WO2017015996A1 - 磷腈氟烷基磺酰亚胺碱金属盐及其含有该金属盐的电解液 - Google Patents
磷腈氟烷基磺酰亚胺碱金属盐及其含有该金属盐的电解液 Download PDFInfo
- Publication number
- WO2017015996A1 WO2017015996A1 PCT/CN2015/087310 CN2015087310W WO2017015996A1 WO 2017015996 A1 WO2017015996 A1 WO 2017015996A1 CN 2015087310 W CN2015087310 W CN 2015087310W WO 2017015996 A1 WO2017015996 A1 WO 2017015996A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lithium
- metal salt
- carbonate
- hcf
- active material
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the field of lithium secondary batteries, and more particularly, to a phosphazene fluoroalkylsulfonylimide alkali metal salt and an electrolyte solution containing the same.
- Fluorinated alkyl sulfonimide and its alkali metal salt, especially lithium salt, are important fluorine-containing ionic compounds, high-performance non-aqueous electrolyte materials for clean energy devices such as lithium ion batteries, supercapacitors, and aluminum electrolytic capacitors. And new high-efficiency catalysts and other fields have important industrial application value.
- LiTFSI LiTFSI
- non-aqueous electrolyte is one of the key materials for energy storage devices such as high-energy lithium-ion batteries. Its comprehensive properties, such as chemical and electrochemical stability, safety, etc., directly affect the use of lithium-ion batteries.
- lithium-ion battery electrolytes are mainly composed of organic carbonates such as dimethyl carbonate (CH 3 OCOOCH 3 , DMC), diethyl carbonate (C 2 H 5 OCOOC 2 H 5 , DEC), and ethylene carbonate ( EC), etc., and an electrolyte conductive salt (mainly LiPF 6 ).
- organic carbonates such as dimethyl carbonate (CH 3 OCOOCH 3 , DMC), diethyl carbonate (C 2 H 5 OCOOC 2 H 5 , DEC), and ethylene carbonate (EC), etc.
- electrolyte conductive salt mainly LiPF 6
- the flammability and volatility of organic carbonates in this system are the main safety hazards of current lithium-ion batteries (such as combustion, explosion, leakage, etc.) (J. Electrochem. Soc., 2001, 148, 1100; Chem. Rev., 2004, 104, 4303).
- lithium salts such as lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (Li[CF 3 SO 3 ]), bis(trifluoromethyl) Lithium sulfonyl)imide (LiTFSI), lithium oxalate borate (LiBOB), etc.
- LiClO 4 is potentially explosive
- LiBF 4 conductivity is too low
- LiTFSI is corrosive to the positive current collector material aluminum foil
- LiBOB has low solubility in carbonate, making these lithium salts not widely used in lithium ion batteries.
- an object of the present invention is to provide an electrolyte of lithium phosphafluoroalkylsulfonimide which has superior oxidation resistance and safety performance, and enables lithium secondary batteries to be high. Excellent cycle, high temperature storage and safety performance under voltage conditions.
- the present invention provides a phosphazene fluoroalkylsulfonylimide alkali metal salt
- the phosphazene fluoroalkylsulfonylimide alkali metal salt has the structural formula:
- the R1-5 is the same or different structure.
- the R 6 is F, CF 3 , CF 3 CH 2 , CF 2 HCH 2 , CF 3 CF 2 , CF 2 HCF 2 CH 2 , CF 3 CFHCF 2 , CF 3 CF 2 CH 2 , CF 3 CF 2 CF 2 , HCF 2 CF 2 CF 2 CH 2 , CF 2 HCF 2 CF 2 CF 2 , (CH 2 F) 2 CH, (CF 3 ) 3 C, CF 3 CF 2 CF 2 CF 2 , CF 3 (CF 2 CF 2 Any of 2 CF 2 , HCF 2 CF 2 OCH 2 CH 2 CH 2 , CF 3 (CF 2 CF 2 ) 3 CF 2 .
- R 7 is CH 3 , CH 3 CH 2 , CH 3 CH 2 CH 2 , (CH 3 ) 2 CH, CH 3 CH 2 CH 2 CH 2 , CF 3 , CF 3 CH 2 , CF 2 HCH 2 , CF 3 CF 2 , CF 2 HCF 2 CH 2 , CF 3 CFHCF 2 , CF 3 CF 2 CH 2 , CF 3 CF 2 CF 2 , HCF 2 CF 2 CF 2 CH 2 , CF 2 HCF 2 CF 2 CF 2 , (CH 2 F 2 CH, (CF 3 ) 3 C, CF 3 CF 2 CF 2 CF 2 , CF 3 (CF 2 CF 2 ) 2 CF 2 , HCF 2 CF 2 OCH 2 CH 2 CH 2 , CF 3 (CF 2 CF 2 ) 3 CF 2 of any kind.
- a method for preparing a phosphazene fluoroalkylsulfonylimide alkali metal salt comprising the steps of:
- the (fluorophosphazene) (fluoroalkylsulfonyl)imide alkali metal salt prepared in (2) is dissolved in acetonitrile, and the sodium alkoxide is added in a stoichiometric molar ratio of 1:1.
- the mixture is stirred at -40 ° C, preferably -10 to 0 ° C, and the reaction time is 4 to 24 hours, preferably 8 to 12 hours.
- the inorganic fluoride is removed by filtration to obtain an (alkoxy-substituted phosphazene) (fluoroalkylsulfonyl)imide alkali metal salt.
- An electrolyte comprising a conductive lithium salt, a non-aqueous organic solvent and an additive, the conductive lithium salt comprising lithium phosphafluoroalkylsulfonimide, the conductive lithium salt further comprising LiBF 4 , LiPF 6 , LiPF 2 O 2 , One or more of LiAsF 6 , LiClO 4 , LiSO 3 CF 3 , LiB(C 2 O 4 ) 2 , LiBF 2 C 2 O 4 , LiN(SO 2 CF 3 ) 2 , and LiN(SO 2 F) 2 .
- the non-aqueous organic solvent is ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyrolactone, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, One or more of ethyl propionate, propyl propionate, and butyl propionate.
- the additive is vinylene carbonate, ethylene carbonate, fluoroethylene carbonate, difluoroethylene carbonate, 1,3-propane sultone, 1,4-butane sultone, ethylene sulfate One or more of an ester, propylene sulfate, vinyl sulfite, and propylene sulfite.
- a lithium secondary battery comprising: a positive electrode sheet, a negative electrode sheet, a separator, and an electrolyte containing phosphazene fluoroalkyl sulfonate lithium according to the present invention; the positive electrode sheet and the negative electrode sheet comprise an active material, a conductive agent, and a set a fluid, a binding agent that binds the active material and the conductive agent to the current collector.
- the positive electrode includes a positive electrode active material capable of reversibly intercalating/deintercalating lithium ions, and the positive electrode active material is preferably a composite metal oxide of lithium, and the metal oxide includes an oxide of nickel, cobalt, manganese and any ratio thereof; a positive electrode active material Still further comprising one or several of chemical elements including Mg, Al, Ti, Sn, V, Ge, Ga, B, Zr, Cr, Fe, Sr, and rare earth elements.
- the positive electrode active material further includes a polyanionic lithium compound LiM x (PO 4 ) y (M is Ni, Co, Mn, Fe, Ti, V, 0 ⁇ x ⁇ 5 , 0 ⁇ y ⁇ 5).
- the negative electrode includes a negative active material capable of accepting or releasing lithium ions, and the negative active material includes lithium metal, lithium alloy, crystalline carbon, amorphous carbon, carbon fiber, hard carbon, soft carbon; wherein the crystalline carbon includes natural graphite, graphitized coke Graphitized MCMB, graphitized mesophase pitch carbon fiber; the lithium alloy includes an alloy of lithium and aluminum, zinc, silicon, tin, gallium, and bismuth metal.
- the method for the phosphazene fluoroalkylsulfonylimide alkali metal salt provided by the invention has short operation steps, and the product is easy to be separated and purified, and the product has high yield and purity, and can be used as a lithium salt and a catalyst in the electrolyte. Preparation, synthesis of high performance ionic liquids, etc.
- the lithium imide provided by the invention has good thermal stability and hydrolysis resistance, has high electrical conductivity and oxidation potential in the traditional carbonate solution, and has good compatibility with widely used electrode materials.
- the imine anion in the formula (I) is linked to the phosphazene group at one end, phosphorus
- the nitrile group has a conjugated structure, and further replacing the fluorine atom of the phosphazene ring by the strong electron withdrawing group fluoroalkyl group can more effectively reduce the electron cloud density of the imine anion and enhance the ionization ability of the imine anion, thereby improving Conductivity, dissociation constant and migration number of the lithium imide electrolyte.
- the phosphazene group has remarkable flame retardant properties and is widely used in the field of polymer materials.
- the phosphazene group is introduced into the lithium imide structure to make the lithium ion battery electrolyte have good safety performance. This technology is in the power battery system. It is crucial.
- the synthetic reaction route is as follows:
- hexafluorocyclotriphosphazene N3P3F6
- 100 mL of acetonitrile 100 mL
- trifluoromethylsulfonamide CF 3 SO 2 NH 2
- triethylamine 20.2 g, 0.2 mol
- the by-product was removed by filtration, and 50 mL of water was added thereto, and Li 2 CO 3 (7.4 g, 0.1 mol) was slowly added in portions.
- the synthetic reaction route is as follows:
- Example 2 The experimental procedure was the same as in Example 1, except that sodium carbonate (10.6 g, 0.1 mol) was used in place of the lithium carbonate in Example 1. The yield was 34 g and the yield was 85%.
- the synthetic reaction route is as follows:
- Example 2 The experimental procedure was the same as in Example 1, except that potassium carbonate (13.8 g, 0.1 mol) was used in place of the lithium carbonate in Example 1. The yield was 36.6 g and the yield was 88%.
- the synthetic reaction route is as follows:
- Example 2 The experimental procedure was the same as in Example 1, except that cesium carbonate (23.1 g, 0.1 mol) was used in place of the lithium carbonate in Example 1. The yield was 39.7 g and the yield was 86%.
- the synthetic reaction route is as follows:
- Example 2 The experimental procedure was the same as in Example 1, except that cesium carbonate (32.6 g, 0.1 mol) was used in place of the lithium carbonate in Example 1. The yield was 45.4 g and the yield was 89%.
- the synthetic reaction route is as follows:
- Lithium pentafluorophosphazene (trifluoromethylsulfonyl)imide 38.4 g, was added to a 250 mL single-necked flask. 0.1 mol), 100 mL of tetrahydrofuran, a solution of lithium trifluoroacetate in tetrahydrofuran (10.6 g, 0.1 mol), and allowed to react at room temperature for 12 hours. The by-product was removed by filtration, and the solvent was evaporated. The yield was 44 g and the yield was 95%.
- the synthetic reaction route is as follows:
- Lithium pentafluorophosphazene (trifluoromethylsulfonyl)imide 38.4 g, was added to a 250 mL single-necked flask. 0.1mol), 100mL tetrahydrofuran A solution of lithium trifluoroacetate in tetrahydrofuran (21.2 g, 0.2 mol) was reacted at room temperature for 12 hours. The by-product was removed by filtration, and the solvent was evaporated. The yield was 49 g and the yield was 90%.
- Example 8 Preparation of lithium (pentafluorophosphazene) (pentafluoroethylsulfonyl)imide ([(P 3 N 3 F 5 )(C 2 F 5 SO 2 )N]Li)
- the synthetic reaction route is as follows:
- Example 2 The experimental procedure was the same as in Example 1, except that pentafluoroethylsulfonamide (19.9 g, 0.1 mol) was used in place of the trifluoromethylsulfonamide of Example 1. The yield was 35.6 g and the yield was 82%.
- the synthetic reaction route is as follows:
- Example 2 The experimental procedure was the same as in Example 1, except that perfluorobutylsulfonamide (29.9 g, 0.1 mol) was used in place of the trifluoromethylsulfonamide of Example 1. The yield was 41.6 g and the yield was 78%.
- EC ethylene carbonate
- DMC dimethyl carbonate
- EMC ethyl methyl carbonate
- the other negative electrode material Li 4 Ti 5 O 12 was prepared in a similar manner.
- the positive electrode piece, the negative electrode piece and the separator prepared above are formed into a square electric core by winding, and the electrolyte prepared by the above is filled with a polymer package, and a lithium ion battery having a capacity of 1600 mAh is formed by a process such as formation. .
- Cyclic test conditions charge and discharge cycle test of the battery at a rate of 1/1 C charge and discharge, graphite / LiCoO 2 electrode system: 3.0 ⁇ 4.35V; graphite / LiFePO 4 electrode system: 2.75 ⁇ 3.9V; Li 4 Ti 5 O 12 /LiCoO 2 electrode system: 1.0 to 2.6V; Li 4 Ti 5 O 12 /LiFePO 4 electrode system: 1.0 to 2.0 V; graphite / LiNi 0.5 Co 0.3 Mn 0.2 electrode system: 3.0 to 4.35 V; graphite / LiMn 2 O 4 Electrode system: 3.1 to 4.3 V; Li 4 Ti 5 O 12 /LiNi 0.5 Co 0.3 Mn 0.2 electrode system: 1.0 to 2.6 V.
- High-temperature storage test conditions firstly, the completed battery is charged and discharged at 1C under normal temperature conditions, and then the battery is fully charged at 1C, and then stored at a high temperature. After the battery is completely cooled, the battery will be taken out.
- the discharge test was performed at 1C.
- Examples 11 to 25 were the same as those in Example 10 except for the following table parameters.
- the method for preparing the alkali metal salt of phosphazene fluoroalkylsulfonylimide disclosed by the invention has the advantages of simple operation, high product yield and purity, and is suitable for industrial production.
- the prepared carbonate electrolytes have a relatively high purity and meet the application requirements in the field of electronic devices.
- the method for the phosphazene fluoroalkylsulfonylimide alkali metal salt provided by the invention has the steps of short operation, the product is easy to be separated and purified, the product has high yield and purity, and can be used as a lithium salt in the electrolyte and preparation of the catalyst. And the synthesis of high-performance ionic liquids.
- the lithium imide provided by the invention has good thermal stability and hydrolysis resistance, has high electrical conductivity and oxidation potential in the traditional carbonate solution, and has good compatibility with widely used electrode materials. Therefore, the present invention has industrial applicability.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
一种磷腈氟烷基磺酰亚胺碱金属盐,磷腈氟烷基磺酰亚胺碱金属盐结构通式为公式(I)。其中,M +是Li、Na、K、Rb、Cs,R 1-5=-OR 7或者-M[NSO 2-R 6];R 6为碳原子数为1-8的含氟烷基,R 7为碳原子数为1-10的烷烃类基团。该磷腈氟烷基磺酰亚胺碱金属盐可用作电解质中的锂盐、催化剂的制备、以及高性能离子液体的合成等。该亚胺锂具有较好的热稳定性和耐水解性,在传统碳酸酯溶液中具备高电导率和氧化电位,和广泛应用的电极材料有良好的相容性。
Description
本发明涉及锂二次电池领域,更具体地,本发明涉及磷腈氟烷基磺酰亚胺碱金属盐及其含有该金属盐的电解液。
含氟烷基磺酰亚胺及其碱金属盐,特别是锂盐,是重要的含氟离子化合物,在锂离子电池、超级电容器、以及铝电解电容器等清洁能源器件用高性能非水电解质材料、以及新型高效催化剂等领域,均具有重要的产业化应用价值。
目前,关于含氟烷基磺酰亚胺的研究多集中在一元含氟磺酰亚胺(Coord.Chem.Revs.,1997,158,413.),也就是阴离子结构中含有一个磺酰亚胺(-SO2NSO2-)单元,如双(氟烷基磺酰)亚胺(H[(RFSO2)2N],RF=CmF2m
+1,m=1-8)及其碱金属盐(M[(RFSO2)2N],M=Li,Na,K,Rb,Cs),其中具有代表性的是双(三氟甲基磺酰)亚胺锂(Li[(CF3SO2)2N],简称LiTFSI)。由于分子中CF3的强吸电子作用,以及磺酰亚胺基团(-SO2-N-SO2-)的共轭离域作用,使得[(CF3SO2)2N]-(TFSI-)阴离子中的负电荷高度分散,而成为弱配位的有机阴离子,故而使得HTFSI具有极强的酸性和耐氧化还原性能,其碱金属盐、离子液体具有良好的化学和电化学稳定性。
另一方面,非水电解液是高比能锂离子电池等储能器件的关键材料之一,其综合性能,如化学和电化学稳定性,安全性等,直接影响锂离子电池的使用。
目前,商业化的锂离子电池电解液主要由有机碳酸酯如碳酸二甲酯(CH3OCOOCH3,DMC),碳酸二乙酯(C2H5OCOOC2H5,DEC),乙烯碳酸酯(EC)等,和电解质导电盐(主要是LiPF6)组成。该体系中有机碳酸酯的易燃和易挥发性是目前锂离子电池的主要安全隐患(如燃烧,爆炸,泄漏等)(J.Electrochem.Soc.,2001,148,1100;Chem.Rev.,2004,104,4303)。同时,传统电解质导电盐LiPF6由于其化学不稳定性(包括热不稳定和容易水解),使得使用LiPF6的(二次)锂离子电池在高温(>55℃)下工作时,循环性能和使
用寿命大为缩减(Electrochem.Communs,2005,7,669)。而其它常见的锂盐中,如高氯酸锂(LiClO4)、四氟硼酸锂(LiBF4)、三氟甲基磺酸锂(Li[CF3SO3])、双(三氟甲基磺酰)亚胺锂(LiTFSI)、双草酸硼酸锂(LiBOB)等,由于分别存在不同方面的性能缺陷,如LiClO4具有潜在的爆炸性,LiBF4电导率过低,Li[SO3CF3]和LiTFSI对正极集流体材料铝箔有腐蚀性,LiBOB在碳酸酯中溶解度低,使这些锂盐未能在锂离子电池中获得广泛使用。因此,研究开发化学稳定性(如热稳定性,对水稳定性等)高,电化学性能(如高电导率,宽的电化学窗口,对铝箔没腐蚀性等)优异的新型导电锂盐电解质材料取代传统锂盐LiPF6是开发大型动力电池和大型储能电子器件的重要研究方向。
鉴于背景技术所存在的问题,本发明的目的在于提供一种磷腈氟烷基磺酰亚胺锂的电解液,该电解液具有优越的耐氧化性能和安全性能,使锂二次电池在高电压条件下具有优越的循环、高温储存和安全性能。
为了实现上述技术方案,本发明提供一种磷腈氟烷基磺酰亚胺碱金属盐,磷腈氟烷基磺酰亚胺碱金属盐结构通式为:
其中,M+是M+是Li、Na、K、Rb、Cs,R1-5=-OR7或者-M[NSO2-R6];R6为碳原子数为1-8的含氟烷基,R7为碳原子数为1-10的烷烃类基团。
所述R1-5为相同或不同结构。
所述R6为F、CF3、CF3CH2、CF2HCH2、CF3CF2、CF2HCF2CH2、CF3CFHCF2、CF3CF2CH2、CF3CF2CF2、HCF2CF2CF2CH2、CF2HCF2CF2CF2、(CH2F)2CH、(CF3)3C、CF3CF2CF2CF2、CF3(CF2CF2)2CF2、HCF2CF2OCH2CH2CH2、CF3(CF2CF2)3CF2的任一种。
R7为CH3、CH3CH2、CH3CH2CH2、(CH3)2CH、CH3CH2CH2CH2、CF3、CF3CH2、CF2HCH2、CF3CF2、CF2HCF2CH2、CF3CFHCF2、CF3CF2CH2、CF3CF2CF2、
HCF2CF2CF2CH2、CF2HCF2CF2CF2、(CH2F)2CH、(CF3)3C、CF3CF2CF2CF2、CF3(CF2CF2)2CF2、HCF2CF2OCH2CH2CH2、CF3(CF2CF2)3CF2的任一种。
磷腈氟烷基磺酰亚胺碱金属盐的制备方法,包括以下步骤:
(1)将六氯环三磷腈(P3N3Cl6)、氟化钠按化学计量摩尔比为1:6~1:10,优选1:6~1:8混合置于反应烧瓶中,加入乙腈为溶剂。在30~100℃下,优选温度为40~70℃,反应2~8小时,优选反应时间为3~5小时。然后将六氟环三磷腈(P3N3F6)蒸出。
(2)在氩气保护下,将六氟环三磷腈(P3N3F6),氟烷基磺酰胺(RFSO2NH2)按化学计量摩尔比为1:1的比例,加入缚酸剂和适量有机溶剂在搅拌下混合于反应瓶中。将上述混合物在-20~60℃,优选-5~30℃下反应8~48小时,优选反应时间为10~12小时,然后减压抽滤除掉固体副产物。在搅拌下,分次将1.2~5倍,优选1.5~3倍于亚胺化合物摩尔数的无水碳酸锂(钠、钾、铷或铯)固体,加入到上述的有机溶液中;加完碳酸钾锂(钠、钾、铷或铯)后,继续反应5~20小时,优选10~12小时。减压过滤,滤去不溶物,得产物(氟代磷腈)(氟烷基磺酰)亚胺碱金属盐。
将(2)中制备的(氟代磷腈)(氟烷基磺酰)亚胺碱金属盐溶于乙腈中,按化学计量摩尔比为1:1的比例加入烷氧基钠,在-30~40℃,优选-10~0℃下搅拌,反应时间为4~24小时,优选8~12小时。反应完毕后,过滤除去无机氟化物,得到(烷氧基取代磷腈)(氟烷基磺酰)亚胺碱金属盐。
一种电解液,包括导电锂盐、非水有机溶剂和添加剂,导电锂盐包括磷腈氟烷基磺酰亚胺锂,所述导电锂盐还包括LiBF4、LiPF6、LiPF2O2、LiAsF6、LiClO4、LiSO3CF3、LiB(C2O4)2、LiBF2C2O4、LiN(SO2CF3)2、LiN(SO2F)2的一种或多种。
非水有机溶剂为碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、γ-丁内酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸乙酯、丙酸丙酯、丙酸丁酯中的一种或几种。
所述添加剂为碳酸亚乙烯酯,碳酸乙烯亚乙酯,氟代碳酸乙烯酯,二氟代碳酸乙烯酯,1,3-丙磺酸内酯,1,4-丁磺酸内酯,硫酸乙烯酯,硫酸丙烯酯,亚硫酸乙烯酯、亚硫酸丙烯酯中的一种或几种。
一种锂二次电池:包括正极片、负极片、隔膜以及本发明所述的含有磷腈氟烷基磺酰亚胺锂的电解液成;正极片和负极片包含活性材料、导电剂、集流体、将所述活性材料和导电剂与所述集流体结合的结合剂。
正极包括能够可逆地嵌入/脱嵌锂离子的正极活性材料,正极活性材料优选为锂的复合金属氧化物,金属氧化物包括镍、钴、锰元素及其任何比例组合的氧化物;正极活性材料还进一步包括化学元素中的一种或者若干种,所述化学元素包括有Mg、Al、Ti、Sn、V、Ge、Ga、B、Zr、Cr、Fe、Sr和稀土元素。正极活性材料还进一步包括聚阴离子锂化合物LiMx(PO4)y(M为Ni、Co、Mn、Fe、Ti、V,0≤x≤5,0≤y≤5)。
负极包括能够接受或释放锂离子的负极活性材料,所述负极活性材料包括锂金属、锂合金、结晶碳、无定型碳、碳纤维、硬碳、软碳;其中结晶碳包括天然石墨、石墨化焦炭、石墨化MCMB、石墨化中间相沥青碳纤维;所述的锂合金包括锂和铝、锌、硅、锡、镓、锑金属的合金。
与现有技术相比,本发明的优势是:
1)本发明提供的磷腈氟烷基磺酰亚胺碱金属盐的方法操作步骤简短,产物易分离提纯,其产物的产率和纯度都很高,可以用作电解质中的锂盐、催化剂的制备、以及高性能离子液体的合成等。本发明提供的亚胺锂具有较好的热稳定性和耐水解性,在传统碳酸酯溶液中具备高的电导率和氧化电位,和广泛应用的电极材料有良好的相容性。
2)与文献报道的双(氟烷基磺酰)亚胺([(RFSO2)2N]-)阴离子相比,式(Ⅰ)中的亚胺阴离子一端连接磷腈基团,磷腈基团具有共轭结构,通过强吸电子基团氟代烷基进一步取代磷腈环的氟原子后,可以更加有效降低亚胺阴离子的电子云密度,提升亚胺阴离子的电离能力,从而提高亚胺锂电解液的电导率、解离常数和迁移数。另外磷腈基团具有显著的阻燃特性,在高分子材料领域应用广泛,在亚胺锂结构中引入磷腈基团,使锂离子电池电解液具有良好的安全性能,这个技术在动力电池体系中至关重要。
下面通过示例性的实施例具体说明本发明。应当理解,本发明的范围不
应局限于实施例的范围。任何不偏离本发明主旨的变化或改变能够为本领域的技术人员所理解。本发明的保护范围由所附权利要求的范围确定。
下面列举本发明所涉及的部分化合物制备,以对本发明作进一步详细的说明,但实施例的制备方法并不仅仅限于所列举的化合物的制备。
六氟磷腈参考文献制备(Inorg.Chem.2000,39,810~814)。
实施例1:(五氟磷腈)(三氟甲基磺酰)亚胺锂([(P3N3F5)(CF3SO2)N]Li)的制备
合成反应路线如下:
250mL单口烧瓶中加入六氟环三磷腈(N3P3F6)(24.9g,0.1mol),100mL乙腈,三氟甲基磺酰胺(CF3SO2NH2)(14.9g,0.1mol),三乙胺(20.2g,0.2mol),冰浴下反应12小时。过滤除去副产物,加入50mL水,分批缓慢加入Li2CO3(7.4g,0.1mol),反应完毕后减压除去水分,将所得固体溶于丙酮中,减压过滤,收集滤液,旋蒸除去有机溶剂后,得到黄褐色固体,丙酮/二氯甲烷重结晶得到白色固体。产量30.7g,产率80%。
实施例2:(五氟磷腈)(三氟甲基磺酰)亚胺钠([(P3N3F5)(CF3SO2)N]Na)的制备
合成反应路线如下:
实验操作同实施例1,不同之处在于使用碳酸钠(10.6g,0.1mol)取代实施例1中的碳酸锂。产量34g,产率85%。
实施例3:(五氟磷腈)(三氟甲基磺酰)亚胺钾([(P3N3F5)(CF3SO2)N]K)
的制备
合成反应路线如下:
实验操作同实施例1,不同之处在于使用碳酸钾(13.8g,0.1mol)取代实施例1中的碳酸锂。产量36.6g,产率88%。
实施例4:(五氟磷腈)(三氟甲基磺酰)亚胺铷([(P3N3F5)(CF3SO2)N]Rb)的制备
合成反应路线如下:
实验操作同实施例1,不同之处在于使用碳酸铷(23.1g,0.1mol)取代实施例1中的碳酸锂。产量39.7g,产率86%。
实施例5:(五氟磷腈)(三氟甲基磺酰)亚胺铯([(P3N3F5)(CF3SO2)N]Cs)的制备
合成反应路线如下:
实验操作同实施例1,不同之处在于使用碳酸铯(32.6g,0.1mol)取代实施例1中的碳酸锂。产量45.4g,产率89%。
实施例6:(四氟-三氟乙氧基-磷腈)(三氟甲基磺酰)亚胺锂([(P3N3F4(CF3CH2O))(CF3SO2)N]Li)的制备
合成反应路线如下:
(五氟磷腈)(三氟甲基磺酰)亚胺锂的制备同实施例1。250mL单口烧瓶中加入(五氟磷腈)(三氟甲基磺酰)亚胺锂(38.4g,0.1mol),100mL四氢呋喃,三氟乙氧基锂的四氢呋喃溶液(10.6g,0.1mol),室温下反应12小时。过滤除去副产物,减压除去溶剂,四氢呋喃/二氯甲烷重结晶得到白色固体。产量44g,产率95%。
实施例7:[三氟-2(三氟乙氧基)-磷腈](三氟甲基磺酰)亚胺锂([(P3N3F3(CF3CH2O)2)(CF3SO2)N]Li)的制备
合成反应路线如下:
(五氟磷腈)(三氟甲基磺酰)亚胺锂的制备同实施例1。250mL单口烧瓶中加入(五氟磷腈)(三氟甲基磺酰)亚胺锂(38.4g,0.1mol),100mL四氢呋
喃,三氟乙氧基锂的四氢呋喃溶液(21.2g,0.2mol),室温下反应12小时。过滤除去副产物,减压除去溶剂,四氢呋喃/二氯甲烷重结晶得到白色固体。产量49g,产率90%。
实施例8:(五氟磷腈)(五氟乙基磺酰)亚胺锂([(P3N3F5)(C2F5SO2)N]Li)的制备
合成反应路线如下:
实验操作同实施例1,不同之处在于使用五氟乙基磺酰胺(19.9g,0.1mol)取代实施例1中的三氟甲基磺酰胺。产量35.6g,产率82%。
实施例9:(五氟磷腈)(全氟丁基磺酰)亚胺锂([(P3N3F5)(C4F9SO2)N]Li)的制备
合成反应路线如下:
实验操作同实施例1,不同之处在于使用全氟丁基磺酰胺(29.9g,0.1mol)取代实施例1中的三氟甲基磺酰胺。产量41.6g,产率78%。
实施例10磷腈氟烷基磺酰亚胺锂在锂离子电池中的应用
(1)电解液的制备
在氩气氛围的手套箱中(H2O<1ppm),将有机溶剂按质量比为EC(碳酸乙烯酯)∶DMC(碳酸二甲酯):EMC(碳酸甲乙酯)=40∶40∶20与(五氟磷腈)(三氟甲基磺酰)亚胺锂(1.0M)混合,加入总重量1%的VC(碳酸亚乙烯酯),2%的PS(丙磺酸内酯),3%的FEC(氟代碳酸乙烯酯),3%的SN
(丁二腈)。将上述各原料依次加入,充分搅拌均匀,即得到本发明所述的锂二次电池电解液(游离酸<15ppm,水分<10ppm)。
(2)正极极片的制备
将质量百分比为3%的聚偏氟乙烯(PVDF)溶解于1-甲基-2-吡咯烷酮溶液中,将质量百分比94%的LiCoO2和3%的导电剂炭黑加入上述溶液并混合均匀,将混制的浆料涂布在铝箔的两面后,烘干、滚压后得到正极极片。其它正极材料LiMn2O4、LiFePO4、LiNi0.5Co0.3Mn0.2、LiNi0.3Co0.3Mn0.3按同样的方法制备。
(3)负极极片的制备
将质量百分比为4%的SBR粘结剂,质量百分比为1%的CMC增稠剂溶于水溶液中,将质量百分比为95%的石墨加入上述溶液,混合均匀,将混制的浆料涂布在铜箔的两面后,烘干、滚压后得到负极极片。其它负极材料Li4Ti5O12按类似的方法制备。
(4)锂离子电池的制作
将上述制备的正极极片、负极极片和隔离膜以卷绕方式制成方形电芯,采用聚合物包装,灌注上述制备的电解液,经化成等工艺后制成容量为1600mAh的锂离子电池。
(5)电池性能测试
循环测试条件:以1/1C充放电的倍率对电池进行充放电循环测试,石墨/LiCoO2电极体系:3.0~4.35V;石墨/LiFePO4电极体系:2.75~3.9V;Li4Ti5O12/LiCoO2电极体系:1.0~2.6V;Li4Ti5O12/LiFePO4电极体系:1.0~2.0V;石墨/LiNi0.5Co0.3Mn0.2电极体系:3.0~4.35V;石墨/LiMn2O4电极体系:3.1~4.3V;Li4Ti5O12/LiNi0.5Co0.3Mn0.2电极体系:1.0~2.6V。
高温储存测试条件:首先将化成完毕的电池在常温状态下以1C充放电一次,再以1C将电池充满电后进行高温保存,待电池完全冷却后,将取出的电池
以1C进行放电测试。
实施例11~25除下表参数外,其他参数及制备方法同实施例10。
表1实施例11~23
本发明公开的一种制备磷腈氟烷基磺酰亚胺碱金属盐的方法,操作简便,产物产率和纯度均很高,适合于工业化生产。所制备的碳酸酯电解液都具备相当高的纯度,符合在电子器件领域的应用要求。
从实施例11~23和对比例1~10的结果可以看出,在溶剂和添加剂组分相同的情况下,使用磷腈氟烷基磺酰亚胺锂的电池比使用LiPF6的电池循环性能和储存性能要好。从实施例10、18,实施例24、25和对比例1、5的结果可以看出,磷腈氟烷基磺酰亚胺锂和LiPF6复合作为导电锂盐使用,相应电池的循环
性能和储存性能也比单独使用LiPF6的电池更为优越。从实施例21~23和对比例8~10的结果可以看出,电解液配方中添加剂较少的情况下,锂盐的化学和电化学稳定性对电池性能的影响更加明显。实施例11~23和对比例1~10所体现出的电池性能的差异,主要原因是磷腈氟烷基磺酰亚胺锂比LiPF6具有更稳定的化学性质,在电池工作过程中,尤其是在高温下能够保持自身化学的稳定性,不会产生PF5等路易斯酸杂质,而影响电池的使用寿命。
本发明提供的磷腈氟烷基磺酰亚胺碱金属盐的方法操作步骤简短,产物易分离提纯,其产物的产率和纯度都很高,可以用作电解质中的锂盐、催化剂的制备、以及高性能离子液体的合成等。本发明提供的亚胺锂具有较好的热稳定性和耐水解性,在传统碳酸酯溶液中具备高的电导率和氧化电位,和广泛应用的电极材料有良好的相容性。所以本发明具备工业实用性。
Claims (10)
- 根据权利要求1所述的磷腈氟烷基磺酰亚胺碱金属盐,所述R1-5为相同或不同结构,所述R6为F、CF3、CF3CH2、CF2HCH2、CF3CF2、CF2HCF2CH2、CF3CFHCF2、CF3CF2CH2、CF3CF2CF2、HCF2CF2CF2CH2、CF2HCF2CF2CF2、(CH2F)2CH、(CF3)3C、CF3CF2CF2CF2、CF3(CF2CF2)2CF2、HCF2CF2OCH2CH2CH2、CF3(CF2CF2)3CF2的任一种。
- 根据权利要求1所述的磷腈氟烷基磺酰亚胺碱金属盐,R7为CH3、CH3CH2、CH3CH2CH2、(CH3)2CH、CH3CH2CH2CH2、CF3、CF3CH2、CF2HCH2、CF3CF2、CF2HCF2CH2、CF3CFHCF2、CF3CF2CH2、CF3CF2CF2、HCF2CF2CF2CH2、CF2HCF2CF2CF2、(CH2F)2CH、(CF3)3C、CF3CF2CF2CF2、CF3(CF2CF2)2CF2、HCF2CF2OCH2CH2CH2、CF3(CF2CF2)3CF2的任一种。
- 一种含有磷腈氟烷基磺酰亚胺锂的电解液,包括导电锂盐、非水有机溶剂和添加剂,导电锂盐包括权利要求1-3所述磷腈氟烷基磺酰亚胺碱金属盐中的磷腈氟烷基磺酰亚胺锂。
- 根据权利要求4所述的含有磷腈氟烷基磺酰亚胺锂的电解液,所述导电锂盐还包括LiBF4、LiPF6、LiPF2O2、LiAsF6、LiClO4、LiSO3CF3、LiB(C2O4)2、LiBF2C2O4、LiN(SO2CF3)2、LiN(SO2F)2的一种或多种。
- 根据权利要求4所述的含有磷腈氟烷基磺酰亚胺锂的电解液,非水有机溶剂为碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、γ-丁内酯、乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸丁酯、丙酸乙酯、丙酸丙酯、丙酸丁酯中的一种或几种。
- 根据权利要求4所述的含有磷腈氟烷基磺酰亚胺锂的电解液,所述添加剂为碳酸亚乙烯酯,碳酸乙烯亚乙酯,氟代碳酸乙烯酯,二氟代碳酸乙烯酯,1,3-丙磺酸内酯,1,4-丁磺酸内酯,硫酸乙烯酯,硫酸丙烯酯,亚硫酸乙烯酯、亚硫酸丙烯酯中的一种或几种。
- 一种锂二次电池:包括正极片、负极片、隔膜以及权利要去5-7任一项所述的含有磷腈氟烷基磺酰亚胺锂的电解液成;正极片和负极片包含活性材料、导电剂、集流体、将所述活性材料和导电剂与所述集流体结合的结合剂。
- 根据权利要求8所述的锂二次电池,正极包括能够可逆地嵌入/脱嵌锂离子的正极活性材料,正极活性材料优选为锂的复合金属氧化物,金属氧化物包括镍、钴、锰元素及其任何比例组合的氧化物;正极活性材料还进一步包括化学元素中的一种或者若干种,所述化学元素包括有Mg、Al、Ti、Sn、V、Ge、Ga、B、Zr、Cr、Fe、Sr和稀土元素。正极活性材料还进一步包括聚阴离子锂化合物LiMx(PO4)y(M为Ni、Co、Mn、Fe、Ti、V,0≤x≤5,0≤y≤5)。
- 根据权利要求8所述的锂二次电池,负极包括能够接受或释放锂离子的负极活性材料,所述负极活性材料包括锂金属、锂合金、结晶碳、无定型碳、碳纤维、硬碳、软碳;其中结晶碳包括天然石墨、石墨化焦炭、石墨化MCMB、石墨化中间相沥青碳纤维;所述的锂合金包括锂和铝、锌、硅、锡、镓、锑金属的合金。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510454869.8A CN105206873B (zh) | 2015-07-28 | 2015-07-28 | 一种含有磷腈氟烷基磺酰亚胺锂的电解液及使用该电解液的电池 |
CN201510450632.2A CN105175452B (zh) | 2015-07-28 | 2015-07-28 | 一种磷腈氟烷基磺酰亚胺碱金属盐的制备方法 |
CN201510454869.8 | 2015-07-28 | ||
CN201510450632.2 | 2015-07-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017015996A1 true WO2017015996A1 (zh) | 2017-02-02 |
Family
ID=57883993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/087310 WO2017015996A1 (zh) | 2015-07-28 | 2015-08-18 | 磷腈氟烷基磺酰亚胺碱金属盐及其含有该金属盐的电解液 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017015996A1 (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108808087A (zh) * | 2018-05-04 | 2018-11-13 | 惠州市大道新材料科技有限公司 | 一种含有磷酰亚胺锂的电解液及使用该电解液的电池 |
CN111193067A (zh) * | 2020-01-11 | 2020-05-22 | 山东理工大学 | 一种锂离子电池用阻燃电解质的制备方法 |
CN111952671A (zh) * | 2020-07-20 | 2020-11-17 | 复旦大学 | 一种以氟代乙酸乙酯为溶剂的低温电解液及其应用 |
CN112189278A (zh) * | 2020-01-11 | 2021-01-05 | 山东理工大学 | 易溶于有机溶剂的阻燃锂离子电池电解质的制备方法 |
CN114171779A (zh) * | 2021-11-22 | 2022-03-11 | 中国电子科技集团公司第十八研究所 | 一种高安全性的锂离子电池及其制备方法 |
KR20220097949A (ko) | 2020-02-28 | 2022-07-08 | 코니카 미놀타 가부시키가이샤 | 광학 필름, 편광판 및 유기 일렉트로루미네센스 화상 표시 장치 |
CN114725519A (zh) * | 2021-01-06 | 2022-07-08 | 东莞理工学院 | 一种锂离子电池电解液及其制备方法和锂离子电池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1640895A (zh) * | 2004-12-17 | 2005-07-20 | 华中科技大学 | 含全氟烷基磺酰亚胺侧链的高分子聚合物及其合成方法 |
JP4422256B2 (ja) * | 1999-11-16 | 2010-02-24 | 日本化学工業株式会社 | スルホニル基を有するホスファゼン誘導体およびその製造方法 |
CN102786443A (zh) * | 2011-05-20 | 2012-11-21 | 华中科技大学 | 二元或三元含氟磺酰亚胺的碱金属盐和离子液体及其应用 |
CN104218258A (zh) * | 2014-09-17 | 2014-12-17 | 宜春金晖新能源材料有限公司 | 防过充阻燃电池电解液 |
CN104558046A (zh) * | 2014-12-31 | 2015-04-29 | 浙江工业大学 | 一种基于六氯环三磷腈的超支化离子液体及其作为阻燃剂的应用 |
CN105070940A (zh) * | 2015-07-28 | 2015-11-18 | 东莞市凯欣电池材料有限公司 | 一种含有亚胺锂的电解液及使用该电解液的电池 |
-
2015
- 2015-08-18 WO PCT/CN2015/087310 patent/WO2017015996A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4422256B2 (ja) * | 1999-11-16 | 2010-02-24 | 日本化学工業株式会社 | スルホニル基を有するホスファゼン誘導体およびその製造方法 |
CN1640895A (zh) * | 2004-12-17 | 2005-07-20 | 华中科技大学 | 含全氟烷基磺酰亚胺侧链的高分子聚合物及其合成方法 |
CN102786443A (zh) * | 2011-05-20 | 2012-11-21 | 华中科技大学 | 二元或三元含氟磺酰亚胺的碱金属盐和离子液体及其应用 |
CN104218258A (zh) * | 2014-09-17 | 2014-12-17 | 宜春金晖新能源材料有限公司 | 防过充阻燃电池电解液 |
CN104558046A (zh) * | 2014-12-31 | 2015-04-29 | 浙江工业大学 | 一种基于六氯环三磷腈的超支化离子液体及其作为阻燃剂的应用 |
CN105070940A (zh) * | 2015-07-28 | 2015-11-18 | 东莞市凯欣电池材料有限公司 | 一种含有亚胺锂的电解液及使用该电解液的电池 |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108808087A (zh) * | 2018-05-04 | 2018-11-13 | 惠州市大道新材料科技有限公司 | 一种含有磷酰亚胺锂的电解液及使用该电解液的电池 |
CN108808087B (zh) * | 2018-05-04 | 2022-06-10 | 常德市大度新材料有限公司 | 一种含有磷酰亚胺锂的电解液及使用该电解液的电池 |
CN111193067A (zh) * | 2020-01-11 | 2020-05-22 | 山东理工大学 | 一种锂离子电池用阻燃电解质的制备方法 |
CN112189278A (zh) * | 2020-01-11 | 2021-01-05 | 山东理工大学 | 易溶于有机溶剂的阻燃锂离子电池电解质的制备方法 |
CN111193067B (zh) * | 2020-01-11 | 2022-05-17 | 山东理工大学 | 一种锂离子电池用阻燃电解质的制备方法 |
CN112189278B (zh) * | 2020-01-11 | 2022-07-29 | 山东理工大学 | 易溶于有机溶剂的阻燃锂离子电池电解质的制备方法 |
KR20220097949A (ko) | 2020-02-28 | 2022-07-08 | 코니카 미놀타 가부시키가이샤 | 광학 필름, 편광판 및 유기 일렉트로루미네센스 화상 표시 장치 |
CN111952671A (zh) * | 2020-07-20 | 2020-11-17 | 复旦大学 | 一种以氟代乙酸乙酯为溶剂的低温电解液及其应用 |
CN114725519A (zh) * | 2021-01-06 | 2022-07-08 | 东莞理工学院 | 一种锂离子电池电解液及其制备方法和锂离子电池 |
CN114171779A (zh) * | 2021-11-22 | 2022-03-11 | 中国电子科技集团公司第十八研究所 | 一种高安全性的锂离子电池及其制备方法 |
CN114171779B (zh) * | 2021-11-22 | 2023-08-08 | 中国电子科技集团公司第十八研究所 | 一种高安全性的锂离子电池及其制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10141608B2 (en) | Electrolyte for lithium secondary battery and lithium secondary battery containing the same | |
KR102156865B1 (ko) | 비수계 전해액 및 그것을 이용한 비수계 전해액 전지 | |
CA2958793C (en) | Nonaqueous electrolyte compositions comprising sultone and fluorinated solvent | |
KR102469213B1 (ko) | 비수 전해액 전지용 전해액 및 그것을 이용한 비수 전해액 전지 | |
JP5835514B1 (ja) | リチウム塩化合物、並びにそれを用いた非水電解液、リチウムイオン二次電池、及びリチウムイオンキャパシタ | |
CN102786443B (zh) | 二元或三元含氟磺酰亚胺的碱金属盐和离子液体及其应用 | |
WO2017026181A1 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
CN111788732B (zh) | 锂二次电池电解液及包含其的锂二次电池 | |
WO2017015996A1 (zh) | 磷腈氟烷基磺酰亚胺碱金属盐及其含有该金属盐的电解液 | |
JP6788661B2 (ja) | リチウムオキサラトホスフェートを含んでなる非水系電解質組成物 | |
CN105206873B (zh) | 一种含有磷腈氟烷基磺酰亚胺锂的电解液及使用该电解液的电池 | |
KR20180093700A (ko) | 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지 | |
US10177410B2 (en) | Lithium secondary battery electrolyte and lithium secondary battery including same | |
WO2014203912A1 (ja) | 非水電解液、それを用いた蓄電デバイス、及びそれに用いられるビフェニル基含有カーボネート化合物 | |
WO2016117280A1 (ja) | 非水系電解液及びそれを用いた非水系電解液電池 | |
CN110073537B (zh) | 非水电解液及使用了其的蓄电设备 | |
WO2018149211A1 (zh) | 含有吡啶环磺酰亚胺锂的电解液及使用该电解液的电池 | |
KR20150072188A (ko) | 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지 | |
JP2013012486A (ja) | ベンゼンスルホン酸エステル、それを用いたリチウム二次電池用電解液、及びそれを用いたリチウム二次電池 | |
JP4961714B2 (ja) | ペンタフルオロフェニルオキシ化合物、それを用いた非水電解液及びリチウム二次電池 | |
WO2013099735A1 (ja) | 非水電解液及びそれを用いた蓄電デバイス | |
KR20140065108A (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
EP3604276A1 (en) | New components for electrolyte compositions | |
CN108912335A (zh) | 磷腈聚阴离子碱金属盐及其制备方法和非水电解液中的应用 | |
CN114365317B (zh) | 锂二次电池用电解质和包含其的锂二次电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15899348 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 09/04/2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15899348 Country of ref document: EP Kind code of ref document: A1 |