WO2017015972A1 - 一种液晶显示器 - Google Patents

一种液晶显示器 Download PDF

Info

Publication number
WO2017015972A1
WO2017015972A1 PCT/CN2015/085707 CN2015085707W WO2017015972A1 WO 2017015972 A1 WO2017015972 A1 WO 2017015972A1 CN 2015085707 W CN2015085707 W CN 2015085707W WO 2017015972 A1 WO2017015972 A1 WO 2017015972A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixels
data
liquid crystal
crystal display
Prior art date
Application number
PCT/CN2015/085707
Other languages
English (en)
French (fr)
Inventor
刘司洋
张天豪
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US14/771,146 priority Critical patent/US20170032749A1/en
Publication of WO2017015972A1 publication Critical patent/WO2017015972A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal display.
  • the liquid crystal display has low power consumption, low radiation and low production cost, and has been widely used in various electronic devices such as televisions, mobile phones, cameras or wearable devices.
  • the four-color RGBW display technology of TFT-LCD Thin Film Transistor Liquid Crystal Display
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • the positive and negative polarity inversion modes are generally adopted, and the common sub-pixel array polarity inversion mode is dot inversion or column inversion.
  • the data signals output by the adjacent adjacent column data lines are opposite in polarity, so that the polarities applied to the corresponding adjacent column sub-pixels are also opposite, which is common to the data transient due to the data transient when the four-color RGBW is displayed.
  • the electrode coupling (Vcom Coupling) is severe, and because the polarity of the sub-pixels of the same color may be the same, a severe flick phenomenon occurs, which in turn affects the quality of the display screen of the liquid crystal display.
  • the technical problem to be solved by the present invention is to provide a liquid crystal display capable of making the number of sub-pixels having positive polarity in the sub-pixels of the same color the same as the number of sub-pixels having negative polarity in solid color display, thereby avoiding data signals
  • the instantaneous change produces a common electrode coupling while also eliminating flicker, thereby improving the display quality of the liquid crystal display.
  • the present invention adopts a technical solution to provide a liquid crystal display including a plurality of sub-pixels arranged in an array in a row direction and a column direction, and a plurality of data lines arranged along a column direction. And in the two rows of sub-pixels disposed adjacently in the column direction, the sub-pixels of the same color are arranged in the same column, and the plurality of data lines are respectively used to apply data signals to the sub-pixels of the corresponding column, and each row of sub-pixels includes four periodically arranged.
  • the data signal polarity of the m-th sub-pixel is in two arrangement periods of four different color sub-pixels adjacently arranged in the row direction
  • the data signals of the m+4 column sub-pixels have opposite polarities, making the same
  • the number of sub-pixels to which the positive polarity data signal is applied in one color sub-pixel is the same as the number of sub-pixels to which the negative polarity data signal is applied, and m is a positive integer greater than or equal to 1 and less than or equal to 4.
  • the liquid crystal display further includes a data driver, the data driver includes a plurality of output ports corresponding to the plurality of data lines, and the data signals output by each of the output ports are opposite in polarity to the data signals output by the adjacent output ports, wherein In two arrangement periods of four sub-pixels of different colors arranged adjacent to each other in the row direction, the data lines corresponding to a part of the sub-pixels are connected to the output port in a straight-through manner, and the data lines corresponding to the other sub-pixels are connected in an interleaved manner. port.
  • the through mode is to connect the nth data line of the plurality of data lines with the nth output port of the data driver, and the intersection mode is the i-th data line of the plurality of data lines and the i+ of the data driver j or ij output ports are connected, where n and i are positive integers different from each other, and j is an odd number.
  • the sub-pixels of the four different colors are composed of a red photo sub-pixel, a green photo sub-pixel, a blue sub-pixel, and a white sub-pixel.
  • another technical solution adopted by the present invention is to provide a liquid crystal display including a plurality of sub-pixels arranged in an array in a row direction and a column direction and a plurality of data lines arranged along a column direction.
  • each row of sub-pixels includes a plurality of sub-pixels of a plurality of different colors that are periodically arranged, wherein when the liquid crystal display displays a solid color picture frame, the line direction is In even-numbered arrangement periods of adjacent sub-pixels of different colors, the number of sub-pixels to which the positive polarity data signal is applied in the sub-pixels of the same color is the same as the number of sub-pixels to which the negative polarity data signal is applied.
  • the liquid crystal display further includes a data driver, the data driver includes a plurality of output ports corresponding to the plurality of data lines, and the data signals output by each of the output ports are opposite in polarity to the data signals output by the adjacent output ports, wherein the edge is opposite In an even number of arrangement periods of sub-pixels of different colors disposed adjacent to each other in the row direction, the data lines corresponding to a part of the sub-pixels are connected to the output port in a straight-through manner, and the data lines corresponding to the other sub-pixels are connected to the output port in an intersecting manner.
  • the through mode is to connect the nth data line of the plurality of data lines with the nth output port of the data driver, and the intersection mode is the i-th data line of the plurality of data lines and the i+ of the data driver j or ij output ports are connected, where n and i are positive integers different from each other, and j is an odd number.
  • the even-numbered sub-pixels of different colors are sub-pixels of four different colors
  • the even-numbered arrangement periods are two permutation periods, wherein in the two permutation periods, the data signal polarity of the m-th column sub-pixel and the m+4
  • the data signals of the column sub-pixels have opposite polarities
  • m is a positive integer greater than or equal to 1 and less than or equal to 4.
  • sub-pixels of the same color are arranged in the same column.
  • the sub-pixels of the same color are arranged offset by one or three columns from each other.
  • the sub-pixels of the same color are arranged in two columns offset from each other.
  • the even number of sub-pixels of different colors are composed of red photo sub-pixels, green photo sub-pixels, blue sub-pixels, and white sub-pixels.
  • another technical solution adopted by the present invention is to provide a liquid crystal display including a plurality of sub-pixels arranged in an array in a row direction and a column direction and a plurality of data lines arranged along a column direction.
  • the liquid crystal display further includes a data driver
  • the data driver includes a plurality of output ports corresponding to the plurality of data lines, and the data signals output by each output port
  • the data signals outputted by the adjacent output ports are opposite in polarity, and the data lines corresponding to a part of the sub-pixels are connected to the output port in a straight-through manner, and the data lines corresponding to the other sub-pixels are connected to the output port in an intersecting manner.
  • the through mode is to connect the nth data line of the plurality of data lines with the nth port of the data driver, and the intersection manner is to select the i th data line of the plurality of data lines and the i+j of the data driver Or ij port connections, where n and i are positive integers that differ from each other, and j is an odd number.
  • each row of sub-pixels of the liquid crystal display comprises four sub-pixels of different colors arranged periodically, and when the liquid crystal display displays a solid-color picture frame, two of four sub-pixels of four different colors arranged adjacent in the row direction During the arrangement period, the polarity of the data signal of the m-th column sub-pixel is opposite to the polarity of the data signal of the m+4th column sub-pixel, so that the number of sub-pixels to which the positive polarity data signal is applied and the negative polarity data signal are applied to the sub-pixels of the same color
  • the number of sub-pixels is the same, and m is a positive integer greater than or equal to 1 and less than or equal to 4.
  • sub-pixels of the same color are arranged in the same column.
  • the sub-pixels of the same color are arranged offset by one or three columns from each other.
  • the sub-pixels of the same color are arranged in two columns offset from each other.
  • the sub-pixels of the four different colors are composed of a red photo sub-pixel, a green photo sub-pixel, a blue sub-pixel, and a white sub-pixel.
  • the liquid crystal display provided by the invention comprises the row direction and the column direction array a plurality of sub-pixels arranged in columns and a plurality of data lines arranged along the column direction, wherein the plurality of data lines are respectively used to apply data signals to the sub-pixels of the corresponding column, and the even-numbered sub-pixels of different colors are arranged in the row direction a pixel, wherein when the liquid crystal display displays a solid color picture frame, the number and application of the sub-pixels to which the positive polarity data signal is applied in the sub-pixels of the same color in an even number of arrangement periods of sub-pixels of different colors disposed adjacently in the row direction The number of sub-pixels of the negative polarity data signal is the same.
  • the present invention enables the number of sub-pixels having positive polarity in the sub-pixels of the same color and the sub-pixels having negative polarity in the solid color display.
  • the number is the same, thereby avoiding Vcom Coupling (common electrode coupling) due to Data transient (transient change of data signal), and also eliminating Flick (flicker) phenomenon, thereby improving the display quality of the liquid crystal display.
  • FIG. 1 is a schematic structural view of an embodiment of a liquid crystal display provided by the present invention.
  • FIG. 2 is a timing diagram of a data signal when a pure red picture frame is displayed in FIG. 1;
  • 3a is a schematic structural diagram of a connection manner of data lines and corresponding column sub-pixels in FIG. 1;
  • Figure 3b is a timing diagram of the data signal when the pure red picture frame is displayed in Figure 3a;
  • 4a is another schematic structural diagram of the connection manner of the data line and the corresponding column sub-pixel in FIG. 1;
  • 4b is a timing diagram of the data signal when the pure red picture frame is displayed in FIG. 4a;
  • FIG. 5 is a schematic structural view of still another embodiment of a liquid crystal display provided by the present invention.
  • FIG. 6 is a timing diagram of a data signal when a pure red picture frame is displayed in FIG. 5;
  • 7a is a schematic structural diagram of a connection manner of data lines and corresponding column sub-pixels in FIG. 5;
  • Figure 7b is a timing diagram of the data signal when the pure red picture frame is displayed in Figure 7a;
  • FIG. 8a is another schematic structural diagram of the connection manner of the data line and the corresponding column sub-pixel in FIG. 5;
  • Figure 8b is a timing diagram of the data signal when the pure red picture frame is displayed in Figure 8a;
  • FIG. 9 is a schematic structural view of another embodiment of a liquid crystal display provided by the present invention.
  • FIG. 10 is a timing diagram showing a data signal when a pure red picture frame is displayed in FIG. 9;
  • 11a is a schematic structural diagram of a connection manner of data lines and corresponding column sub-pixels in FIG. 9;
  • Figure 11b is a timing diagram of the data signal when the pure red picture frame is displayed in Figure 11a;
  • 12a is another schematic structural diagram of the connection manner of the data lines and corresponding column sub-pixels in FIG. 9;
  • Figure 12b is a timing diagram of the data signal when the pure red picture frame is shown in Figure 12a.
  • FIG. 1 is a schematic structural diagram of an embodiment of a liquid crystal display according to the present invention.
  • the liquid crystal display 10 includes a plurality of sub-pixels 110 arranged in an array in a row direction and a column direction, and a plurality of data lines arranged along a column direction, and a plurality of data lines are respectively used for sub-pixels of corresponding columns.
  • the liquid crystal display 10 further comprising a plurality of scan lines (or gate lines) arranged in a row direction for applying scan signals to the sub-pixels 110 of the corresponding row to turn on each row of sub-pixels 110 such that each column is received
  • the data signal on the data line connected to the pixel 110 is exemplified in FIG.
  • each row of sub-pixels 110 includes even-numbered sub-pixels 110 of different colors, wherein when the liquid crystal display 10 displays a solid-color picture frame, the even number of sub-pixels 110 of different colors disposed adjacently in the row direction In the arrangement period, the number of sub-pixels 110 to which the positive polarity data signal is applied in the sub-pixel 110 of the same color is the same as the number of sub-pixels 110 to which the negative polarity data signal is applied.
  • an even number of sub-pixels 110 of different colors are sub-pixels 110 of four colors, and are composed of red sub-pixels (represented by R sub-pixels in the following description and the drawings), and green photo sub-pixels (this specification)
  • R sub-pixels represented by R sub-pixels in the following description and the drawings
  • green photo sub-pixels this specification
  • G sub-pixels the blue sub-pixels
  • B sub-pixels the blue sub-pixels
  • W sub-pixels herein the description of the specification and the drawings are denoted by W sub-pixels.
  • each data line is connected to its corresponding column of sub-pixels 110.
  • the sub-pixel 110 of the positive color data signal is applied to the sub-pixel 110 of the same color in an even number of arrangement periods of the sub-pixels 110 of different colors disposed adjacently in the row direction.
  • the number is the same as the number of sub-pixels 110 to which the negative polarity data signal is applied.
  • the even number of arrangement periods of the R sub-pixel, the G sub-pixel, the B sub-pixel, and the W sub-pixel are two.
  • the arrangement period is exemplified, wherein in the two arrangement periods, the data signal polarity of the mth column sub-pixel is opposite to the data signal polarity of the m+4 column sub-pixel, and m is greater than or equal to 1 and less than or equal to 4.
  • a positive integer such that the number of sub-pixels 110 to which the positive polarity data signal is applied in the sub-pixel 110 of the same color and the number of the sub-pixels 110 to which the negative polarity data signal is applied The same is true, which is realized by the polarity of the data signal applied by the m-th column data line Sm being opposite to the polarity of the data signal applied by the m+4th column data line Sm+4.
  • FIG. 1 is exemplified by the first, second, third, fourth, fifth, sixth, seventh, and eighth data lines S1, S2, S3, S4, and S5.
  • the polarity of the data signals on S6, S7, and S8 are positive polarity (+), negative polarity (-), positive polarity (+), negative polarity (-), negative polarity (-), positive polarity (+), and negative polarity.
  • Sex (-) and positive polarity (+) the first data line in two arrangement periods in which R sub-pixels, G sub-pixels, B sub-pixels, and W sub-pixels are arranged adjacent to each other in the row direction
  • the data signals of S1 and the fifth data line S5 are opposite in polarity, such that the R sub-pixels of the first column and the R sub-pixels of the fifth column have opposite polarities, thereby satisfying the positive polarity in the R sub-pixels of the same color.
  • the number of R sub-pixels of the first column of the data signal is the same as the number of R sub-pixels of the fifth column to which the negative polarity data signal is applied.
  • the data signals of the second data line S2 and the sixth data line S6 have opposite polarities, such that the G sub-pixels of the second column and the G sub-pixels of the sixth column have opposite polarities, thereby satisfying the same color.
  • the number of G sub-pixels of the sixth column to which the positive polarity data signal is applied in the G sub-pixel is the same as the number of R sub-pixels of the second column to which the negative polarity data signal is applied;
  • the data signals of S7 are opposite in polarity, such that the B sub-pixels of the third column and the B sub-pixels of the seventh column have opposite polarities, thereby satisfying the third column of the B sub-pixels of the same color to which the positive polarity data signal is applied.
  • the number of B sub-pixels is the same as the number of B sub-pixels of the seventh column to which the negative polarity data signal is applied; the polarity of the data signals of the fourth data line S4 and the eighth data line S8 are opposite, so that the W of the fourth column.
  • the pixels are opposite in polarity to the data signals of the W sub-pixels of the eighth column, and further satisfy the number of W sub-pixels of the eighth column to which the positive polarity data signal is applied and the fourth column to which the negative polarity data signal is applied in the W sub-pixels of the same color.
  • the number of W sub-pixels is the same.
  • the number of the sub-pixels 110 to which the positive polarity data signal is applied in the same color sub-pixel 110 is the same as the number of the sub-pixels 110 to which the negative polarity data signal is applied, that is, the data signal polarity of the sub-pixel 110 of the same color when the solid color picture is displayed.
  • Half of the positive half is negative, so that when the column inversion or dot inversion driving sub-pixel 110 performs gray scale display, the common electrode coupling is avoided due to the instantaneous change of the data signal, and the flicker phenomenon is also eliminated, thereby improving the liquid crystal.
  • the display quality of the display In FIG. 1 and the description below, the column inversion driving method will be described as an example.
  • FIG. 2 is a timing diagram of the data signal when the pure red picture frame is displayed in FIG.
  • a timing chart in which each data line applies a data signal to the corresponding column sub-pixel 110 is represented by a data signal Dn applied on the nth data line Sn, which is larger than the common electrode Vcom of the sub-pixel 110.
  • Dn applied on the nth data line Sn
  • Vcom common electrode
  • each data line in Figure 1 corresponds to a column
  • each data line in Figure 1 corresponds to a column
  • the sub-pixel 110 as shown in FIG. 2, when the liquid crystal display 10 displays a pure red picture frame, the polarity of the data signal D1 on the first data line S1 and the data signal D5 of the fifth column data line S5 are opposite.
  • the data signal D1 applied to the R sub-pixels of one column is opposite to the data signal D5 applied to the R sub-pixels of the fifth column, and the other data lines are correspondingly displayed with other colors, so the data signals applied by the other data lines and the common electrode Vcom Similarly, at this time, the polarity of the data signal of the R sub-pixel is half positive and half is negative, which avoids the common electrode coupling signal due to the instantaneous change of the data signal, and the common electrode coupling signal is represented by VC in FIG. 2, and also eliminates The flicker phenomenon improves the display quality of the liquid crystal display.
  • the polarity of the data signal of the R sub-pixel, the G sub-pixel, the B sub-pixel, or the W sub-pixel is half positive. Half is negative, avoiding the common electrode coupling signal due to the instantaneous change of the data signal, and also eliminating the flicker phenomenon, thereby improving the display quality of the liquid crystal display.
  • the liquid crystal display 10 further includes a data driver 120 and a scan driver 130.
  • the scan driver 130 includes a plurality of charging ports corresponding to the plurality of scan lines
  • the data driver 120 includes a plurality of data corresponding to the plurality of data lines.
  • the output port is exemplified by five charging ports in FIG. 1 , and is denoted by Ln as the nth charging port, and the scan line corresponding to each row of sub-pixels 110 is connected to the charging port in a straight-through manner, and the example in FIG.
  • Kn denotes an n-th output port
  • the data signal outputted by each output port is opposite in polarity to the data signal outputted by the adjacent output port, wherein an even number of sub-pixels 110 of different colors arranged adjacently in the row direction are arranged.
  • the data lines corresponding to a part of the sub-pixels 110 are connected to the output port in a straight-through manner, and the data lines corresponding to the other partial sub-pixels 110 are connected to the output port in an intersecting manner.
  • the straight-through mode is to connect the nth data line Gn of the plurality of scan lines with the nth charging port Ln of the scan driver 130 or the nth data line Sn of the plurality of data lines and the data driver 120.
  • the n output ports Kn are connected in such a manner that the i-th data line Si of the plurality of data lines is connected to the i+j or ijth output port Ki+j or Ki-j of the data driver 120, where n And i are positive integers that are different from each other, and j is an odd number.
  • the first column, the second column, the third column, and the fourth column data lines S1, S2, S3, and S4 are respectively connected to the output ports K1, K2 by a through mode.
  • K3 and K4 and the fifth, sixth, seventh and eighth columns of data lines S5, S6, S7 and S8 are connected in a crosswise manner to the output ports K6, K5, K8 and K7, where j is 1 or -1, in other embodiments, not limited to the connection manner of the data line and the output port as shown in FIG. 1, and optionally the fifth, sixth, seventh, and eighth column data lines are in a straight-through manner.
  • the data driver 120 may be arranged with an even number of output ports as an arrangement period, and the polarity of the data signal outputted by the output port in each permutation period and the output port output in the adjacent permutation period.
  • the data signal is symmetric in polarity, that is, the data driver 120 shown in FIG. 1 has four output ports as an arrangement period, and the polarity of the output data signals of the output ports K1, K2, K3, and K4 in the first arrangement period is The polarity of the output data signals of the output ports K5, K6, K7 and K8 in the second arrangement period is symmetrical.
  • the output ports K1 to K4 respectively output data signals of positive polarity, negative polarity, positive polarity and negative polarity
  • output port K5 to The K8 output negative polarity, positive polarity, negative polarity, and positive and negative polarity data signals are symmetric.
  • the data lines corresponding to all the sub-pixels 110 are connected to the output port in a straight-through manner so as to be adjacently arranged in the row direction.
  • the number of sub-pixels 110 to which a positive polarity data signal is applied and the negative polarity data signal are applied to the sub-pixels 110 of the same color in an even number of arrangement periods of different color sub-pixels 110
  • the number of sub-pixels 110 of the number is the same.
  • FIG. 3a is a schematic structural diagram of the connection manner of the data lines and corresponding column sub-pixels in FIG.
  • each of the data lines is connected to the adjacent two columns of sub-pixels 110 in a first flipping manner, wherein the first flipping manner is that each of the data lines alternately connects the sub-pixels 110 of different rows on both sides thereof, and each data is The line is connected to the odd-numbered sub-pixels 110 on the side remote from the scan driver 130, and is connected to the even-numbered sub-pixels 110 on the side close to the scan driver.
  • the first flipping manner is that each of the data lines alternately connects the sub-pixels 110 of different rows on both sides thereof, and each data is The line is connected to the odd-numbered sub-pixels 110 on the side remote from the scan driver 130, and is connected to the even-numbered sub-pixels 110 on the side close to the scan driver.
  • the first data line S1 is respectively Connecting the first row, the third row of sub-pixels 110 of the first column and the second row and the fourth row of sub-pixels 110 of the previous column of the first column, the second data line S2 Connecting the first row of the second row, the sub-pixel 110 of the third row, and the sub-pixel 110 of the second row and the fourth row of the first column, respectively, the third data line S3, the fourth data line S4,
  • the fifth data line S5, the sixth data line S6, the seventh data line S7, and the eighth data line S8 are respectively connected to the corresponding phase by the first flipping manner of the first and second data lines S1 and S2. Two columns of sub-pixels 110 are adjacent to each other, and are not described herein again.
  • FIG. 3b is a timing diagram of the data signal when the pure red picture frame is displayed in FIG. 3a.
  • the data signal D1 on the first column data line S1 and the data signal D5 on the fifth column data line S5 are opposite in polarity
  • the data signal D2 on the second column data line S2 is
  • the data signal D6 of the sixth column data line S6 has the opposite polarity
  • the other column data lines correspond to other colors. Color, so the data signals applied by the other column data lines are the same as the common electrode Vcom.
  • the polarity of the data signal of the R sub-pixel is half positive and half is negative, which avoids the common electrode coupling due to the instantaneous change of the data signal.
  • the flicker phenomenon is also eliminated, thereby improving the display quality of the liquid crystal display.
  • FIG. 4a is another schematic structural diagram of the connection manner of the data lines and corresponding column sub-pixels in FIG.
  • each of the data lines is connected to the adjacent two columns of sub-pixels 110 in a second flipping manner, wherein the second flipping manner is that each of the data lines alternately connects the different rows of sub-pixels 110 on both sides thereof, and each piece of data
  • the line is connected to the sub-pixels 110 of the odd rows on the side close to the scan driver 130, and is connected to the sub-pixels 110 of the even rows on the side away from the scan driver.
  • the first data line S1 is respectively Connecting the second row of the first column in the two arrangement periods, the sub-pixel 110 of the fourth row, and the sub-pixel 110 connecting the first row and the third row of the previous column of the first column, the second data line S2 Connecting the second row of the second row, the sub-pixel 110 of the fourth row, and the sub-pixel 110 of the first row and the third row of the first column, respectively, the third data line S3, the fourth data line S4,
  • the fifth data line S5, the sixth data line S6, the seventh data line S7, and the eighth data line S8 are respectively connected to the corresponding phase by the second flipping manner of the first and second data lines S1 and S2.
  • Two columns of sub-pixels 110 are adjacent to each other, and are not described herein again.
  • FIG. 4b is a timing diagram of the data signal when the pure red picture frame is displayed in FIG. 4a.
  • the data signal D1 on the first column data line S1 and the data signal D5 on the fifth column data line S5 are opposite in polarity
  • the data signal D2 on the second column data line S2 is
  • the data signal D6 of the sixth column data line S6 has the opposite polarity
  • the other column data lines correspond to other colors. Therefore, the data signals applied by the other column data lines are the same as the common electrode Vcom, and the data signal poles of the R sub-pixels are satisfied.
  • Half of the sex is positive and half is negative, which avoids the common electrode coupling signal due to the instantaneous change of the data signal, and also eliminates the flicker phenomenon, thereby improving the display quality of the liquid crystal display.
  • FIG. 5 is a schematic structural diagram of still another embodiment of a liquid crystal display provided by the present invention.
  • the liquid crystal display 50 includes substantially the same elements as those of the liquid crystal display 10 shown in FIG. 1 and is denoted by the same reference numerals, and the liquid crystal display 50 has two rows of sub-pixels adjacently arranged in the column direction.
  • the sub-pixels 110 of the same color are arranged offset from each other by one column or three columns. Specifically, as shown in FIG.
  • the odd-numbered rows and the even-numbered rows are respectively arranged in a period of W sub-pixels, R sub-pixels, G sub-pixels, and B-sub-pixels, and R sub-pixels, G sub-pixels, B sub-pixels, and The W sub-pixels are arranged in a periodic manner.
  • the polarity of the data signals on S6, S7, and S8 are positive polarity (+), negative polarity (-), positive polarity (+), negative polarity (-), negative polarity (-), and positive polarity (+).
  • Negative polarity (-) and positive polarity (+) when the liquid crystal display 50 displays a solid color picture frame, in the two arrangement periods of the sub-pixels 110 of different colors disposed adjacently in the row direction, the sub-pixel 110 of the same color
  • the number of sub-pixels 110 to which the positive polarity data signal is applied is the same as the number of sub-pixels 110 to which the negative polarity data signal is applied.
  • FIG. 6 is a timing diagram of the data signal when the pure red picture frame is displayed in FIG.
  • the data signal D1 on the first data line S1 and the data signal D5 on the fifth column data line S5 are opposite in polarity
  • the data signal D2 on the second column data line S2 is
  • the data signal D6 of the sixth column data line S6 has the opposite polarity
  • the other column data lines correspond to other colors. Therefore, the data signals applied by the other column data lines are the same as the common electrode Vcom, and the data signal poles of the R sub-pixels are satisfied.
  • Half of the sex is positive and half is negative, which avoids the common electrode coupling due to the instantaneous change of the data signal, and also eliminates the flicker phenomenon, thereby improving the display quality of the liquid crystal display.
  • FIG. 7a is a schematic structural diagram of a data line and a corresponding column sub-pixel connection manner in FIG. 5, and FIG. 7b is a timing diagram of a data signal when a pure red picture frame is displayed in FIG. 7a.
  • each of the data lines is connected to the adjacent two columns of sub-pixels 110 in the first flip mode.
  • the connection manner of the pixel 110 will not be described here. As shown in FIG. 7a and FIG.
  • FIG. 8a is another schematic structural diagram of the connection manner of the data line and the corresponding column sub-pixel in FIG. 5, and FIG. 8a is a timing diagram of the data signal when the pure red picture frame is displayed in FIG. 8b.
  • each of the data lines is connected to the adjacent two columns of sub-pixels 110 in the second flipping manner.
  • the second flipping manner is specifically described in the above related content description and each of the data lines and adjacent two columns in FIG. 4a.
  • the connection manner of the pixel 110 will not be described here.
  • FIG. 9 is a schematic structural diagram of another embodiment of a liquid crystal display provided by the present invention.
  • the liquid crystal display 90 includes substantially the same elements as those of the liquid crystal display 10 shown in FIG. 1 and is denoted by the same reference numerals, and the liquid crystal display 90 has two rows of sub-pixels adjacently arranged in the column direction.
  • the sub-pixels 110 of the same color are arranged offset from each other by two columns. Specifically, as shown in FIG.
  • the odd-numbered rows are as in the first row
  • the third row of sub-pixels 110 are arranged in a period of R sub-pixels, G sub-pixels, B-sub-pixels, and W sub-pixels, and the even-numbered numbers such as the second row and the fourth row of sub-pixels 110 are B sub-pixels, W sub-pixels, and R sub-pixels.
  • the pixels and the G sub-pixels are periodically arranged, wherein each of the data lines is connected to a corresponding one of the columns of sub-pixels 110.
  • the polarity of the data signals on S6, S7, and 8 are positive polarity (+), negative polarity (-), positive polarity (+), negative polarity (-), negative polarity (-), positive polarity (+), Negative polarity (-) and positive polarity (+), when the liquid crystal display 130 displays a solid color picture frame, in two arrangement periods of sub-pixels 110 of different colors disposed adjacently in the row direction, in the sub-pixel 110 of the same color
  • the number of sub-pixels 110 to which the positive polarity data signal is applied is the same as the number of sub-pixels 110 to which the negative polarity data signal is applied.
  • FIG. 10 is a timing diagram of the data signal when the pure red picture frame is displayed in FIG.
  • the data signal D1 on the first column data line S1 and the data signal D5 on the fifth column data line S5 are opposite in polarity, the data signal D3 on the third column data line S3 and the data signal D7 on the seventh column data line S7.
  • the polarity is reversed, and the other column data lines correspond to other colors, so the data signals applied by the other column data lines are the same as the common electrode Vcom.
  • the polarity of the data signal that satisfies the R sub-pixel is half positive and half is negative, avoiding The common electrode coupling signal is generated due to the instantaneous change of the data signal, and the flicker phenomenon is also eliminated, thereby improving the display picture quality of the liquid crystal display.
  • FIG. 11a is a schematic structural diagram of a data line and a corresponding column sub-pixel connection manner in FIG. 9, and FIG. 11b is a timing diagram of a data signal when a pure red picture frame is displayed in FIG. 11a.
  • each of the data lines is connected to the adjacent two columns of sub-pixels 110 in the first flipping manner.
  • the first flipping manner is specifically described in the above related content description and each of the data lines and adjacent two columns in FIG. 4a.
  • the connection manner of the pixel 110 will not be described here.
  • the polarity of the data signal that satisfies the R sub-pixel is half positive, and half is Negative, avoiding the common electrode coupling signal due to the instantaneous change of the data signal, and also eliminating the flicker phenomenon, thereby improving the display quality of the liquid crystal display.
  • FIG. 12a is another schematic structural diagram of the connection manner of the data line and the corresponding column sub-pixel in FIG. 9, and FIG. 12b is a timing diagram of the data signal when the pure red picture frame is displayed in FIG. 12a.
  • each of the data lines is connected to the adjacent two columns of sub-pixels 110 in the second flip mode.
  • the second flip mode is specifically described in the above description and each data line and adjacent two columns in FIG. 4a.
  • the connection manner of the pixel 110 will not be described here.
  • the polarity of the data signal that satisfies the R sub-pixel is half positive, half is Negative, avoiding the common electrode coupling signal due to the instantaneous change of the data signal, and also eliminating the flicker phenomenon, thereby High screen display quality.
  • the present invention further provides a liquid crystal display comprising a plurality of sub-pixels 110 arranged in an array in a row direction and a column direction as shown in FIG. 1 and a plurality of data lines arranged along a column direction, and a plurality of data lines.
  • the lines are used to respectively apply data signals to the sub-pixels 110 of the corresponding column
  • the liquid crystal display further includes a data driver 120 as shown in FIG. 1, the data driver 120 includes a plurality of output ports corresponding to the plurality of data lines, each output The data signal outputted by the port is opposite to the polarity of the data signal output by the adjacent output port.
  • the data line corresponding to a part of the sub-pixels 110 is connected to the output port in a straight-through manner, and the data lines corresponding to the other partial sub-pixels 110 are connected in a cross manner.
  • Output port is used to respectively apply data signals to the sub-pixels 110 of the corresponding column
  • the liquid crystal display further includes a data driver 120 as shown
  • the through mode is to connect the nth data line of the plurality of data lines to the nth output port of the data driver 120, and the intersection manner is to select the ith data line of the plurality of data lines and the data driver 120.
  • i+j or ij output ports are connected, where n and i are positive integers different from each other, and j is an odd number.
  • the liquid crystal display and the liquid crystal display shown in FIG. 1 comprise substantially the same structural elements and have the same function.
  • the liquid crystal display provided by the present invention includes a plurality of sub-pixels arranged in an array in a row direction and a column direction, and a plurality of data lines arranged along a column direction, and the plurality of data lines are respectively used for corresponding columns.
  • the sub-pixels apply data signals, and a plurality of sub-pixels of different colors periodically arranged in a row direction are arranged, wherein when the liquid crystal display displays a solid-color picture frame, an even number of sub-pixels of different colors arranged adjacent in the row direction are arranged.
  • the present invention enables the number of sub-pixels having positive polarity in the sub-pixels of the same color and the sub-pixels having negative polarity in the solid color display. The number is the same, thereby avoiding the common electrode coupling due to the instantaneous change of the data signal, and also eliminating the flicker phenomenon, thereby improving the display picture quality of the liquid crystal display.

Abstract

一种液晶显示器(10),包括沿行方向和列方向阵列式排布的多个子像素(110)以及沿列方向设置的多条数据线。该多条数据线用于分别向对应列的子像素(110)施加数据信号。该多个子像素(110)包括在行方向上周期性排列的偶数种不同颜色的子像素(110)。当液晶显示器(10)显示纯色画面帧时,在沿行方向相邻设置的不同颜色的子像素(110)的偶数个排列周期内,同一颜色的子像素(110)中施加正极性数据信号的子像素(110)的数目与施加负极性数据信号的子像素(110)的数目相同。该液晶显示器(10)能够在纯色显示时避免因数据信号的瞬时变化产生的公共电极耦合,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。

Description

一种液晶显示器 【技术领域】
本发明涉及显示技术领域,特别是涉及一种液晶显示器。
【背景技术】
液晶显示器具有功耗低、辐射低及制作成本低等特点,现已广泛应用于各种电子设备中,如电视、手机、相机或穿戴设备。其中TFT-LCD(Thin Film Transistor Liquid Crystal Display,薄膜晶体管液晶显示器)的四色RGBW显示技术因具有高透光率和高亮度而受到市场的欢迎。
目前,液晶显示器在驱动液晶分子偏转以显示画面灰阶时,通常采用正、负极性反转方式,常见的子像素阵列极性反转方式为点反转或列反转。但是现有相邻列数据线输出的数据信号极性相反,使得施加到对应相邻列子像素的极性也相反,这在四色RGBW显示时,由于数据信号的瞬时变化(Data transient)使得公共电极耦合(Vcom Coupling)严重,同时也因为相同颜色的子像素极性可能相同而产生严重的闪烁(flick)现象,进而影响液晶显示器显示画面的品质。
综上,现有相邻列数据线输出的数据信号极性相反的技术不能满足四色RGBW液晶显示器对显示画面品质的要求。
【发明内容】
本发明主要解决的技术问题是提供一种液晶显示器,能够在纯色显示时使得同一颜色的子像素中具有正极性的子像素的数目与具有负极性的子像素的数目相同,进而避免因数据信号的瞬时变化产生公共电极耦合,同时也消除了闪烁,进而提高液晶显示器的显示画面品质。
为解决上述技术问题,本发明采用的一个技术方案是,提供一种液晶显示器,该液晶显示器包括沿行方向和列方向阵列式排布的多个子像素以及沿列方向设置的多条数据线,且在沿列方向相邻设置的两行子像素中,同一颜色的子像素同列设置,多条数据线用于分别向对应列的子像素施加数据信号,每一行子像素包括周期性排列的四种不同颜色的子像素,其中当液晶显示器显示纯色画面帧时,在沿行方向相邻设置的四种不同颜色的子像素的两个排列周期内,第m列子像素的数据信号极性与第m+4列子像素的数据信号极性相反,使得同 一颜色的子像素中施加正极性数据信号的子像素的数目与施加负极性数据信号的子像素的数目相同,m是大于或等于1且小于或等于4的正整数。
其中,该液晶显示器进一步包括数据驱动器,数据驱动器包括数目与多条数据线对应的多个输出端口,每一输出端口输出的数据信号与相邻的输出端口输出的数据信号极性相反,其中在沿行方向相邻设置的四种不同颜色的子像素的两个排列周期内,一部分子像素所对应的数据线以直通方式连接输出端口,另一部分子像素所对应的数据线以交叉方式连接输出端口。
其中,直通方式为将多个数据线中的第n条数据线与数据驱动器的第n个输出端口连接,交叉方式为将多个数据线中的第i条数据线与数据驱动器的第i+j个或第i-j个输出端口连接,其中n和i为互不相同的正整数,j为奇数。
其中,四种不同颜色的子像素由红光子像素、绿光子像素、蓝光子像素以及白光子像素组成。
为解决上述技术问题,本发明采用的又一个技术方案是,提供一种液晶显示器,该液晶显示器包括沿行方向和列方向阵列式排布的多个子像素以及沿列方向设置的多条数据线,多条数据线用于分别向对应列的子像素施加数据信号,每一行子像素包括周期性排列的偶数种不同颜色的子像素,其中当液晶显示器显示纯色画面帧时,在沿行方向相邻设置的不同颜色的子像素的偶数个排列周期内,同一颜色的子像素中施加正极性数据信号的子像素的数目与施加负极性数据信号的子像素的数目相同。
其中,液晶显示器进一步包括数据驱动器,数据驱动器包括数目与多条数据线对应的多个输出端口,每一输出端口输出的数据信号与相邻的输出端口输出的数据信号极性相反,其中在沿行方向相邻设置的不同颜色的子像素的偶数个排列周期内,一部分子像素所对应的数据线以直通方式连接输出端口,另一部分子像素所对应的数据线以交叉方式连接输出端口。
其中,直通方式为将多个数据线中的第n条数据线与数据驱动器的第n个输出端口连接,交叉方式为将多个数据线中的第i条数据线与数据驱动器的第i+j个或第i-j个输出端口连接,其中n和i为互不相同的正整数,j为奇数。
其中,偶数种不同颜色的子像素为四种不同颜色的子像素,偶数个排列周期为两个排列周期,其中在两个排列周期中,第m列子像素的数据信号极性与第m+4列子像素的数据信号极性相反,m是大于或等于1且小于或等于4的正整数。
其中,在沿列方向相邻设置的两行子像素中,同一颜色的子像素同列设置。
可选的,在沿列方向相邻设置的两行子像素中,同一颜色的子像素彼此错开一列或三列设置。
进一步可选的,在沿列方向相邻设置的两行子像素中,同一颜色的子像素彼此错开两列设置。
其中,偶数种不同颜色的子像素由红光子像素、绿光子像素、蓝光子像素以及白光子像素组成。
为解决上述技术问题,本发明采用的另一个技术方案是,提供一种液晶显示器,该液晶显示器包括沿行方向和列方向阵列式排布的多个子像素以及沿列方向设置的多条数据线,多条数据线用于分别向对应列的子像素施加数据信号,其中液晶显示器进一步包括数据驱动器,数据驱动器包括数目与多条数据线对应的多个输出端口,每一输出端口输出的数据信号与相邻的输出端口输出的数据信号极性相反,其中一部分子像素所对应的数据线以直通方式连接输出端口,另一部分子像素所对应的数据线以交叉方式连接输出端口。
其中,直通方式为将多个数据线中的第n条数据线与数据驱动器的第n个端口连接,交叉方式为将多个数据线中的第i条数据线与数据驱动器的第i+j个或第i-j个端口连接,其中n和i为互不相同的正整数,j为奇数。
其中,该液晶显示器的每一行子像素包括周期性排列的四种不同颜色的子像素,当液晶显示器显示纯色画面帧时,在沿行方向相邻设置的四种不同颜色的子像素的两个排列周期内,第m列子像素的数据信号极性与第m+4列子像素的数据信号极性相反,使得同一颜色的子像素中施加正极性数据信号的子像素的数目与施加负极性数据信号的子像素的数目相同,m是大于或等于1且小于或等于4的正整数。
其中,在沿列方向相邻设置的两行子像素中,同一颜色的子像素同列设置。
可选的,在沿列方向相邻设置的两行子像素中,同一颜色的子像素彼此错开一列或三列设置。
进一步可选的,在沿列方向相邻设置的两行子像素中,同一颜色的子像素彼此错开两列设置。
其中,四种不同颜色的子像素由红光子像素、绿光子像素、蓝光子像素以及白光子像素组成。
本发明的有益效果是:本发明提供的液晶显示器包括沿行方向和列方向阵 列式排布的多个子像素以及沿列方向设置的多条数据线,多条数据线用于分别向对应列的子像素施加数据信号,在行方向上设置周期性排列的偶数种不同颜色的子像素,其中当液晶显示器显示纯色画面帧时,在沿行方向相邻设置的不同颜色的子像素的偶数个排列周期内,同一颜色的子像素中施加正极性数据信号的子像素的数目与施加负极性数据信号的子像素的数目相同。与现有相邻列数据线输出的数据信号极性相反的技术相比,本发明能够在纯色显示时使得同一颜色的子像素中具有正极性的子像素的数目与具有负极性的子像素的数目相同,进而避免因Data transient(数据信号的瞬时变化)产生Vcom Coupling(公共电极耦合),同时也消除了Flick(闪烁)现象,进而提高液晶显示器的显示画面品质。
【附图说明】
图1是本发明提供的一种液晶显示器一实施方式的结构示意图;
图2是图1中显示纯红色画面帧时数据信号的时序示意图;
图3a是图1中数据线与对应列子像素连接方式的一结构示意图;
图3b是图3a中显示纯红色画面帧时数据信号的时序示意图;
图4a是图1中数据线与对应列子像素连接方式的又一结构示意图;
图4b是图4a中显示纯红色画面帧时数据信号的时序示意图;
图5是本发明提供的一种液晶显示器的又一实施方式的结构示意图;
图6是图5中显示纯红色画面帧时数据信号的时序示意图;
图7a是图5中数据线与对应列子像素连接方式的一结构示意图;
图7b是图7a中显示纯红色画面帧时数据信号的时序示意图;
图8a是图5中数据线与对应列子像素连接方式的又一结构示意图;
图8b是图8a中显示纯红色画面帧时数据信号的时序示意图;
图9是本发明提供的一种液晶显示器的另一实施方式的结构示意图;
图10是9中显示纯红色画面帧时数据信号的时序示意图;
图11a是图9中数据线与对应列子像素连接方式的一结构示意图;
图11b是图11a中显示纯红色画面帧时数据信号的时序示意图;
图12a是图9中数据线与对应列子像素连接方式的又一结构示意图;
图12b是图12a中显示纯红色画面帧时数据信号的时序示意图。
【具体实施方式】
下面结合附图和实施方式对本发明进行详细说明。
请参阅图1,图1是本发明提供的一种液晶显示器一实施方式的结构示意图。如图1所示,该液晶显示器10包括沿行方向和列方向阵列式排布的多个子像素110以及沿列方向设置的多条数据线,多条数据线用于分别向对应列的子像素110施加数据信号,该液晶显示器10还进一步包括沿行方向设置的多条扫描线(或栅线),用于向对应行的子像素110施加扫描信号以开启每行子像素110使得接收每列子像素110连接的数据线上的数据信号,图1中示例为液晶显示器10包括五行八列子像素110,以Gn表示第n行子像素110连接的扫描线,以Sn表示第n条数据线,n为正整数,每一行子像素110包括周期性排列的偶数种不同颜色的子像素110,其中当液晶显示器10显示纯色画面帧时,在沿行方向相邻设置的不同颜色的子像素110的偶数个排列周期内,同一颜色的子像素110中施加正极性数据信号的子像素110的数目与施加负极性数据信号的子像素110的数目相同。
其中,如图1所示,偶数种不同颜色的子像素110为四种颜色的子像素110,由红光子像素(本说明书下文及说明书附图以R子像素表示)、绿光子像素(本说明书下文及说明书附图以G子像素表示)、蓝光子像素(本说明书下文及说明书附图以B子像素表示)以及白光子像素W(本说明书下文及说明书附图以W子像素表示)组成。
其中,如图1所示,在沿列方向相邻设置的两行子像素110中,同一颜色的子像素110同列设置,即每列子像素110的颜色相同。进一步的,每条数据线连接其对应的一列子像素110。
其中,当液晶显示器10显示纯色画面帧时,在沿行方向相邻设置的不同颜色的子像素110的偶数个排列周期内,同一颜色的子像素110中施加正极性数据信号的子像素110的数目与施加负极性数据信号的子像素110的数目相同,具体是,如图1所示,以R子像素、G子像素、B子像素和W子像素为周期排列的偶数个排列周期为两个排列周期进行示例说明,其中在两个排列周期中,第m列子像素的数据信号极性与第m+4列子像素的数据信号极性相反,m是大于或等于1且小于或等于4的正整数,以使得同一颜色的子像素110中施加正极性数据信号的子像素110的数目与施加负极性数据信号的子像素110的数 目相同,其具体是通过将第m列数据线Sm施加的数据信号极性与第m+4列数据线Sm+4施加的数据信号极性相反来实现。
具体的,图1示例为第一条、第二条、第三条、第四条、第五条、第六条、第七条和第八条数据线S1、S2、S3、S4、S5、S6、S7和S8上的数据信号极性依次是正极性(﹢)、负极性(﹣)、正极性(﹢)、负极性(﹣)、负极性(﹣)、正极性(﹢)、负极性(﹣)和正极性(﹢),在沿行方向相邻设置的以R子像素、G子像素、B子像素和W子像素为周期排列的两个排列周期内,第一条数据线S1与第五条数据线S5的数据信号极性相反,使得第一列的R子像素与第五列的R子像素的数据信号极性相反,进而满足同一颜色的R子像素中施加正极性数据信号的第一列的R子像素的数目与施加负极性数据信号的第五列的R子像素的数目相同。同理,第二条数据线S2与第六条数据线S6的数据信号极性相反,使得第二列的G子像素与第六列的G子像素的数据信号极性相反,进而满足同一颜色的G子像素中施加正极性数据信号的第六列的G子像素的数目与施加负极性数据信号的第二列的R子像素的数目相同;第三条数据线S3与第七条数据线S7的数据信号极性相反,使得第三列的B子像素与第七列的B子像素的数据信号极性相反,进而满足同一颜色的B子像素中施加正极性数据信号的第三列的B子像素的数目与施加负极性数据信号的第七列的B子像素的数目相同;第四条数据线S4与第八条数据线S8的数据信号极性相反,使得第四列的W子像素与第八列的W子像素的数据信号极性相反,进而满足同一颜色的W子像素中施加正极性数据信号的第八列的W子像素的数目与施加负极性数据信号的第四列的W子像素的数目相同。
其中,同一颜色的子像素110中施加正极性数据信号的子像素110的数目与施加负极性数据信号的子像素110的数目相同即显示纯色画面时,相同颜色的子像素110的数据信号极性一半为正一半为负,使得其在列反转或点反转驱动子像素110进行灰阶显示时,避免了因数据信号的瞬时变化产生公共电极耦合,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。其中图1及本说明下文均以列反转驱动方式为例进行说明。
请参阅图2,图2是图1中显示纯红色画面帧时数据信号的时序示意图。在液晶显示器10显示纯色画面帧时,每条数据线向对应列子像素110施加数据信号的时序图以第n条数据线Sn上施加数据信号Dn表示,其大于子像素110的公共电极Vcom时为正极性,否则为负极性。其中图1中每条数据线对应一列 子像素110,结合图2所示,在液晶显示器10显示纯红色画面帧时,对于第一条数据线S1上的数据信号D1与第五列数据线S5的数据信号D5极性相反,使得第一列的R子像素上施加的数据信号D1与第五列的R子像素上施加的数据信号D5相反,其他条数据线对应显示其他颜色,因此其他条数据线施加的数据信号与公共电极Vcom相同,此时满足R子像素具有的数据信号极性一半为正,一半为负,避免了因数据信号的瞬时变化产生公共电极耦合信号,图2中以VC表示公共电极耦合信号,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。同理在显示其他纯色如绿色、蓝色、白色或由上述颜色所组成的任意颜色时,也满足R子像素、G子像素、B子像素或W子像素具有的数据信号极性一半为正,一半为负,避免了因数据信号的瞬时变化产生公共电极耦合信号,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。
请继续参阅图1,液晶显示器10进一步包括数据驱动器120和扫描驱动器130,扫描驱动器130包括数目与多条扫描线对应的多个充电端口,数据驱动器120包括数目与多条数据线对应的多个输出端口,图1中示例为五个充电端口,以Ln表示与第n个充电端口,每行子像素110对应的扫描线以直通方式连接充电端口,图1中示例为八个输出端口,以Kn表示与第n个输出端口,每一输出端口输出的数据信号与相邻的输出端口输出的数据信号极性相反,其中在沿行方向相邻设置的不同颜色的子像素110的偶数个排列周期内,一部分子像素110所对应的数据线以直通方式连接输出端口,另一部分子像素110所对应的数据线以交叉方式连接输出端口。
其中,直通方式为将多条扫描线中的第n条数据线Gn与扫描驱动器130的第n个充电端口Ln连接或将多个数据线中的第n条数据线Sn与数据驱动器120的第n个输出端口Kn连接,交叉方式为将多个数据线中的第i条数据线Si与数据驱动器120的第i+j个或第i-j个输出端口Ki+j或Ki-j连接,其中n和i为互不相同的正整数,j为奇数。
具体的,如图1所示的两个排列周期内,第一列、第二列、第三列和第四列数据线S1,S2,S3和S4采用直通方式分别连接输出端口K1,K2,K3和K4,且第五列、第六列、第七列和第八列数据线S5,S6,S7和S8采用交叉方式分类连接输出端口K6,K5,K8和K7,此时j为1或-1,在其他实施方式中,不限于如图1所示的数据线与输出端口的连接方式,还可选将第五列、第六列、第七列和第八列数据线采用直通方式分别连接对应的输出端口,第一列、第二 列、第三列和第四列数据线采用交叉方式分别连接输出端口,同理可选不限于j是1或-1的其他奇数,可根据具体的排列周期设定数据线与输出端口的连接方式及j的具体数值,此处不做限制。
进一步的,在其他实施方式中,可选将数据驱动器120以偶数个输出端口为排列周期,每个排列周期内的输出端口输出的数据信号的极性与相邻的排列周期内的输出端口输出的数据信号的极性对称,即如图1所示的数据驱动器120其以四个输出端口为排列周期,且第一排列周期内输出端口K1、K2、K3和K4输出数据信号的极性与第二排列周期内输出端口K5、K6、K7和K8输出数据信号的极性对称,如输出端口K1至K4分别输出正极性、负极性、正极性和负极性的数据信号,与输出端口K5至K8输出负极性、正极性、负极性和正极性和负极性的数据信号对称,此时所有子像素110所对应的数据线均以直通方式连接输出端口,以使得在沿行方向相邻设置的不同颜色的子像素110的偶数个排列周期内,同一颜色的子像素110中施加正极性数据信号的子像素110的数目与施加负极性数据信号的子像素110的数目相同。
请参阅图3a,图3a是图1中数据线与对应列子像素连接方式的一结构示意图。如图3a所示,每条数据线以第一翻转方式连接相邻两列子像素110,其中第一翻转方式是每条数据线交替连接其两侧的不同行的子像素110,且每条数据线在远离扫描驱动器130一侧与奇数行的子像素110连接,且在靠近扫描驱动器一侧与偶数行的子像素110连接的方式。具体的,如图3a所示,在沿行方向相邻设置的以R子像素、G子像素、B子像素和W子像素为周期排列的两个排列周期内,第一条数据线S1分别连接该两个排列周期内的第一列的第一行、第三行的子像素110及连接第一列的前一列的第二行、第四行的子像素110,第二条数据线S2分别连接第二列的第一行、第三行的子像素110及第一列的第二行、第四行的子像素110,同理第三条数据线S3、第四条数据线S4、第五条数据线S5、第六条数据线S6、第七条数据线S7和第八条数据线S8以上述第一、第二条数据线S1、S2的第一翻转方式分别连接对应的相邻两列子像素110,此处不再赘述。
请参阅图3b,图3b是图3a中显示纯红色画面帧时数据信号的时序示意图。在液晶显示器10显示纯红色画面帧时,第一列数据线S1上的数据信号D1与与第五列数据线S5的数据信号D5极性相反,第二列数据线S2上的数据信号D2与与第六列数据线S6的数据信号D6极性相反,其他列数据线对应显示其他颜 色,因此其他列数据线施加的数据信号与公共电极Vcom相同,此时满足R子像素具有的数据信号极性一半为正,一半为负,避免了因数据信号的瞬时变化产生公共电极耦合,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。
请参阅图4a,图4a是图1中数据线与对应列子像素连接方式的又一结构示意图。如图4a所示,每条数据线以第二翻转方式连接相邻两列子像素110,其中第二翻转方式是每条数据线交替连接其两侧的不同行的子像素110,且每条数据线在靠近扫描驱动器130一侧与奇数行的子像素110连接,且在远离扫描驱动器一侧与偶数行的子像素110连接的方式。具体的,如图4a所示,在沿行方向相邻设置的以R子像素、G子像素、B子像素和W子像素为周期排列的两个排列周期内,第一条数据线S1分别连接该两个排列周期内的第一列的第二行、第四行的子像素110及连接第一列的前一列的第一行、第三行的子像素110,第二条数据线S2分别连接第二列的第二行、第四行的子像素110及第一列的第一行、第三行的子像素110,同理第三条数据线S3、第四条数据线S4、第五条数据线S5、第六条数据线S6、第七条数据线S7和第八条数据线S8以上述第一、第二条数据线S1、S2的第二翻转方式分别连接对应的相邻两列子像素110,此处不再赘述。
请参阅图4b,图4b是图4a中显示纯红色画面帧时数据信号的时序示意图。在液晶显示器10显示纯红色画面帧时,第一列数据线S1上的数据信号D1与与第五列数据线S5的数据信号D5极性相反,第二列数据线S2上的数据信号D2与与第六列数据线S6的数据信号D6极性相反,其他列数据线对应显示其他颜色,因此其他列数据线施加的数据信号与公共电极Vcom相同,此时满足R子像素具有的数据信号极性一半为正,一半为负,避免了因数据信号的瞬时变化产生公共电极耦合信号,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。
请参阅图5,图5是本发明提供的一种液晶显示器的又一实施方式的结构示意图。如图5所示,该液晶显示器50包括与图1所示的液晶显示器10基本相同的元件并由相同的附图标记进行标示,该液晶显示器50在沿列方向相邻设置的两行子像素110中,同一颜色的子像素110彼此错开一列或三列设置。具体的,如图5所示,在沿行方向相邻设置的以R子像素、G子像素、B子像素和W子像素为周期排列的两个排列周期内,奇数行如第一行、第三行子像素110 以R子像素、G子像素、B子像素和W子像素为周期排列,偶数号如第二行、第四行子像素110以W子像素、R子像素、G子像素和B子像素为周期排列,其中每条数据线连接对应的一列子像素110。可以理解的是,在其他实施方式中可选奇数行和偶数行分别以W子像素、R子像素、G子像素和B子像素为周期排列和R子像素、G子像素、B子像素和W子像素为周期排列。
其中,如图5所示的第一条、第二条、第三条、第四条、第五条、第六条、第七条和第八条数据线S1、S2、S3、S4、S5、S6、S7和S8上的数据信号极性依次是正极性(﹢)、负极性(﹣)、正极性(﹢)、负极性(﹣)、负极性(﹣)、正极性(﹢)、负极性(﹣)和正极性(﹢),当液晶显示器50显示纯色画面帧时,在沿行方向相邻设置的不同颜色的子像素110的两个排列周期内,同一颜色的子像素110中施加正极性数据信号的子像素110的数目与施加负极性数据信号的子像素110的数目相同。
请参阅图6,图6是图5中显示纯红色画面帧时数据信号的时序示意图。在液晶显示器50显示纯红色画面帧时,第一条数据线S1上的数据信号D1与与第五列数据线S5的数据信号D5极性相反,第二列数据线S2上的数据信号D2与与第六列数据线S6的数据信号D6极性相反,其他列数据线对应显示其他颜色,因此其他列数据线施加的数据信号与公共电极Vcom相同,此时满足R子像素具有的数据信号极性一半为正,一半为负,避免了因数据信号的瞬时变化产生公共电极耦合,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。
请参阅图7a和图7b,其中图7a是图5中数据线与对应列子像素连接方式的一结构示意图,图7b是图7a中显示纯红色画面帧时数据信号的时序示意图。如图7a所示,每条数据线以上述第一翻转方式连接相邻两列子像素110,其中第一翻转方式具体请参阅上述相关内容描述和图3a中的每条数据线与相邻两列子像素110的连接方式,此处不再赘述。结合图7a和图7b所示,在液晶显示器50显示纯红色画面帧时,在沿行方向相邻设置的以R子像素、G子像素、B子像素和W子像素为周期排列的两个排列周期内,可以理解的是,第一列数据线S1上的数据信号D1与与第五列数据线S5的数据信号D5极性相反,第三列数据线S3上的数据信号D2与与第七列数据线S7的数据信号D7极性相反,其他列数据线对应显示其他颜色,因此其他列数据线施加的数据信号与公共电极Vcom相同,此时满足R子像素具有的数据信号极性一半为正,一半为负,避免了因数据信号的瞬时变化产生Vcom Coupling公共电极耦合信号,同时也消除了 Flick闪烁现象,进而提高液晶显示器的显示画面品质。
请参阅图8a和图8b,其中图8a是图5中数据线与对应列子像素连接方式的又一结构示意图,图8a是图8b中显示纯红色画面帧时数据信号的时序示意图。如图8a所示,每条数据线以上述第二翻转方式连接相邻两列子像素110,其中第二翻转方式具体请参阅上述相关内容描述和图4a中的每条数据线与相邻两列子像素110的连接方式,此处不再赘述。结合图8a和图8b所示,在液晶显示器50显示纯红色画面帧时,在沿行方向相邻设置的以R子像素、G子像素、B子像素和W子像素为周期排列的两个排列周期内,可以理解的是,第二列数据线S2上的数据信号D2与与第六列数据线S6的数据信号D6极性相反,其他列数据线对应显示其他颜色,因此其他列数据线施加的数据信号与公共电极Vcom相同,此时满足R子像素具有的数据信号极性一半为正,一半为负,避免了因数据信号的瞬时变化产生公共电极耦合信号,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。
请参阅图9,图9是本发明提供的一种液晶显示器的另一实施方式的结构示意图。如图9所示,该液晶显示器90包括与图1所示的液晶显示器10基本相同的元件并由相同的附图标记进行标示,该液晶显示器90在沿列方向相邻设置的两行子像素110中,同一颜色的子像素110彼此错开两列设置。具体的,如图13所示,在沿行方向相邻设置的以R子像素、G子像素、B子像素和W子像素为周期排列的两个排列周期内,奇数行如第一行、第三行子像素110以R子像素、G子像素、B子像素和W子像素为周期排列,偶数号如第二行、第四行子像素110以B子像素、W子像素、R子像素和G子像素为周期排列,其中每条数据线连接对应的一列子像素110。
其中,如图9所示的第一条、第二条、第三条、第四条、第五条、第六条、第七条和第八条数据线S1、S2、S3、S4、S5、S6、S7和8上的数据信号极性依次是正极性(﹢)、负极性(﹣)、正极性(﹢)、负极性(﹣)、负极性(﹣)、正极性(﹢)、负极性(﹣)和正极性(﹢),当液晶显示器130显示纯色画面帧时,在沿行方向相邻设置的不同颜色的子像素110的两个排列周期内,同一颜色的子像素110中施加正极性数据信号的子像素110的数目与施加负极性数据信号的子像素110的数目相同。
请参阅图10,图10是图9中显示纯红色画面帧时数据信号的时序示意图。结合图9和图10所示,在液晶显示器90显示纯红色画面帧时,可以理解的是, 第一列数据线S1上的数据信号D1与与第五列数据线S5的数据信号D5极性相反,第三列数据线S3上的数据信号D3与与第七列数据线S7的数据信号D7极性相反,其他列数据线对应显示其他颜色,因此其他列数据线施加的数据信号与公共电极Vcom相同,此时满足R子像素具有的数据信号极性一半为正,一半为负,避免了因数据信号的瞬时变化产生公共电极耦合信号,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。
请参阅图11a和图11b,其中图11a是图9中数据线与对应列子像素连接方式的一结构示意图,图11b是图11a中显示纯红色画面帧时数据信号的时序示意图。如图11a所示,每条数据线以上述第一翻转方式连接相邻两列子像素110,其中第一翻转方式具体请参阅上述相关内容描述和图4a中的每条数据线与相邻两列子像素110的连接方式,此处不再赘述。结合图11a和图11b所示,在液晶显示器90显示纯红色画面帧时,在沿行方向相邻设置的以R子像素、G子像素、B子像素和W子像素为周期排列的两个排列周期内,第一列数据线S1上的数据信号D1与与第五列数据线S5的数据信号D5极性相反,第四列数据线S4上的数据信号D4与与第八列数据线S8的数据信号D8极性相反,其他列数据线对应显示其他颜色,因此其他列数据线施加的数据信号与公共电极Vcom相同,此时满足R子像素具有的数据信号极性一半为正,一半为负,避免了因数据信号的瞬时变化产生公共电极耦合信号,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。
请参阅图12a和图12b,其中图12a是图9中数据线与对应列子像素连接方式的又一结构示意图,图12b是图12a中显示纯红色画面帧时数据信号的时序示意图。如图12a所示,每条数据线以上述第二翻转方式连接相邻两列子像素110,其中第二翻转方式具体请参阅上述相关内容描述和图4a中的每条数据线与相邻两列子像素110的连接方式,此处不再赘述。结合图12a和图12b所示,在液晶显示器90显示纯红色画面帧时,在沿行方向相邻设置的以R子像素、G子像素、B子像素和W子像素为周期排列的两个排列周期内,第二列数据线S2上的数据信号D2与与第六列数据线S6的数据信号D6极性相反,第三列数据线S4上的数据信号D4与与第七列数据线S7的数据信号D7极性相反,其他列数据线对应显示其他颜色,因此其他列数据线施加的数据信号与公共电极Vcom相同,此时满足R子像素具有的数据信号极性一半为正,一半为负,避免了因数据信号的瞬时变化产生公共电极耦合信号,同时也消除了闪烁现象,进而提 高液晶显示器的显示画面品质。
其中,本发明还提供一种液晶显示器,该液晶显示器包括如图1所示的沿行方向和列方向阵列式排布的多个子像素110以及沿列方向设置的多条数据线,多条数据线用于分别向对应列的子像素110施加数据信号,其中液晶显示器进一步包括如图1所示的数据驱动器120,数据驱动器120包括数目与多条数据线对应的多个输出端口,每一输出端口输出的数据信号与相邻的输出端口输出的数据信号极性相反,其中一部分子像素110所对应的数据线以直通方式连接输出端口,另一部分子像素110所对应的数据线以交叉方式连接输出端口。
其中,直通方式为将多个数据线中的第n条数据线与数据驱动器120的第n个输出端口连接,交叉方式为将多个数据线中的第i条数据线与数据驱动器120的第i+j个或第i-j个输出端口连接,其中n和i为互不相同的正整数,j为奇数。该液晶显示器与图1所示的液晶显示器包括基本相同的结构元件,也具有相同的作用。
区别于现有技术的情况,本发明提供的液晶显示器包括沿行方向和列方向阵列式排布的多个子像素以及沿列方向设置的多条数据线,多条数据线用于分别向对应列的子像素施加数据信号,在行方向上设置周期性排列的偶数种不同颜色的子像素,其中当液晶显示器显示纯色画面帧时,在沿行方向相邻设置的不同颜色的子像素的偶数个排列周期内,同一颜色的子像素中施加正极性数据信号的子像素的数目与施加负极性数据信号的子像素的数目相同。与现有相邻列数据线输出的数据信号极性相反的技术相比,本发明能够在纯色显示时使得同一颜色的子像素中具有正极性的子像素的数目与具有负极性的子像素的数目相同,进而避免因数据信号的瞬时变化产生公共电极耦合,同时也消除了闪烁现象,进而提高液晶显示器的显示画面品质。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (19)

  1. 一种液晶显示器,其中,所述液晶显示器包括沿行方向和列方向阵列式排布的多个子像素以及沿所述列方向设置的多条数据线,且在沿所述列方向相邻设置的两行所述子像素中,同一颜色的所述子像素同列设置,多条所述数据线用于分别向对应列的所述子像素施加数据信号,每一行所述子像素包括周期性排列的四种不同颜色的所述子像素,其中当所述液晶显示器显示纯色画面帧时,在沿所述行方向相邻设置的四种不同颜色的所述子像素的两个排列周期内,第m列所述子像素的数据信号极性与第m+4列所述子像素的数据信号极性相反,使得同一颜色的所述子像素中施加正极性数据信号的所述子像素的数目与施加负极性数据信号的所述子像素的数目相同,m是大于或等于1且小于或等于4的正整数。
  2. 根据权利要求1所述的液晶显示器,其中,所述液晶显示器进一步包括数据驱动器,所述数据驱动器包括数目与多条所述数据线对应的多个输出端口,每一所述输出端口输出的所述数据信号与相邻的所述输出端口输出的所述数据信号极性相反,其中在沿所述行方向相邻设置的四种不同颜色的所述子像素的两个排列周期内,一部分所述子像素所对应的数据线以直通方式连接所述输出端口,另一部分所述子像素所对应的数据线以交叉方式连接所述输出端口。
  3. 根据权利要求2所述的液晶显示器,其中,所述直通方式为将多个所述数据线中的第n条数据线与所述数据驱动器的第n个所述输出端口连接,所述交叉方式为将多个所述数据线中的第i条数据线与所述数据驱动器的第i+j个或第i-j个所述输出端口连接,其中n和i为互不相同的正整数,j为奇数。
  4. 根据权利要求1所述的液晶显示器,其中,所述四种不同颜色的所述子像素由红光子像素、绿光子像素、蓝光子像素以及白光子像素组成。
  5. 一种液晶显示器,其中,所述液晶显示器包括沿行方向和列方向阵列式排布的多个子像素以及沿所述列方向设置的多条数据线,多条所述数据线用于分别向对应列的所述子像素施加数据信号,每一行所述子像素包括周期性排列的偶数种不同颜色的所述子像素,其中当所述液晶显示器显示纯色画面帧时,在沿所述行方向相邻设置的不同颜色的所述子像素的偶数个排列周期内,同一颜色的所述子像素中施加正极性数据信号的所述子像素的数目与施加负极性数 据信号的所述子像素的数目相同。
  6. 根据权利要求5所述的液晶显示器,其中,所述液晶显示器进一步包括数据驱动器,所述数据驱动器包括数目与多条所述数据线对应的多个输出端口,每一所述输出端口输出的所述数据信号与相邻的所述输出端口输出的所述数据信号极性相反,其中在沿所述行方向相邻设置的不同颜色的所述子像素的偶数个排列周期内,一部分所述子像素所对应的数据线以直通方式连接所述输出端口,另一部分所述子像素所对应的数据线以交叉方式连接所述输出端口。
  7. 根据权利要求6所述的液晶显示器,其中,所述直通方式为将多个所述数据线中的第n条数据线与所述数据驱动器的第n个所述输出端口连接,所述交叉方式为将多个所述数据线中的第i条数据线与所述数据驱动器的第i+j个或第i-j个所述输出端口连接,其中n和i为互不相同的正整数,j为奇数。
  8. 根据权利要求5所述的液晶显示器,其中,所述偶数种不同颜色的所述子像素为四种不同颜色的所述子像素,所述偶数个排列周期为两个排列周期,其中在所述两个排列周期中,第m列所述子像素的数据信号极性与第m+4列所述子像素的数据信号极性相反,m是大于或等于1且小于或等于4的正整数。
  9. 根据权利要求5所述的液晶显示器,其中,在沿所述列方向相邻设置的两行所述子像素中,同一颜色的所述子像素同列设置。
  10. 根据权利要求5所述的液晶显示器,其中,在沿所述列方向相邻设置的两行所述子像素中,同一颜色的所述子像素彼此错开一列或三列设置。
  11. 根据权利要求5所述的液晶显示器,其中,在沿所述列方向相邻设置的两行所述子像素中,同一颜色的所述子像素彼此错开两列设置。
  12. 根据权利要求5所述的液晶显示器,其中,所述偶数种不同颜色的所述子像素由红光子像素、绿光子像素、蓝光子像素以及白光子像素组成。
  13. 一种液晶显示器,其中,所述液晶显示器包括沿行方向和列方向阵列式排布的多个子像素以及沿所述列方向设置的多条数据线,多条所述数据线用于分别向对应列的所述子像素施加数据信号,其中所述液晶显示器进一步包括数据驱动器,所述数据驱动器包括数目与多条所述数据线对应的多个输出端口,每一所述输出端口输出的所述数据信号与相邻的所述输出端口输出的所述数据信号极性相反,其中一部分所述子像素所对应的数据线以直通方式连接所述输出端口,另一部分所述子像素所对应的数据线以交叉方式连接所述输出端口。
  14. 根据权利要求13所述的液晶显示器,其中,所述直通方式为将多个所述 数据线中的第n条数据线与所述数据驱动器的第n个输出端口连接,所述交叉方式为将所述多个数据线中的第i条数据线与所述数据驱动器的第i+j个或第i-j个输出端口连接,其中n和i为互不相同的正整数,j为奇数。
  15. 根据权利要求13所述的液晶显示器,其中,所述液晶显示器的每一行所述子像素包括周期性排列的四种不同颜色的所述子像素,其中当所述液晶显示器显示纯色画面帧时,在沿所述行方向相邻设置的四种不同颜色的所述子像素的两个排列周期内,第m列所述子像素的数据信号极性与第m+4列所述子像素的数据信号极性相反,使得同一颜色的所述子像素中施加正极性数据信号的所述子像素的数目与施加负极性数据信号的所述子像素的数目相同,m是大于或等于1且小于或等于4的正整数。
  16. 根据权利要求13所述的液晶显示器,其中,在沿所述列方向相邻设置的两行所述子像素中,同一颜色的所述子像素同列设置。
  17. 根据权利要求13所述的液晶显示器,其中,在沿所述列方向相邻设置的两行所述子像素中,同一颜色的所述子像素彼此错开一列或三列设置。
  18. 根据权利要求13所述的液晶显示器,其中,在沿所述列方向相邻设置的两行所述子像素中,同一颜色的所述子像素彼此错开两列设置。
  19. 根据权利要求15所述的液晶显示器,其中,所述四种不同颜色的所述子像素由红光子像素、绿光子像素、蓝光子像素以及白光子像素组成。
PCT/CN2015/085707 2015-07-28 2015-07-31 一种液晶显示器 WO2017015972A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/771,146 US20170032749A1 (en) 2015-07-28 2015-07-31 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510450469.X 2015-07-28
CN201510450469.XA CN105093737A (zh) 2015-07-28 2015-07-28 一种液晶显示器

Publications (1)

Publication Number Publication Date
WO2017015972A1 true WO2017015972A1 (zh) 2017-02-02

Family

ID=54574499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085707 WO2017015972A1 (zh) 2015-07-28 2015-07-31 一种液晶显示器

Country Status (2)

Country Link
CN (1) CN105093737A (zh)
WO (1) WO2017015972A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093745B (zh) * 2015-08-03 2018-05-11 深圳市华星光电技术有限公司 一种液晶显示器
CN105319786B (zh) 2015-11-26 2018-06-19 深圳市华星光电技术有限公司 具有低切换频率的数据线驱动极性的阵列基板
CN105404034B (zh) * 2015-12-03 2019-02-01 深圳市华星光电技术有限公司 液晶面板、液晶显示装置及像素阵列
CN105390114B (zh) * 2015-12-15 2017-12-22 武汉华星光电技术有限公司 液晶显示装置
CN205487172U (zh) * 2016-03-25 2016-08-17 昆山工研院新型平板显示技术中心有限公司 显示器
CN106023872A (zh) * 2016-07-13 2016-10-12 深圳市华星光电技术有限公司 显示装置及其驱动方法
CN106297716A (zh) * 2016-10-09 2017-01-04 武汉华星光电技术有限公司 一种液晶显示面板的数据驱动方法及系统
CN106710502A (zh) * 2016-12-26 2017-05-24 武汉华星光电技术有限公司 一种显示面板及用于驱动显示面板的多路复用驱动电路
CN108877730A (zh) * 2018-09-14 2018-11-23 重庆惠科金渝光电科技有限公司 一种画素结构及显示面板
CN109283760A (zh) * 2018-10-22 2019-01-29 惠科股份有限公司 显示面板
CN109599073B (zh) * 2019-01-09 2020-12-25 惠科股份有限公司 一种显示装置、驱动方法和显示器
CN110085189B (zh) * 2019-05-15 2021-04-02 京东方科技集团股份有限公司 一种显示基板、显示装置、画面显示方法
CN110441969A (zh) * 2019-08-20 2019-11-12 京东方科技集团股份有限公司 一种显示基板、其驱动方法及显示装置
TWI738281B (zh) * 2020-04-01 2021-09-01 友達光電股份有限公司 顯示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806190A (zh) * 2003-04-17 2006-07-19 三星电子株式会社 液晶显示器
WO2007129425A1 (ja) * 2006-05-08 2007-11-15 Sharp Kabushiki Kaisha 液晶表示装置
CN103558720A (zh) * 2013-11-15 2014-02-05 京东方科技集团股份有限公司 阵列基板及其驱动方法、液晶显示器
CN103809313A (zh) * 2012-11-06 2014-05-21 乐金显示有限公司 液晶显示装置及其驱动方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI256034B (en) * 2004-01-15 2006-06-01 Novatek Microelectronics Corp Source driving circuit for liquid crystal display panel and source driving method therefor
CN101317212B (zh) * 2005-11-30 2012-07-04 夏普株式会社 用于驱动显示元件的显示设备和方法
JP5314155B2 (ja) * 2009-09-25 2013-10-16 シャープ株式会社 液晶表示装置
JPWO2011049106A1 (ja) * 2009-10-22 2013-03-14 シャープ株式会社 液晶表示装置
KR102141542B1 (ko) * 2013-12-31 2020-09-14 엘지디스플레이 주식회사 표시장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1806190A (zh) * 2003-04-17 2006-07-19 三星电子株式会社 液晶显示器
WO2007129425A1 (ja) * 2006-05-08 2007-11-15 Sharp Kabushiki Kaisha 液晶表示装置
CN103809313A (zh) * 2012-11-06 2014-05-21 乐金显示有限公司 液晶显示装置及其驱动方法
CN103558720A (zh) * 2013-11-15 2014-02-05 京东方科技集团股份有限公司 阵列基板及其驱动方法、液晶显示器

Also Published As

Publication number Publication date
CN105093737A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
WO2017015972A1 (zh) 一种液晶显示器
TWI637378B (zh) 液晶顯示器
US9786212B2 (en) Display panel having a main color subpixel and a multi-primary subpixel and display apparatus having the same with reduced number of data lines
CN108831399B (zh) 显示驱动方法及液晶显示装置
WO2017185871A1 (zh) 一种显示面板的驱动方法、显示面板及显示装置
WO2019119566A1 (zh) 显示面板的驱动方法及显示装置
US11475857B2 (en) Array substrate and display device
CN109215598B (zh) 显示面板及其驱动方法
US20170032749A1 (en) Liquid crystal display device
WO2011092944A1 (ja) 多原色表示装置
WO2017020409A1 (zh) 一种液晶显示器
WO2019119561A1 (zh) 显示面板的驱动方法及显示装置
TW201807688A (zh) 顯示裝置
WO2013163876A1 (zh) 显示器及显示面板
WO2013174109A1 (zh) 阵列基板、液晶显示面板和液晶显示装置
KR20140058252A (ko) 액정 표시 장치 및 그의 구동 방법
WO2020107578A1 (zh) 显示面板的驱动方法
WO2018028007A1 (zh) Rgbw四基色面板驱动架构
US8717271B2 (en) Liquid crystal display having an inverse polarity between a common voltage and a data signal
WO2019119563A1 (zh) 显示面板的驱动方法及显示装置
WO2019127767A1 (zh) 显示面板的驱动方法及显示装置
US20210217373A1 (en) Method for driving pixel matrix and display device
WO2023019629A1 (zh) 显示面板及移动终端
WO2019119564A1 (zh) 显示面板的驱动方法及显示装置
US10930235B2 (en) Driving method and device of display panel, and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14771146

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899324

Country of ref document: EP

Kind code of ref document: A1