WO2019119561A1 - 显示面板的驱动方法及显示装置 - Google Patents
显示面板的驱动方法及显示装置 Download PDFInfo
- Publication number
- WO2019119561A1 WO2019119561A1 PCT/CN2018/072074 CN2018072074W WO2019119561A1 WO 2019119561 A1 WO2019119561 A1 WO 2019119561A1 CN 2018072074 W CN2018072074 W CN 2018072074W WO 2019119561 A1 WO2019119561 A1 WO 2019119561A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pixel
- sub
- driving
- pixels
- polarity
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3614—Control of polarity reversal in general
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3607—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0439—Pixel structures
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2300/00—Aspects of the constitution of display devices
- G09G2300/04—Structural and physical details of display devices
- G09G2300/0439—Pixel structures
- G09G2300/0443—Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations
- G09G2300/0447—Pixel structures with several sub-pixels for the same colour in a pixel, not specifically used to display gradations for multi-domain technique to improve the viewing angle in a liquid crystal display, such as multi-vertical alignment [MVA]
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/0242—Compensation of deficiencies in the appearance of colours
Definitions
- the present application relates to the field of display technologies, and in particular, to a driving method and a display device for a display panel.
- VA type liquid crystal technology has higher production efficiency and lower manufacturing cost than IPS liquid crystal technology, but compared with IPS liquid crystal technology, there are obvious optical property defects, such as VA type when large-angle image is presented. There is a color shift in the LCD panel.
- the brightness of the pixel should ideally change linearly with the change of voltage, so that the driving voltage of the pixel can accurately represent the gray level of the pixel and be reflected by the brightness.
- VA type liquid crystal technology to view the display surface with a small viewing angle (for example, front view)
- the brightness of the pixel can conform to the ideal situation, that is, linearly change with voltage; but when viewing the display surface with a larger viewing angle (for example, with the display surface)
- the brightness of the pixel appears to be rapidly saturated with the voltage, and then slowly changes. In this way, under the large viewing angle, the gray scale that the driving voltage should originally appear has a serious deviation, that is, a color shift occurs.
- the method for improving the color shift is to subdivide each sub-pixel into one main pixel and sub-pixel, and then drive the main pixel with a relatively high driving voltage, and drive the sub-pixel with a relatively low driving voltage, the main pixel and the second pixel.
- the pixels together display one sub-pixel. Further, when the relatively high driving voltage and the relatively low driving voltage drive the main pixel and the sub-pixel, the relationship between the luminance in the front view angle and the corresponding gray scale can be maintained, and the color shift in the large viewing angle can be improved.
- the above method has the problem that it is necessary to double the metal traces and driving devices to drive the sub-pixels, so that the light-transmissive opening region is sacrificed, affecting the transmittance of the panel, and the cost is also higher.
- a driving method of a display panel which can improve the bias of a large-view character while not increasing the cost.
- a display device is also provided.
- a driving method of a display panel comprising a display array, the display array comprising pixel units arranged in an array, wherein rows formed by the arrangement of the first pixel units and rows formed by the arrangement of the second pixel units are Arranging alternately in a column direction;
- the first pixel unit includes a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel sequentially arranged in a row direction;
- the second pixel unit includes sequentially arranged in a row direction a third sub-pixel, a fourth sub-pixel, a first sub-pixel, and a second sub-pixel; for the first pixel unit and the second pixel unit in the same column, the four sub-pixels and the second pixel unit of the first pixel unit
- the four sub-pixels are respectively aligned on the column according to the order of arrangement;
- the driving method includes:
- the first column of pixel units is driven by the first polarity, and the remaining two columns of adjacent pixel units are driven by the second polarity; or the first column of pixel units and the second The column pixel unit is driven by the first polarity arrangement, and the remaining column of adjacent pixel units is driven by the second polarity arrangement;
- the first polarity arrangement is driven to perform positive polarity driving, negative polarity driving, negative polarity driving, and positive polarity driving on the four sub-pixels in the pixel unit;
- the second polarity arrangement is driven to perform negative polarity driving, positive polarity driving, positive polarity driving, and negative polarity driving for each of the four sub-pixels in the pixel unit.
- the rows formed by the first pixel unit arrangement are in odd rows, the rows formed by the second pixel unit arrangement are in even rows; or the rows formed by the first pixel cell arrangement are in even rows, by the second The rows formed by the arrangement of the pixel cells are in odd rows.
- the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel respectively correspond to a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel.
- every two pixel units are formed as one pixel group, and driving data showing one pixel unit is converted into the relatively high voltage driving data and the relatively low voltage driving data drives the pixels. group.
- each two adjacent first pixel unit and second pixel unit are formed as one pixel group and convert driving data showing one pixel unit into the relatively high voltage driving data and relatively low voltage driving The data drives the set of pixels.
- each pixel unit is driven by driving data of a relatively high voltage such that a driving signal of each sub-pixel of the input pixel unit is higher than a threshold set for each sub-pixel, and is first The value is set in the range; the drive data is driven by the relatively low voltage: the drive signal of each sub-pixel of the input pixel unit is lower than the threshold set for each sub-pixel, and the value is set within the second set range. .
- the threshold value corresponding to each sub-pixel includes: driving the sub-pixel to display a nominal driving voltage value corresponding to the input required for the specific gray level.
- the display panel is a liquid crystal panel.
- a display device comprising:
- the display array includes pixel units arranged in an array, wherein rows formed by the arrangement of the first pixel units and rows formed by the arrangement of the second pixel units are alternately arranged in the column direction; the first pixel units are sequentially arranged in the row direction a first sub-pixel, a second sub-pixel, a third sub-pixel, and a fourth sub-pixel; the second pixel unit includes a third sub-pixel, a fourth sub-pixel, a first sub-pixel, and a second, which are sequentially arranged in a row direction a sub-pixel; for the first pixel unit and the second pixel unit in the same column, the four sub-pixels of the first pixel unit and the four sub-pixels of the second pixel unit are respectively aligned on the column according to the order of arrangement;
- a driving module configured to output driving data to cause the display array to display an image; wherein the driving module is configured to:
- the first column of pixel units is driven by the first polarity, and the remaining two columns of adjacent pixel units are driven by the second polarity; or the first column of pixel units and the second The column pixel unit is driven by the first polarity arrangement, and the remaining column of adjacent pixel units is driven by the second polarity arrangement;
- the first polarity arrangement is driven to perform positive polarity driving, negative polarity driving, negative polarity driving, and positive polarity driving on the four sub-pixels in the pixel unit;
- the second polarity arrangement is driven to perform negative polarity driving, positive polarity driving, positive polarity driving, and negative polarity driving for each of the four sub-pixels in the pixel unit.
- the rows formed by the first pixel unit arrangement are in odd rows, the rows formed by the second pixel unit arrangement are in even rows; or the rows formed by the first pixel cell arrangement are in even rows, by the second The rows formed by the arrangement of the pixel cells are in odd rows.
- the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel respectively correspond to a red sub-pixel, a green sub-pixel, a blue sub-pixel, and a white sub-pixel.
- every two pixel units are formed as one pixel group; the driving module outputs driving data set to display one pixel unit and converted into the relatively high voltage driving data and a relatively low voltage
- the drive data drives the set of pixels.
- each two adjacent first pixel units and second pixel units are formed as one pixel group; the driving module outputs driving data set to display one pixel unit and converts to the relatively high voltage The drive data and the relatively low voltage drive data drive the set of pixels.
- each pixel unit is driven by driving data of a relatively high voltage such that a driving signal of each sub-pixel of the input pixel unit is higher than a threshold set for each sub-pixel, and is first The value is set in the range; the drive data is driven by the relatively low voltage: the drive signal of each sub-pixel of the input pixel unit is lower than the threshold set for each sub-pixel, and the value is set within the second set range. .
- the threshold value corresponding to each sub-pixel includes: driving the sub-pixel to display a nominal driving voltage value corresponding to the input required for the specific gray level.
- the display array is a liquid crystal display array.
- the rows formed by the first pixel unit arrangement are in odd rows, the rows formed by the second pixel unit arrangement are in even rows; or the rows formed by the first pixel cell arrangement are in even rows, by the second The rows formed by the arrangement of the pixel cells are in odd rows.
- a driving method of a display panel comprising a display array, the display array comprising pixel units arranged in an array, wherein rows formed by the arrangement of the first pixel units and rows formed by the arrangement of the second pixel units are Alternately arranged in the column direction;
- the first pixel unit includes red sub-pixels, green sub-pixels, blue sub-pixels, and white sub-pixels arranged in this order in the row direction;
- the second pixel unit includes blue sub-pixels, white sub-pixels, red pixels, and green sub-pixels arranged in this order in the row direction;
- the driving method includes:
- the first column of pixel units is driven by the first polarity, and the remaining two columns of adjacent pixel units are driven by the second polarity; or the first column of pixel units and the second The column pixel unit is driven by the first polarity arrangement, and the remaining column of adjacent pixel units is driven by the second polarity arrangement;
- the first polarity arrangement is driven to perform positive polarity driving, negative polarity driving, negative polarity driving, and positive polarity driving on the four sub-pixels in the pixel unit;
- the second polarity arrangement is driven to: perform negative polarity driving, positive polarity driving, positive polarity driving, and negative polarity driving on the four sub-pixels in the pixel unit;
- every two pixel units are formed as one pixel group, and driving data showing one pixel unit is converted into the relatively high voltage driving data and relatively low voltage driving data to drive the pixel group;
- the display array is a liquid crystal display array.
- the above method and device can average the brightness of adjacent pixel units to obtain a normal brightness display.
- each sub-pixel is the size of a normal sub-pixel, and no additional metal wiring and driving components are required, and the cost is not increased.
- the four sub-pixels have the same number of high-voltage positive-drive pixels and negative-polarity drive pixels at the same time, which ensures that the number of sub-pixels with high-voltage positive and negative polarity matches and the same color pixel has the same high voltage regardless of any color combination.
- the number of positive and negative sub-pixels, such a drive will make the Vcom level unaffected, and the sub-pixels in the same row will not be affected by the Vcom level, thus ensuring the correctness of the image signal without color cast color or image quality.
- An abnormal phenomenon Ensuring that the high-voltage pixel unit and the low-voltage pixel unit in the space are used to solve the visual role bias problem can be achieved.
- Figure 1a and Figure 1b show the relationship between the color shift curve and the ideal curve before and after improvement
- FIG. 2 is a schematic view showing a liquid crystal driving structure
- FIG. 3 is a schematic diagram of a sub-pixel structure
- Figure 5a is an arrangement structure of the first pixel unit
- Figure 5b is an arrangement structure of the second pixel unit
- FIG. 6 is a flow chart of a driving method of a display array according to an embodiment
- Figure 7 is a relatively high voltage and relatively low voltage drive region
- FIG. 8 is a polarity driving arrangement corresponding to the display array shown in FIG. 4;
- Figure 9 is a block diagram of a display device of an embodiment.
- the display method of each embodiment will be described by taking a liquid crystal display panel as an example. It can be understood that in other display technologies similar to liquid crystal displays, the method can also be adopted to solve the problem of large-view character bias.
- the brightness of the pixel should ideally change linearly with the change of voltage, so that the driving voltage of the pixel can accurately represent the gray level of the pixel and be reflected by the brightness.
- the brightness of the pixel when viewing the display surface with a small viewing angle (for example, front view), the brightness of the pixel can be ideal, that is, linearly change with voltage, as shown in the ideal curve in Fig. 1a.
- the brightness of the pixel when viewing the display surface with a large viewing angle (for example, 160 degrees or more with the display surface), due to the limitation of the principle of the VA type liquid crystal technology, the brightness of the pixel appears to be rapidly saturated with the voltage, and then slowly changes. This is shown in the actual curve in Figure 1a. In this way, under the large viewing angle, the gray scale that the driving voltage should originally appear has a serious deviation, that is, a color shift occurs.
- the traditional way to improve the color shift is to subdivide each sub-pixel into one main pixel and sub-pixel, then drive the main pixel with a relatively high driving voltage, and drive the sub-pixel with a relatively low driving voltage, the main pixel and The sub-pixels together display one sub-pixel.
- the relatively high driving voltage and the relatively low driving voltage can maintain the relationship between the brightness in the front view and the corresponding gray level while driving the main pixel and the sub-pixel.
- the method shown in FIG. 1b is adopted.
- the main pixel drives the display with a relatively high driving voltage
- the sub-pixel does not display
- the brightness of the entire sub-pixel is half of the brightness of the main pixel
- the main pixel drives the display with a relatively high driving voltage
- the sub-pixel drives the display with a relatively low driving voltage.
- the brightness of the entire sub-pixel is half the sum of the brightness of the main pixel plus the brightness of the sub-pixel.
- FIG. 2 is a schematic view of a liquid crystal driving structure.
- a scanning signal Si (1 ⁇ i ⁇ m) is input in each row
- a data signal Dj (1 ⁇ j ⁇ n) is input in each column.
- the scan signal Si is input row by row, that is, S1 to Sm are sequentially input to a high level at a fixed period, so that the sub-pixels of the row input the data signal.
- the scan signal input is completed, the display of one frame of graphics is completed.
- one frame scan time is 1/60 second, ie the refresh rate is 60 Hz.
- FIG. 3 is a schematic diagram of a sub-pixel structure.
- the sub-pixel structure comprises a three-terminal switching device T1, generally a thin film transistor, which inputs a scanning signal Si at its gate, a data signal Dj at its source, and two parallel capacitors Cs and Clc at the drain, wherein The capacitor Cs is a storage capacitor, and the capacitor Clc is a liquid crystal capacitor.
- the other end of the shunt capacitor can be connected to the common voltage Vcom.
- the thin film transistor T1 When the scan signal Si is input to the high level, the thin film transistor T1 is turned on to receive the input data signal Dj (voltage signal).
- the voltage difference between the data signal Dj and the common voltage Vcom charges the capacitors Cs, Clc, wherein the voltage between the Clc deflects the liquid crystal molecules therein, so that the backlight transmits a corresponding degree of light according to the degree of deflection of the liquid crystal molecules, thereby The sub-pixels exhibit corresponding brightness.
- Capacitor Cs is used to hold this voltage until the next scan.
- the voltage of the data signal Dj may be higher than the common voltage Vcom or lower than the common voltage Vcom.
- the driving sub-pixels display the same brightness.
- the voltage of the data signal Dj is higher than the common voltage Vcom, in the following embodiments, it is called positive polarity driving, otherwise it is called negative polarity driving.
- the sub-pixels are red sub-pixels (R), green sub-pixels (G), and blue sub-pixels (B); for four-color pixel units, the sub-pixels are red sub-pixels ( R), green sub-pixel (G), blue sub-pixel (B), and white sub-pixel (W).
- the following embodiments provide a driving method of a display array.
- the sub-pixel structure is represented by a simplified block, and if necessary, the sub-pixel type that it drives to display is marked in the box.
- This driving method is used to drive the display array 100 as shown in FIG.
- display array 100 includes pixel cells (including first pixel cell 112, second pixel cell 114) arranged in an array.
- the odd rows of the first, third, fifth, etc. are formed by the first pixel unit 112, and the even rows of the second, fourth, sixth, etc. are arranged by the second pixel unit 114.
- the first pixel unit 112 includes a first sub-pixel P1, a second sub-pixel P2, a third sub-pixel P3, and a fourth sub-pixel P4 which are sequentially arranged in the row direction.
- the second pixel unit 114 includes a third sub-pixel P3, a fourth sub-pixel P4, a first sub-pixel P1, and a second sub-pixel P2 which are sequentially arranged in the row direction.
- the four sub-pixels of the first pixel unit 112 and the four sub-pixels of the second pixel unit 114 are respectively arranged according to the order of arrangement. Align on the column.
- the odd rows may also be formed by the second pixel unit 114 while the even rows are formed by the first pixel unit 112.
- the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel may respectively correspond to the red sub-pixel, the green sub-pixel, the blue sub-pixel, and the white sub-pixel, but are not limited thereto. Therefore, it may be different other arrangement correspondences or adopt other feasible sub-pixel schemes.
- the driving method includes the following steps S110 to S120.
- Step S110 driving any two adjacent pixel units with relatively high voltage driving data and relatively low voltage driving data.
- two adjacent first pixel units 112 are respectively driven by relatively high voltage driving data VH and relatively low voltage driving data VL; on the column, first pixel unit 112 and second The pixel unit 114 is driven by driving data VH of relatively high voltage and driving data VL of relatively low voltage, respectively. That is, for the entire liquid crystal display array, the driving data corresponding to any two adjacent pixel units is relatively high voltage and relatively low voltage.
- the relatively high voltage driving data means that for the driven pixel unit, the input driving signal for the sub-pixel is generally higher than a set threshold; the relatively low-voltage driving data refers to the driven pixel unit.
- the input drive signal for the sub-pixel is generally lower than the set threshold.
- the threshold may be a value corresponding to when one sub-pixel is normally driven.
- the thresholds are different corresponding to different gray levels. For example, when a sub-pixel is normally driven, if a gray scale of 0 to 255 is to be displayed, the driving voltage of V 0 to V 255 needs to be input (ie, the driving sub-pixel displays the rated voltage of the input required for the gray scale of 0 to 255). V 0 to V 255 ).
- the driving data includes driving four voltage values V P1 , V P2 , V P3 , V P4 of the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel, and each voltage should be higher than the corresponding one.
- the driving data corresponding to the pixel unit is (128, 255, 160, 0), that is, the gray level of the first sub-pixel is 128, the gray level of the second sub-pixel is 255, and the gray level of the third sub-pixel is 160.
- the gray level of the fourth sub-pixel is 0.
- the relatively low voltage drive data is that the drive voltage is generally lower than the voltage corresponding to the normal driving of one sub-pixel.
- each sub-pixel is the size of a normal sub-pixel, and no additional metal wiring and driving components are required, and the cost is not increased.
- each pixel unit is driven by driving data with a relatively high voltage, including: a driving signal of each sub-pixel of the input pixel unit is higher than a threshold set for each sub-pixel, and is first The value is within the set range.
- Driving with relatively low voltage driving data includes: driving signals of each sub-pixel of the input pixel unit are lower than a threshold set for each sub-pixel, and taking values within the second setting range.
- the first setting range it is necessary to ensure that the voltage is not higher than the highest voltage that can be withstood by the normal operation of each sub-pixel unit, so as to avoid the voltage being too high and damaging the sub-pixel unit.
- the second setting range it is necessary to ensure that the voltage is not lower than the minimum voltage required for the sub-pixel unit to operate normally.
- the value of the high voltage drive data and the value of the low voltage drive data make the overall display effect as expected.
- step S120 the first column of pixel units is driven by the first polarity, and the remaining two columns of adjacent pixel units are driven by the second polarity in a period of three columns of pixel units; or The first column of pixel units and the second column of pixel units are driven by a first polarity arrangement, and the remaining columns of adjacent pixel units are driven by a second polarity arrangement.
- the first polarity arrangement is driven to: positive polarity driving, negative polarity driving, negative polarity driving, and positive polarity driving for the four sub-pixels in the pixel unit;
- the second polarity arrangement driving is: pair of pixels
- the four sub-pixels in the cell are respectively driven by a negative polarity, a positive polarity drive, a positive polarity drive, and a negative polarity drive.
- the driving display mode of step S110 there are a plurality of different sub-pixel polarity driving schemes.
- frame inversion means that the polarity of the driving voltage of each pixel point (ie, the voltage Dj of the driving signal with respect to the magnitude of the common voltage Vcom) changes before and after any two frames of image switching.
- Row inversion means that the polarity of the driving voltage of any two rows of pixels in the same frame is different.
- Column inversion means that the polarity of the driving voltage of any two columns of pixels in the same frame is different.
- Point inversion means that the polarity of the driving voltage of any two pixels in the same frame is different.
- Row inversion, column inversion, and dot inversion also include frame inversion.
- the dot inversion drive can best solve the above problem, so the dot inversion drive is generally used.
- the dot inversion driving has a problem.
- the plurality of low-voltage sub-pixel drivers are not displayed (ie, the gray scale is 0), and the positive polarity voltage and the negative polarity voltage of the same row are unbalanced.
- the mismatch of the positive and negative polarity of the high voltage causes the Vcom level voltage to be affected by the parasitic capacitance.
- the Vcom level equivalent voltage tends to be negative, that is, it is reduced to Vcom- ⁇ V compared to the original Vcom level.
- the voltage negative polarity sub-pixel actually reduces the charge and darkens the brightness.
- the first column of pixel units is driven by the first polarity and the second row of adjacent pixel units are driven by the second polarity by using three columns of pixel units as a cycle. As shown in FIG. 8, the first column is driven by the first polarity, and the second to third columns are driven by the second polarity. Then, the pixels are periodically repeated in three columns, that is, the four columns are driven by the first polarity, and the five columns are driven by the second polarity.
- the first sub-pixel, the second sub-pixel, the third sub-pixel, and the fourth sub-pixel respectively correspond to a red sub-pixel (R), a green sub-pixel (G), a blue sub-pixel (B), and a white sub-pixel.
- the pixel (W) will be described as an example.
- the first polarity arrangement is driven to perform positive polarity driving (+), negative polarity driving (-), negative polarity driving (-), and positive polarity driving (+) on the four sub-pixels in the pixel unit.
- the second polarity arrangement is driven by performing negative polarity driving (-), positive polarity driving (+), positive polarity driving (+), and negative polarity driving (-) on the four sub-pixels in the pixel unit.
- the red sub-pixel is positive polarity drive (R+)
- the green sub-pixel is negative polarity drive (G-)
- the blue sub-pixel is negative polarity drive (B-)
- white sub-pixel The pixel is a positive polarity drive (W+).
- the blue sub-pixel is positive polarity drive (B+)
- the white sub-pixel is negative polarity drive (W-)
- the red sub-pixel is negative polarity drive (R-)
- green sub-pixel The pixel is a positive polarity drive (G+).
- the first row and the second row are repeated.
- the red sub-pixel is a negative polarity drive (R-)
- the green sub-pixel is a positive polarity drive (G+)
- the blue sub-pixel is a positive polarity drive (B+)
- a white sub-pixel It is a negative polarity drive (W-).
- the blue sub-pixel is a negative polarity drive (B-)
- the white sub-pixel is a positive polarity drive (W+)
- the red sub-pixel is a positive polarity drive (R+)
- a green sub-pixel It is a negative polarity drive (R-).
- the first row and the second row are repeated.
- the red sub-pixel is a negative polarity drive (R-)
- the green sub-pixel is a positive polarity drive (G+)
- the blue sub-pixel is a positive polarity drive (B+)
- a white sub-pixel It is a negative polarity drive (W-).
- the blue sub-pixel is a negative polarity drive (B-)
- the white sub-pixel is a positive polarity drive (W+)
- the red sub-pixel is a positive polarity drive (R+)
- a green sub-pixel It is a negative polarity drive (R-).
- the first row and the second row are repeated.
- step S110 the polarity arrangement driving of step S120 is added, and four sub-pixels (RGBW) simultaneously have the same number of high-voltage positive polarity driving pixels and negative polarity driving pixels, which can ensure that regardless of any color combination,
- the number of high-voltage positive and negative sub-pixels matches and the same color pixel (R, G, B, W) has the same number of high-voltage positive and negative sub-pixels.
- Such a drive will make the Vcom level unaffected.
- the sub-pixels in the same row are not affected by the Vcom level, which ensures the correctness of the image signal, and does not cause color cast color or image quality abnormality. Ensuring that the high-voltage pixel unit and the low-voltage pixel unit in the space are used to solve the visual role bias problem can be achieved.
- every two pixel units are formed as one pixel group and the driving data showing one pixel unit is converted into the relatively high voltage driving data and the relatively low voltage driving data drives the pixel group .
- each two adjacent first pixel units and second pixel units are formed as one pixel group, and driving data showing one pixel unit is converted into the relatively high voltage driving data and a relatively low voltage
- the drive data drives the set of pixels.
- the display device includes the display array 100 and the driving module 200 shown in FIG.
- the display array 100 reference may be made to the description in the above embodiments, and details are not described herein.
- the display device may be a liquid crystal display device, and the display array 100 corresponds to a liquid crystal display array.
- the driving module 200 is configured to output driving data to cause the display array to display an image.
- the drive module 200 is used to:
- the first polarity arrangement is driven to perform positive polarity driving, negative polarity driving, negative polarity driving, and positive polarity driving on the four sub-pixels in the pixel unit;
- the second polarity arrangement is driven to perform negative polarity driving, positive polarity driving, positive polarity driving, and negative polarity driving for each of the four sub-pixels in the pixel unit.
- the driving module 200 may include a scanning unit 210 for outputting a scanning signal, generally scanning the pixel unit row by row, and a driving unit 220 outputting a driving signal, so that the pixel unit receives the driving when being scanned.
- the data is displayed.
- the processing of the part (1) by the driving module 200 can refer to step S110 of the above embodiment.
- the luminances of adjacent pixel units can be averaged with each other to obtain a normal luminance display.
- the same effect as that of the main pixel/sub-pixel scheme can be obtained, thereby functioning to improve the color shift.
- each sub-pixel is the size of a normal sub-pixel, and no additional metal wiring and driving components are required, and the cost is not increased.
- step S120 For the processing of the part (2) by the driving module 200, reference may be made to step S120 of the above embodiment.
- the polarity driving arrangement of step S120 is added, and four sub-pixels (RGBW) simultaneously have the same number of high-voltage positive polarity driving pixels and negative polarity driving pixels, which can ensure high voltage regardless of any color combination.
- the number of positive and negative sub-pixels matches and the same color pixel (R, G, B, W) has the same number of high-voltage positive and negative sub-pixels at the same time.
- every two pixel units are formed as one pixel group; the driving module outputs driving data for displaying one pixel unit and converts to the relatively high voltage driving data and a relatively low voltage
- the drive data drives the set of pixels.
- each two adjacent first pixel units and second pixel units are formed as one pixel group; the driving module outputs driving data for displaying one pixel unit and converts to the relatively high voltage The drive data and the relatively low voltage drive data drive the set of pixels.
- the display device is, for example, an LCD (Liquid Crystal Display) display device, an OLED (Organic Light-Emitting Diode) display device, a QLED (Quantum Dot Light Emitting Diodes) display device, a curved display device, or other display device.
- LCD Liquid Crystal Display
- OLED Organic Light-Emitting Diode
- QLED Quadantum Dot Light Emitting Diodes
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Computer Hardware Design (AREA)
- Theoretical Computer Science (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Optics & Photonics (AREA)
- Geometry (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal Display Device Control (AREA)
Abstract
一种显示面板的驱动方法及显示装置。驱动方法包括:对任意两个相邻的像素单元,分别采用相对高电压的驱动数据和相对低电压的驱动数据进行驱动(S110);以三列像素单元为周期,对其中第一列像素单元采用第一极性排列驱动,对剩余两列相邻像素单元采用第二极性排列驱动(S120);其中第一极性排列驱动为:对像素单元中的四个子像素分别进行正极性驱动、负极性驱动、负极性驱动以及正极性驱动;第二极性排列驱动为:对像素单元中的四个子像素分别进行负极性驱动、正极性驱动、正极性驱动以及负极性驱动。显示装置使用此驱动方法。
Description
相关申请的交叉引用
本申请要求于2017年12月18日提交中国专利局、申请号为2017113690314、申请名称为“显示面板的驱动方法及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及显示技术领域,特别是涉及一种显示面板的驱动方法及显示装置。
大尺寸液晶显示面板大多采用负型垂直配向(Vertical Alignment,VA)式或者共平面切换(In Panel Switching,IPS)式。VA型液晶技术相较于IPS液晶技术存在较高的生产效率及低制造成本的优势,但相较于IPS液晶技术,则存在较明显的光学性质缺陷,例如在大视角图像呈现时,VA型液晶显示面板会存在色偏。
在进行图像显示时,像素的亮度在理想情况下应该是随着电压的变化呈现线性的变化,这样像素的驱动电压就能够准确表示像素的灰阶,并通过亮度体现出来。采用VA型液晶技术以较小的视角观看显示面时(例如正视),像素的亮度可以符合理想情况,即随电压呈现线性变化;但当以较大的视角观看显示面时(例如与显示面呈160度以上),由于VA型液晶技术原理所限,像素的亮度随着电压呈现出快速饱和,然后缓慢变化的情况。这样一来,大视角下,驱动电压原本应该呈现的灰阶,出现了严重的偏离,即出现色偏。
用于改善色偏的方式是将每一个子像素都再细分为一个主像素和次像素,然后用相对高的驱动电压驱动主像素,用相对低的驱动电压驱动次像素,主像素和次像素一起显示一个子像素。并且所述相对高的驱动电压和相对低 的驱动电压在驱动主像素和次像素时,能够维持正视视角下的亮度与对应灰阶的关系不变,并且能够改善大视角下的色偏情况。
但上述方法存在的问题是,需要增加一倍的金属走线和驱动器件来驱动次像素,使可透光开口区牺牲,影响面板透光率,同时成本也更高。
发明内容
根据本申请的各种实施例,提供一种可以改善大视角色偏情况、同时成本不会提高的显示面板的驱动方法。
此外,还提供一种显示装置。
一种显示面板的驱动方法,所述显示面板包括显示阵列,所述显示阵列包括呈阵列排布的像素单元,其中由第一像素单元排列形成的行与由第二像素单元排列形成的行在列方向上交替设置;所述第一像素单元包括行方向上依次排列的第一子像素、第二子像素、第三子像素以及第四子像素;所述第二像素单元包括行方向上依次排列的第三子像素、第四子像素、第一子像素以及第二子像素;对处于同一列的第一像素单元和第二像素单元,所述第一像素单元的四个子像素和第二像素单元的四个子像素根据排列的顺序分别在列上对齐;所述驱动方法包括:
对任意两个相邻的像素单元,分别采用相对高电压的驱动数据和相对低电压的驱动数据进行驱动;
以三列像素单元为周期,对其中第一列像素单元采用第一极性排列驱动,对剩余两列相邻像素单元采用第二极性排列驱动;或者对其中第一列像素单元和第二列像素单元采用第一极性排列驱动,对剩余一列相邻像素单元采用第二极性排列驱动;
其中,所述第一极性排列驱动为:对像素单元中的四个子像素分别进行正极性驱动、负极性驱动、负极性驱动以及正极性驱动;
所述第二极性排列驱动为:对像素单元中的四个子像素分别进行负极性驱动、正极性驱动、正极性驱动以及负极性驱动。
在其中一个实施例中,由第一像素单元排列形成的行处于奇数行,由第二像素单元排列形成的行处于偶数行;或者由第一像素单元排列形成的行处于偶数行,由第二像素单元排列形成的行处于奇数行。
在其中一个实施例中,所述第一子像素、第二子像素、第三子像素以及第四子像素分别对应为红色子像素、绿色子像素、蓝色子像素以及白色子像素。
在其中一个实施例中,在行方向上,每两个像素单元形成为一个像素组,并将显示一个像素单元的驱动数据转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
在其中一个实施例中,每两个相邻的第一像素单元和第二像素单元形成为一个像素组并将显示一个像素单元的驱动数据转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
在其中一个实施例中,对每一像素单元,采用相对高电压的驱动数据进行驱动为:输入像素单元的各子像素的驱动信号高于为各子像素对应设定的阈值,并在第一设定范围内取值;采用相对低电压的驱动数据进行驱动为:输入像素单元的各子像素的驱动信号低于为各子像素对应设定的阈值,并在第二设定范围内取值。
在其中一个实施例中,为各子像素对应设定的阈值,包括:驱动子像素显示特定灰阶所需对应输入的额定驱动电压值。
在其中一个实施例中,显示面板为液晶面板。
一种显示装置,包括:
显示阵列,包括呈阵列排布的像素单元,其中由第一像素单元排列形成的行与由第二像素单元排列形成的行在列方向上交替设置;所述第一像素单元包括行方向上依次排列的第一子像素、第二子像素、第三子像素以及第四子像素;所述第二像素单元包括行方向上依次排列的第三子像素、第四子像素、第一子像素以及第二子像素;对处于同一列的第一像素单元和第二像素单元,所述第一像素单元的四个子像素和第二像素单元的四个子像素根据排 列的顺序分别在列上对齐;
驱动模块,设置为输出驱动数据使显示阵列显示图像;其中,所述驱动模块设置为:
对任意两个相邻的像素单元,分别采用相对高电压的驱动数据和相对低电压的驱动数据进行驱动;
以三列像素单元为周期,对其中第一列像素单元采用第一极性排列驱动,对剩余两列相邻像素单元采用第二极性排列驱动;或者对其中第一列像素单元和第二列像素单元采用第一极性排列驱动,对剩余一列相邻像素单元采用第二极性排列驱动;
其中,所述第一极性排列驱动为:对像素单元中的四个子像素分别进行正极性驱动、负极性驱动、负极性驱动以及正极性驱动;
所述第二极性排列驱动为:对像素单元中的四个子像素分别进行负极性驱动、正极性驱动、正极性驱动以及负极性驱动。
在其中一个实施例中,由第一像素单元排列形成的行处于奇数行,由第二像素单元排列形成的行处于偶数行;或者由第一像素单元排列形成的行处于偶数行,由第二像素单元排列形成的行处于奇数行。
在其中一个实施例中,所述第一子像素、第二子像素、第三子像素以及第四子像素分别对应为红色子像素、绿色子像素、蓝色子像素以及白色子像素。
在其中一个实施例中,在行方向上,每两个像素单元形成为一个像素组;所述驱动模块输出设置为显示一个像素单元的驱动数据并转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
在其中一个实施例中,每两个相邻的第一像素单元和第二像素单元形成为一个像素组;所述驱动模块输出设置为显示一个像素单元的驱动数据并转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
在其中一个实施例中,对每一像素单元,采用相对高电压的驱动数据进行驱动为:输入像素单元的各子像素的驱动信号高于为各子像素对应设定的 阈值,并在第一设定范围内取值;采用相对低电压的驱动数据进行驱动为:输入像素单元的各子像素的驱动信号低于为各子像素对应设定的阈值,并在第二设定范围内取值。
在其中一个实施例中,为各子像素对应设定的阈值,包括:驱动子像素显示特定灰阶所需对应输入的额定驱动电压值。
在其中一个实施例中,显示阵列为液晶显示阵列。
在其中一个实施例中,由第一像素单元排列形成的行处于奇数行,由第二像素单元排列形成的行处于偶数行;或者由第一像素单元排列形成的行处于偶数行,由第二像素单元排列形成的行处于奇数行。
一种显示面板的驱动方法,所述显示面板包括显示阵列,所述显示阵列包括呈阵列排布的像素单元,其中由第一像素单元排列形成的行与由第二像素单元排列形成的行在列方向上交替设置;
所述第一像素单元包括行方向上依次排列的红色子像素、绿色子像素、蓝色子像素以及白色子像素;
所述第二像素单元包括行方向上依次排列的蓝色子像素、白色子像素、红色像素以及绿色子像素;
对处于同一列的第一像素单元和第二像素单元,所述第一像素单元的四个子像素和第二像素单元的四个子像素根据排列的顺序分别在列上对齐;所述驱动方法包括:
对任意两个相邻的像素单元,分别采用相对高电压的驱动数据和相对低电压的驱动数据进行驱动;
以三列像素单元为周期,对其中第一列像素单元采用第一极性排列驱动,对剩余两列相邻像素单元采用第二极性排列驱动;或者对其中第一列像素单元和第二列像素单元采用第一极性排列驱动,对剩余一列相邻像素单元采用第二极性排列驱动;
其中,所述第一极性排列驱动为:对像素单元中的四个子像素分别进行正极性驱动、负极性驱动、负极性驱动以及正极性驱动;
所述第二极性排列驱动为:对像素单元中的四个子像素分别进行负极性驱动、正极性驱动、正极性驱动以及负极性驱动;
在行方向上,每两个像素单元形成为一个像素组,并将显示一个像素单元的驱动数据转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组;
显示阵列为液晶显示阵列。
上述方法及装置,可以将相邻像素单元的亮度互相平均,获得正常的亮度显示。同时,在大视角观看时,可以获得和采用主像素/次像素方案同样的效果,从而起到改善色偏的作用。同时,每个子像素都是正常子像素的大小,不需要额外的金属布线以及驱动元件,成本不会升高。四个子像素同时具备相同数目的高电压正极性驱动像素及负极性驱动像素,可以确保不管任何的颜色组合,具备高电压正、负极性的子像素数量匹配而且同颜色像素同时具备相同的高电压正、负极性的子像素数目,这样的驱动会使得Vcom位准不受到影响,同一行的子像素相对Vcom位准不受到影响即能确保图像信号正确性,不会发生色偏偏色或画质异常的现象。确保该空间上使用高电压像素单元及低电压像素单元解决视角色偏问题可以得到实现。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1a和图1b分别为改善前后色偏曲线与理想曲线的关系;
图2为液晶驱动结构示意图;
图3为子像素结构示意图;
图4为显示阵列的结构示意图;
图5a为第一像素单元的排列结构;
图5b为第二像素单元的排列结构;
图6为一实施例的显示阵列的驱动方法流程图;
图7为相对高电压和相对低电压的驱动区域;
图8为图4所示显示阵列对应的极性驱动排列方式;
图9为一实施例的显示装置的模块简图。
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于发明的技术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
以下以液晶显示面板为例说明各实施例的显示方法。可以理解,在其他与液晶显示类似的显示技术中,也可以采用该方法以解决大视角色偏的问题。
在进行图像显示时,像素的亮度在理想情况下应该是随着电压的变化呈现线性的变化,这样像素的驱动电压就能够准确表示像素的灰阶,并通过亮度体现出来。如图1a所示,采用VA型液晶技术时,以较小的视角观看显示面时(例如正视),像素的亮度可以符合理想情况,即随电压呈现线性变化,如图1a中的理想曲线所示;但当以较大的视角观看显示面时(例如与显示面呈160度以上),由于VA型液晶技术原理所限,像素的亮度随着电压呈现出快速饱和,然后缓慢变化的情况,如图1a中的实际曲线所示。这样一来,大视角下,驱动电压原本应该呈现的灰阶,出现了严重的偏离,即出现色偏。
传统用于改善色偏的方式是将每一个子像素都再细分为一个主像素和次像素,然后用相对高的驱动电压驱动主像素,用相对低的驱动电压驱动次像 素,主像素和次像素一起显示一个子像素。并且所述相对高的驱动电压和相对低的驱动电压在驱动主像素和次像素时,能够维持正视视角下的亮度与对应灰阶的关系不变。一般地,是采用如图1b所示的方式,灰阶的前半段,主像素用相对高的驱动电压驱动显示、次像素不显示,整个子像素的亮度就是主像素亮度的一半;在灰阶的后半段,主像素用相对高的驱动电压驱动显示、次像素用相对低的驱动电压驱动显示,整个子像素的亮度就是主像素的亮度加上次像素的亮度的和的一半。这样合成后,大视角下的亮度曲线如图1b中的实际曲线,其更接近理想曲线,因此大视角下的色偏情况有所改善。
图2为液晶驱动结构示意图。在该液晶驱动结构中,多个子像素结构呈阵列排布,在每一行会输入扫描信号Si(1≤i≤m),在每一列会输入数据信号Dj(1≤j≤n)。一般地,扫描信号Si逐行输入,即S1到Sm以固定的周期依序输入高电平,使该行的子像素输入数据信号。当扫描信号输入完成后,完成一帧图形的显示。通常地,一帧扫描时间为1/60秒,即刷新频率为60赫兹。
图3为子像素结构示意图。该子像素结构包括一个三端开关器件T1,一般为薄膜晶体管,在其栅极输入扫描信号Si,在其源极输入数据信号Dj,并在漏极连接两个并联的电容Cs、Clc,其中电容Cs为储能电容,电容Clc为液晶电容。并联电容的另一端可以连接公共电压Vcom。
当扫描信号Si输入高电平时,薄膜晶体管T1开通,接收输入数据信号Dj(电压信号)。数据信号Dj与公共电压Vcom之间的电压差使电容Cs、Clc充电,其中Clc之间的电压使处于其中的液晶分子发生偏转,使背光根据液晶分子的偏转程度透射出相应程度的光,从而使该子像素呈现相应的亮度。电容Cs用于保持该电压直到下次扫描来临。
数据信号Dj的电压可以高于公共电压Vcom,也可以低于公共电压Vcom。当二者的电压差的绝对值相同,而符号相反时,驱动子像素显示的亮度相同。当数据信号Dj的电压高于公共电压Vcom时,在以下实施例中,称为正极性驱动,否则称为负极性驱动。
对每一个子像素结构,其用于驱动显示一个子像素。例如,对于三色像素单元,其中的子像素为红色子像素(R)、绿色子像素(G)以及蓝色子像素(B);对于四色像素单元,其中的子像素为红色子像素(R)、绿色子像素(G)、蓝色子像素(B)以及白色子像素(W)。
以下实施例提供一种显示阵列的驱动方法。在以下实施例中,子像素结构用简化的方框表示,必要时在方框中标注其驱动显示的子像素类型。该驱动方法用于驱动如图4所示的显示阵列100。
在一个实施例中,显示阵列100包括呈阵列排布的像素单元(包括第一像素单元112、第二像素单元114)。其中第1、3、5......等奇数行由第一像素单元112排列形成,第2、4、6......等偶数行与由第二像素单元114排列形成。
在一个实施例中,参考图5a,所述第一像素单元112包括行方向上依次排列的第一子像素P1、第二子像素P2、第三子像素P3以及第四子像素P4。参考图5b,所述第二像素单元114包括行方向上依次排列的第三子像素P3、第四子像素P4、第一子像素P1以及第二子像素P2。在该显示阵列100中,对处于同一列的第一像素单元112和第二像素单元114,所述第一像素单元112的四个子像素和第二像素单元114的四个子像素根据排列的顺序分别在列上对齐。
可以理解,在其他实施例中,奇数行也可以是由第二像素单元114形成,同时偶数行由第一像素单元112形成。在上述实施例中,第一子像素、第二子像素、第三子像素以及第四子像素可以分别对应于红色子像素、绿色子像素、蓝色子像素以及白色子像素,但并不限于此,也可以是不同的其他排列对应关系,或者采用其他可行的子像素方案。
如图6所示,所述驱动方法包括以下步骤S110~S120。
步骤S110:对任意两个相邻的像素单元,分别采用相对高电压的驱动数据和相对低电压的驱动数据进行驱动。参考图7,在行上,两个相邻的第一像素单元112分别采用相对高电压的驱动数据VH和相对低电压的驱动数据VL进行驱动;在列上,第一像素单元112和第二像素单元114分别采用相对 高电压的驱动数据VH和相对低电压的驱动数据VL进行驱动。即对整个液晶显示阵列来说,任意相邻的两个像素单元所对应的驱动数据都是相对高电压和相对低电压的。
其中,相对高电压的驱动数据是指,对于所驱动的像素单元,输入的针对子像素的驱动信号要普遍高于设定的阈值;相对低电压的驱动数据是指,对于所驱动的像素单元,输入的针对子像素的驱动信号要普遍低于设定的阈值。该阈值可以是正常驱动一个子像素时所对应的值。
需要说明的是,对应于不同的灰阶,该阈值是不同的。例如,在正常驱动一个子像素时,若要显示0~255的灰阶,则对应需要输入V
0~V
255的驱动电压(即驱动子像素显示0~255的灰阶所需输入的额定电压分别为V
0~V
255)。若将该阈值设为正常驱动一个子像素时的电压V
k(0≤k≤255,k为整数),则在使用相对高电压的驱动数据驱动像素单元显示时,在本实施例中,该驱动数据包括驱动第一子像素、第二子像素、第三子像素以及第四子像素的4个电压值V
P1、V
P2、V
P3、V
P4,且每个电压应该都高于对应的子像素在正常驱动时的电压。例如该像素单元对应的驱动数据为(128,255,160,0),即第一子像素的灰阶为128,第二子像素的灰阶为255,第三子像素的灰阶为160,第四子像素的灰阶为0。则V
P1>V
128,V
P2>V
255,V
P3>V
160,V
P4>V
0。类似地,相对低电压的驱动数据就是驱动电压普遍低于正常驱动一个子像素时所对应的电压。
采用上述驱动方法,可以将相邻像素单元的亮度互相平均,获得正常的亮度显示。同时,在大视角观看时,可以获得和采用主像素/次像素方案同样的效果,从而起到改善色偏的作用。同时,每个子像素都是正常子像素的大小,不需要额外的金属布线以及驱动元件,成本不会升高。
在一个实施例中,对每一像素单元,采用相对高电压的驱动数据进行驱动,包括:输入像素单元的各子像素的驱动信号高于为各子像素对应设定的阈值,并在第一设定范围内取值。采用相对低电压的驱动数据进行驱动,包括:输入像素单元的各子像素的驱动信号低于为各子像素对应设定的阈值, 并在第二设定范围内取值。
其中,在第一设定范围内取值时需保证电压不至于高过各子像素单元正常工作所能承受的最高电压,以避免电压过高而损坏子像素单元。在第二设定范围内取值时需保证电压不至于低于子像素单元正常工作所需的最低电压。并且高电压的驱动数据的取值和低电压的驱动数据的取值使得整体的显示效果符合预期。
在一个实施例中,步骤S120:以三列像素单元为周期,对其中第一列像素单元采用第一极性排列驱动,对剩余两列相邻像素单元采用第二极性排列驱动;或者对其中第一列像素单元和第二列像素单元采用第一极性排列驱动,对剩余一列相邻像素单元采用第二极性排列驱动。其中,所述第一极性排列驱动为:对像素单元中的四个子像素分别进行正极性驱动、负极性驱动、负极性驱动以及正极性驱动;所述第二极性排列驱动为:对像素单元中的四个子像素分别进行负极性驱动、正极性驱动、正极性驱动以及负极性驱动。
采用步骤S110的驱动显示方式时,会有多种不同的子像素极性驱动方案。例如帧反转(frame inversion)、行反转(row inversion)、列反转(column inversion)以及点反转(dot inversion)。其目的是为了避免液晶分子在转动过程中长期使用一个方向的电压导致的各种问题。其中,帧反转是指,在任意两帧图像切换前后,每个像素点的驱动电压的极性(即驱动信号的电压Dj相对于公共电压Vcom的大小)都会发生变化。行反转是指,任意两行像素点在同一帧下的驱动电压的极性都不相同。列反转是指,任意两列像素点在同一帧下的驱动电压的极性都不相同。点反转是指,任意两个像素点在同一帧下的驱动电压的极性都不相同。行反转、列反转以及点反转同时也包含帧反转。
点反转驱动最能解决上述问题,因此一般都采用点反转驱动。但对于采用上述步骤S110的驱动方式的液晶显示方案来说,点反转驱动存在问题。
举例若同一行由多个相对高电压子像素驱动,多个低电压子像素驱动不显示(即灰阶为0),此时同一行正极性电压和负极性电压就会失衡。由于液 晶显示器金属走线存在寄生电容的影响,高电压正负极性的不匹配会使得Vcom位准电压受到寄生电容的影响,当高电压负极性数量多于高电压正极性子像素驱动时,会使得Vcom位准等效电压倾向负极性,即相较于原Vcom位准降低为Vcom-ΔV,这样的结果会使得代表高电压正极性子像素实际充电电荷增加、亮度变亮,相反地使得代表高电压负极性子像素实际充电电荷减少、亮度变暗。
因此,在本实施例中,以三列像素单元为周期,对其中第一列像素单元采用第一极性排列驱动,对剩余两列相邻像素单元采用第二极性排列驱动。如图8所示,对第1列,采用第一极性排列驱动,对第2~3列,采用第二极性排列驱动。之后以三列像素周期性重复,即4列采用第一极性排列驱动、5~6列采用第二极性排列驱动......
以下以所述第一子像素、第二子像素、第三子像素以及第四子像素分别对应为红色子像素(R)、绿色子像素(G)、蓝色子像素(B)以及白色子像素(W)为例进行说明。第一极性排列驱动为:对像素单元中的四个子像素分别进行正极性驱动(+)、负极性驱动(-)、负极性驱动(-)以及正极性驱动(+)。第二极性排列驱动为:对像素单元中的四个子像素分别进行负极性驱动(-)、正极性驱动(+)、正极性驱动(+)以及负极性驱动(-)。
如图8所示:
在第1列第1行的像素单元中,红色子像素为正极性驱动(R+)、绿色子像素为负极性驱动(G-)、蓝色子像素为负极性驱动(B-)、白色子像素为正极性驱动(W+)。
在第1列第2行的像素单元中,蓝色子像素为正极性驱动(B+)、白色子像素为负极性驱动(W-)、红色子像素为负极性驱动(R-)、绿色子像素为正极性驱动(G+)。
在第1列后续行的像素单元中,以第1行和第2行的方式重复。
在第2列第1行的像素单元中,红色子像素为负极性驱动(R-)、绿色子像素为正极性驱动(G+)、蓝色子像素为正极性驱动(B+)、白色子像素为负 极性驱动(W-)。
在第2列第2行的像素单元中,蓝色子像素为负极性驱动(B-)、白色子像素为正极性驱动(W+)、红色子像素为正极性驱动(R+)、绿色子像素为负极性驱动(R-)。
在第2列后续行的像素单元中,以第1行和第2行的方式重复。
在第3列第1行的像素单元中,红色子像素为负极性驱动(R-)、绿色子像素为正极性驱动(G+)、蓝色子像素为正极性驱动(B+)、白色子像素为负极性驱动(W-)。
在第3列第2行的像素单元中,蓝色子像素为负极性驱动(B-)、白色子像素为正极性驱动(W+)、红色子像素为正极性驱动(R+)、绿色子像素为负极性驱动(R-)。
在第3列后续行的像素单元中,以第1行和第2行的方式重复。
之后以3列像素为周期重复。
对其中第一列像素单元和第二列像素单元采用第一极性排列驱动,对剩余一列相邻像素单元采用第二极性排列驱动时,可参照上述方式。
这样,在步骤S110的基础上,增加步骤S120的极性排列驱动,四个子像素(RGBW)同时具备相同数目的高电压正极性驱动像素及负极性驱动像素,可以确保不管任何的颜色组合,具备高电压正、负极性的子像素数量匹配而且同颜色像素(R、G、B、W)同时具备相同的高电压正、负极性的子像素数目,这样的驱动会使得Vcom位准不受到影响,同一行的子像素相对Vcom位准不受到影响即能确保图像信号正确性,不会发生色偏偏色或画质异常的现象。确保该空间上使用高电压像素单元及低电压像素单元解决视角色偏问题可以得到实现。
在其中一个实施例中,在行方向上,每两个像素单元形成为一个像素组并将显示一个像素单元的驱动数据转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
在其中一个实施例中,每两个相邻的第一像素单元和第二像素单元形成 为一个像素组,并将显示一个像素单元的驱动数据转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
基于相同发明构思,以下提供一种显示装置。如图9所示,该显示装置包括图4所示的显示阵列100和驱动模块200。对显示阵列100可以参考上述实施例中的说明,在此不赘述。该显示装置可以为液晶显示装置,该显示阵列100对应为液晶显示阵列。
驱动模块200用于输出驱动数据使显示阵列显示图像。驱动模块200用于:
(1)对任意两个相邻的像素单元,分别采用相对高电压的驱动数据和相对低电压的驱动数据进行驱动;
(2)以三列像素单元为周期,对其中第一列像素单元采用第一极性排列驱动,对剩余两列相邻像素单元采用第二极性排列驱动;或者对其中第一列像素单元和第二列像素单元采用第一极性排列驱动,对剩余一列相邻像素单元采用第二极性排列驱动。
其中,所述第一极性排列驱动为:对像素单元中的四个子像素分别进行正极性驱动、负极性驱动、负极性驱动以及正极性驱动;
所述第二极性排列驱动为:对像素单元中的四个子像素分别进行负极性驱动、正极性驱动、正极性驱动以及负极性驱动。
驱动模块200可以包括扫描单元210和驱动单元220,扫描单元210用于输出扫描信号,一般是逐行对像素单元进行扫描,驱动单元220则输出驱动信号,使像素单元在被扫描到时接收驱动数据进行显示。
驱动模块200对第(1)部分的处理可以参考上述实施例的步骤S110。经过该处理,可以将相邻像素单元的亮度互相平均,获得正常的亮度显示。同时,在大视角观看时,可以获得和采用主像素/次像素方案同样的效果,从而起到改善色偏的作用。同时,每个子像素都是正常子像素的大小,不需要额外的金属布线以及驱动元件,成本不会升高。
驱动模块200对第(2)部分的处理可以参考上述实施例的步骤S120。 在步骤S110的基础上,增加步骤S120的极性驱动排列,四个子像素(RGBW)同时具备相同数目的高电压正极性驱动像素及负极性驱动像素,可以确保不管任何的颜色组合,具备高电压正、负极性的子像素数量匹配而且同颜色像素(R、G、B、W)同时具备相同的高电压正、负极性的子像素数目,这样的驱动会使得Vcom位准不受到影响,同一行的子像素相对Vcom位准不受到影响即能确保图像信号正确性,不会发生色偏偏色或画质异常的现象。确保该空间上使用高电压像素单元及低电压像素单元解决视角色偏问题可以得到实现。
在其中一个实施例中,在行方向上,每两个像素单元形成为一个像素组;所述驱动模块输出用于显示一个像素单元的驱动数据并转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
在其中一个实施例中,每两个相邻的第一像素单元和第二像素单元形成为一个像素组;所述驱动模块输出用于显示一个像素单元的驱动数据并转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
需要说明的是,显示装置例如为LCD(Liquid Crystal Display)显示装置、OLED(Organic Light-Emitting Diode)显示装置、QLED(Quantum Dot Light Emitting Diodes)显示装置、曲面显示装置或其他显示装置。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。
Claims (17)
- 一种显示面板的驱动方法,所述显示面板包括显示阵列,所述显示阵列包括呈阵列排布的像素单元,其中由第一像素单元排列形成的行与由第二像素单元排列形成的行在列方向上交替设置;所述第一像素单元包括行方向上依次排列的第一子像素、第二子像素、第三子像素以及第四子像素;所述第二像素单元包括行方向上依次排列的第三子像素、第四子像素、第一子像素以及第二子像素;对处于同一列的第一像素单元和第二像素单元,所述第一像素单元的四个子像素和第二像素单元的四个子像素根据排列的顺序分别在列上对齐;所述驱动方法包括:对任意两个相邻的像素单元,分别采用相对高电压的驱动数据和相对低电压的驱动数据进行驱动;以三列像素单元为周期,对其中第一列像素单元采用第一极性排列驱动,对剩余两列相邻像素单元采用第二极性排列驱动;或者对其中第一列像素单元和第二列像素单元采用第一极性排列驱动,对剩余一列相邻像素单元采用第二极性排列驱动;其中,所述第一极性排列驱动为:对像素单元中的四个子像素分别进行正极性驱动、负极性驱动、负极性驱动以及正极性驱动;所述第二极性排列驱动为:对像素单元中的四个子像素分别进行负极性驱动、正极性驱动、正极性驱动以及负极性驱动。
- 根据权利要求1所述的显示面板的驱动方法,其中,由第一像素单元排列形成的行处于奇数行,由第二像素单元排列形成的行处于偶数行;或者由第一像素单元排列形成的行处于偶数行,由第二像素单元排列形成的行处于奇数行。
- 根据权利要求1所述的显示面板的驱动方法,其中,所述第一子像素、第二子像素、第三子像素以及第四子像素分别对应为红色子像素、绿色子像 素、蓝色子像素以及白色子像素。
- 根据权利要求1所述的显示面板的驱动方法,其中,在行方向上,每两个像素单元形成为一个像素组,并将显示一个像素单元的驱动数据转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
- 根据权利要求1所述的显示面板的驱动方法,其中,每两个相邻的第一像素单元和第二像素单元形成为一个像素组并将显示一个像素单元的驱动数据转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
- 根据权利要求1所述的显示面板的驱动方法,其中,对每一像素单元,所述采用相对高电压的驱动数据进行驱动为:输入像素单元的各子像素的驱动信号高于为各子像素对应设定的阈值,并在第一设定范围内取值;所述采用相对低电压的驱动数据进行驱动为:输入像素单元的各子像素的驱动信号低于为各子像素对应设定的阈值,并在第二设定范围内取值。
- 根据权利要求6所述的显示面板的驱动方法,其中,所述为各子像素对应设定的阈值,包括:驱动所述子像素显示特定灰阶所需对应输入的额定驱动电压值。
- 根据权利要求1所述的显示面板的驱动方法,其中,所述显示面板为液晶面板。
- 一种显示装置,包括:显示阵列,包括呈阵列排布的像素单元,其中由第一像素单元排列形成的行与由第二像素单元排列形成的行在列方向上交替设置;所述第一像素单元包括行方向上依次排列的第一子像素、第二子像素、第三子像素以及第四子像素;所述第二像素单元包括行方向上依次排列的第三子像素、第四子像素、第一子像素以及第二子像素;对处于同一列的第一像素单元和第二像素单元,所述第一像素单元的四个子像素和第二像素单元的四个子像素根据排列的顺序分别在列上对齐;以及驱动模块,设置为输出驱动数据使显示阵列显示图像;其中,所述驱动 模块设置为:对任意两个相邻的像素单元,分别采用相对高电压的驱动数据和相对低电压的驱动数据进行驱动;以三列像素单元为周期,对其中第一列像素单元采用第一极性排列驱动,对剩余两列相邻像素单元采用第二极性排列驱动;或者对其中第一列像素单元和第二列像素单元采用第一极性排列驱动,对剩余一列相邻像素单元采用第二极性排列驱动;其中,所述第一极性排列驱动为:对像素单元中的四个子像素分别进行正极性驱动、负极性驱动、负极性驱动以及正极性驱动;所述第二极性排列驱动为:对像素单元中的四个子像素分别进行负极性驱动、正极性驱动、正极性驱动以及负极性驱动。
- 根据权利要求9所述的显示装置,其中,所述第一子像素、第二子像素、第三子像素以及第四子像素分别对应为红色子像素、绿色子像素、蓝色子像素以及白色子像素。
- 根据权利要求9所述的显示装置,其中,在行方向上,每两个像素单元形成为一个像素组;所述驱动模块输出设置为显示一个像素单元的驱动数据并转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
- 根据权利要求9所述的显示装置,其中,每两个相邻的第一像素单元和第二像素单元形成为一个像素组;所述驱动模块输出设置为显示一个像素单元的驱动数据并转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组。
- 根据权利要求9所述的显示装置,其中,对每一像素单元,所述采用相对高电压的驱动数据进行驱动为:输入像素单元的各子像素的驱动信号高于为各子像素对应设定的阈值,并在第一设定范围内取值;所述采用相对低电压的驱动数据进行驱动为:输入像素单元的各子像素的驱动信号低于为各子像素对应设定的阈值,并在第二设定范围内取值。
- 根据权利要求13所述的显示装置,其中,所述为各子像素对应设定的阈值,包括:驱动所述子像素显示特定灰阶所需对应输入的额定驱动电压值。
- 根据权利要求9所述的显示装置,其中,所述显示阵列为液晶显示阵列。
- 根据权利要求9所述的显示装置,其中,由第一像素单元排列形成的行处于奇数行,由第二像素单元排列形成的行处于偶数行;或者由第一像素单元排列形成的行处于偶数行,由第二像素单元排列形成的行处于奇数行。
- 一种显示面板的驱动方法,所述显示面板包括显示阵列,所述显示阵列包括呈阵列排布的像素单元,其中由第一像素单元排列形成的行与由第二像素单元排列形成的行在列方向上交替设置;所述第一像素单元包括行方向上依次排列的红色子像素、绿色子像素、蓝色子像素以及白色子像素;所述第二像素单元包括行方向上依次排列的蓝色子像素、白色子像素、红色像素以及绿色子像素;对处于同一列的第一像素单元和第二像素单元,所述第一像素单元的四个子像素和第二像素单元的四个子像素根据排列的顺序分别在列上对齐;所述驱动方法包括:对任意两个相邻的像素单元,分别采用相对高电压的驱动数据和相对低电压的驱动数据进行驱动;以三列像素单元为周期,对其中第一列像素单元采用第一极性排列驱动,对剩余两列相邻像素单元采用第二极性排列驱动;或者对其中第一列像素单元和第二列像素单元采用第一极性排列驱动,对剩余一列相邻像素单元采用第二极性排列驱动;其中,所述第一极性排列驱动为:对像素单元中的四个子像素分别进行正极性驱动、负极性驱动、负极性驱动以及正极性驱动;所述第二极性排列驱动为:对像素单元中的四个子像素分别进行负极性 驱动、正极性驱动、正极性驱动以及负极性驱动;在行方向上,每两个像素单元形成为一个像素组,并将显示一个像素单元的驱动数据转换为所述相对高电压驱动数据和相对低电压驱动数据驱动所述像素组;所述显示阵列为液晶显示阵列。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/771,881 US11211019B2 (en) | 2017-12-18 | 2018-01-10 | Driving method for display panel and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711369031.4 | 2017-12-18 | ||
CN201711369031.4A CN108107634B (zh) | 2017-12-18 | 2017-12-18 | 显示面板的驱动方法及显示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019119561A1 true WO2019119561A1 (zh) | 2019-06-27 |
Family
ID=62211125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/072074 WO2019119561A1 (zh) | 2017-12-18 | 2018-01-10 | 显示面板的驱动方法及显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11211019B2 (zh) |
CN (1) | CN108107634B (zh) |
WO (1) | WO2019119561A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10796651B2 (en) | 2018-09-13 | 2020-10-06 | Chongqing Hkc Optoelectronics Technology Co., Ltd. | Driving method and device of display panel, and display device |
CN109036319B (zh) * | 2018-09-13 | 2020-09-11 | 重庆惠科金渝光电科技有限公司 | 显示面板的驱动方法、装置、设备及存储介质 |
US10930235B2 (en) | 2018-09-13 | 2021-02-23 | Chongqing Hkc Optoelectronics Technology Co., Ltd. | Driving method and device of display panel, and display device |
CN108831405B (zh) * | 2018-09-13 | 2020-09-11 | 重庆惠科金渝光电科技有限公司 | 显示面板的驱动方法、装置、设备及存储介质 |
CN109215593A (zh) * | 2018-09-28 | 2019-01-15 | 重庆惠科金渝光电科技有限公司 | 显示装置及显示面板的驱动方法 |
CN109509456B (zh) * | 2018-12-26 | 2020-09-11 | 惠科股份有限公司 | 显示器及其显示面板的驱动装置、方法 |
CN109637493B (zh) | 2019-01-30 | 2021-04-27 | 惠科股份有限公司 | 显示面板的驱动方法及设备 |
CN109584836B (zh) | 2019-01-30 | 2021-02-19 | 惠科股份有限公司 | 显示面板的驱动方法、驱动装置、显示设备以及存储介质 |
CN109671409A (zh) | 2019-01-30 | 2019-04-23 | 惠科股份有限公司 | 显示面板的驱动装置、驱动方法、显示设备及存储介质 |
CN109616075B (zh) * | 2019-01-30 | 2021-04-06 | 惠科股份有限公司 | 显示面板的驱动方法、装置、设备及存储介质 |
TWI712025B (zh) * | 2019-12-25 | 2020-12-01 | 友達光電股份有限公司 | 畫素電路的驅動方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090109357A1 (en) * | 2007-10-30 | 2009-04-30 | Au Optronics Corporation | Liquid Crystal Display Device and Method for Driving the Same |
CN104505041A (zh) * | 2014-12-25 | 2015-04-08 | 上海天马微电子有限公司 | 像素结构的驱动方法 |
CN105702226A (zh) * | 2016-04-28 | 2016-06-22 | 京东方科技集团股份有限公司 | 一种显示面板的驱动方法、显示面板及显示装置 |
CN106652951A (zh) * | 2016-12-28 | 2017-05-10 | 深圳市华星光电技术有限公司 | 阵列基板及液晶显示器 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101698801B1 (ko) * | 2015-06-17 | 2017-01-24 | 삼성디스플레이 주식회사 | 표시 장치 |
TWI578303B (zh) * | 2016-05-12 | 2017-04-11 | 友達光電股份有限公司 | 顯示面板及顯示面板的驅動方法 |
-
2017
- 2017-12-18 CN CN201711369031.4A patent/CN108107634B/zh active Active
-
2018
- 2018-01-10 WO PCT/CN2018/072074 patent/WO2019119561A1/zh active Application Filing
- 2018-01-10 US US16/771,881 patent/US11211019B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090109357A1 (en) * | 2007-10-30 | 2009-04-30 | Au Optronics Corporation | Liquid Crystal Display Device and Method for Driving the Same |
CN104505041A (zh) * | 2014-12-25 | 2015-04-08 | 上海天马微电子有限公司 | 像素结构的驱动方法 |
CN105702226A (zh) * | 2016-04-28 | 2016-06-22 | 京东方科技集团股份有限公司 | 一种显示面板的驱动方法、显示面板及显示装置 |
CN106652951A (zh) * | 2016-12-28 | 2017-05-10 | 深圳市华星光电技术有限公司 | 阵列基板及液晶显示器 |
Also Published As
Publication number | Publication date |
---|---|
CN108107634B (zh) | 2019-12-06 |
US20210074230A1 (en) | 2021-03-11 |
US11211019B2 (en) | 2021-12-28 |
CN108107634A (zh) | 2018-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019119566A1 (zh) | 显示面板的驱动方法及显示装置 | |
WO2019119561A1 (zh) | 显示面板的驱动方法及显示装置 | |
WO2019119563A1 (zh) | 显示面板的驱动方法及显示装置 | |
TWI637378B (zh) | 液晶顯示器 | |
US9898978B2 (en) | Liquid crystal panels and the driving circuits thereof | |
CN109215598B (zh) | 显示面板及其驱动方法 | |
WO2017015972A1 (zh) | 一种液晶显示器 | |
WO2019119564A1 (zh) | 显示面板的驱动方法及显示装置 | |
US20140125644A1 (en) | Display panel and driving method thereof, and display apparatus | |
US11527213B2 (en) | Driving method of display panel for reducing viewing angle color deviation and display device | |
KR20160066119A (ko) | 표시패널 | |
US11017709B2 (en) | Driving method for pixel matrix and display device | |
US9818351B2 (en) | Liquid crystal devices | |
WO2019119812A1 (zh) | 显示面板的驱动方法、驱动装置及显示装置 | |
US20170032749A1 (en) | Liquid crystal display device | |
US12112716B2 (en) | Method for driving pixel matrix and display device | |
US10930235B2 (en) | Driving method and device of display panel, and display device | |
US10796651B2 (en) | Driving method and device of display panel, and display device | |
US20210118381A1 (en) | Display device, and driving method for display panel | |
WO2020155991A1 (zh) | 显示面板的驱动方法、装置及显示设备 | |
US20080266274A1 (en) | Method of driving a display panel | |
KR102169963B1 (ko) | 액정표시장치 및 이의 도트 인버전 제어방법 | |
CN112086034A (zh) | 一种改善水平串扰的显示屏结构及驱动方法 | |
KR20140097673A (ko) | 액정표시장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18892486 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.10.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18892486 Country of ref document: EP Kind code of ref document: A1 |