侧, 相对于该该飞行器重心呈对称放置; 或者所述各电动多旋翼动力系统整 体分别设置在该机身的两侧和机翼前后侧, 相对于该飞行器重心呈对称放 置。
7、 如权利要求 6所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于,所述每套电动多旋翼动力系统或者旋翼均通过一支撑臂连接到该机 身或者机翼上。
8、 如权利要求 6所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于,所述各套电动多旋翼动力系统中的若干套系统或者若干套旋翼共用 一支撑臂连接到该机身或者机翼上。
9、 如权利要求 6所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 所述动力装置为电机。
10、 如权利要求 1所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 所述电动多旋翼控制系统包括一旋翼桨叶位置控制单元, 用于当电 动多旋翼动力系统关闭、 固定翼动力系统开启时, 控制所述电动多旋翼动力 系统的旋翼桨叶位置始终保持与飞机飞行方向平行。
11、 如权利要求 1所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 所述协同工作模式之一为: 在从多旋翼直升机飞行模式到固定翼飞 行模式的转换过程中, 由从悬停开始随着推进螺旋桨产生动力, 飞行器产生 水平运动, 随着空速增加固定翼逐渐产生升力, 同时多旋翼逐渐降低转速以 降低旋翼升力从而维持总升力不变直至空速大于固定翼失速速度, 以完成多 旋翼直升机飞行模式到固定翼飞行模式的转换。
12、 如权利要求 1所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 所述协同工作模式之二为: 在从固定翼飞行模式到多旋翼直升机飞 行模式转换过程中, 随着降低水平螺旋桨推力, 当空速接近固定翼失速速度 时, 多旋翼将启动产生升力, 随着空速的进一步降低多旋翼将增加转速从而 增加升力以补偿固定翼部分的升力下降, 从而达到总升力不变, 当推进螺旋 桨彻底停止转动空速降低为零时, 彻底转换成多旋翼直升机飞行模式。
13、 如权利要求 1所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 所述协同工作模式之三为: 在整个的起飞、 飞行和降落过程中, 该 固定翼控制系统和电动多旋翼控制系统在总控制器的控制下全程协同工作。
14、 如权利要求 1所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于,所述固定翼动力系统的螺旋桨位于机身前方、机身后部或机身两侧, 或者前后方同时设置。
15、 如权利要求 1所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 所述飞行器的尾翼结构为不带尾翼的飞翼式、 "^"、 "u "、 "i" 形、 "T"字形、 "V"形或 " Λ "形。
16、 如权利要求 1所述的固定翼与电动多旋翼组成的复合飞行器, 其特 征在于, 所述固定翼动力系统为电力动力系统或者燃油动力系统。
17、 如权利要求 1-16任意一项所述的固定翼与电动多旋翼组成的复合 飞行器, 其特征在于, 所述固定翼动力系统的数量为单套或者多套。
PCT/CN2011/083305 2011-10-17 2011-12-01 固定翼与电动多旋翼组成的复合飞行器 WO2013056493A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11870167.1A EP2604519A4 (en) 2011-10-17 2011-12-01 COMPOSITE AIRCRAFT CONSISTING OF FIXED BOAT AND PROPELLERS WITH ELECTRICAL CONTROL
JP2014534913A JP2014528382A (ja) 2011-10-17 2011-12-01 固定翼および電動マルチローターを組み合わせた航空機
US13/704,056 US20130092799A1 (en) 2011-10-17 2011-12-01 Fixed-wing and electric multi-rotor composite aircraft

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110316929.1A CN103043212B (zh) 2011-10-17 2011-10-17 固定翼与电动多旋翼组成的复合飞行器
CN201110316929.1 2011-10-17
CN 201120397886 CN202728575U (zh) 2011-10-17 2011-10-17 固定翼与电动多旋翼组成的复合飞行器
CN201120397886.X 2011-10-17

Publications (1)

Publication Number Publication Date
WO2013056493A1 true WO2013056493A1 (zh) 2013-04-25

Family

ID=48140344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083305 WO2013056493A1 (zh) 2011-10-17 2011-12-01 固定翼与电动多旋翼组成的复合飞行器

Country Status (3)

Country Link
EP (1) EP2604519A4 (zh)
JP (1) JP2014528382A (zh)
WO (1) WO2013056493A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130092799A1 (en) * 2011-10-17 2013-04-18 Yu Tian Fixed-wing and electric multi-rotor composite aircraft
CN104648653A (zh) * 2015-03-10 2015-05-27 朱幕松 四旋翼直升快飞电动无人机
CN109720563A (zh) * 2019-02-28 2019-05-07 南京邮电大学 智能四旋翼滑翔无人机及其飞行控制方法
CN111125971A (zh) * 2019-12-26 2020-05-08 北京航空航天大学 一种吸气式高超声速飞行器推力不确定性确定方法
CN113212752A (zh) * 2021-06-21 2021-08-06 北京理工大学 一种多模式转换微小型无人机
CN113665812A (zh) * 2021-08-09 2021-11-19 广东新创华科环保股份有限公司 一种多通道无人机控制系统和方法
CN114056542A (zh) * 2021-08-13 2022-02-18 南京晓飞智能科技有限公司 一种复合式多旋翼无人机

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101727019B1 (ko) * 2015-10-12 2017-04-14 최종필 고정익을 갖는 멀티로터형 무인비행기
KR101784372B1 (ko) * 2015-11-26 2017-10-11 주식회사 네스앤텍 추진 로터가 구비된 멀티콥터
EP3184425B1 (en) 2015-12-21 2018-09-12 AIRBUS HELICOPTERS DEUTSCHLAND GmbH Multirotor aircraft
JP2018134908A (ja) * 2017-02-20 2018-08-30 株式会社菊池製作所 無人航空機
JP2018134910A (ja) * 2017-02-20 2018-08-30 株式会社菊池製作所 無人航空機
US10053213B1 (en) * 2017-05-08 2018-08-21 Pinnacle Vista, LLC Multi-copter lift body aircraft with tail pusher
US10737797B2 (en) * 2017-07-21 2020-08-11 General Electric Company Vertical takeoff and landing aircraft
WO2019084487A1 (en) * 2017-10-27 2019-05-02 Elroy Air, Inc. COMPOSITE MULTICOPTER AIRCRAFT
US11724801B2 (en) 2017-11-03 2023-08-15 Textron Systems Corporation VTOL aircraft having fixed-wing and rotorcraft configurations
US11447248B2 (en) 2017-12-21 2022-09-20 Elroy Air, Inc. Unmanned vehicle cargo handling and carrying system
JP6731604B2 (ja) * 2018-03-31 2020-07-29 中松 義郎 高速ドローン等航空機
CN108803643B (zh) * 2018-06-19 2021-08-20 成都纵横自动化技术股份有限公司 飞行控制方法、装置、飞行控制器及复合翼飞行器
US11708157B2 (en) * 2018-09-11 2023-07-25 Eve Uam, Llc Vertical take-off and landing (VTOL) aircraft with cruise rotor positioning control for minimum drag
EP3906190A2 (en) 2018-12-31 2021-11-10 Polarity Mobility Av Ltd. Vtol aircraft
US11148852B2 (en) 2019-04-11 2021-10-19 Elroy Air, Inc. Modular aerial cargo aerodynamic encasement
US11661193B2 (en) 2019-07-18 2023-05-30 Elroy Air, Inc. Unmanned aerial vehicle optimization
JP7385254B2 (ja) * 2019-10-04 2023-11-22 国立研究開発法人宇宙航空研究開発機構 電動化航空機及びその姿勢制御方法
JP7104427B2 (ja) * 2020-02-27 2022-07-21 義郎 中松 翼付ドローン
WO2022130500A1 (ja) * 2020-12-15 2022-06-23 本田技研工業株式会社 航空機
JPWO2023062689A1 (zh) * 2021-10-11 2023-04-20
EP4279390B1 (en) 2022-05-18 2024-07-03 Leonardo S.p.a. Fuselage for a vertical take-off and landing aircraft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2317173Y (zh) * 1997-09-18 1999-05-05 佟士俊 双翼直升飞机
US20020125367A1 (en) * 2001-03-12 2002-09-12 Killingsworth Norman Don Combination fixed and rotating wing aircraft, land vehicle and water craft
WO2011023834A1 (es) * 2009-08-26 2011-03-03 Munoz Saiz Manuel Sistema sustentador propulsor y estabilizador para aeronaves de despegue y aterrizaje vertical
CN102126553A (zh) * 2010-01-12 2011-07-20 北京航空航天大学 一种垂直起降小型无人机

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3995793A (en) * 1974-07-25 1976-12-07 Wing Russell T Roto-wing jet airplane
IT1297108B1 (it) * 1997-12-10 1999-08-03 Franco Capanna Sistema per la trasformazione di un aeromobile a decollo e volo orizzontale autosostentato in aeromobile integrato, ibrido a decollo
WO2001087707A1 (en) * 2000-05-15 2001-11-22 Sunlase, Inc. Aircraft and hybrid with magnetic airfoil suspension and drive
FR2809026B1 (fr) * 2000-05-18 2003-05-16 Philippe Louvel Soucoupe volante electrique, pilotee et alimentee a distance
US6843447B2 (en) * 2003-01-06 2005-01-18 Brian H. Morgan Vertical take-off and landing aircraft
EP1831073A2 (en) * 2004-12-22 2007-09-12 Aurora Flight Sciences Corporation System and method for utilizing stored electrical energy for vtol aircraft thrust enhancement and attitude control
ES2289932B1 (es) * 2006-07-03 2009-03-01 INSTITUTO NACIONAL DE TECNICA AEROESPACIAL "ESTEBAN TERRADAS" Aeronave con sistema de vuelo convertible.
US8453962B2 (en) * 2007-02-16 2013-06-04 Donald Orval Shaw Modular flying vehicle
JP2009078745A (ja) * 2007-09-27 2009-04-16 Japan Aerospace Exploration Agency 電動垂直離着陸機
JP2009083798A (ja) * 2007-10-03 2009-04-23 Japan Aerospace Exploration Agency 電動垂直離着陸機の制御方法
DE102008014853B4 (de) * 2008-03-18 2010-11-18 Ascending Technologies Gmbh Drehflügelfluggerät
US8690096B2 (en) * 2009-06-04 2014-04-08 Alberto Alvarez-Calderon F. Aircraft with dual flight regimes
JP2011046355A (ja) * 2009-08-28 2011-03-10 Kitakyushu Foundation For The Advancement Of Industry Science & Technology 飛行体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2317173Y (zh) * 1997-09-18 1999-05-05 佟士俊 双翼直升飞机
US20020125367A1 (en) * 2001-03-12 2002-09-12 Killingsworth Norman Don Combination fixed and rotating wing aircraft, land vehicle and water craft
WO2011023834A1 (es) * 2009-08-26 2011-03-03 Munoz Saiz Manuel Sistema sustentador propulsor y estabilizador para aeronaves de despegue y aterrizaje vertical
CN102126553A (zh) * 2010-01-12 2011-07-20 北京航空航天大学 一种垂直起降小型无人机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2604519A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130092799A1 (en) * 2011-10-17 2013-04-18 Yu Tian Fixed-wing and electric multi-rotor composite aircraft
CN104648653A (zh) * 2015-03-10 2015-05-27 朱幕松 四旋翼直升快飞电动无人机
CN109720563A (zh) * 2019-02-28 2019-05-07 南京邮电大学 智能四旋翼滑翔无人机及其飞行控制方法
CN111125971A (zh) * 2019-12-26 2020-05-08 北京航空航天大学 一种吸气式高超声速飞行器推力不确定性确定方法
CN111125971B (zh) * 2019-12-26 2022-03-25 北京航空航天大学 一种吸气式高超声速飞行器推力不确定性确定方法
CN113212752A (zh) * 2021-06-21 2021-08-06 北京理工大学 一种多模式转换微小型无人机
CN113665812A (zh) * 2021-08-09 2021-11-19 广东新创华科环保股份有限公司 一种多通道无人机控制系统和方法
CN114056542A (zh) * 2021-08-13 2022-02-18 南京晓飞智能科技有限公司 一种复合式多旋翼无人机

Also Published As

Publication number Publication date
JP2014528382A (ja) 2014-10-27
EP2604519A4 (en) 2015-07-15
EP2604519A1 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
WO2013056493A1 (zh) 固定翼与电动多旋翼组成的复合飞行器
CN103043212B (zh) 固定翼与电动多旋翼组成的复合飞行器
US11142309B2 (en) Convertible airplane with exposable rotors
US10279904B2 (en) Fixed structure type vertical take-off and landing aircraft based on dual flying control systems and control method therefor
WO2013056492A1 (zh) 固定翼与电动多桨组成的具有直升机功能的复合飞行器
CN202728576U (zh) 可变形的固定翼与电动多旋翼组成的复合飞行器
CN202728575U (zh) 固定翼与电动多旋翼组成的复合飞行器
CN107416200B (zh) 一种电动复合翼飞行器
US20130092799A1 (en) Fixed-wing and electric multi-rotor composite aircraft
CN202011472U (zh) 倾转涵道无人机
WO2020079649A1 (en) A quiet redundant rotorcraft
CN102120489A (zh) 倾转涵道无人机
CN203332392U (zh) 可倾转定翼无人机
CN108128448A (zh) 双尾撑式共轴倾转旋翼无人机及其控制方法
RU2521090C1 (ru) Скоростной турбоэлектрический вертолет
US20200354050A1 (en) Convertiplane
CN103192981A (zh) 电动低噪短距起降连翼飞机
CN103754360B (zh) 一种类飞碟式旋翼机
RU2611480C1 (ru) Многовинтовой беспилотный винтокрыл
CN107021208A (zh) 一种利用涵道的尾坐式垂直起降无人机及控制方法
CN213323678U (zh) 一种动力分配型式的可垂直起降无人飞行器
CN111942581B (zh) 一种分布升力鸭式布局垂直起降无人机及控制方法
CN106043687A (zh) 双发后推式鸭式旋翼/固定翼复合式垂直起降飞行器
CN207725616U (zh) 双尾撑式共轴倾转旋翼无人机
CN212951108U (zh) 一种变直径无人倾转旋翼机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13704056

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011870167

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011870167

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014534913

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE