WO2017014498A1 - 열교환기 - Google Patents

열교환기 Download PDF

Info

Publication number
WO2017014498A1
WO2017014498A1 PCT/KR2016/007715 KR2016007715W WO2017014498A1 WO 2017014498 A1 WO2017014498 A1 WO 2017014498A1 KR 2016007715 W KR2016007715 W KR 2016007715W WO 2017014498 A1 WO2017014498 A1 WO 2017014498A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
flow path
plate
sensible
Prior art date
Application number
PCT/KR2016/007715
Other languages
English (en)
French (fr)
Inventor
정인철
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to EP16828002.2A priority Critical patent/EP3327371B1/en
Priority to ES16828002T priority patent/ES2958526T3/es
Priority to JP2018502361A priority patent/JP6736655B2/ja
Priority to US15/746,671 priority patent/US10746436B2/en
Priority to CN201680044065.3A priority patent/CN107850340B/zh
Publication of WO2017014498A1 publication Critical patent/WO2017014498A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/34Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water chamber arranged adjacent to the combustion chamber or chambers, e.g. above or at side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/30Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle being built up from sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/24Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers
    • F24H1/30Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle being built up from sections
    • F24H1/32Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water mantle surrounding the combustion chamber or chambers the water mantle being built up from sections with vertical sections arranged side by side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/44Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with combinations of two or more of the types covered by groups F24H1/24 - F24H1/40 , e.g. boilers having a combination of features covered by F24H1/24 - F24H1/40
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/44Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with combinations of two or more of the types covered by groups F24H1/24 - F24H1/40 , e.g. boilers having a combination of features covered by F24H1/24 - F24H1/40
    • F24H1/445Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with combinations of two or more of the types covered by groups F24H1/24 - F24H1/40 , e.g. boilers having a combination of features covered by F24H1/24 - F24H1/40 with integrated flue gas condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/025Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being in direct contact with a heat-exchange medium or with another heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat exchanger, and more particularly, to a heat exchanger in which a plurality of plates are stacked to form an sensible heat portion and a latent heat portion, thereby simplifying the assembly structure and improving heat exchange efficiency between the heat medium and the combustion gas.
  • a boiler used for heating or hot water is a device that heats heating water or direct water (hereinafter referred to as 'heat medium') by a heat source to heat a desired area or to supply hot water.
  • a burner that burns a gas and air mixer.
  • a heat exchanger for transferring the heat of combustion of the combustion gas to the heat medium.
  • the boiler produced used a heat exchanger that heats the heat medium by using only the sensible heat generated when the burner is burned.
  • a boiler that produces sensible heat absorbs the sensible heat of the combustion gas generated in the combustion chamber to improve thermal efficiency.
  • a condensing boiler having a heat exchanger and a latent heat exchanger that absorbs latent heat generated by condensation of water vapor contained in the combustion gas having undergone heat exchange in the sensible heat exchanger has been used.
  • Such condensing boilers have been put into practical use not only for gas boilers but also for oil boilers, contributing to increasing boiler efficiency and reducing fuel costs.
  • a blower, a fuel supply nozzle, and a burner are generally installed at an upper portion of the housing, and a heat exchanger fin is formed outside the heat exchange pipe at the lower side of the burner.
  • the combined sensible heat exchanger and the latent heat exchanger are constructed sequentially.
  • Patent Nos. 10-1321708, 10-0813807, etc. have a burner at the center and a coil around the burner.
  • a heat exchanger composed of a heat exchanger pipe wound in the form is disclosed.
  • the heat exchanger introduced in the above prior art documents has a problem that the heat exchange efficiency between the combustion gas and the heat medium decreases because the heat medium is induced away from the burner by the centrifugal force during the flow of the heat medium inside the heat exchange pipe.
  • the conventional heat exchanger has a structural limitation that the heat path of the heat medium is short and cannot secure a wide heat transfer area between the heat medium and the combustion gas.
  • the present invention has been made to solve the above problems, a heat exchanger that improves the heat exchange efficiency between the heat of heat and the combustion heat of the burner by inducing the heat medium flowing along the heat medium flow path provided around the combustion chamber toward the center of the combustion chamber
  • the purpose is to provide.
  • Another object of the present invention is to provide a heat exchanger capable of maximizing the heat exchange area between the heat medium and the combustion gas while ensuring a wide heat transfer area between the heat medium and the combustion gas by forming a long flow path of the heat medium in a limited space.
  • the heat medium flow path in which the heat medium flows in the space between the plurality of plates and the combustion gas flow path in which the combustion gas burned in the burner 100 flow alternately are adjacent to each other.
  • the heat exchange part 200 is formed, and the heat exchange part 200 is formed around one side of the plate and surrounds the outside of the combustion chamber C to use sensible heat of combustion gas generated by combustion of the burner 100.
  • guide parts 221 and 261 are formed to guide the heat medium to flow toward the center of the combustion chamber C.
  • the heat exchanger it is possible to improve the heat exchange efficiency between the heat medium and the heat of combustion of the burner by inducing a guide part in the heat medium passage of the sensible heat unit to guide the heat medium to flow toward the center of the combustion chamber.
  • the latent heat part having multiple parallel heat medium flow paths and the sensible heat part having a heat medium flow path in series are integrally formed to form the flow path of the heat medium in a limited space as long as possible. Heat exchange efficiency between gases can be maximized.
  • FIG. 1 is a perspective view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is a right side view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 3 is a front view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of a heat exchanger according to an embodiment of the present invention.
  • FIG. 5 is an enlarged perspective view of a part of the unit plate shown in FIG. 4;
  • FIG. 6 is a perspective view showing the flow path of the heat medium through the latent heat portion and the sensible heat portion
  • FIG. 7 is a perspective view taken along the line A-A of FIG.
  • FIG. 8 is a perspective view taken along the line B-B of FIG.
  • FIG. 9 is a perspective view taken along the line C-C of FIG.
  • FIG. 10 is a perspective view taken along the line D-D of FIG. 3,
  • FIG. 11 is a perspective view taken along the line E-E of FIG. 3,
  • FIG. 12 is a perspective view taken along the line F-F of FIG.
  • FIG. 13 is a perspective view taken along the line G-G of FIG.
  • FIG. 14 is a perspective view taken along the line H-H of FIG.
  • 16 is a perspective view showing a state in which a combustion gas passage part is formed under the latent heat part
  • 17 is a view showing a state in which the heat medium is guided in a direction toward the inside of the combustion chamber by the guide part;
  • FIG. 18 is a perspective view of a heat exchanger according to another embodiment of the present invention.
  • FIG. 19 is a front view of FIG. 18;
  • FIG. 20 is a perspective view taken along the line J-J of FIG. 19.
  • 200B latent heat unit 200B-1: first latent heat unit
  • 200B-2 the second latent portion 200-1 ⁇ 200-12: unit plate
  • 200a-1 to 200a-12 first plate 200b-1 to 200b-12: second plate
  • 200-A First Plate Group
  • 200-B Second Plate Group
  • first protrusion 221 first guide portion
  • first flange portion 241 first incision
  • combustion gas discharge portion 310 lower cover
  • condensate discharge pipe 320 combustion gas discharge pipe
  • A1 first opening
  • A2 second opening
  • blister cooling part B1 first heat insulating plate
  • H3 ', H7' first blockage H4 ', H8': second blockage
  • P1 latent heat medium flow path
  • P1 ' thermal medium flow path
  • P2 latent heat combustion gas flow path
  • P3 sensible heat flow medium flow path
  • a heat exchanger 1 according to an embodiment of the present invention includes a burner 100 that generates heat and combustion gas by burning a mixture of air and fuel, and the burner 100. Heat exchange is provided between the combustion gas generated by the combustion of the burner 100 and the heat medium provided around the heat exchanger, and a plurality of plates are stacked to constitute a heat exchanger 200 and the combustion passed through the heat exchanger 200 It includes a combustion gas discharge unit 300 through which the gas is discharged.
  • the burner 100 is a cylindrical burner, is inserted into the combustion chamber (C) space provided in the heat exchange unit 200 in the horizontal direction from the front, and assembled, thereby removing the burner 100 and maintenance of the heat exchanger (1).
  • the convenience of work can be improved.
  • the heat exchange part 200 includes a circumferential part 200A that surrounds the outside of the combustion chamber C and includes a region of one side of the plate to heat the heat medium using the sensible heat of the combustion gas generated by the combustion of the burner 100. It consists of a latent heat portion (200B) for heating the heat medium by using the latent heat generated by the condensation of the water vapor contained in the combustion gas heat-exchanged in the sensible heat portion 200A consisting of the other side region of the plate.
  • the plurality of plates are arranged in an upright structure such that the sensible heat portion 200A is positioned at the upper portion and the latent heat portion 200B is positioned at the lower portion, and stacked in front and rear.
  • the combustion gas discharge unit 300 is composed of a lower cover 310 covering the lower portion of the latent heat unit 200B, and the combustion gas discharge pipe 320 connected to one side from the lower cover 310 and extending upward. .
  • a condensate discharge pipe 311 for discharging condensate generated from the latent heat part 200B is connected to a lower portion of the lower cover 310.
  • the heat exchange part 200 is configured by stacking a plurality of plates from the front to the rear, and a heat-sensing portion 200A positioned at an upper portion and a latent heat portion 200B positioned at a lower portion are integrally formed on the plurality of plates. .
  • the plurality of plates, the first to 12th unit plate (200-1,200-2,200-3,200-4,200-5,200-6,200-7,200-8,200-9,200-10,200-11,200-12), the Each unit plate is located in front of the first plate (200a-1,200a-2,200a-3,200a-4,200a-5,200a-6,200a-7,200a-8,200a-9,200a-10,200a-11,200a-12) And second plates 200b-1,200b-2,200b-3,200b-4,200b-5,200b-6,200b-7,200b-8,200b-9,200b-10,200b-11,200b-12 stacked on the rear side. do.
  • the latent heat medium heat medium flow path P1 and the sensible heat medium heat medium flow path P3 are formed between the first plate and the second plate constituting each unit plate, and are stacked adjacent to each other.
  • a latent heat combustion gas flow path P2 and a sensible heat combustion gas flow path P4 are formed between the second plate constituting the unit plate located on one side of the plate and the first plate of the unit plate located on the other side.
  • the first plate protrudes forward from one side of the first flat portion 210 and the first flat portion 210, and a first opening A1 is formed at the center thereof.
  • the first flange 240 is bent backward from the edge portion of the first plate.
  • the heat medium inlet 201 is formed at the lower side of the latent heat unit 200B on the first plate 200a-1 located at the foremost position among the first plates, and the heat medium outlet 202 is on the upper side of the sensible heat unit 200A. ) Is formed.
  • the first plate 200a-2-200a-12 sequentially stacked to the rear of the first plate 200a-1 located at the foremost of the first plates, and has a first through-side on the lower side of the latent heat unit 200B.
  • a sphere H1 is formed, and a second through hole H2 is formed on the other side of the upper portion of the latent heat portion 200B, and a third through hole H3 is formed on the other side of the lower portion of the sensible heat portion 200A.
  • a fourth through hole H4 is formed at one upper side of 200A.
  • the second plate is recessed backward from one side of the second flat portion 250 and the second flat portion 250 to form a sensible heat transfer medium flow path P3 between the first protrusion 220.
  • the first recess 260 having a second opening A2 corresponding to the first opening A1 and a second recessed part is recessed from the other side of the second flat part 250 to the rear in the center thereof.
  • the second recess 270 which forms the latent heat part heat medium flow path P1 between the 230 and the second flange part 280 that is bent backward at the edge of the second plate.
  • the second plate, the fifth through-hole (H5) is formed on the lower side of the latent heat portion (200B), the sixth through-hole (H6) is formed on the other side of the upper portion of the latent heat portion (200B), sensible heat portion 200A
  • the other side of the lower 7) through hole (H7) is formed, the upper one side of the sensible portion 200A is formed with an eighth through hole (H8).
  • the lower plate of the sensible heat unit 200A is disposed on the first plate 200a-9 of the ninth unit plate 200-9 and the second plate 200b-8 of the eighth unit plate 200-8.
  • First blocking portions H3 'and H7' are formed in the first plate 200a-5 of the fifth unit play 200-5 and the second plate 200b of the fourth unit plate 200-4.
  • second blocking portions H4 'and H8' are formed on one side of the sensible heat portion 200A.
  • the first blocking portions H3 'and H7' and the second blocking portions H4 'and H8' are configured to convert flow paths of the heat medium passing through the sensible heat transfer medium flow path P3 to form a series flow path. The operation will be described later.
  • first through holes H3-1 and H4-1 protruding toward the sensible heat combustion gas flow path P4 are formed in the through holes H3 and H4.
  • the through holes H7 and H8 protrude toward the sensible heat combustion gas flow path P4, and the second flange portions H7-1 and H8- contact the end portions of the first flange portions H3-1 and H4-1. 1) is formed.
  • the sensible heat transfer medium flow path (P3) and sensible heat combustion gas flow path (P4) In addition to being spatially separated, the interval between the sensible heat combustion gas flow path (P4) can be kept constant.
  • the heat medium passing through the heat medium path of the latent heat part 200B is connected to the heat medium path of the heat-sensing part 200A at the rear of the sensible heat part 200A.
  • a blister cooling unit (B) for thermal insulation of the combustion chamber (C) is formed.
  • the blister cooling unit B is formed on the first heat insulating plate B1 and the second plate 200b-12 formed on the first plate 200a-12 of the unit plate 200-12 located at the rearmost portion.
  • the heat medium is filled between the two insulating plates (B2).
  • the first heat insulating plate B1 and the second heat insulating plate B2 may be formed to intersect with the protrusion and the depression having a comb shape, and may be configured to generate turbulence in the flow of the heat medium passing through the blister cooling part B. .
  • the combustion chamber (C) can be insulated to prevent overheating of the heat exchanger (1), and the latent heat transfer medium passage (P1) and The connecting flow path of the heat medium connecting the sensible heat medium heat path (P3) can be secured in a space between the first heat insulating plate (B1) and the second heat insulating plate (B2) to reduce the flow resistance of the heat medium.
  • the outer wall surrounding the combustion chamber (C) is provided with a sensible heat unit heat medium flow path (P3) through which the heat medium flows, so that the outer wall of the combustion chamber (C) can be insulated, the combustion chamber (C) is the blister cooling unit (B) and sensible heat By the sub-heat medium flow path P3, heat insulation is attained over the whole area
  • region is provided with a sensible heat unit heat medium flow path (P3) through which the heat medium flows, so that the outer wall of the combustion chamber (C) can be insulated, the combustion chamber (C) is the blister cooling unit (B) and sensible heat By the sub-heat medium flow path P3, heat insulation is attained over the whole area
  • P3 sensible heat unit heat medium flow path
  • the second protrusion 230 and the second recess 270 may be configured in the form of a comb bent in the opposite direction.
  • the first planar portion 210 and the second planar portion 250 are in contact with each other, and the second protrusions bent in opposite directions in one unit plate
  • a latent heat portion heat medium flow path P1 through which the heat medium flows is formed, and the second recessed portion 270 of the unit plate on one side and the unit plate on the other side are stacked adjacently.
  • the latent heat part combustion gas flow path P2 through which the combustion gas flows is formed between the second protrusions 230.
  • the second protrusion 230 and the second recess 270 are configured in the shape of a comb bent in opposite directions, thereby forming a heat medium passing through the latent heat medium heat medium flow path P1 and a latent heat combustion gas flow path P2.
  • a plurality of first cutouts 241 are formed at the combustion gas discharge side of the first flange part 240, and a plurality of second cutouts are formed at the combustion gas discharge side of the second flange part 280. 281 is formed, and when the first plate and the second plate are stacked, the combustion gas passage part D is formed in a portion of the first cutout 241 and the second cutout 281. .
  • the combustion gas passing part (D) is formed in a plurality of spaced apart in the horizontal direction and the longitudinal direction at the lower portion of the latent heat portion 200A, whereby the combustion gas passing through the latent heat portion 200A is lower than the latent heat portion 200A It can be dispensed by a uniform flow rate over the entire area of the, to reduce the flow resistance of the combustion gas discharged through the latent heat portion 200A toward the combustion gas discharge unit 300 side and to prevent noise and vibration do.
  • guide parts 221 and 261 are formed in the heat medium flow path P3 of the sensible heat part 200A to guide the heat medium to flow toward the center of the combustion chamber C.
  • the guide parts 221 and 261 are formed in plural from the outer part of the sensible heat part 200A in the circumferential direction.
  • the outer portion of the sensible heat portion 200A refers to an area between the width middle portion and the outer end of the sensible heat portion 200A and is close to the outer end of the sensible heat portion 200A.
  • the guide parts 221 and 261 may include a plurality of first guide parts 221 protruding from the first plate toward the sensible heat medium flow path P3 and protruding toward the sensible heat medium heat path P3 from the second plate.
  • the second guide part 261 is formed at a position corresponding to the first guide part 221.
  • the protruding end of the first guide part 221 and the protruding end of the second guide part 261 are formed to be in contact with each other, thereby providing a bonding strength between the first plate and the second plate. Can improve.
  • the first guide part 221 is spaced apart in a diagonal direction toward the combustion chamber C from the rear of the first guide 221a located in front of the flow direction of the heat medium and the first guide 221a.
  • the second guide 221b is positioned, and the third guide 221c is spaced apart from the rear of the first guide 221a.
  • the second guide part 226 may also include the first guide part (221). 221 may be configured to correspond to.
  • the heat medium flowing along the sensible heat transfer medium flow path (P3) is the flow path of the heating medium by the guide portion (221, 261) combustion chamber (C) Since the separation distance between the burner 100 mounted in the combustion chamber C and the heat medium becomes closer, the heat of combustion of the burner 100 is effectively transmitted to the heat medium, and the turbulence is promoted in the flow of the heat medium, so that the heat transfer efficiency is increased. Can improve.
  • a plurality of first interval holding parts 222 protruding toward the sensible heat combustion gas flow path P4 are formed in the first protrusion 220, and sensible heat is formed in the first recess 260.
  • a plurality of second interval holding portions 262 protruding toward the secondary combustion gas flow path P4 and formed at positions corresponding to the first interval holding portions 222 are formed.
  • the protruding end of the first spacing holding unit 222 and the protruding end of the second spacing holding unit 262 are formed to abut.
  • the interval between the sensible heat combustion gas flow path P4 can be kept constant and the bonding strength between the first plate and the second plate can be improved.
  • the interval is preferably set in the range of 0.8 ⁇ 1.6mm.
  • one of the ends of the first plate and the end of the second plate positioned around the combustion chamber C is bent and seamed to closely contact the other.
  • the length of the end S of the seamed first and second plates is preferably set in a range of 1 to 5 mm to prevent overheating of the seamed end S and to maintain welding quality.
  • the width E1 of the side region facing the latent heat portion 200B is the width E2 of the region opposite to the latent heat portion 200B. It is preferable to form larger than). Since the combustion gas generated in the combustion chamber C mostly flows toward the latent heat portion B, the width E1 of the side region facing the latent heat portion 200B is the width E2 of the region opposite to the latent heat portion 200B. By forming larger than), the heat transfer area of the region where heat exchange is actively performed is more secured.
  • FIG. 14 shows the flow direction of the combustion gas.
  • the combustion gas generated by the combustion of the burner 100 flows radially outward in the combustion chamber C and passes through the sensible heat combustion gas flow path P4 formed between the unit plates of the sensible heat portion 200A. In this process, the sensible heat of the combustion gas is transferred to the heat medium passing through the sensible heat medium heat passage (P3).
  • Combustion gas moving downward through the sensible heat combustion gas flow path (P4) is moved downward through the latent heat combustion gas flow path (P2) formed between the unit plates of the latent heat portion (200B), in this process combustion gas
  • the latent heat of condensate contained in the water vapor is transferred to the heat medium passing through the sensible heat medium flow path (P1) to preheat the heat medium.
  • Combustion gas that reaches the lower portion of the latent heat combustion gas flow path (P2) is discharged downward through a plurality of combustion gas passage (D) formed at a predetermined interval in the lower portion of the latent heat portion (200B).
  • the combustion gas is discharged divided by a uniform flow rate through the entire lower region of the latent heat portion 200B by the combustion gas passing portion (D) formed at regular intervals to prevent the combustion gas from being concentrated to one side to prevent combustion gas. It can reduce the flow resistance of, and also minimize the occurrence of noise and vibration.
  • the combustion gas passing through the combustion gas passing part (D) is discharged upward through the lower cover 310 and the combustion gas discharge pipe 320, and the condensed water discharges the condensate discharge pipe 311 connected to the lower part of the lower cover 310. Is discharged through.
  • FIGS. 4 and 6 show the flow direction of the heat medium.
  • the heat medium flowing into the heat medium inlet 201 formed in the first plate 200a-1 located in front of the plurality of plates is the first formed in the plurality of plates 200b-1 to 200a-12 stacked behind it. Between the first plate 200a-12 and the second plate 200b-12 of the unit plate 200-12 located in the rearmost through the through hole (H1) and the fifth through hole (H5) in order It flows toward the blister cooling part B provided. And, the heat medium of some flow rate of the heat medium which passes sequentially through the said 1st through-hole H1 and the 5th through-hole H5 is provided in parallel in the inside of each unit plate 200-1 to 200-11.
  • the heat medium flow path of the latent heat unit 200B is provided in multiple parallel, the heat resistance of the heat medium passing through the latent heat medium heat passage (P1) is reduced, and the latent heat medium heat medium passage (P1) is a latent heat combustion gas flow path ( Since alternately disposed adjacent to P2), the heat medium passing through the latent heat transfer medium passage (P1) can be preheated by effectively absorbing the latent heat of water vapor contained in the combustion gas.
  • the heat medium passing through the blister cooling part (B) absorbs heat transferred to the rear of the combustion chamber (C), and then, has a third through hole formed in the first plate (200a-12) of the twelfth unit plate (200-12). Passes through the third through holes (H3) and the seventh through holes (H7) formed in the sphere (H3) and the plates (200b-11 ⁇ 200b-9) sequentially stacked in front of them.
  • the third through holes H3 and the seventh through holes H7 are sequentially formed.
  • Some of the heat medium flowing into the sensible heat medium heat medium flow path (P3) formed in each unit plate (200-12 ⁇ 200-9) is branched in both directions to pass through the third through holes (H3) and the seventh through holes (H7) After flowing in the direction toward the fourth through hole (H4) and the eight through hole (H8) located in the diagonal direction of the) through the fourth through holes (H4) and the eight through holes (H8) in sequence It will flow forward.
  • the heat medium passing through the fourth through hole H4 and the eighth through hole H8 of the plates 200a-9 and 200b-8 is formed in the plates 200a-8 through 200b-5 sequentially stacked in front of the plates 200a-9 and 200b-8.
  • the fourth through hole (H4) and the eighth through hole (H8) pass sequentially.
  • the fourth through holes H4 and the eighth through holes H8 are sequentially formed.
  • Some of the heat medium flowing into the sensible heat medium heat medium flow path (P3) formed in each unit plate (200-8 ⁇ 200-5) is branched in both directions to pass through the fourth through holes (H4) and eighth through holes (H8).
  • the heat medium passing through the third through hole H3 and the seventh through hole H7 of the plates 200a-5 and 200b-4 is formed on the plates 200a-4 to 200b-1 which are sequentially stacked in front of the plates. Passes through the third through hole (H3) and the seventh through hole (H7) in order.
  • the third through holes H3 and the seven through holes are blocked.
  • the fourth through hole (H4) and the eighth through hole (H8) after flowing in the direction toward the fourth through hole (H4) and the eight through hole (H8) located diagonally from the seven through hole (H7) Are sequentially passed through the heat medium outlet 202 formed in the plate (200a-1) located in the foremost.
  • FIG. 6 illustrates the flow paths of the heat medium in the latent heat unit 200B and the sensible heat unit 200A described above in units of plate groups.
  • the first plate group includes a set of eight plates from the front to the rear.
  • the case consisting of (200-A) and the second plate group (200-B) and the third plate group (200-C) has been described as an example.
  • the number of plates can of course be set differently.
  • the flow paths of the heat medium in the sensible heat unit 200A are connected in series, so that the flow path of the heat medium can be formed as long as possible in the limited space of the sensible heat unit 200A, thereby improving heat exchange efficiency between the heat medium and the combustion gas. It can greatly improve.
  • the heat exchanger 1 ' according to the present embodiment has a difference in the heat medium flow path of the latent heat portion 200B, compared with the heat exchanger 1 according to the above-described embodiment, and the other configurations are configured the same. Therefore, the same reference numerals are given to the same members as the above-described embodiment, and description thereof will be omitted.
  • the latent heat part 200B has a first latent heat part 200B-1 and a second latent heat part 200B-2 at both sides with a heat medium blocking part 290 interposed therebetween.
  • the heat medium flow path of the first latent heat part 200B-1 and the second latent heat part 200B-2 is communicated through a heat medium connection path P1 'formed at one side of the heat medium blocking part 290. Consists of a structure.
  • the heat medium flowing through the heat medium inlet 201 moves to one side along the heat medium flow path of the first latent heat part 200B-1, as indicated by the arrow in FIG. After passing through P1 ', the flow direction is reversed and moved to the other side along the heat medium flow path of the second latent heat part 200B-2, and the blister cooling part B and the sensible heat medium heat path ( Flow along P3).
  • the heat medium flow path in the latent heat unit 200B can be formed longer than in the above-described embodiment, so that the absorption efficiency of latent heat can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
  • Details Of Fluid Heaters (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

본 발명은 열매체와 버너의 연소열 간의 열교환 효율을 향상시킨 열교환기에 관한 것으로, 복수의 플레이트 사이의 공간에 열매체가 유동하는 열매체유로와, 버너에서 연소된 연소가스가 유동하는 연소가스유로가 인접하게 교대로 형성된 열교환부를 구비하되, 상기 열교환부는, 연소실의 외측을 둘러싸며 상기 플레이트의 일측 영역으로 이루어져 버너의 연소에 의해 발생한 연소가스의 현열을 이용하여 열매체를 가열하는 현열부와, 상기 플레이트의 타측 영역으로 이루어져 현열부에서 열교환을 마친 연소가스에 포함된 수증기의 잠열을 이용하여 열매체를 가열하는 잠열부로 이루어지고, 상기 현열부의 열매체유로에는 열매체가 연소실의 중앙을 향하여 유동하도록 유도하는 가이드부가 형성된 것을 특징으로 한다.

Description

열교환기
본 발명은 열교환기에 관한 것으로서, 더욱 상세하게는 다수개의 플레이트를 적층시켜 현열부와 잠열부를 일체로 형성함으로써 조립구조를 간소화함과 아울러 열매체와 연소가스 간에 열교환 효율을 향상시킨 열교환기에 관한 것이다.
난방용 또는 온수용으로 사용되는 보일러는 난방수 또는 직수(이하, ‘열매체’라 통칭함)를 열원에 의해 가열시켜 원하는 지역을 난방하거나 온수를 공급하는 장치로서, 가스와 공기의 혼합기를 연소시키는 버너와, 연소가스의 연소열을 열매체로 전달하는 열교환기를 포함하여 구성된다.
초기에 생산된 보일러는 버너의 연소 시 발생하는 현열만을 이용하여 열매체를 가열하는 방식의 열교환기를 사용하였으나, 근래에 생산되는 보일러는 열효율을 향상시키기 위해 연소실에서 발생되는 연소가스의 현열을 흡수하는 현열 열교환기와, 상기 현열 열교환기에서 열교환을 마친 연소가스에 포함되어 있는 수증기가 응축되면서 발생하는 잠열을 흡수하는 잠열 열교환기를 구비한 콘덴싱 보일러가 사용되고 있다. 이러한 콘덴싱 보일러는 가스보일러 뿐만 아니라 기름보일러에도 실용화되어 보일러 효율의 증가 및 연료비 절감에 많은 기여를 하고 있다.
이와 같이 현열 열교환기와 잠열 열교환기로 구성되는 종래의 콘덴싱 방식의 열교환기는, 통상 하우징의 상부에 송풍기와 연료공급노즐 및 버너가 설치되고, 상기 버너의 하측으로 하우징의 내부에는 열교환파이프의 외측에 열교환핀이 결합된 현열 열교환기와 잠열 열교환기가 순차적으로 설치된 구조로 이루어져 있다.
그러나, 이와 같은 종래의 콘덴싱 방식의 열교환기에 있어서는, 하우징의 상부에 위치하는 송풍기와, 하우징의 내부에 개별적으로 구성된 현열 열교환기와 잠열 열교환기의 구조상 열교환기의 부피가 커지게 되는 문제가 있었다.
이러한 문제를 해소하고 최소한의 부피를 갖도록 하면서 열교환 효율을 향상시키기 위한 선행기술로서, 등록특허 제10-1321708호, 등록특허 제10-0813807호 등에는, 중앙에 버너가 위치하고, 버너의 둘레에 코일형태로 감겨진 열교환파이프로 구성된 열교환기가 개시되어 있다.
상기 선행기술 문헌들에 소개된 열교환기는, 열매체가 열교환파이프의 내부를 유동하는 과정에서 원심력에 의해 버너로부터 멀어지는 방향으로 유도되므로 연소가스와 열매체 간의 열교환 효율이 떨어지게 되는 문제가 있다.
또한 종래의 열교환기는 열매체의 유동경로가 짧아 열매체와 연소가스 간의 전열 면적을 넓게 확보할 수 없는 구조적인 한계가 있다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 연소실의 둘레에 구비되는 열매체유로를 따라 유동하는 열매체가 연소실의 중앙을 향하도록 유도함으로써 열매체와 버너의 연소열 간의 열교환 효율을 향상시킨 열교환기를 제공함에 그 목적이 있다.
본 발명의 다른 목적은, 한정된 공간에 열매체의 유동 경로를 길게 형성하여 열매체와 연소가스 간의 전열 면적을 넓게 확보하는 한편, 열매체와 연소가스 간의 열교환 효율을 극대화할 수 있는 열교환기를 제공함에 그 목적이 있다.
상술한 바와 같은 목적을 구현하기 위한 본 발명의 열교환기는, 복수의 플레이트 사이의 공간에 열매체가 유동하는 열매체유로와, 버너(100)에서 연소된 연소가스가 유동하는 연소가스유로가 인접하게 교대로 형성된 열교환부(200)를 구비하되, 상기 열교환부(200)는, 연소실(C)의 외측을 둘러싸며 상기 플레이트의 일측 영역으로 이루어져 상기 버너(100)의 연소에 의해 발생한 연소가스의 현열을 이용하여 열매체를 가열하는 현열부(200A)와, 상기 플레이트의 타측 영역으로 이루어져 상기 현열부(200A)에서 열교환을 마친 연소가스에 포함된 수증기의 잠열을 이용하여 열매체를 가열하는 잠열부(200B)로 이루어지고, 상기 현열부(200A)의 열매체유로에는 상기 열매체가 상기 연소실(C)의 중앙을 향하여 유동하도록 유도하는 가이드부(221,261)가 형성된 것을 특징으로 한다.
본 발명에 따른 열교환기에 의하면, 현열부의 열매체유로 내에 가이드부를 형성하여 열매체가 연소실의 중앙을 향하여 유동하도록 유도함으로써 열매체와 버너의 연소열 간의 열교환 효율을 향상시킬 수 있다.
또한 유사한 패턴으로 제작된 다수의 단위플레이트를 적층시켜 다중 병렬의 열매체유로를 갖는 잠열부와 직렬의 열매체유로를 갖는 현열부를 일체로 형성함으로써 한정된 공간 내에 열매체의 유동 경로를 최대한 길게 형성함으로써 열매체와 연소가스 간의 열교환 효율을 극대화할 수 있다.
도 1은 본 발명의 일실시예에 따른 열교환기의 사시도,
도 2는 본 발명의 일실시예에 따른 열교환기의 우측면도,
도 3은 본 발명의 일실시예에 따른 열교환기의 정면도,
도 4는 본 발명의 일실시예에 따른 열교환기의 분해 사시도,
도 5는 도 4에 도시된 단위플레이트의 일부를 확대하여 도시한 사시도,
도 6은 잠열부와 현열부를 경유하는 열매체의 유동 경로를 나타낸 사시도,
도 7은 도 3의 A-A 선을 따라 절개한 사시도,
도 8은 도 3의 B-B 선을 따라 절개한 사시도,
도 9는 도 3의 C-C 선을 따라 절개한 사시도,
도 10은 도 3의 D-D 선을 따라 절개한 사시도,
도 11은 도 3의 E-E 선을 따라 절개한 사시도,
도 12는 도 3의 F-F 선을 따라 절개한 사시도,
도 13은 도 3의 G-G 선을 따라 절개한 사시도,
도 14는 도 3의 H-H 선을 따라 절개한 사시도,
도 15는 도 3의 I-I 선을 따라 절개한 사시도,
도 16은 잠열부의 하부에 연소가스 통과부가 형성된 모습을 나타낸 사시도,
도 17은 열매체가 가이드부에 의해 연소실의 내측을 향하는 방향으로 유도되는 상태를 보여주는 도면,
도 18은 본 발명의 다른 실시예에 따른 열교환기의 사시도,
도 19는 도 18의 정면도,
도 20은 도 19의 J-J 선을 따라 절개한 사시도.
** 부호의 설명 **
1,1' : 열교환기 100 : 버너
200 : 열교환부 200A : 현열부
200B : 잠열부 200B-1 : 제1잠열부
200B-2 : 제2잠열부 200-1~200-12 : 단위플레이트
200a-1~200a-12 : 제1플레이트 200b-1~200b-12 : 제2플레이트
200-A : 제1플레이트군 200-B : 제2플레이트군
200-C : 제3플레이트군 201 : 열매체 입구
202 : 열매체 출구 210 : 제1평면부
220 : 제1돌출부 221 : 제1가이드부
222 : 제1간격유지부 230 : 제2돌출부
240 : 제1플랜지부 241 : 제1절개부
250 : 제2평면부 260 : 제1함몰부
261 : 제2가이드부 262 : 제2간격유지부
270 : 제2함몰부 280 : 제2플랜지부
281 : 제2절개부 290 : 열매체 차단부
300 : 연소가스 배출부 310 : 하부덮개
311 : 응축수 배출관 320 : 연소가스 배출관
A1 : 제1개방구 A2 : 제2개방구
B : 물집냉각부 B1 : 제1단열판
B2 : 제2단열판 C : 연소실
D : 연소가스 통과부 H1~H8 : 관통구
H3',H7' : 제1막힘부 H4',H8' : 제2막힘부
H3-1,H4-1 : 제1플랜지부 H7-1,H8-1 : 제2플랜지부
P1 : 잠열부 열매체유로 P1' : 열매체 연결유로
P2 : 잠열부 연소가스유로 P3 : 현열부 열매체유로
P4 : 현열부 연소가스유로
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
도 1 내지 도 6을 참조하면, 본 발명의 일실시예에 따른 열교환기(1)는, 공기와 연료의 혼합기를 연소시켜 열소열과 연소가스를 발생시키는 버너(100)와, 상기 버너(100)의 둘레에 구비되어 버너(100)의 연소에 의해 발생하는 연소가스와 열매체 간에 열교환이 이루어지고, 복수의 플레이트가 적층되어 구성되는 열교환부(200)와, 상기 열교환부(200)를 통과한 연소가스가 배출되는 연소가스 배출부(300)를 포함한다.
상기 버너(100)는 원통형 버너로서, 열교환부(200)에 마련되는 연소실(C) 공간에 정면에서부터 수평방향으로 삽입되어 조립되며, 이로써 버너(100)의 탈착 및 열교환기(1)의 유지보수 작업의 편의성을 향상시킬 수 있다.
상기 열교환부(200)는, 연소실(C)의 외측을 둘러싸며 상기 플레이트의 일측 영역으로 이루어져 버너(100)의 연소에 의해 발생한 연소가스의 현열을 이용하여 열매체를 가열하는 현열부(200A)와, 상기 플레이트의 타측 영역으로 이루어져 현열부(200A)에서 열교환을 마친 연소가스에 포함된 수증기가 응축되면서 발생하는 잠열을 이용하여 열매체를 가열하는 잠열부(200B)로 구성된다.
상기 복수의 플레이트는 현열부(200A)가 상부에 위치하고, 잠열부(200B)가 하부에 위치하도록 직립구조로 배치되어 전후방으로 적층된다.
상기 연소가스 배출부(300)는, 잠열부(200B)의 하부를 덮는 하부덮개(310)와, 상기 하부덮개(310)에서 일측으로 연결되어 상측으로 연장되는 연소가스 배출관(320)으로 구성된다. 상기 하부덮개(310)의 하부에는 잠열부(200B)에서 발생하는 응축수를 배출하기 위한 응축수 배출관(311)이 연결된다.
이하, 상기 열교환부(200)를 구성하는 복수의 플레이트와 현열부(200A) 및 잠열부(200B)의 구성 및 작용을 설명한다.
상기 열교환부(200)는, 복수의 플레이트가 전방에서 후방으로 적층되어 구성되고, 상부에 위치하는 현열부(200A)와 하부에 위치하는 잠열부(200B)는 상기 복수의 플레이트에 일체로 형성된다.
일실시예로서, 상기 복수의 플레이트는, 제1 내지 제12단위플레이트(200-1,200-2,200-3,200-4,200-5,200-6,200-7,200-8,200-9,200-10,200-11,200-12)로 구성되고, 상기 각각의 단위플레이트는 전방에 위치하는 제1플레이트(200a-1,200a-2,200a-3,200a-4,200a-5,200a-6,200a-7,200a-8,200a-9,200a-10,200a-11,200a-12)와, 그 후방에 적층되는 제2플레이트(200b-1,200b-2,200b-3,200b-4,200b-5,200b-6,200b-7,200b-8,200b-9,200b-10,200b-11,200b-12)로 구성된다.
도 7 내지 도 13을 참조하면, 상기 각각의 단위플레이트를 구성하는 제1플레이트와 제2플레이트 사이에는 잠열부 열매체유로(P1)와 현열부 열매체유로(P3)가 형성되고, 인접하게 적층되는 단위플레이트 중 일측에 위치하는 단위플레이트를 구성하는 제2플레이트와, 타측에 위치하는 단위플레이트의 제1플레이트 사이에는 잠열부 연소가스유로(P2)와 현열부 연소가스유로(P4)가 형성된다.
도 4와 도 5를 참조하면, 상기 제1플레이트는, 제1평면부(210)와, 상기 제1평면부(210)의 일측에서 전방으로 돌출되고 중앙에는 제1개방구(A1)가 형성되어 상기 현열부(200A)를 구성하는 제1돌출부(220)와, 상기 제1평면부(210)의 타측에서 전방으로 돌출되어 상기 잠열부(200B)를 형성하는 제2돌출부(230), 및 제1플레이트의 가장자리부에서 후방으로 절곡된 제1플랜지부(240)로 이루어진다.
상기 제1플레이트 중 최전방에 위치하는 제1플레이트(200a-1)에는, 잠열부(200B)의 하부 일측에 열매체 입구(201)가 형성되고, 현열부(200A)의 상부 일측에는 열매체 출구(202)가 형성된다.
상기 제1플레이트 중 상기 최전방에 위치하는 제1플레이트(200a-1)의 후방으로 순차 적층되는 제1플레이트(200a-2~200a-12)에는, 잠열부(200B)의 하부 일측에 제1관통구(H1)가 형성되고, 잠열부(200B)의 상부 타측에는 제2관통구(H2)가 형성되며, 현열부(200A)의 하부 타측에는 제3관통구(H3)가 형성되고, 현열부(200A)의 상부 일측에는 제4관통구(H4)가 형성된다.
상기 제2플레이트는, 제2평면부(250)와, 상기 제2평면부(250)의 일측에서 후방으로 함몰되어 상기 제1돌출부(220)와의 사이에 현열부 열매체유로(P3)를 형성하고 중앙에는 상기 제1개방구(A1)와 대응되는 제2개방구(A2)가 형성된 제1함몰부(260)와, 상기 제2평면부(250)의 타측에서 후방으로 함몰되어 상기 제2돌출부(230)와의 사이에 잠열부 열매체유로(P1)를 형성하는 제2함몰부(270), 및 제2플레이트의 가장자리부에서 후방으로 절곡된 제2플랜지부(280)로 이루어진다.
상기 제2플레이트에는, 잠열부(200B)의 하부 일측에 제5관통구(H5)가 형성되고, 잠열부(200B)의 상부 타측에는 제6관통구(H6)가 형성되며, 현열부(200A)의 하부 타측에는 제7관통구(H7)가 형성되고, 현열부(200A)의 상부 일측에는 제8관통구(H8)가 형성된다.
그리고, 제9단위플레이트(200-9)의 제1플레이트(200a-9)와, 제8단위플레이트(200-8)의 제2플레이트(200b-8)에는, 현열부(200A)의 하부 타측에 제1막힘부(H3',H7')가 형성되고, 제5단위플레이(200-5)의 제1플레이트(200a-5)와 제4단위플레이트(200-4)의 제2플레이트(200b-4)에는 현열부(200A)의 상부 일측에 제2막힘부(H4',H8')가 형성된다. 상기 제1막힘부(H3',H7')와 제2막힘부(H4',H8')는 현열부 열매체유로(P3)를 통과하는 열매체의 유동경로를 변환시켜 직렬 유로를 형성하기 위한 구성으로서, 그 작용은 후술하기로 한다.
한편, 도 10과 도 13을 참조하면, 상기 관통구(H3,H4)에는 현열부 연소가스유로(P4)를 향하여 돌출된 제1플랜지부(H3-1,H4-1)가 형성되고, 상기 관통구(H7,H8)에는 상기 현열부 연소가스유로(P4)를 향하여 돌출되어 상기 제1플랜지부(H3-1,H4-1)의 단부에 맞닿는 제2플랜지부(H7-1,H8-1)가 형성된다.
상기 제1플랜지부(H3-1,H4-1)와 제2플랜지부(H7-1,H8-1)의 구성에 의하면, 현열부 열매체유로(P3)와 현열부 연소가스유로(P4)가 공간적으로 분리됨과 아울러 현열부 연소가스유로(P4)의 간격을 일정하게 유지할 수 있다.
그리고, 도 4와 도 15를 참조하면, 상기 현열부(200A)의 후방에는 잠열부(200B)의 열매체유로를 통과한 열매체가 현열부(200A)의 열매체유로로 유동하도록 열매체의 연결유로를 제공함과 아울러 상기 연소실(C)의 단열을 위한 물집냉각부(B)가 형성된다.
상기 물집냉각부(B)는, 최후방에 위치하는 단위플레이트(200-12)의 제1플레이트(200a-12)에 형성된 제1단열판(B1)과 제2플레이트(200b-12)에 형성된 제2단열판(B2) 사이에 열매체가 충진된 것으로 구성된다. 상기 제1단열판(B1)과 제2단열판(B2)에는 빗살 형태를 갖는 돌출부와 함몰부가 서로 교차되도록 형성되어 상기 물집냉각부(B)를 통과하는 열매체의 유동에 난류가 발생되도록 구성할 수 있다.
이와 같은 물집냉각부(B)의 구성에 의하면, 별도의 단열재를 설치하지 않더라도 연소실(C)의 단열이 가능해져 열교환기(1)의 과열을 방지할 수 있고, 잠열부 열매체유로(P1)와 현열부 열매체유로(P3)를 연결하는 열매체의 연결유로를 제1단열판(B1)과 제2단열판(B2) 사이의 공간에 넓게 확보할 수 있어 열매체의 유로 저항을 감소시킬 수 있다. 그리고, 상기 연소실(C)을 둘러싸는 외벽에는 열매체가 흐르는 현열부 열매체유로(P3)가 마련되어 연소실(C) 외벽의 단열이 가능하므로, 상기 연소실(C)은 상기 물집냉각부(B)와 현열부 열매체유로(P3)에 의해 전체 영역에 걸쳐 단열이 가능해진다.
한편, 상기 제2돌출부(230)와 제2함몰부(270)는 상반된 방향으로 절곡된 빗살 형태로 구성될 수 있다. 이 경우, 상기 제1플레이트와 제2플레이트의 적층 시, 상기 제1평면부(210)와 제2평면부(250)는 맞닿게 되고, 하나의 단위플레이트에서 상반된 방향으로 절곡된 제2돌출부(230)와 제2함몰부(270)의 사이에는 열매체가 유동하는 잠열부 열매체유로(P1)가 형성되고, 인접하게 적층되는 일측의 단위플레이트의 제2함몰부(270)와 타측의 단위플레이트의 제2돌출부(230) 사이에는 연소가스가 유동하는 잠열부 연소가스유로(P2)가 형성된다.
이와 같이 제2돌출부(230)와 제2함몰부(270)는 상반된 방향으로 절곡된 빗살 형태로 구성함으로써, 잠열부 열매체유로(P1)를 통과하는 열매체와, 잠열부 연소가스유로(P2)를 통과하는 연소가스의 유동에 난류를 발생시켜 열교환 효율을 높일 수 있다.
도 7과 도 16을 참조하면, 상기 제1플레이트와 제2플레이트의 적층 시, 상기 제1플랜지부(240)와 제2플랜지부(280)는 일부가 중첩되며, 중첩된 부위가 용접 결합됨으로써, 열교환부(200)의 외벽을 형성하게 된다.
그리고, 이웃하는 플레이트의 제1플랜지부(240)와 제2플랜지부(280)가 중첩된 상태에서 상기 복수의 플레이트의 가장자리 중 일부 영역에는 상기 잠열부 연소가스유로(P2)를 유동하는 연소가스가 연소가스 배출부(300)를 향하여 통과하는 연소가스 통과부(D)가 형성된다.
이를 위한 구성으로, 상기 제1플랜지부(240)의 연소가스 배출측에는 복수의 제1절개부(241)가 형성되고, 상기 제2플랜지부(280)의 연소가스 배출측에는 복수의 제2절개부(281)가 형성되며, 상기 제1플레이트와 제2플레이트의 적층시, 상기 제1절개부(241)와 제2절개부(281)의 일부영역에 상기 연소가스 통과부(D)가 형성된다.
상기 연소가스 통과부(D)는 잠열부(200A)의 하부에 횡방향과 종방향으로 일정 간격 이격되어 다수로 형성되며, 이로써 잠열부(200A)를 통과한 연소가스가 잠열부(200A) 하부의 전체 영역에 걸쳐 균일한 유량씩 분배되어 배출될 수 있어, 잠열부(200A)를 통과하여 연소가스 배출부(300) 측으로 배출되는 연소가스의 유동 저항을 감소시키고 소음 및 진동을 방지하는 기능을 한다.
한편, 상기 현열부(200A)의 열매체유로(P3)에는 열매체가 연소실(C)의 중앙을 향하여 유동하도록 유도하는 가이드부(221,261)가 형성된다. 상기 가이드부(221,261)는 현열부(200A)의 외측부에 둘레방향으로 이격되어 복수로 형성된다.
여기서, 상기 현열부(200A)의 외측부는, 현열부(200A)의 너비 중간부와 외측단 사이의 영역으로서, 상기 현열부(200A)의 외측단에 근접하는 영역을 지칭한다.
상기 가이드부(221,261)는, 제1플레이트에서 현열부 열매체유로(P3)를 향하여 돌출된 복수의 제1가이드부(221)와, 제2플레이트에서 현열부 열매체유로(P3)를 향하여 돌출되며 상기 제1가이드부(221)와 대응되는 위치에 형성된 복수의 제2가이드부(261)로 구성된다.
도 11과 도 17을 참조하면, 상기 제1가이드부(221)의 돌출된 단부와, 제2가이드부(261)의 돌출된 단부는 맞닿도록 형성되어, 제1플레이트와 제2플레이트 간의 결합강도를 향상시킬 수 있다.
상기 제1가이드부(221)는, 열매체의 유동방향을 기준으로 전방에 위치하는 제1가이드(221a)와, 상기 제1가이드(221a)의 후방에서 연소실(C)을 향하는 사선 방향으로 이격되어 위치하는 제2가이드(221b)와, 상기 제1가이드(221a)의 후방으로 이격되어 위치하는 제3가이드(221c)로 구성될 수 있으며, 제2가이드부(226) 또한 상기 제1가이드부(221)와 대응되도록 구성될 수 있다.
이와 같은 가이드부(221,261)의 구성에 의하면, 도 17에서 화살표로 도시된 바와 같이, 현열부 열매체유로(P3)를 따라 유동하는 열매체는 상기 가이드부(221,261)에 의해 그 유동경로가 연소실(C)을 향하는 방향으로 유도되므로, 연소실(C) 내에 장착되는 버너(100)와 열매체 간의 이격 거리가 가까워져 버너(100)의 연소열이 열매체에 효과적으로 전달되고, 열매체의 유동에 난류발생이 촉진되어 열전달 효율을 향상시킬 수 있다.
도 12를 참조하면, 상기 제1돌출부(220)에는 현열부 연소가스유로(P4)를 향하여 돌출된 복수의 제1간격유지부(222)가 형성되고, 상기 제1함몰부(260)에는 현열부 연소가스유로(P4)를 향하여 돌출되며 상기 제1간격유지부(222)와 대응되는 위치에 형성된 복수의 제2간격유지부(262)가 형성된다. 상기 제1간격유지부(222)의 돌출된 단부와 상기 제2간격유지부(262)의 돌출된 단부는 맞닿도록 형성된다.
이와 같은 제1간격유지부(222)와 제2간격유지부(262)의 구성에 의하면, 전술한 제1플랜지부(H3-1,H4-1)와 제2플랜지부(H7-1,H8-1)의 구성과 더불어 현열부 연소가스유로(P4)의 간격을 일정하게 유지하고, 제1플레이트와 제2플레이트 간의 결합강도를 향상시킬 수 있다.
한편, 상기 현열부 연소가스유로(P4)를 통과하는 연소가스의 유동에 국부적인 층류를 형성함으로써 연소가스와 열매체 간에 열교환 효율을 향상시킬 수 있도록 상기 현열부 연소가스유로(P4)의 상하로 이격된 간격은 0.8~1.6mm의 범위에서 설정됨이 바람직하다.
그리고, 도 11과 도 12 및 도 15에 도시된 바와 같이, 연소실(C)의 둘레에 위치하는 제1플레이트의 단부와 제2플레이트의 단부 중 어느 하나는 절곡되어 다른 하나에 밀착되도록 시밍(Seaming) 가공되어 용접 결합된다. 이 경우, 시밍 가공된 단부(S)의 과열을 방지하고 용접 품질을 유지할 수 있도록 상기 시밍 가공된 제1플레이트와 제2플레이트의 단부(S)의 길이는 1~5mm의 범위로 설정됨이 바람직하다.
한편, 도 17을 참조하면, 상기 현열부(200A)를 구성하는 플레이트의 영역 중, 잠열부(200B)를 향하는 측 영역의 너비(E1)가 상기 잠열부(200B)의 반대측 영역의 너비(E2)보다 크게 형성됨이 바람직하다. 이는, 연소실(C)에서 발생된 연소가스는 대부분 잠열부(B)를 향하여 유동하게 되므로 잠열부(200B)를 향하는 측 영역의 너비(E1)를 잠열부(200B)의 반대측 영역의 너비(E2)보다 크게 형성함으로써, 열교환이 활발하게 이루어지는 영역의 전열면적을 더욱 넓게 확보하기 위함이다.
이하, 본 발명에 따른 열교환기(1)에서 연소가스의 유동 경로와 열매체의 유동 경로를 설명한다.
먼저, 도 14를 참조하여 연소가스의 유동 경로를 설명한다. 도 14에서 화살표시는 연소가스의 유동 방향을 나타낸 것이다.
버너(100)의 연소에 의해 발생한 연소가스는, 연소실(C) 내에서 방사상의 외측방향으로 유동하여 현열부(200A)의 단위플레이트 사이에 형성된 현열부 연소가스유로(P4)를 통과하게 되며, 이 과정에서 현열부 열매체유로(P3)를 통과하는 열매체에 연소가스의 현열을 전달하게 된다.
상기 현열부 연소가스유로(P4)를 경유하여 하향 이동하는 연소가스는 잠열부(200B)의 단위플레이트 사이에 형성된 잠열부 연소가스유로(P2)를 통과하여 하향 이동하게 되며, 이 과정에서 연소가스의 수증기에 포함된 응축수의 잠열은 현열부 열매체유로(P1)를 통과하는 열매체에 전달되어 열매체를 예열하게 된다.
상기 잠열부 연소가스유로(P2)의 하부에 다다른 연소가스는 잠열부(200B)의 하부에 일정 간격을 두고 다수로 형성된 연소가스 통과부(D)를 통과하여 하방향으로 배출된다. 이때, 상기 연소가스는 일정 간격으로 형성된 연소가스 통과부(D)에 의해 잠열부(200B)의 하부 영역 전체에 걸쳐서 균일한 유량씩 나뉘어 배출됨에 따라 연소가스가 일측으로 쏠리는 현상이 방지되어 연소가스의 유동저항을 줄일 수 있고, 아울러 소음 및 진동의 발생을 최소화할 수 있다.
상기 연소가스 통과부(D)를 통과한 연소가스는 하부덮개(310)와 연소가스 배출관(320)을 통하여 상측으로 배출되고, 응축수는 하부덮개(310)의 하부에 연결된 응축수 배출관(311)을 통하여 배출된다.
이하, 도 4와 도 6을 참조하여 열매체의 유동 경로를 설명한다. 도 4와 도 6에서 화살표시는 열매체의 유동 방향을 나타낸 것이다.
먼저, 잠열부(200B)에서의 열매체의 유동 경로를 설명한다.
다수의 플레이트 중 전면에 위치하는 제1플레이트(200a-1)에 형성된 열매체 입구(201)로 유입된 열매체는, 그 후방에 적층되는 다수의 플레이트(200b-1~200a-12)에 형성된 제1관통구(H1) 및 제5관통구(H5)를 순차로 통과하여 최후방에 위치하는 단위플레이트(200-12)의 제1플레이트(200a-12)와 제2플레이트(200b-12) 사이에 마련되는 물집냉각부(B)를 향하여 유동한다. 그리고, 상기 제1관통구(H1) 및 제5관통구(H5)를 순차로 통과하는 열매체 중 일부 유량의 열매체는 각각의 단위플레이트(200-1~200-11)의 내부에 병렬구조로 마련된 잠열부 열매체유로(P3)를 통과하여 상기 제1관통구(H1) 및 제5관통구(H5)와 대각선 방향에 위치하는 제2관통구(H2) 및 제6관통구(H6)를 순차로 통과하여 상기 제1플레이트(200a-12)와 제2플레이트(200b-12) 사이에 마련되는 물집냉각부(B)를 향하여 유동한다.
이와 같이 잠열부(200B)의 열매체유로는 다중 병렬로 구비되므로, 잠열부 열매체유로(P1)를 통과하는 열매체의 유동저항을 감소시킴과 아울러 잠열부 열매체유로(P1)는 잠열부 연소가스유로(P2)와 인접하게 교대로 배치되므로, 잠열부 열매체유로(P1)를 통과하는 열매체는 연소가스에 포함된 수증기의 잠열을 효과적으로 흡수하여 예열될 수 있다.
다음으로, 현열부(200A)에서의 열매체의 유동 경로를 설명한다.
상기 물집냉각부(B)를 통과한 열매체는 연소실(C)의 후방으로 전달되는 열을 흡수한 후에, 제12단위플레이트(200-12)의 제1플레이트(200a-12)에 형성된 제3관통구(H3)와 그 전방에 순차로 적층되는 플레이트(200b-11~200b-9)에 형성된 제3관통구(H3)와 제7관통구(H7)를 순차로 통과한다.
그리고, 그 전방에 적층되는 플레이트(200a-9,200b-8)에는 제1막힘부(H3',H7')가 형성되므로, 상기 제3관통구(H3)와 제7관통구(H7)를 순차로 통과하여 각각의 단위플레이트(200-12~200-9)에 형성된 현열부 열매체유로(P3)로 유입된 열매체 중 일부는 양방향으로 분기되어 제3관통구(H3)와 제7관통구(H7)의 대각선 방향에 위치하는 제4관통구(H4)와 제8관통구(H8)를 향하는 방향으로 유동한 후에 상기 제4관통구(H4)와 제8관통구(H8)를 순차로 통과하여 전방으로 유동하게 된다.
상기 플레이트(200a-9,200b-8)의 제4관통구(H4)와 제8관통구(H8)를 통과한 열매체는 그 전방에 순차로 적층되는 플레이트(200a-8~200b-5)에 형성된 제4관통구(H4)와 제8관통구(H8)를 순차로 통과한다.
그리고, 그 전방에 적층되는 플레이트(200a-5,200b-4)에는 제2막힘부(H4',H8')가 형성되므로, 상기 제4관통구(H4)와 제8관통구(H8)를 순차로 통과하여 각각의 단위플레이트(200-8~200-5)에 형성된 현열부 열매체유로(P3)로 유입된 열매체 중 일부는 양방향으로 분기되어 제4관통구(H4)와 제8관통구(H8)에서 대각선 방향에 위치하는 제3관통구(H3)와 제7관통구(H7)를 향하는 방향으로 유동한 후에 제3관통구(H3)와 제7관통구(H7)를 순차로 통과하여 전방으로 유동하게 된다.
상기 플레이트(200a-5,200b-4)의 제3관통구(H3)와 제7관통구(H7)를 통과한 열매체는 그 전방에 순차로 적층되는 플레이트(200a-4~200b-1)에 형성된 제3관통구(H3)와 제7관통구(H7)를 순차로 통과한다.
그리고, 최전방에 위치하는 플레이트(200a-1)에는 상기 제3관통구(H3) 및 제7관통구(H7)와 대응되는 부위가 막혀 있으므로, 상기 제3관통구(H3)와 제7관통구(H7)를 순차로 통과하여 각각의 단위플레이트(200-4~200-1)에 형성된 현열부 열매체유로(P3)로 유입된 열매체 중 일부는 양방향으로 분기되어 제3관통구(H3)와 제7관통구(H7)에서 대각선 방향에 위치하는 제4관통구(H4)와 제8관통구(H8)를 향하는 방향으로 유동한 후에 상기 제4관통구(H4)와 제8관통구(H8)를 순차로 통과하여 최전방에 위치하는 플레이트(200a-1)에 형성된 열매체 출구(202)를 통하여 배출된다.
도 6은 상기 설명한 잠열부(200B)와 현열부(200A)에서의 열매체의 유동 경로를 플레이트군 단위로 나타낸 것으로, 본 실시예에서는 전방에서 후방으로 8개씩의 플레이트의 집합으로 이루어진 제1플레이트군(200-A)과 제2플레이트군(200-B) 및 제3플레이트군(200-C)으로 구성된 경우를 예로들어 설명하였으나, 본 발명에서 적층되는 전체 플레이트의 개수 및 각 플레이트군을 구성하는 플레이트의 개수는 이와 달리 설정되어 실시될 수 있음은 물론이다.
상기와 같이 현열부(200A)에서 열매체의 유동 경로는 직렬로 연결되도록 구성함으로써, 현열부(200A)의 한정된 공간 내에서 열매체의 유동경로를 최대한 길게 형성할 수 있어 열매체와 연소가스 간의 열교환 효율을 대폭 향상시킬 수 있다.
이하, 도 18 내지 도 20을 참조하여, 본 발명의 다른 실시예에 따른 열교환기(1')의 구성을 설명한다.
본 실시예에 따른 열교환기(1')는 전술한 실시예에 따른 열교환기(1)와 비교하여, 잠열부(200B)의 열매체유로에 있어서 차이가 있으며, 기타의 구성은 동일하게 구성된다. 따라서, 전술한 실시예와 동일한 부재에는 동일한 도면부호를 부여하고, 그에 대한 설명은 생략한다.
본 실시예에 따른 열교환기(1')에서, 잠열부(200B)는 열매체 차단부(290)를 사이에 두고 양측에 제1잠열부(200B-1)와 제2잠열부(200B-2)로 분할 형성되고, 상기 제1잠열부(200B-1)와 제2잠열부(200B-2)의 열매체유로는 상기 열매체 차단부(290)의 일측에 형성된 열매체 연결유로(P1')를 통해 연통된 구조로 이루어진다.
상기 제1잠열부(200B-1)의 하부 일측에는 열매체 입구(201)와 상기 제1잠열부(200B-1)의 열매체유로에 연통되는 관통구(H1,H5)가 형성되고, 상기 제2잠열부(200B-2)의 상부 일측에는 상기 제2잠열부(200B-2)의 열매체유로와 상기 현열부 열매체유로(P3)에 연통되는 관통구(H2,H6)가 형성되어 있다.
이러한 구성에 의하면, 열매체 입구(201)를 통해 유입된 열매체는, 도 19에서 화살표로 나타낸 바와 같이, 제1잠열부(200B-1)의 열매체유로를 따라 일측으로 이동한 후에 상기 열매체 연결유로(P1')를 통과하며 유동 방향이 반대로 전환되어 제2잠열부(200B-2)의 열매체유로를 따라 타측으로 이동한 후에 전술한 실시예에서와 마찬가지로 물집냉각부(B)와 현열부 열매체유로(P3)를 따라 유동하게 된다.
본 실시예에 의하면, 전술한 실시예와 비교하여 잠열부(200B)에서의 열매체유로를 더 길게 형성할 수 있어 잠열의 흡수 효율을 더욱 향상시킬 수 있다.

Claims (23)

  1. 복수의 플레이트 사이의 공간에 열매체가 유동하는 열매체유로와, 버너(100)에서 연소된 연소가스가 유동하는 연소가스유로가 인접하게 교대로 형성된 열교환부(200)를 구비하되,
    상기 열교환부(200)는, 연소실(C)의 외측을 둘러싸며 상기 플레이트의 일측 영역으로 이루어져 상기 버너(100)의 연소에 의해 발생한 연소가스의 현열을 이용하여 열매체를 가열하는 현열부(200A)와, 상기 플레이트의 타측 영역으로 이루어져 상기 현열부(200A)에서 열교환을 마친 연소가스에 포함된 수증기의 잠열을 이용하여 열매체를 가열하는 잠열부(200B)로 이루어지고,
    상기 현열부(200A)의 열매체유로에는 상기 열매체가 상기 연소실(C)의 중앙을 향하여 유동하도록 유도하는 가이드부(221,261)가 형성된 것을 특징으로 하는 열교환기.
  2. 제1항에 있어서,
    상기 가이드부(221,261)는 상기 현열부(200A)의 외측부에 둘레방향으로 이격되어 복수로 형성된 것을 특징으로 하는 열교환기.
  3. 제2항에 있어서,
    상기 가이드부(221,261)는, 열매체의 유동방향을 기준으로 전방에서 후방으로 이격되며 상기 연소실(C)을 향하는 사선 방향으로 배치된 복수의 가이드부를 포함하는 것을 특징으로 하는 열교환기.
  4. 제1항에 있어서,
    상기 복수의 플레이트는, 제1플레이트와 제2플레이트가 적층된 단위플레이트가 다수로 적층되어 이루어지고,
    상기 단위플레이트의 제1플레이트와 제2플레이트 사이에 상기 열매체유로가 형성되고, 인접하게 적층되는 단위플레이트 중 일측에 위치하는 단위플레이트를 구성하는 제2플레이트와, 타측에 위치하는 단위플레이트의 제1플레이트 사이에 상기 연소가스유로가 형성된 것을 특징으로 하는 열교환기.
  5. 제4항에 있어서,
    상기 가이드부(221,261)는, 상기 제1플레이트에서 상기 열매체유로를 향하여 돌출된 복수의 제1가이드부(221)와, 상기 제2플레이트에서 상기 열매체유로를 향하여 돌출되며 상기 제1가이드부(221)와 대응되는 위치에 형성된 복수의 제2가이드부(261)로 이루어진 것을 특징으로 하는 열교환기.
  6. 제4항에 있어서,
    상기 제1플레이트는, 제1평면부(210)와, 상기 제1평면부(210)의 일측에서 전방으로 돌출되고 중앙에는 제1개방구(A1)가 형성되어 상기 현열부(200A)를 구성하는 제1돌출부(220)와, 상기 제1평면부(210)의 타측에서 전방으로 돌출되어 상기 잠열부(200B)를 형성하는 제2돌출부(230)로 이루어지고,
    상기 제2플레이트는, 제2평면부(250)와, 상기 제2평면부(250)의 일측에서 후방으로 함몰되어 상기 제1돌출부(220)와의 사이에 현열부 열매체유로(P3)를 형성하고 중앙에는 상기 제1개방구(A1)와 대응되는 제2개방구(A2)가 형성된 제1함몰부(260)와, 상기 제2평면부(250)의 타측에서 후방으로 함몰되어 상기 제2돌출부(230)와의 사이에 잠열부 열매체유로(P1)를 형성하는 제2함몰부(270)로 이루어진 것을 특징으로 하는 열교환기.
  7. 제6항에 있어서,
    상기 가이드부(221,261)는, 상기 제1돌출부(220)에서 상기 현열부 열매체유로(P3)를 향하여 돌출된 복수의 제1가이드부(221)와, 상기 제1함몰부(260)에서 상기 현열부 열매체유로(P3)를 향하여 돌출되며 상기 제1가이드부(221)와 대응되는 위치에 형성된 복수의 제2가이드부(261)로 이루어진 것을 특징으로 하는 열교환기.
  8. 제5항 또는 제7항에 있어서,
    상기 제1가이드부(221)의 돌출된 단부와 상기 제2가이드부(261)의 돌출된 단부는 맞닿도록 형성된 것을 특징으로 하는 열교환기.
  9. 제6항에 있어서,
    상기 제1플레이트와 제2플레이트의 적층 시, 상기 제1평면부(210)와 제2평면부(250)는 맞닿고,
    상기 제2돌출부(230)와 제2함몰부(270)는 상반된 방향으로 절곡된 빗살 형태로 이루어진 것을 특징으로 하는 열교환기.
  10. 제6항에 있어서,
    상기 제1돌출부(220)에는 상기 연소가스유로를 향하여 돌출된 복수의 제1간격유지부(222)가 형성되고, 상기 제1함몰부(260)에는 상기 연소가스유로를 향하여 돌출되며 상기 제1간격유지부(222)와 대응되는 위치에 형성된 복수의 제2간격유지부(262)가 형성된 것을 특징으로 하는 열교환기.
  11. 제10항에 있어서,
    상기 제1간격유지부(222)의 돌출된 단부와 상기 제2간격유지부(262)의 돌출된 단부는 맞닿도록 형성된 것을 특징으로 하는 열교환기.
  12. 제4항에 있어서,
    상기 연소실(C)의 둘레에 위치하는 제1플레이트의 단부와 제2플레이트의 단부 중 어느 하나는 절곡되어 다른 하나에 밀착되도록 시밍 가공되어 용접 결합된 것을 특징으로 하는 열교환기.
  13. 제12항에 있어서,
    상기 시밍 가공된 제1플레이트와 제2플레이트의 단부의 길이는 1~5mm인 것을 특징으로 하는 열교환기.
  14. 제1항에 있어서,
    상기 현열부(200A)의 연소가스유로는 0.8~1.6mm의 간격으로 형성된 것을 특징으로 하는 열교환기.
  15. 제1항에 있어서,
    상기 플레이트는 상기 현열부(200A)가 상부에 위치하고, 상기 잠열부(200B)가 하부에 위치하도록 직립구조로 이루어지고,
    상기 버너(100)는 원통형 버너로서 상기 연소실(C) 공간에 정면에서부터 수평방향으로 삽입되어 조립되는 것을 특징으로 하는 열교환기.
  16. 제1항에 있어서,
    상기 현열부(200A)를 구성하는 플레이트는, 상기 잠열부(200A)를 향하는 측 영역의 너비가 상기 잠열부(200A)의 반대측 영역의 너비보다 크게 형성된 것을 특징으로 하는 열교환기.
  17. 제1항에 있어서,
    상기 잠열부(200B)는, 상기 열매체가 유입되는 열매체 입구(201)와, 상기 복수의 플레이트 사이에 형성되되 상기 열매체 입구(201)에 병렬로 연통되는 복수의 잠열부 열매체유로(P1)로 이루어지고,
    상기 현열부(200A)는, 상기 열매체가 유출되는 열매체 출구(202)와, 상기 복수의 플레이트 사이에 형성되되, 상기 잠열부 열매체유로(P1)와 상기 열매체 출구(202) 사이에 직렬로 연결되는 복수의 현열부 열매체유로(P3)로 이루어진 것을 특징으로 하는 열교환기.
  18. 제17항에 있어서,
    상기 현열부 열매체유로(P3) 사이에는 현열부 연소가스유로(P4)가 마련되고,
    상기 잠열부 열매체유로(P1) 사이에는 상기 현열부 연소가스유로(P4)와 연통되는 잠열부 연소가스유로(P2)가 마련된 것을 특징으로 하는 열교환기.
  19. 제17항에 있어서,
    상기 잠열부(200B)에는 상기 잠열부 열매체유로(P1)를 병렬로 연결하기 위해 상기 잠열부 열매체유로(P1)와 연통되는 일측의 관통구(H1,H5)과 타측의 관통구(H2,H6)가 대각선 방향에 형성되고,
    상기 현열부(200A)에는 상기 현열부 열매체유로(P3)를 직렬로 연결하기 위해 상기 현열부 열매체유로(P3)와 연통되는 일측의 관통구(H3,H7)와 타측의 관통구(H4,H8)가 대각선 방향에 형성된 것을 특징으로 하는 열교환기.
  20. 제17항에 있어서,
    상기 잠열부(200B)는 열매체 차단부(290)를 사이에 두고 양측에 제1잠열부(200B-1)와 제2잠열부(200B-2)로 분할 형성되고,
    상기 제1잠열부(200B-1)와 제2잠열부(200B-2)의 열매체유로는 상기 열매체 차단부(290)의 일측에 형성된 열매체 연결유로(P1')를 통해 연통되며,
    상기 제1잠열부(200B-1)의 일측에는 상기 열매체 입구(201)와 상기 제1잠열부(200B-1)의 열매체유로에 연통되는 관통구(H1,H5)가 형성되고,
    상기 제2잠열부(200B-2)의 일측에는 상기 제2잠열부(200B-2)의 열매체유로와 상기 현열부 열매체유로(P3)에 연통되는 관통구(H2,H6)가 형성된 것을 특징으로 하는 열교환기.
  21. 제19항 또는 제20항에 있어서,
    상기 일측의 관통구(H3,H7)를 통해 현열부 열매체유로(P3)로 유입된 열매체는 양방향으로 분기되어 대각선 방향의 타측에 형성된 관통구(H4,H8)를 향하여 유동하고, 상기 관통구(H4,H8)를 통해 현열부 열매체유로(P3)로 유입된 열매체는 양방향으로 분기되어 대각선 방향의 타측에 형성된 상기 관통구(H3,H7)를 향하여 유동하는 것을 특징으로 하는 열교환기.
  22. 제21항에 있어서,
    상기 현열부(200)에는,
    상기 일측의 관통구(H3,H7)를 통해 현열부 열매체유로(P3)로 유입된 열매체가 대각선 방향의 타측에 형성된 관통구(H4,H8)를 향하여 유동하도록 유도하기 위한 제1막힘부(H3',H7')와,
    상기 타측의 관통구(H4,H8)를 통해 현열부 열매체유로(P3)로 유입된 열매체가 대각선 방향의 타측에 형성된 관통구(H3,H7)를 향하여 유동하도록 유도하기 위한 제2막힘부(H4',H8')가 형성된 것을 특징으로 하는 열교환기.
  23. 제19항에 있어서,
    상기 관통구(H3,H4)에는 상기 연소가스유로를 향하여 돌출된 제1플랜지부(H3-1,H4-2)가 형성되고, 상기 관통구(H7,H8)에는 상기 연소가스유로를 향하여 돌출되어 상기 제1플랜지부(H3-1,H4-2)의 단부에 맞닿는 제2플랜지부(H7-1,H8-1)가 형성된 것을 특징으로 하는 열교환기.
PCT/KR2016/007715 2015-07-23 2016-07-15 열교환기 WO2017014498A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16828002.2A EP3327371B1 (en) 2015-07-23 2016-07-15 Heat exchanger
ES16828002T ES2958526T3 (es) 2015-07-23 2016-07-15 Intercambiador de calor
JP2018502361A JP6736655B2 (ja) 2015-07-23 2016-07-15 熱交換器
US15/746,671 US10746436B2 (en) 2015-07-23 2016-07-15 Heat exchanger
CN201680044065.3A CN107850340B (zh) 2015-07-23 2016-07-15 热交换器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0104093 2015-07-23
KR1020150104093A KR101717093B1 (ko) 2015-07-23 2015-07-23 열교환기

Publications (1)

Publication Number Publication Date
WO2017014498A1 true WO2017014498A1 (ko) 2017-01-26

Family

ID=57834148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007715 WO2017014498A1 (ko) 2015-07-23 2016-07-15 열교환기

Country Status (7)

Country Link
US (1) US10746436B2 (ko)
EP (1) EP3327371B1 (ko)
JP (1) JP6736655B2 (ko)
KR (1) KR101717093B1 (ko)
CN (1) CN107850340B (ko)
ES (1) ES2958526T3 (ko)
WO (1) WO2017014498A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018218649A1 (zh) * 2017-06-02 2018-12-06 深圳市得城网络科技有限公司 安防报警式智能电取暖器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243279A (ja) * 1996-03-04 1997-09-19 Matsushita Electric Ind Co Ltd 吸収式ヒートポンプ用積層熱交換器
JP2006214628A (ja) * 2005-02-02 2006-08-17 Noritz Corp プレート式熱交換器、これを備えた温水装置および暖房装置
KR20100054383A (ko) * 2008-11-14 2010-05-25 롯데알미늄 주식회사 콘덴싱 가스보일러용 잠열 열교환기
KR20120045249A (ko) * 2010-10-29 2012-05-09 린나이코리아 주식회사 플레이트 접합형 열교환기
KR20130052912A (ko) * 2011-11-14 2013-05-23 주식회사 두발 콘덴싱 보일러용 열교환기

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT402668B (de) * 1995-03-13 1997-07-25 Vaillant Gmbh Gussgliederkessel gussgliederkessel
JPH10170177A (ja) * 1996-08-31 1998-06-26 Behr Gmbh & Co プレートパイル構造を有する熱交換器とその製造方法
JP2001050680A (ja) 1999-08-05 2001-02-23 Mitsubishi Heavy Ind Ltd 熱交換器
JP2001091169A (ja) * 1999-09-27 2001-04-06 Sanyo Electric Co Ltd プレート式熱交換器
JP2001099582A (ja) * 1999-09-29 2001-04-13 Sanyo Electric Co Ltd プレート式熱交換器及びその製造方法
JP4471423B2 (ja) * 1999-09-30 2010-06-02 三洋電機株式会社 プレート式熱交換器
ITBO20070143A1 (it) * 2007-03-02 2008-09-03 Gas Point S R L Caldaia a condensazione
GB2441183B (en) * 2007-04-16 2009-04-08 Enertek Internat Ltd Heat exchanger
CN201561679U (zh) 2009-11-05 2010-08-25 上海林内有限公司 热交换器
US20110303400A1 (en) * 2010-06-15 2011-12-15 Pb Heat, Llc Counterflow heat exchanger
US20140158328A1 (en) * 2012-07-05 2014-06-12 Airec Ab Plate for heat exchanger, heat exchanger and air cooler comprising a heat exchanger
JP2014016144A (ja) * 2012-07-05 2014-01-30 Airec Ab 熱交換器用プレート、熱交換器、ならびに熱交換器を備えた空気冷却装置
CN102901222B (zh) * 2012-09-21 2016-04-20 苏州成强能源科技有限公司 一种强制翅片直管双环状冷凝供热换热器
SI2730878T1 (sl) 2012-11-07 2019-05-31 Alfa Laval Corporate Ab Paket plošč in postopek izdelave paketa plošč
ITBO20130632A1 (it) * 2013-11-20 2015-05-21 Gas Point S R L Scambiatore di calore a piastre, in particolare per caldaie a condensazione
KR101576667B1 (ko) * 2014-03-17 2015-12-11 주식회사 경동나비엔 콘덴싱 가스보일러의 열교환기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09243279A (ja) * 1996-03-04 1997-09-19 Matsushita Electric Ind Co Ltd 吸収式ヒートポンプ用積層熱交換器
JP2006214628A (ja) * 2005-02-02 2006-08-17 Noritz Corp プレート式熱交換器、これを備えた温水装置および暖房装置
KR20100054383A (ko) * 2008-11-14 2010-05-25 롯데알미늄 주식회사 콘덴싱 가스보일러용 잠열 열교환기
KR20120045249A (ko) * 2010-10-29 2012-05-09 린나이코리아 주식회사 플레이트 접합형 열교환기
KR20130052912A (ko) * 2011-11-14 2013-05-23 주식회사 두발 콘덴싱 보일러용 열교환기

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018218649A1 (zh) * 2017-06-02 2018-12-06 深圳市得城网络科技有限公司 安防报警式智能电取暖器

Also Published As

Publication number Publication date
JP2018522197A (ja) 2018-08-09
CN107850340B (zh) 2021-08-17
KR20170011445A (ko) 2017-02-02
ES2958526T3 (es) 2024-02-09
CN107850340A (zh) 2018-03-27
EP3327371B1 (en) 2023-07-26
EP3327371A4 (en) 2019-04-03
KR101717093B1 (ko) 2017-03-27
JP6736655B2 (ja) 2020-08-05
US20180224155A1 (en) 2018-08-09
US10746436B2 (en) 2020-08-18
EP3327371A1 (en) 2018-05-30

Similar Documents

Publication Publication Date Title
WO2017039174A1 (ko) 열교환기
WO2017014499A1 (ko) 열교환기
WO2017135728A1 (ko) 열교환기
WO2017099381A1 (ko) 콘덴싱 방식의 연소기기
WO2015141995A1 (ko) 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러
WO2015142003A1 (ko) 콘덴싱 가스보일러의 열교환기
WO2015141992A1 (ko) 열교환기
WO2017039172A1 (ko) 열교환기
WO2017171276A1 (ko) 관체형 열교환기
WO2014104575A1 (ko) 복수의 잠열 열교환부를 갖는 콘덴싱 보일러
WO2015141994A1 (ko) 열교환기
WO2013025022A2 (ko) 열교환기의 분리가 가능한 연소장치
WO2017135730A1 (ko) 열교환기
WO2015141993A1 (ko) 열교환기 및 열교환기를 구성하는 단위플레이트의 제조방법
WO2017039173A1 (ko) 열교환기
WO2017014495A1 (ko) 열교환기
WO2012053713A1 (ko) 급기 예열기와 폐가스 순환구조를 구비한 연소기기
WO2017014498A1 (ko) 열교환기
WO2017014497A1 (ko) 열교환기
WO2017052094A1 (ko) 라운드 플레이트 열교환기
WO2011071247A2 (ko) 연소실이 구비된 열교환기 및 이를 포함하는 연소기기
WO2010147288A1 (ko) 열교환기
WO2017039346A1 (ko) 굴곡 플레이트 열교환기
WO2023063712A1 (ko) 열교환 장치
WO2011083911A2 (ko) 열교환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16828002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018502361

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15746671

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE