WO2017016016A1 - 臭氧微气泡反应污水处理设备和方法 - Google Patents
臭氧微气泡反应污水处理设备和方法 Download PDFInfo
- Publication number
- WO2017016016A1 WO2017016016A1 PCT/CN2015/088284 CN2015088284W WO2017016016A1 WO 2017016016 A1 WO2017016016 A1 WO 2017016016A1 CN 2015088284 W CN2015088284 W CN 2015088284W WO 2017016016 A1 WO2017016016 A1 WO 2017016016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- gas
- reaction
- reaction chamber
- gas mixing
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F23/00—Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
- B01F23/20—Mixing gases with liquids
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/78—Treatment of water, waste water, or sewage by oxidation with ozone
Definitions
- the present invention relates to the field of sewage treatment technology, and in particular to an ozone microbubble reaction sewage treatment apparatus and method.
- Landfill leachate is different from general sewage and has the following characteristics.
- the COD concentration is particularly high. Concentrations range from tens of thousands of mg/L to hundreds of thousands of mg/L.
- the brown sewage contains many odorous, carcinogenic, toxic and harmful substances such as carboxybenzene, heterocyclic and polyphenyl macromolecular compounds, and it is difficult to degrade organic compounds. Contains certain heavy metal ions.
- the concentration of ammonia nitrogen in the landfill leachate is high. Concentrations range from tens to thousands of mg/L. Ammonia nitrogen in landfill leachate has an increasing trend with the extension of landfills. The high concentration of ammonia nitrogen inhibits the microorganisms in the biochemical treatment process of the landfill leachate, and the biochemical treatment system of the landfill leachate cannot be stably operated. Moreover, high concentration ammonia nitrogen treatment itself is also a major problem.
- An object of the present invention is to provide an ozone microbubble reaction sewage treatment device and method, which improves the efficiency of sewage treatment, reduces the loss and waste of ozone gas, and is low in cost and easy to popularize.
- an ozone microbubble reaction sewage treatment device comprising an inlet pipe, an intake pipe, a water-gas mixing device, a water-gas mixing defoaming device, and a reaction tank
- the water inlet pipe and the intake pipe are connected by a water gas mixing device, and the water gas mixing device is connected to the water gas mixing and breaking foam device through a high pressure gas-liquid mixing pump, and the water gas mixing foam breaking device is connected with the reaction pool, the reaction pool
- the inner chamber is divided into three connected reaction chambers by two diversion walls, including a first reaction chamber, a second reaction chamber and a third reaction chamber, wherein the first reaction chamber is provided with an ultrasonic oscillator, and the second reaction There are UV lamps in the room.
- the communication port of the first reaction chamber and the second reaction chamber is disposed above the reaction tank, and the communication port of the second reaction chamber and the third reaction chamber is disposed at the bottom of the reaction tank.
- the ultrasonic oscillator is disposed above the first reaction chamber and is on the water surface, and the ultraviolet lamp is disposed in the second reaction chamber from top to bottom and from the bottom to the bottom.
- the ultrasonic oscillator is a 60W ultrasonic vibrator with a frequency of 25kz; and the ultraviolet lamp is a 40W immersion lamp.
- a hydrogen peroxide supply pipe is connected to the inlet pipe.
- the water gas mixing device comprises a mixing device body and a gas pipe joint, wherein the mixing device body is provided with a water inlet, a water gas mixture outlet and an air inlet, and the gas pipe joint is perpendicular to the mixing device.
- the main body is connected to the air inlet, the water inlet and the water gas mixture outlet are in direct line communication, and a protrusion is arranged between the water inlet and the water gas mixture outlet, and a concave portion is formed between the convex portion and the water inlet, and the convex portion is convex
- a ring cavity is formed between the starting portion and the inner wall of the main body of the mixing device to communicate with the air inlet and the water inlet, and the gas passes from the air inlet through the ring cavity and the water meets at the recess.
- the water-gas mixing defoaming device comprises a water-gas mixing tube and a foam breaking device disposed inside the water-gas mixing tube, wherein the two ends of the water-gas mixing tube are respectively a water-gas mixture inlet and
- the bubble breaking device comprises a fixing block and a foam breaking cylinder body, wherein the mouth of the foam breaking cylinder body is provided with a plurality of convex portions extending outwardly and vertically, and the foam breaking cylinder body is placed in the water through the convex portion Inside the gas mixing tube, and the mouth and moisture of the broken barrel
- a gap is formed between the inner walls of the mixing tube, and the foam breaking cylinder body is fixed in the water-gas mixing tube through the fixing block, the fixing block is provided with a through hole, the end surface is provided with a groove, and the water-gas mixture enters the foam-breaking cylinder body, and enters after the impact. The groove then flows out through the gap.
- An ozone microbubble reaction sewage treatment method comprises the following steps: sewage and ozone are respectively merged in a water-gas mixing device through an inlet pipe and an intake pipe, and are mixed by a water-gas mixing device, and ozone is dissolved in the sewage, and mixed.
- the water-gas mixture is pumped to the water-gas mixing and defoaming device through a high-pressure gas-liquid mixing pump to defoam the water-gas mixture, and the gas not mixed with the sewage is broken into bubbles in the sewage, so that the gas and the sewage are thoroughly mixed.
- the treated water-gas mixture enters the reaction tank, passes through the first reaction chamber, the second reaction chamber and the third reaction chamber in turn, and after the reaction tank is treated, the effluent reaches the standard discharge.
- hydrogen peroxide is supplied to the sewage through a hydrogen peroxide supply pipe provided on the sewage inlet pipe to react with ozone to form a hydroxyl radical.
- FIG. 1 is a structural diagram of an ozone microbubble reaction sewage treatment facility.
- FIG. 2 is a schematic structural view of a water-gas mixing device.
- FIG. 3 is a schematic structural view of a water-air mixing defoaming device.
- FIG. 4 is a cross-sectional view taken along line A-A of FIG. 3.
- an ozone microbubble reaction sewage treatment device of the present invention includes an inlet pipe 1 and an intake pipe. 2.
- the gas mixing bubble breaking device 5 is connected, the water gas mixing bubble breaking device 5 is connected with the reaction cell 6, and the inner cavity of the reaction cell 6 is divided into three connected reaction chambers by two diversion walls 64, including the first reaction chamber 61,
- the first reaction chamber 61 is provided with an ultrasonic oscillator 611, and the second reaction chamber 62 is provided with an ultraviolet lamp 621, and the first reaction chamber 61 and the second reaction chamber 62 are connected.
- the port 65 is disposed above the reaction cell 6, the communication port 66 of the second reaction chamber 62 and the third reaction chamber 63 is disposed at the bottom of the reaction cell 6, and the ultrasonic oscillator 611 is disposed above the first reaction chamber 61 and is on the surface of the water.
- the ultraviolet lamp 621 is disposed in the second reaction chamber 62 from top to bottom and from the bottom to the bottom.
- the ultrasonic oscillator 611 is a immersion lamp having a frequency of 25 kz and a 60 W ultrasonic vibrator, and the ultraviolet lamp 621 is a 40 W.
- a hydrogen peroxide supply pipe 7 is connected to the inlet pipe 1.
- the water-gas mixing device 3 includes a mixing device main body 31 and a gas pipe joint 32.
- the mixing device main body 31 is provided with a water inlet 33, a water-gas mixture outlet 34, and an air inlet 35, and the gas pipe joint 32 is perpendicular to
- the mixing device body 1 is connected to the air inlet 35, the water inlet 33 and the water-gas mixture outlet 34 are in direct line communication, and a section of the projection 36, the boss 36 and the water inlet are provided between the water inlet 33 and the water-gas mixture outlet 34.
- the gas passes from the air inlet 35 through the annular cavity 38 and the water is recessed. Department 37 meets.
- the water-air mixing defoaming device 5 includes a water-gas mixing pipe 51 and a foam breaking device disposed inside the water-gas mixing pipe, and the water-gas mixing pipe 1 is respectively a water-gas mixture.
- the inlet 52 and the outlet 53 comprise a fixing block 54 and a foam breaking cylinder 55.
- the mouth of the foam breaking cylinder 55 is provided with a plurality of outwardly extending projections 56, and the foam breaking cylinder 55 passes through the projections.
- the portion 56 is placed in the water-gas mixing tube 51, and a gap 57 is formed between the mouth of the bubble-breaking cylinder 55 and the inner wall of the water-gas mixing tube 51, and the foam-breaking cylinder 55 is fixed in the water-gas mixing tube 51 by the fixing block 54.
- the fixing block 54 is provided with a through hole 58, and the end surface is provided with a groove 59.
- the water-gas mixture enters the bubble breaking cylinder body 5 5 , enters the groove 59 after the impact, and then flows out through the gap 57.
- An ozone microbubble reaction sewage treatment method comprising the following steps: sewage and ozone are respectively merged in the water gas mixing device 3 through the inlet pipe 1 and the intake pipe 2, and are mixed by the water gas mixing device 3, and the ozone is dissolved.
- the mixed water-gas mixture is pumped to the water-gas mixing and defoaming device 5 through the high-pressure gas-liquid mixing pump 4, and the water-gas mixture is defoamed, and the gas not mixed with the sewage is formed into a bubble in the sewage to break.
- the gas and the sewage are thoroughly mixed, and the treated water-gas mixture enters the reaction tank 6, and sequentially passes through the first reaction chamber 61, the second reaction chamber 62, and the third reaction chamber 63. After the treatment of the reaction tank 6, the effluent reaches the standard discharge.
- hydrogen peroxide is supplied to the sewage through the hydrogen peroxide supply pipe 7 provided on the sewage inlet pipe 1, and reacts with ozone to form a hydroxyl radical.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Physical Water Treatments (AREA)
Abstract
一种臭氧微气泡反应污水处理设备,其包括进水管(1)、进气管(2)、水气混合装置(3)、水气混合破泡装置(5)和反应池(6),进水管(1)和进气管(2)通过水气混合装置(3)连接,水气混合装置(3)通过高压气液混合泵(4)与水气混合破泡装置(5)连接,水气混合破泡装置(5)和反应池(6)连接,反应池(6)的内腔通过两个导流墙(64)分隔成三个相连的反应室,包括第一反应室(61)、第二反应室(62)和第三反应室(63),第一反应室(61)内设有超声波振荡器(611),第二反应室(62)内设有紫外线灯(621)。还公开了一种臭氧微气泡反应污水处理方法。
Description
臭氧微气泡反应污水处理设备和方法 技术领域
[0001] 本发明涉及污水处理技术领域, 具体是涉及一种臭氧微气泡反应污水处理设备 和方法。
背景技术
[0002] 随着人民生活水平的不断提高和城市化进程的加速,城市垃圾的产量也在逐年提 高,目前城市垃圾正以每年 9 %〜10 <¾的速度增长。 由此带来的垃圾渗滤液配套处 理需求也在不断放大。
[0003] 垃圾渗滤液和一般污水不同, 有如下几个特点。
[0004] ( 1 ) COD浓度特别高。 浓度从上万 mg/L到十几万 mg/L不等。 褐色污水中含有 较多的羧基苯、 杂环类及多联苯大分子化合物等恶臭致癌有毒有害物质、 难降 解化合有机物质。 含有一定的重金属离子。
[0005] (2) 垃圾渗滤液中的氨氮浓度高。 浓度从数十至几千 mg/L不等。 随着填埋吋 间的延长, 垃圾渗滤液中的氨氮具有不断升高的趋势。 高浓度氨氮对垃圾渗滤 液生化处理过程中微生物有抑制作用, 导致垃圾渗滤液的生化处理系统不能稳 定运行。 而且, 高浓度氨氮处理本身也是一大难题。
[0006] (3) 垃圾渗滤液中的微生物营养物质比例严重失调, 可生化性和可生物硝化 性较差。 除了氨氮特别高外, B/C、 C/N比较低, 尤其是 "中老齢"渗滤液利用常 规生化处理困难。
[0007] (4) 水量水质变化大, 需要采用抗冲击负荷能力强的处理工艺。
[0008] 由于垃圾渗滤液处理的难度大, 技术发展比较缓慢。 目前为止, 虽然出现了如 渗滤液回灌、 土地处理、 物化处理、 反渗透、 蒸发处理、 高级化学氧化和生物 反应器填埋场等工艺, 但成熟设备和工艺很少。 没有连续性生产工艺,臭氧投加 量大、 利用率低, 工艺烦琐, 成本太高未能普及; 而且容易溢出臭氧影响工作 环境, 占用面积太多效益低, 吋间太长又反应不稳定。
技术问题
[0009] 本发明的目的是提供一种臭氧微气泡反应污水处理设备和方法, 提高了污水处 理的效率, 减小臭氧气体的流失和浪费, 成本低容易普及。
问题的解决方案
技术解决方案
[0010] 本发明解决其技术问题所采用的技术方案是: 一种臭氧微气泡反应污水处理设 备, 包括进水管、 进气管、 水气混合装置、 水气混合破泡装置和反应池, 所述 的进水管和进气管通过水气混合装置连接, 水气混合装置通过高压气液混合泵 与水气混合破泡装置连接, 所述的水气混合破泡装置和反应池连接, 所述反应 池的内腔通过两个导流墙分隔成三个相连的反应室, 包括第一反应室、 第二反 应室和第三反应室, 所述的第一反应室内设有超声波振荡器, 第二反应室内设 有紫外线灯。
[0011] 作为优选的, 所述的第一反应室和第二反应室的连通口设于反应池的上方, 第 二反应室和第三反应室的连通口设于反应池的底部。
[0012] 进一步的, 所述的超声波振荡器设于第一反应室上方并曼在水面上, 所述的紫 外线灯从上到下垂直到底部设于第二反应室内。
[0013] 进一步的, 所述的超声波振荡器是频率为 25k z功率 60W超声波振子; 所述的 紫外线灯为 40W的浸末式灯管。
[0014] 优选的, 所述的进水管上连接有过氧化氢供给管。
[0015] 优选的, 所述的水气混合装置包括混合装置主体和气管接头, 所述的混合装置 主体设有进水口、 水气混合物出口和进气口, 所述的气管接头垂直于混合装置 主体与进气口连接, 所述进水口和水气混合物出口直线相通, 在进水口和水气 混合物出口之间设有一段凸起部, 凸起部与进水口之间设有凹陷部, 凸起部与 混合装置主体内壁之间形成连通进气口和进水口的环腔, 气体从进气口经过环 腔与水在凹陷部交汇。
[0016] 优选的, 所述的水气混合破泡装置, 包括水气混合管和设于水气混合管内部的 破泡装置, 所述的水气混合管两端分别为水气混合物进口和出口, 所述的破泡 装置包括固定块和破泡筒体, 所述破泡筒体的口部设有若干个向外垂直延伸的 凸起部, 破泡筒体通过凸起部放置在水气混合管内, 且破泡筒体的口部与水气
混合管内壁之间形成间隙, 破泡筒体通过固定块固定在水气混合管内, 所述的 固定块设有通孔, 端面设有凹槽, 水气混合物进入破泡筒体内, 撞击后进入凹 槽, 再通过间隙流出。
[0017] 一种臭氧微气泡反应污水处理方法, 包括以下步骤: 污水和臭氧分别通过进水 管和进气管在水气混合装置中交汇, 并通过水气混合装置混合, 臭氧溶入污水 中, 混合后的水气混合物通过高压气液混合泵抽送到水气混合破泡装置, 对水 气混合物进行破泡处理, 将未与污水混合的气体在污水中形成气泡打破, 使气 体与污水充分混合, 处理过的水气混合物进入反应池, 依次经过第一反应室、 第二反应室和第三反应室, 反应池处理后, 出水达标排放。
[0018] 进一步的, 通过所述污水进水管上设置的氧化氢供给管, 向污水中加入过氧化 氢来和臭氧反应生成羟基自由基。 发明的有益效果
有益效果
[0019] 具有连续性生产工艺, 在污水处理过程中, 可使臭氧与污水充分混合, 提高了 污水处理的效率, 减小臭氧气体的流失和浪费, 成本低容易普及。
对附图的简要说明
附图说明
[0020] 图 1是臭氧微气泡反应污水处理设备结构图。
[0021] 图 2是水气混合装置的结构示意图。
[0022] 图 3是水气混合破泡装置的结构示意图。
[0023] 图 4是图 3中 A- A处的剖视图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0024] 为了使本发明所解决的技术问题、 技术方案及有益效果更加清楚明白, 以下结 合附图与实施例, 对本发明作进一步的说明。 应当理解, 此处所描述的实施例 仅仅用于解释本发明, 并不用于限定本发明。
[0025] 如图 1所示, 本发明一种臭氧微气泡反应污水处理设备, 包括进水管 1、 进气管
2、 水气混合装置 3、 水气混合破泡装置 5和反应池 6, 进水管 1和进气管通 2过水 气混合装置 3连接, 水气混合装置 3通过高压气液混合泵 4与水气混合破泡装置 5 连接, 水气混合破泡装置 5和反应池 6连接, 反应池 6的内腔通过两个导流墙 64分 隔成三个相连的反应室, 包括第一反应室 61、 第二反应室 62和第三反应室 63, 第一反应室 61内设有超声波振荡器 611, 第二反应室 62内设有紫外线灯 621, 第 一反应室 61和第二反应室 62的连通口 65设于反应池 6的上方, 第二反应室 62和第 三反应室 63的连通口 66设于反应池 6的底部, 超声波振荡器 611设于第一反应室 6 1上方并曼在水面上, 紫外线灯 621从上到下垂直到底部设于第二反应室 62内, 超声波振荡器 611是频率为 25k z功率 60W超声波振子, 紫外线灯 621为 40W的浸 末式灯管。
[0026] 作为优选的实施例, 在进水管 1上连接有过氧化氢供给管 7。
[0027] 如图 2所示, 水气混合装置 3包括混合装置主体 31和气管接头 32, 混合装置主体 31设有进水口 33、 水气混合物出口 34和进气口 35, 气管接头 32垂直于混合装置 主体 1与进气口 35连接, 进水口 33和水气混合物出口 34直线相通, 在进水口 33和 水气混合物出口 34之间设有一段凸起部 36, 凸起部 36与进水口 33之间设有凹陷 部 37, 凸起部 36与混合装置主体 1内壁之间形成连通进气口 35和进水口 33的环腔 38, 气体从进气口 35经过环腔 38与水在凹陷部 37交汇。
[0028] 如图 3-4所示, 水气混合破泡装置 5, 包括水气混合管 51和设于水气混合管内部 的破泡装置, 水气混合管 1两端分别为水气混合物进口 52和出口 53, 破泡装置包 括固定块 54和破泡筒体 55, 破泡筒体 55的口部设有若干个向外垂直延伸的凸起 部 56, 破泡筒体 55通过凸起部 56放置在水气混合管 51内, 且破泡筒体 55的口部 与水气混合管 51内壁之间形成间隙 57, 破泡筒体 55通过固定块 54固定在水气混 合管 51内, 固定块 54设有通孔 58, 端面设有凹槽 59, 水气混合物进入破泡筒体 5 5内, 撞击后进入凹槽 59, 再通过间隙 57流出。
[0029] 一种臭氧微气泡反应污水处理方法, 包括以下步骤: 污水和臭氧分别通过进水 管 1和进气管 2在水气混合装置 3中交汇, 并通过水气混合装置 3混合, 臭氧溶入 污水中, 混合后的水气混合物通过高压气液混合泵 4抽送到水气混合破泡装置 5 , 对水气混合物进行破泡处理, 将未与污水混合的气体在污水中形成气泡打破
, 使气体与污水充分混合, 处理过的水气混合物进入反应池 6, 依次经过第一反 应室 61、 第二反应室 62和第三反应室 63, 反应池 6处理后, 出水达标排放。
[0030] 进一步的, 通过污水进水管 1上设置的氧化氢供给管 7, 向污水中加入过氧化氢 来和臭氧反应生成羟基自由基。
[0031] 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神 和原则之内所作的任何修改、 同等替换和改进等, 均应落在本发明的保护范围 之内。
Claims
[权利要求 1] 一种臭氧微气泡反应污水处理设备, 其特征在于: 包括进水管、 进气 管、 水气混合装置、 水气混合破泡装置和反应池, 所述的进水管和进 气管通过水气混合装置连接, 水气混合装置通过高压气液混合泵与水 气混合破泡装置连接, 所述的水气混合破泡装置和反应池连接, 所述 反应池的内腔通过两个导流墙分隔成三个相连的反应室, 包括第一反 应室、 第二反应室和第三反应室, 所述的第一反应室内设有超声波振 荡器, 第二反应室内设有紫外线灯。
[权利要求 2] 根据权利要求 1所述的臭氧微气泡反应污水处理设备, 其特征在于: 所述的第一反应室和第二反应室的连通口设于反应池的上方, 第二反 应室和第三反应室的连通口设于反应池的底部。
[权利要求 3] 根据权利要求 2所述的臭氧微气泡反应污水处理设备, 其特征在于: 所述的超声波振荡器设于第一反应室上方并曼在水面上, 所述的紫外 线灯从上到下垂直到底部设于第二反应室内。
[权利要求 4] 根据权利要求 3所述的臭氧微气泡反应污水处理设备, 其特征在于: 所述的超声波振荡器是频率为 25k z功率 60W超声波振子; 所述的紫 外线灯为 40W的浸末式灯管。
[权利要求 5] 根据权利要求 1所述的臭氧微气泡反应污水处理设备, 其特征在于: 所述的进水管上连接有过氧化氢供给管。
[权利要求 6] 根据权利要求 1所述的臭氧微气泡反应污水处理设备, 其特征在于: 所述的水气混合装置包括混合装置主体和气管接头, 所述的混合装置 主体设有进水口、 水气混合物出口和进气口, 所述的气管接头垂直于 混合装置主体与进气口连接, 所述进水口和水气混合物出口直线相通 , 在进水口和水气混合物出口之间设有一段凸起部, 凸起部与进水口 之间设有凹陷部, 凸起部与混合装置主体内壁之间形成连通进气口和 进水口的环腔, 气体从进气口经过环腔与水在凹陷部交汇。
[权利要求 7] 根据权利要求 1所述的臭氧微气泡反应污水处理设备, 其特征在于: 所述的水气混合破泡装置, 包括水气混合管和设于水气混合管内部的
破泡装置, 所述的水气混合管两端分别为水气混合物进口和出口, 所 述的破泡装置包括固定块和破泡筒体, 所述破泡筒体的口部设有若干 个向外垂直延伸的凸起部, 破泡筒体通过凸起部放置在水气混合管内 , 且破泡筒体的口部与水气混合管内壁之间形成间隙, 破泡筒体通过 固定块固定在水气混合管内, 所述的固定块设有通孔, 端面设有凹槽 , 水气混合物进入破泡筒体内, 撞击后进入凹槽, 再通过间隙流出。
[权利要求 8] —种臭氧微气泡反应污水处理方法, 其特征在于: 采用权利要求 1-7 任一项所述的处理设备, 包括以下步骤:
污水和臭氧分别通过进水管和进气管在水气混合装置中交汇, 并通过 水气混合装置混合, 臭氧溶入污水中, 混合后的水气混合物通过高压 气液混合泵抽送到水气混合破泡装置, 对水气混合物进行破泡处理, 将未与污水混合的气体在污水中形成气泡打破, 使气体与污水充分混 合, 处理过的水气混合物进入反应池, 依次经过第一反应室、 第二反 应室和第三反应室, 反应池处理后, 出水达标排放。
[权利要求 9] 根据权利要求 8所述的臭氧微气泡反应污水处理方法, 其特征在于: 通过所述污水进水管上设置的氧化氢供给管, 向污水中加入过氧化氢 来和臭氧反应生成羟基自由基。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510452485.2 | 2015-07-29 | ||
CN201510452485.2A CN104986904B (zh) | 2015-07-29 | 2015-07-29 | 臭氧微气泡反应污水处理设备和方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017016016A1 true WO2017016016A1 (zh) | 2017-02-02 |
Family
ID=54298831
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/088284 WO2017016016A1 (zh) | 2015-07-29 | 2015-08-27 | 臭氧微气泡反应污水处理设备和方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN104986904B (zh) |
WO (1) | WO2017016016A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110156143A (zh) * | 2018-04-02 | 2019-08-23 | 河北科技大学 | 一种uv光催化/微气泡臭氧化废水深度处理系统 |
CN109607895B (zh) * | 2018-11-30 | 2021-10-08 | 河北彩客化学股份有限公司 | 一种含苯胺类化工废水的处理方法 |
CN109748353B (zh) * | 2019-02-22 | 2020-08-14 | 东北师范大学 | 基于流控微泡-臭氧耦合进行水处理的装置及水处理方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009297692A (ja) * | 2008-06-17 | 2009-12-24 | Sharp Corp | 水処理装置および水処理方法 |
CN102115253A (zh) * | 2011-01-14 | 2011-07-06 | 中国环境科学研究院 | 一种新型多技术协同催化微气泡臭氧高级氧化塔 |
CN102438662A (zh) * | 2010-06-18 | 2012-05-02 | 中村正一 | 清洗杀菌装置 |
CN102874982A (zh) * | 2012-10-11 | 2013-01-16 | 北京科技大学 | 紫外/纯氧微气泡协同处理印染废水的系统及其方法 |
CN102910772A (zh) * | 2012-10-11 | 2013-02-06 | 北京科技大学 | 一种紫外光协同臭氧微纳米气泡的废水处理系统和方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2120629U (zh) * | 1992-03-21 | 1992-11-04 | 无锡县节能净化设备厂 | 一种高效喷射器 |
CN204824489U (zh) * | 2015-07-29 | 2015-12-02 | 广州藤昌环保科技有限公司 | 臭氧微气泡反应污水处理设备 |
-
2015
- 2015-07-29 CN CN201510452485.2A patent/CN104986904B/zh active Active
- 2015-08-27 WO PCT/CN2015/088284 patent/WO2017016016A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009297692A (ja) * | 2008-06-17 | 2009-12-24 | Sharp Corp | 水処理装置および水処理方法 |
CN102438662A (zh) * | 2010-06-18 | 2012-05-02 | 中村正一 | 清洗杀菌装置 |
CN102115253A (zh) * | 2011-01-14 | 2011-07-06 | 中国环境科学研究院 | 一种新型多技术协同催化微气泡臭氧高级氧化塔 |
CN102874982A (zh) * | 2012-10-11 | 2013-01-16 | 北京科技大学 | 紫外/纯氧微气泡协同处理印染废水的系统及其方法 |
CN102910772A (zh) * | 2012-10-11 | 2013-02-06 | 北京科技大学 | 一种紫外光协同臭氧微纳米气泡的废水处理系统和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104986904A (zh) | 2015-10-21 |
CN104986904B (zh) | 2018-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101913694B (zh) | 用于工业废水深度处理的内循环臭氧接触反应塔 | |
JP2010264436A (ja) | スラッジ処理の方法 | |
CN205382044U (zh) | 一种同时使用uv和h2o2的污水处理系统 | |
CN210085066U (zh) | 微纳米曝气baf处理装置 | |
CN107473435A (zh) | 一种低浓度生物难降解工业有机废水处理的催化氧化方法 | |
CN104045205A (zh) | 一种低耗能一体化净水设备及净水方法 | |
WO2017016016A1 (zh) | 臭氧微气泡反应污水处理设备和方法 | |
CN110228898A (zh) | 一种臭氧催化氧化-mbr联合处理煤化工废水的工艺 | |
CN104710077B (zh) | 合成橡胶废水的处理系统及其处理方法 | |
CN107473365B (zh) | 一种高能氧发生装置及水处理系统 | |
CN210261483U (zh) | 一种新鲜垃圾渗滤液处理系统 | |
CN105712572A (zh) | 基于膜集成技术的凉果废水处理方法 | |
CN110980927A (zh) | 基于无泡增氧技术的黑臭河涌治理装置及工艺 | |
CN105461176A (zh) | 一种处理生活污水的一体化系统 | |
CN203461870U (zh) | 用于处理城镇污水厂二级生物处理出水的臭氧氧化装置 | |
CN205133364U (zh) | 一种页岩气压裂返排液深度处理系统 | |
CN105417870A (zh) | 一种下向流零价铁类芬顿-生物滤池集成化废水处理工艺及设备 | |
CN204824489U (zh) | 臭氧微气泡反应污水处理设备 | |
CN103936158B (zh) | 一种分点进水好氧-缺氧-膜生物反应器及处理污水方法 | |
CN203922937U (zh) | 一种低耗能一体化净水设备 | |
CN117023766A (zh) | 一种超微细气泡耦合臭氧发生器的废水处理系统 | |
CN204185344U (zh) | 一体化污水处理设备 | |
CN108275810A (zh) | 含聚磺泥浆的钻井污水深度氧化处理方法及其应用 | |
CN209740922U (zh) | 一种废水深度处理的系统 | |
CN203513336U (zh) | 一种制药废水处理设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15899368 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15899368 Country of ref document: EP Kind code of ref document: A1 |