WO2017014176A1 - ソフォロリピッド高生産性変異株 - Google Patents

ソフォロリピッド高生産性変異株 Download PDF

Info

Publication number
WO2017014176A1
WO2017014176A1 PCT/JP2016/070962 JP2016070962W WO2017014176A1 WO 2017014176 A1 WO2017014176 A1 WO 2017014176A1 JP 2016070962 W JP2016070962 W JP 2016070962W WO 2017014176 A1 WO2017014176 A1 WO 2017014176A1
Authority
WO
WIPO (PCT)
Prior art keywords
sophorolipid
seq
identity
sequence
polypeptide
Prior art date
Application number
PCT/JP2016/070962
Other languages
English (en)
French (fr)
Inventor
孝浩 市原
影山 泰
正敏 東畑
史員 高橋
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to JP2017529871A priority Critical patent/JP6725506B2/ja
Priority to US15/740,073 priority patent/US10590428B2/en
Priority to EP16827736.6A priority patent/EP3327121B1/en
Publication of WO2017014176A1 publication Critical patent/WO2017014176A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Definitions

  • the present invention relates to a sophorolipid high productivity mutant and a method for producing sophorolipid using the mutant.
  • Sophorolipid is a glycolipid produced by microorganisms, mainly yeast, in which long-chain hydroxy fatty acid and sophorose are combined. Since sophorolipid is an amphipathic lipid having strong surface activity and excellent biodegradability, its use as a biosurfactant has recently attracted attention. Since sophorolipid is a microbial product and has a nonionic component as a main component, it has good skin affinity and is therefore used as a cosmetic penetration enhancer. In addition, sophorolipid is excellent in biodegradability and effective even when added in a small amount, so that it is also being used in the field of detergents such as dishwashing detergents.
  • Sophorolipid produced by Star Melella Bonbicola has a lactone or acid structure, a critical micelle concentration of 40-100 mg / L, and a surface tension of water from 72.8 mN / m to 30 mN / N. (Non-patent document 1). Sophorolipids have different physicochemical properties due to differences in structure. It has been reported that the properties such as antibacterial properties and surface activity change when the fatty acid species constituting the sophorolipid are different between the lactone type and the acid type of sophorolipid (Non-patent Document 1). 2).
  • Sophorolipid as a cleaning agent or cosmetic material, you will be forced to compete with currently used surfactants.
  • Conventionally general surfactants are bulk chemicals and are therefore manufactured at a very low cost. Therefore, it is strongly desired to reduce the manufacturing cost of sophorolipid.
  • production of sophorolipid having constituent fatty acids having various chain lengths is desired.
  • Patent Documents 1 and 2 For the production process of sophorolipid, research and improvement mainly on yield, purification method, foaming technology and the like have been conventionally performed (Patent Documents 1 and 2).
  • a method for producing a medium-chain sophorolipid mainly having a carbon chain length of 12 has been reported by stopping the ⁇ -oxidation metabolism in cells by adding a genetic modification to Starmella bonbicola (non-nose) Patent Document 3, Patent Document 3).
  • MFE-2 or FOX-2
  • Non-Patent Document 4 which is a gene responsible for hydroxylation and dehydrogenation in ⁇ -oxidation in yeast peroxisomes, is deleted and ⁇ -oxidation is performed. The reaction is stopped.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-9896
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2014-150774
  • Patent Document 3 US Pat. No. 8,530,206
  • Non-Patent Document 1 Appl Microbiol Biotech, 2007 , 76 (1): 23-34
  • Non-Patent Document 2 J SURFACT DETERG, 2006, 9, QTR 1: 57-62
  • Non-patent Document 3 FEMS Yeast Res, 2009, 9: 610-617 (Non-Patent Document 4) Cell Mol Life Sci, 2003, 60 (9): 1838-1851
  • the present invention provides a sophorolipid-producing yeast mutant in which expression of the amino acid sequence represented by SEQ ID NO: 2 or a polypeptide comprising an amino sequence having at least 80% identity with the sequence is suppressed or inactivated. .
  • the present invention also includes suppressing or inactivating expression of a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 or an amino sequence having at least 80% identity with the sequence in sophorolipid-producing yeast.
  • a method for producing a sophorolipid-producing yeast mutant is provided.
  • the present invention also includes suppressing or inactivating expression of a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 or an amino sequence having at least 80% identity with the sequence in sophorolipid-producing yeast.
  • a method for improving the sophorolipid-producing ability of a sophorolipid-producing yeast is provided.
  • the present invention also provides a method for producing sophorolipid, comprising culturing the above-mentioned sophorolipid-
  • sophorolipid-producing ability in a Starmerella bonbicola mutant ( ⁇ seq1 strain) lacking the gene shown in SEQ ID NO: 1.
  • the present invention relates to a yeast mutant capable of producing sophorolipid with high efficiency, and a method for producing sophorolipid using the same.
  • nucleotide and amino acid sequence identity is calculated by the Lipman-Pearson method (Science, 1985, 227: 1435-1441). Specifically, using the homology analysis (Search homology) program of genetic information software Genetyx-Win (Ver. 5.1.1; software development), the analysis should be performed with Unit size to compare (ktup) set to 2. Is calculated by
  • “at least 80% identity” with respect to nucleotide and amino acid sequences refers to 80% or more, preferably 85% or more, more preferably 90% or more, even more preferably 95% or more, and even more preferably It means 98% or more, preferably 99% or more identity.
  • sophorolipid-producing yeast refers to a yeast having the ability to produce sophorolipid.
  • sophorolipid-producing yeasts include ascomycetes such as Starmerella, Candida, and Wickerhamilla, and preferably Starmerella bombicola, Candida bogoriensis, Candida batistae, Candida apicola and Wickerhamila domerchia are mentioned. More preferred examples include star melera and bon cola.
  • the polypeptide deleted or inactivated in the sophorolipid-producing yeast mutant of the present invention is a polypeptide consisting of the amino sequence represented by SEQ ID NO: 2 or a polypeptide corresponding thereto.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 has a Zinc Finger C2H2 type DNA binding domain at amino acid residues 101 to 123 and 129 to 152, and functions as a transcription factor. I guess that.
  • the protein with the highest homology to the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 is the Zinc finger domain and BTB domain called ZBT8A derived from Xenopus tropicalis.
  • the coverage with respect to the amino acid sequence shown in SEQ ID NO: 2 was as low as 11.1% and the sequence identity was as low as 39%.
  • the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 is considered to be a novel protein that has not been known so far.
  • the “polypeptide corresponding to the polypeptide comprising the amino sequence represented by SEQ ID NO: 2” refers to a polypeptide comprising the amino sequence having at least 80% identity with the amino sequence represented by SEQ ID NO: 2. It is.
  • the “polypeptide corresponding to the polypeptide consisting of the amino sequence represented by SEQ ID NO: 2” is a putative transcription factor protein, more preferably a putative having two Zinc Finger C2H2 type DNA binding domains. It is a transcription factor protein.
  • the “gene encoding the polypeptide consisting of the amino sequence represented by SEQ ID NO: 2” is preferably a gene consisting of the nucleotide sequence represented by SEQ ID NO: 1.
  • a gene corresponding to a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 refers to a nucleotide sequence having at least 80% identity with the nucleotide sequence represented by SEQ ID NO: 1. And a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 or a polypeptide corresponding thereto.
  • Sophorolipid-producing yeast mutant (2. Sophorolipid-producing yeast mutant) The present inventors have found that a sophorolipid-producing yeast obtained by suppressing or inactivating expression of a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 improves its sophorolipid-producing ability.
  • the present invention provides a yeast mutant having high sophorolipid-producing ability. According to the yeast mutant of the present invention, sophorolipid can be produced efficiently.
  • the hololipid-producing yeast mutant strain of the present invention is a mutant strain in which the polypeptide consisting of the amino sequence represented by SEQ ID NO: 2 or a polypeptide corresponding thereto is deleted or inactivated.
  • the sophorolipid-producing yeast mutant of the present invention is a polypeptide having the amino acid sequence represented by SEQ ID NO: 2 or a polypeptide corresponding thereto by artificial modification in the sophorolipid-producing yeast. Mutant strains produced by deletion or inactivation.
  • the yeast mutant strain of the present invention is a mutant strain in which the expression of the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 or a polypeptide corresponding thereto is suppressed as compared to the strain before the mutation (parent strain). It is.
  • the mutant strain of the present invention has an expression level of a polypeptide consisting of the amino sequence represented by SEQ ID NO: 2 or a polypeptide corresponding thereto, 50% or less, preferably 40% or less, compared to the parent strain, More preferably, it may be a mutant strain that is reduced to 30% or less, more preferably 20% or less, even more preferably 10% or less, and still more preferably 5% or less.
  • the amount of protein or polypeptide expressed is determined by commonly used protein expression quantification methods such as, but not limited to, mRNA amount measurement by quantitative PCR, colorimetric quantification method, fluorescence method, Western blotting, ELISA, radioimmunoassay, etc. Can be measured.
  • the sophorolipid-producing yeast mutant of the present invention has a gene encoding a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 or a gene corresponding thereto deleted or inactivated. It is a mutant strain.
  • Means for deleting or inactivating a gene in a yeast cell include mutagenesis (deletion, insertion, substitution or addition) to one or more nucleotides on the nucleotide sequence of the target gene, another alternative to the nucleotide sequence. Examples include substitution or insertion of a nucleotide sequence, or deletion of a part or all of the nucleotide sequence. Alternatively, a similar mutation introduction, nucleotide sequence substitution, insertion or deletion may be performed on a control region such as a promoter region of the target gene.
  • the promoter activity can be reduced or eliminated, and the target gene can be inactivated.
  • the gene mutation that reduces the activity of the polypeptide can be performed by the above-described mutation introduction or the like.
  • Suppression of translation of mRNA can be performed by RNA interference using siRNA or the like.
  • the mutant strain of the present invention can be obtained.
  • the means for deleting or inactivating the gene or the control region is homologous recombination method using SOE-PCR
  • a drug resistance marker gene is incorporated into the DNA fragment for gene deletion to replace the target gene DNA
  • a mutant strain lacking the target gene or control region can be obtained.
  • the mutation may be confirmed by performing the above-described gene analysis or polypeptide expression level or activity evaluation.
  • the yeast mutant of the present invention in which the gene encoding the polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 or the gene corresponding thereto is deleted or inactivated can be obtained.
  • polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 or the polypeptide corresponding thereto is deleted or not confirmed by confirming the improvement of sophorolipid production in the yeast mutant prepared by the above procedure.
  • An activated yeast mutant of the present invention can be obtained.
  • sophorolipid-producing yeast mutant strain of the present invention produced by deletion or inactivation of the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 or a polypeptide corresponding thereto is the strain before mutation ( Sophorolipid production capacity is improved compared to the parent strain. Therefore, one embodiment of the present invention comprises deleting or inactivating a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 or a polypeptide corresponding thereto in sophorolipid-producing yeast. It can be a method for improving the sophorolipid-producing ability of a phorolipid-producing yeast.
  • the sophorolipid-producing yeast mutant of the present invention has improved sophorolipid-producing ability.
  • the sophorolipid-producing yeast mutant of the present invention can produce sophorolipids using hydrocarbon chains of various chain lengths, fatty acids and the like as substrates. Therefore, if the sophorolipid-producing yeast mutant of the present invention is cultured with a substrate having an appropriate chain length, a sophorolipid containing a constituent fatty acid having a desired chain length can be efficiently produced. Therefore, the present invention also provides a method for producing sophorolipid, which comprises culturing the above-described sophorolipid-producing yeast mutant of the present invention.
  • sophorolipid of the present invention In the method for producing sophorolipid of the present invention, the above-mentioned mutant strain of the present invention is added with a substrate such as fatty acid, fatty acid alkyl ester, alkane, alkene, alkyne, alcohol, triacylglycerol, diacylglycerol, monoacylglycerol, and fat. Cultivate in the containing medium.
  • the sophorolipid can be produced by recovering the sophorolipid from the cultured medium and purifying it appropriately as necessary.
  • a normal medium containing a carbon source, a nitrogen source, inorganic salts, and if necessary, organic micronutrients such as amino acids and vitamins can be used.
  • the medium may be either a synthetic medium or a natural medium.
  • the carbon source and nitrogen source contained in the medium may be any kind that can be used for the mutant strain to be cultured.
  • the carbon source include glucose, glycerol, fructose, sucrose, maltose, mannose, galactose, starch hydrolyzate, sugars such as molasses; organic acids such as acetic acid and citric acid; alcohols such as ethanol, and the like.
  • These carbon sources can be used either alone or in combination of two or more.
  • the nitrogen source include ammonia; ammonium salts such as ammonium sulfate, ammonium carbonate, ammonium chloride, ammonium phosphate, and ammonium acetate; nitrates, and the like.
  • Examples of the inorganic salts include phosphates, magnesium salts, calcium salts, iron salts, manganese salts and the like.
  • Examples of the organic micronutrients include amino acids, vitamins, fatty acids, nucleic acids, and peptones, casamino acids, yeast extracts, and soy protein degradation products containing these. When using an auxotrophic mutant that requires an amino acid or the like for growth, it is preferable to supplement the required nutrients.
  • Preferred examples of the substrate that can be contained in the medium include C12-20 fatty acids and alkyl esters thereof, C12-20 alkanes, C12-20 alkenes, C12-20 alkynes, C12-20 alcohols, C12-20 fatty acids, or alkyl esters thereof. And triacylglycerols, diacylglycerols and monoacylglycerols, and fats and oils containing C12-20 fatty acids or alkyl esters thereof.
  • More preferred examples include C12-18 fatty acids and alkyl esters thereof, C12-18 alkanes, C12-18 alkenes, C12-18 alkynes, C12-18 alcohols, C12-C18 fatty acids or alkyl esters thereof, triacylglycerols, diacyls.
  • Examples include fats and oils containing glycerol and monoacylglycerol, and C12 to C18 fatty acids or alkyl esters thereof. More preferred examples include C12 to C18 fatty acids and alkyl esters thereof.
  • the substrate include, but are not limited to, the C12-20 fatty acids include dodecanoic acid (lauric acid), tridecanoic acid, tetradecanoic acid (myristic acid), pentadecanoic acid (pentadecylic acid), hexadecanoic acid ( Palmitic acid), hexadecenoic acid, heptadecanoic acid (margaric acid), octadecanoic acid (stearic acid), octadecenoic acid, octadecadienoic acid, octadecane tridecanoic acid, nonadecanoic acid, eicosanoic acid, eicosadienoic acid, eicosatrienoic acid, eicosa
  • the C12-20 alkane, alkene, alkyne, and alcohol include dodecane, tridecane, tetradecane, pentadecane,
  • fatty acid alkyl ester examples include fatty acid alkyl esters having 1 to 4 carbon atoms, preferably methyl esters and ethyl esters.
  • the substrates listed above can be used either alone or in combination of two or more.
  • the fatty acid or alkyl ester thereof having any chain length of C12 to C18, or a triacylglycerol, diacylglycerol, monoacylglycerol or oil containing them, or an alkane or alkene having any chain length of C12 to 18 Alkynes or alcohols are used, and fatty acids having a chain length of any of C12 to C18 or alkyl esters thereof are more preferably used.
  • the content of the substrate that can be contained in the medium (at the start of culture) is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, and preferably 30% by mass or less. More preferably, it is 20 mass% or less, More preferably, it is 15 mass% or less. Alternatively, preferably 1-30% by mass, 1-20% by mass, 1-15% by mass, 3-30% by mass, 3-20% by mass, 3-15% by mass, 5-30% by mass, 5-20% by mass %, Or 5 to 15% by mass.
  • the culture conditions may be any conditions as long as sophorolipid is fermented and produced by the mutant strain of the present invention.
  • the culture is preferably under aerobic conditions, and general methods such as aeration and agitation culture and shaking culture can be applied.
  • the culture temperature is preferably 20 to 33 ° C, more preferably 25 to 30 ° C, and even more preferably 28 to 30 ° C.
  • the initial pH (30 ° C.) of the medium is preferably 2 to 7, and more preferably 3 to 6.
  • the culture time is preferably about 24 to 200 hours, more preferably 50 to 200 hours.
  • the mutant strain of the present invention may be cultured under conditions in which the cells proliferate to fermentatively produce sophorolipid, and the mutant strain of the present invention may be in a resting cell state, that is, growth and proliferation.
  • the sophorolipid may be fermented and produced by culturing in a state in which the soot is stopped.
  • the method for recovering sophorolipid from the cultured medium is not particularly limited, and may be performed according to a known recovery method.
  • the sophorolipid in the medium can be recovered or purified by singly or suitably combining solvent extraction using ethyl acetate or the like, fractional precipitation, liquid-liquid distribution, column chromatography, high-performance liquid chromatography, or the like.
  • a sophorolipid-producing yeast mutant in which a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or an amino sequence having at least 80% identity with the sequence is deleted or inactivated.
  • the gene encoding the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 is a gene consisting of the nucleotide sequence shown in SEQ ID NO: 1, and the corresponding gene is at least a nucleotide sequence shown in SEQ ID NO: 1
  • the expression level of a polypeptide comprising the amino acid sequence shown in SEQ ID NO: 2 or an amino sequence having at least 80% identity with the sequence is preferably 50% or less, more preferably 40%, compared to the parent strain. % Or less, more preferably 30% or less, more preferably 20% or less, further preferably 10% or less, more preferably 5% or less, according to any one of [1] to [4] Mutant strain.
  • the identity of at least 80% is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, even more preferably 98% or more, and still more preferably 99% or more.
  • the mutant strain according to any one of [1] to [5].
  • the sophorolipid-producing yeast is Preferably, it is a star melera microorganism, More preferably, the mutant strain according to any one of [1] to [6], which is Starmerella bonbicola.
  • a sophorolipid-producing yeast comprising deleting or inactivating a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 or an amino sequence having at least 80% identity with the sequence.
  • a method for producing a foliolipid-producing yeast mutant comprising deleting or inactivating a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 or an amino sequence having at least 80% identity with the sequence.
  • a sophorolipid-producing yeast comprising deleting or inactivating a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 or an amino sequence having at least 80% identity with the sequence.
  • a method for improving the sophorolipid-producing ability of a forolipid-producing yeast comprising deleting or inactivating a polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 or an amino sequence having at least 80% identity with the sequence.
  • any of [9] to [11], comprising deleting or inactivating a gene encoding a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 2 or a gene corresponding thereto The method according to claim 1.
  • the gene encoding the polypeptide consisting of the amino acid sequence shown in SEQ ID NO: 2 is a gene consisting of the nucleotide sequence shown in SEQ ID NO: 1, and the corresponding gene is at least a nucleotide sequence shown in SEQ ID NO: 1
  • the expression level of the polypeptide comprising the amino acid sequence represented by SEQ ID NO: 2 or an amino sequence having at least 80% identity with the sophorolipid-producing yeast mutant strain is higher than that of the parent strain. , Preferably 50% or less, more preferably 40% or less, further preferably 30% or less, more preferably 20% or less, still more preferably 10% or less, still more preferably 5% or less, [9] The method according to any one of [11] to [13].
  • the identity of at least 80% is preferably 85% or more, more preferably 90% or more, still more preferably 95% or more, even more preferably 98% or more, and still more preferably 99% or more.
  • the sophorolipid-producing yeast is Preferably, it is a star melera microorganism, The method according to any one of [9] to [15], wherein Starmerella bon cola is more preferable.
  • a method for producing sophorolipid comprising culturing the sophorolipid-producing yeast mutant according to any one of [1] to [8] above.
  • the culture medium for the culture preferably contains the following substrate: C12-C20 fatty acids and alkyl esters thereof, C12-C20 alkanes, C12-C20 alkenes, C12-C20 alkynes, C12-C20 alcohols, triacylglycerols, diacylglycerols and monoacylglycerols containing C12-C20 fatty acids or alkyl esters thereof, And at least one substrate selected from the group consisting of fats and oils containing C12-C20 fatty acids or alkyl esters thereof; C12-C18 fatty acids and alkyl esters thereof, C12-C18 alkanes, C12-C18 alkenes, C12-C18 alkynes, C12-C18 alcohols, C12-C18 fatty acids or alkyl esters thereof, triacylglycerols, diacylglycerols and monoacylglycerols, And at least
  • the content of the substrate in the medium is Preferably, it is 1% by mass or more, more preferably 3% by mass or more, further preferably 5% by mass or more, and preferably 30% by mass or less, more preferably 20% by mass or less, and further preferably 15% by mass or less. Or preferably 1-30% by mass, 1-20% by mass, 1-15% by mass, 3-30% by mass, 3-20% by mass, 3-15% by mass, 5-30% by mass, [19] The method according to [19], wherein the content is 20% by mass or 5 to 15% by mass.
  • Example 1 Preparation of gene-deficient mutant (1) Construction of gene deletion fragment A mutant lacking the gene consisting of the nucleotide sequence shown in SEQ ID NO: 1 was prepared by homologous recombination using the SOE-PCR method. did.
  • the hygromycin resistance gene (SEQ ID NO: 3) was used for selection of transformation.
  • the hygromycin resistance gene fragment was prepared by PCR using the plasmid having the hygromycin resistance gene loxP-PGK-gb2-hygro-loxP (Gene Bridges) as a template and primers of SEQ ID NOs: 8 and 9.
  • the URA3 gene promoter and terminator fragments were prepared by PCR using the primers of SEQ ID NO: 10 and 11, and primers of SEQ ID NO: 12 and 13, respectively, using the genome of Starmelera bonbicola as a template.
  • the hygromycin resistance gene fragment was ligated to the promoter fragment and terminator fragment of the URA3 gene by SOE-PCR.
  • a gene deletion fragment for deleting the gene shown in SEQ ID NO: 1 was prepared. PCR was carried out using the genome of Starmelella bon cola as a template, the upstream region fragment of the gene shown in SEQ ID NO: 1 using the primers of SEQ ID NOs: 4 and 5, and the downstream region fragment using the primers of SEQ ID NOs: 6 and 7, respectively. It was prepared by. Further, a hygromycin resistance gene fragment containing a promoter fragment and a terminator was prepared by PCR using the SOE-PCR product as a template and the primers of SEQ ID NOs: 10 and 13. The obtained upstream region fragment, downstream region fragment, and hygromycin resistance gene fragment were ligated by SOE-PCR. The obtained fragment was used as a fragment for deletion of the gene shown in SEQ ID NO: 1.
  • the cells were suspended in 1 mL of 1 M sorbitol solution cooled with ice and centrifuged at 5000 rpm and 4 ° C. for 5 minutes. After discarding the supernatant, 400 ⁇ L of 1M sorbitol solution was added, placed on ice, and suspended by pipetting. Dispense 50 ⁇ L of this yeast suspension, add 1 ⁇ g of DNA solution for transformation (including the gene deletion fragment shown in SEQ ID NO: 1), and transfer to an ice-cooled 0.2 cm gap chamber. A pulse of 25 ⁇ F, 350 ⁇ , 2.5 kV was applied using a GENE PULSER II (BIO-RAD).
  • Ice-cooled YPD Broth containing 1 M sorbitol was added to the pulsed solution, transferred to a 1.5 mL tube, shaken at 30 ° C. for 2 hours, and centrifuged at 5000 rpm at 4 ° C. for 5 minutes to collect the cells.
  • the collected cells were resuspended in 200 ⁇ L of 1M sorbitol solution, and 100 ⁇ L each was smeared on a selective medium and cultured at 30 ° C. for about 1 week.
  • As the selection medium an agar medium containing 1% (w / v) yeast extract, 2% (p / w) peptone, 2% (w / v) glucose and 500 ppm hygromycin was used. The grown colonies were subjected to colony PCR, and it was confirmed that the sequence length amplified from the region of the defective target gene was changed. Thus, a mutant strain ( ⁇ seq1 strain) lacking the gene shown in SEQ ID NO: 1 was obtained.
  • Example 2 Sophorolipid productivity of ⁇ seq1 strain (1) Culture of mutant strain Pre-sterilized yeast extract 1% (w / v), peptone 2% (w / v), glucose 2% (w / v) Inject 5 mL of the medium into a large test tube, inoculate one platinum ear of either the ⁇ seq1 strain obtained in Example 1 or its parent strain, and perform shaking culture at 30 ° C. and 250 rpm for 48 hours. Was used as a seed culture. 1% (v / v) is added to 5 mL of a mixed medium containing 2% (w / v) yeast extract, 5% (w / v) palmitate, and 12.5% (w / v) glucose. And inoculated for 96 hours at 30 ° C. and 250 rpm.
  • PE ethyl palmitate
  • SL sophorolipid
  • hexane or ethyl acetate was volatilized by blowing nitrogen gas, and dissolved PE or SL was extracted.
  • the difference between the weight of the glass tube containing the extracted PE or SL and the weight of the glass tube before collection was calculated as the PE amount or SL amount in the culture solution.
  • Table 2 shows the relative value of the sophorolipid productivity of the ⁇ seq1 strain when the sophorolipid productivity of the parent strain is 100%.
  • the ⁇ seq1 strain has improved sophorolipid productivity compared to the parent strain.
  • Example 3 Sophorolipid productivity of ⁇ seq1 strain under different ethyl palmitate concentration conditions
  • ⁇ seq1 strain and its parent strain were cultured, and ethyl palmitate and sophorolipid in the culture broth were cultured. The amount was measured. However, the amount of ethyl palmitate in the mixed medium was adjusted to 0, 1, 5, or 10% (w / v).
  • Table 3 shows relative values of sophorolipid productivity in the ⁇ seq1 strain when the sophorolipid productivity at the concentration of each palmitate in the parent strain is 100%.
  • the ⁇ seq1 strain had improved sophorolipid productivity compared to the parent strain regardless of the concentration of ethyl palmitate serving as a substrate for sophorolipid.
  • the ⁇ seq1 strain showed higher hololipid productivity than the parent strain even in a medium to which ethyl palmitate was not added.
  • Example 4 Sophorolipid productivity of ⁇ seq1 strain in Jar Fermentor culture
  • a medium containing 2% (w / v) yeast extract and 1% glucose (w / v) sterilized in advance was poured into 30 mL of Sakaguchi flask.
  • the ⁇ seq1 strain or parent strain obtained in 1 above was inoculated with one platinum loop, and reciprocal shaking culture was performed at 30 ° C. and 120 rpm for 48 hours, and this was used as a seed culture solution.
  • the culture solution was sampled in a timely manner, and the amount of ethyl palmitate (PE) and sophorolipid (SL) in the culture solution was measured.
  • PE ethyl palmitate
  • SL sophorolipid
  • Table 4 shows the relative value of the sophorolipid productivity of the ⁇ seq1 strain in the same culture time when the sophorolipid productivity of the parent strain at 168 hours of culture is defined as 100%.
  • the ⁇ seq1 strain had improved sophorolipid productivity compared to the parent strain even in the case of mass culture using Jar Fermentor.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

ソフォロリピッド生産能の高い微生物の提供。配列番号2で示されるアミノ酸配列又は当該配列と少なくとも90%の同一性を有するアミノ配列からなるポリペプチドが欠失又は不活性化した、ソフォロリピッド生産性酵母変異株。

Description

ソフォロリピッド高生産性変異株
 本発明は、ソフォロリピッド高生産性変異株、及び当該変異株を使用したソフォロリピッドの製造方法に関する。
 ソフォロリピッドは、微生物、主に酵母により生産される、長鎖ヒドロキシ脂肪酸とソホロースが結合した糖脂質である。ソフォロリピッドは、強い界面活性をもち、且つ生分解性に優れた両親媒性脂質であるため、近年、バイオサーファクタントとしての用途が注目されている。ソフォロリピッドは、微生物生産物であり、かつノニオン成分が主体であるため皮膚親和性がよいことから、化粧品の浸透性向上剤として使用されている。またソフォロリピッドは、生分解性に優れ、少量の添加でも効果があることから、食器用洗剤等の洗浄剤の分野でも使用が進んでいる。
 ソフォロリピッドを生産する酵母としては、非病原性の担子菌酵母であるスターメレラ・ボンビコーラ(Starmerella bombicola)〔旧名称キャンディダ・ボンビコーラ(Candida bombicola)〕がよく知られている。スターメレラ・ボンビコーラにより生産されるソフォロリピッドは、ラクトン型又は酸型の構造を有し、臨界ミセル濃度は40~100mg/Lを示し、水の表面張力を72.8mN/mから30mN/Nまで低下させる(非特許文献1)。ソフォロリピッドは、その構造の違いにより物理化学的性質が異なる。ソフォロリピッドのラクトン型と酸型との間で、又はソフォロリピッドを構成する脂肪酸種が異なると、抗菌性、界面活性力などの性質が変化することが報告されている(非特許文献1、2)。
 洗浄剤や化粧品材料としてソフォロリピッドを使用する場合には、現在使用されている界面活性剤との競争を余儀なくされる。従来一般的な界面活性剤はバルク化学薬品であるため、極めて低コストで製造されている。したがって、ソフォロリピッドの製造コストの低減が強く所望される。さらに、ソフォロリピッドの利用可能性を広げるためには、多様な鎖長の構成脂肪酸を有するソフォロリピッドの生産が望まれている。
 ソフォロリピッドの生産プロセスに対しては、従来、主に収率、精製法、起泡性付与技術などの研究及び改善が行われてきた(特許文献1、2)。また、スターメレラ・ボンビコーラに対し遺伝子改変を加えることにより、細胞内でのβ酸化代謝を停止させて、主に炭素鎖長が12の中鎖ソフォロリピッドを製造する方法が報告されている(非特許文献3、特許文献3)。この遺伝子改変では、酵母のペロキシソームでのβ酸化における水酸化反応及び脱水素反応の2つを担う遺伝子であるMFE-2(又はFOX-2)(非特許文献4)を欠損させて、β酸化反応を停止させている。
 (特許文献1)特開2003-9896号公報
 (特許文献2)特開2014-150774号公報
 (特許文献3)米国特許第8,530,206号公報
 (非特許文献1)Appl Microbiol Biotech,2007,76(1):23-34
 (非特許文献2)J SURFACT DETERG,2006,9,QTR 1:57-62
 (非特許文献3)FEMS Yeast Res,2009,9:610-617
 (非特許文献4)Cell Mol Life Sci,2003,60(9):1838-1851
 本発明は、配列番号2で示されるアミノ酸配列又は当該配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドが発現抑制又は不活性化した、ソフォロリピッド生産性酵母変異株を提供する。
 また本発明は、ソフォロリピッド生産性酵母において、配列番号2で示されるアミノ酸配列又は当該配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドを発現抑制又は不活性化することを含む、ソフォロリピッド生産性酵母変異株の製造方法を提供する。
 また本発明は、ソフォロリピッド生産性酵母において、配列番号2で示されるアミノ酸配列又は当該配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドを発現抑制又は不活性化することを含む、ソフォロリピッド生産性酵母のソフォロリピッド生産能の向上方法を提供する。
 また本発明は、上記ソフォロリピッド生産性酵母変異株を培養することを含む、ソフォロリピッドの製造方法を提供する。
配列番号1に示す遺伝子を欠損したスターメレラ・ボンビコーラ変異株(Δseq1株)におけるソフォロリピッド生産能の向上。PE;パルミチン酸エチル、SL;ソフォロリピッド。エラーバー=標準偏差(n=2)。 異なるパルミチン酸エチル濃度条件下におけるΔseq1株のソフォロリピッド生産量。PE;パルミチン酸エチル、SL;ソフォロリピッド。エラーバー=標準偏差(n=2)。 Jar Fermentor培養におけるΔseq1株のソフォロリピッド生産量。
発明の詳細な説明
 本発明は、ソフォロリピッドを高効率で生産することができる酵母変異株、及びそれを用いたソフォロリピッドの製造方法に関する。
(1.定義)
 本明細書において、ヌクレオチド配列及びアミノ酸配列の同一性は、Lipman-Pearson法(Science,1985,227:1435-1441)によって計算される。具体的には、遺伝情報処理ソフトウェアGenetyx-Win(Ver.5.1.1;ソフトウェア開発)のホモロジー解析(Search homology)プログラムを用いて、Unit size to compare(ktup)を2として解析を行うことにより算出される。
 本明細書において、ヌクレオチド配列及びアミノ酸配列に関する「少なくとも80%の同一性」とは、80%以上、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、さらにより好ましくは98%以上、なお好ましくは99%以上の同一性をいう。
 本明細書において、「ソフォロリピッド生産性酵母」とは、ソフォロリピッドを生産する能力を備えた酵母をいう。ソフォロリピッド生産性酵母の例としては、スターメレラ属(Starmerella)、カンジダ属(Candida)及びウイッカーハミーラ属(Wickerhamiella)などの子嚢菌類が挙げられ、好ましくは、スターメレラ・ボンビコーラ(Staermerella bombicola)、カンジダ・ボゴリエンシス(Candida bogoriensis)、カンジダ・バチステ(Candida batistae)、カンジダ・アピコラ(Candida apicola)及びウィッカーハミーラ・ドメルキー(Wickerhamiella domericqiae)が挙げられる。より好ましい例としては、スターメレラ・ボンビコーラが挙げられる。
 本発明のソフォロリピッド生産性酵母変異株において欠失又は不活性化されるポリペプチドは、配列番号2で示されるアミノ配列からなるポリペプチド又はこれに相当するポリペプチドである。配列番号2で示されるアミノ配列からなるポリペプチドは、アミノ酸残基101位から123位、及び129位から152位に、それぞれZinc Finger C2H2タイプのDNA結合ドメインを有しており、転写因子として機能すると推察される。SGD(Saccharomyces Genome Database)及びSwiss Protデータベースにおける検索の結果、配列番号2で示されるアミノ酸配列からなるポリペプチドに対して最も相同性の高いタンパク質は、Xenopus tropicalis由来ZBT8AというZinc finger ドメインとBTBドメインを有するタンパク質であったが、配列番号2で示されるアミノ酸配列に対するCoverageは11.1%、配列同一性は39%と低かった。配列番号2で示されるアミノ酸配列からなるポリペプチドは、これまで知られていない新規タンパク質であると考えられる。
 本明細書において、「配列番号2で示されるアミノ配列からなるポリペプチドに相当するポリペプチド」とは、配列番号2で示されるアミノ配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドである。好ましくは、該「配列番号2で示されるアミノ配列からなるポリペプチドに相当するポリペプチド」は、推定転写因子タンパク質であり、より好ましくは、2個のZinc Finger C2H2タイプのDNA結合ドメインを有する推定転写因子タンパク質である。
 本明細書において、「配列番号2で示されるアミノ配列からなるポリペプチドをコードする遺伝子」とは、好ましくは、配列番号1で示されるヌクレオチド配列からなる遺伝子である。
 本明細書において、「配列番号2で示されるアミノ配列からなるポリペプチドをコードする遺伝子に相当する遺伝子」とは、配列番号1で示されるヌクレオチド配列と少なくとも80%の同一性を有するヌクレオチド配列からなり、かつ上記配列番号2で示されるアミノ配列からなるポリペプチド又はこれに相当するポリペプチドをコードする遺伝子である。
(2.ソフォロリピッド生産性酵母変異株)
 本発明者らは、配列番号2で示されるアミノ酸配列からなるポリペプチドを発現抑制又は不活性化したソフォロリピッド生産性酵母が、そのソフォロリピッド生産能を向上させることを見出した。
 本発明は、ソフォロリピッド生産能の高い酵母変異株を提供する。本発明の酵母変異株によれば、ソフォロリピッドを効率よく生産することができる。
 本発明のホロリピッド生産性酵母変異株は、配列番号2で示されるアミノ配列からなるポリペプチド又はこれに相当するポリペプチドが欠失又は不活性化した変異株である。好ましくは、本発明のソフォロリピッド生産性酵母変異株は、ソフォロリピッド生産性酵母において、人工的な改変により、配列番号2で示されるアミノ配列からなるポリペプチド又はこれに相当するポリペプチドを欠失させるか又は不活性化することによって製造された変異株である。
 好ましくは、本発明の酵母変異株は、変異前の株(親株)と比べて、配列番号2で示されるアミノ配列からなるポリペプチド又はこれに相当するポリペプチドの発現が抑制されている変異株である。一実施形態において、本発明の変異株は、配列番号2で示されるアミノ配列からなるポリペプチド又はこれに相当するポリペプチドの発現量が、親株と比べて50%以下、好ましくは40%以下、より好ましくは30%以下、さらに好ましくは20%以下、さらにより好ましくは10%以下、なお好ましくは5%以下に低下している変異株であり得る。タンパク質又はポリペプチドの発現量は、通常使用されるタンパク質発現定量法、例えば、これらに限定されないが、定量PCRによるmRNA量測定、比色定量法、蛍光法、ウェスタンブロッティング、ELISA、ラジオイムノアッセイ等により測定することができる。
 配列番号2で示されるアミノ配列からなるポリペプチド又はこれに相当するポリペプチドの欠失又は不活性化のための手段としては、それらをコードする遺伝子を欠失又は不活性化する方法、それらをコードする遺伝子のmRNAの翻訳を抑制する方法、それらをコードする遺伝子を変異させて該ポリペプチドの活性を低下させる方法、などが挙げられる。したがって、一実施形態において、本発明のソフォロリピッド生産性酵母変異株は、配列番号2で示されるアミノ配列からなるポリペプチドをコードする遺伝子又はこれに相当する遺伝子が欠失又は不活性化した変異株である。
 酵母細胞の遺伝子を欠失又は不活性化する手段としては、標的の遺伝子のヌクレオチド配列上の1つ以上のヌクレオチドに対する突然変異導入(欠失、挿入、置換若しくは付加)、該ヌクレオチド配列に対する別のヌクレオチド配列の置換若しくは挿入、又は該ヌクレオチド配列の一部若しくは全部の削除などが挙げられる。あるいは、該標的の遺伝子のプロモーター領域等の制御領域に対して、同様の突然変異導入やヌクレオチド配列の置換、挿入又は削除を行ってもよい。例えば、該標的の遺伝子の発現を制御するプロモーターに対する突然変異導入、又はより低発現性プロモーターへの置き換えにより、プロモーター活性を低下若しくは消失させ、該標的の遺伝子を不活性化させることができる。ポリペプチドの活性を低下させる遺伝子変異は、上述した突然変異導入等により行うことができる。mRNAの翻訳抑制は、siRNAを用いたRNA干渉等により行うことができる。
 上記突然変異導入や、ヌクレオチド配列の置換、挿入又は削除のための具体的な手法としては、当該分野で公知の微生物の遺伝的改変のための方法を用いることができる。当該方法の例としては、紫外線照射、部位特異的変異導入、SOE-PCR法(splicing by overlap extension PCR:Gene,1989,77:61-68)を用いた相同組換え法などを挙げることができるが、これらに限定されない。
 上記突然変異導入やヌクレオチド配列の置換、挿入又は削除の後、遺伝子解析、又は標的遺伝子にコードされるポリペプチドの発現量若しくは活性の評価を行って、所望の変異を有する細胞を選択すれば、本発明の変異株を取得することができる。
 あるいは、遺伝子又は制御領域を欠失又は不活性化する手段がSOE-PCRを用いた相同組換え法の場合、標的遺伝子DNAと置換する遺伝子欠失用DNA断片に薬剤耐性マーカー遺伝子を組み込み、該欠失用DNA断片を導入した細胞を薬剤を含む培地上で培養し、生育するコロニーを分離することにより、標的遺伝子又は制御領域が欠失した変異株を得ることができる。さらに、上述した遺伝子解析又はポリペプチドの発現量若しくは活性評価を行って、変異を確認してもよい。以上の手順により、配列番号2で示されるアミノ配列からなるポリペプチドをコードする遺伝子又はこれに相当する遺伝子が欠失又は不活性化した本発明の酵母変異株を得ることができる。
 あるいは、上記の手順で作製した酵母変異株におけるソフォロリピッドの生産能向上を確認することによっても、配列番号2で示されるアミノ配列からなるポリペプチド又はこれに相当するポリペプチドが欠失又は不活性化した本発明の酵母変異株を得ることができる。
(3.変異株におけるソフォロリピッド生産能の向上)
 上述した配列番号2で示されるアミノ配列からなるポリペプチド又はこれに相当するポリペプチドの欠失又は不活性化により製造された本発明のソフォロリピッド生産性酵母変異株は、変異前の株(親株)と比べて、ソフォロリピッド生産能が向上している。したがって、本発明の一実施形態は、ソフォロリピッド生産性酵母において、配列番号2で示されるアミノ配列からなるポリペプチド又はこれに相当するポリペプチドを欠失又は不活性化することを含む、ソフォロリピッド生産性酵母のソフォロリピッド生産能の向上方法であり得る。
(4.ソフォロリピッドの製造)
 本発明のソフォロリピッド生産性酵母変異株は、ソフォロリピッド生産能が向上している。また本発明のソフォロリピッド生産性酵母変異株は、種々の鎖長の炭化水素鎖、脂肪酸等を基質としてソフォロリピッドを生産することができる。したがって、本発明のソフォロリピッド生産性酵母変異株を適切な鎖長の基質とともに培養すれば、所望の鎖長の構成脂肪酸を含むソフォロリピッドを効率よく製造することができる。したがって、本発明はまた、上記本発明のソフォロリピッド生産性酵母変異株を培養することを含む、ソフォロリピッドの製造方法を提供する。
 本発明のソフォロリピッドの製造方法においては、上記本発明の変異株を、脂肪酸、脂肪酸アルキルエステル、アルカン、アルケン、アルキン、アルコール、トリアシルグリセロール、ジアシルグリセロール、モノアシルグリセロール、油脂等の基質を含む培地で培養する。培養後の培地からソフォロリピッドを回収し、必要に応じて適宜精製することにより、ソフォロリピッドを製造することができる。
 上記培養に用いる培地としては、炭素源、窒素源、無機塩類、及び必要に応じてアミノ酸、ビタミン等の有機微量栄養素を含有する通常の培地を用いることができる。また該培地は、合成培地及び天然培地のいずれであってもよい。
 上記培地に含まれる炭素源および窒素源は、培養する変異株が利用可能ないずれの種類であってもよい。炭素源の例としては、グルコース、グリセロール、フラクトース、スクロース、マルトース、マンノース、ガラクトース、澱粉加水分解物、糖蜜等の糖類;酢酸、クエン酸等の有機酸;エタノール等のアルコール類、などが挙げられる。これらの炭素源は、いずれか単独又は2種以上の組み合わせで用いることができる。窒素源の例としては、アンモニア;硫酸アンモニウム、炭酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、酢酸アンモニウム等のアンモニウム塩;硝酸塩、などが挙げられる。
 上記無機塩類の例としては、リン酸塩、マグネシウム塩、カルシウム塩、鉄塩、マンガン塩等が挙げられる。上記有機微量栄養素の例としては、アミノ酸、ビタミン、脂肪酸、核酸、及びこれらを含有するペプトン、カザミノ酸、酵母エキス、大豆たん白分解物等が挙げられる。生育にアミノ酸などを要求する栄養要求性変異株を使用する場合には、要求される栄養素を補添することが好ましい。
 上記培地に含まれ得る基質の好ましい例としては、C12~20脂肪酸及びそのアルキルエステル、C12~20アルカン、C12~20アルケン、C12~20アルキン、C12~20アルコール、C12~20脂肪酸又はそのアルキルエステルを含むトリアシルグリセロール、ジアシルグリセロール及びモノアシルグリセロール、ならびにC12~20脂肪酸又はそのアルキルエステルを含む油脂が挙げられる。より好ましい例としては、C12~18脂肪酸及びそのアルキルエステル、C12~18アルカン、C12~18アルケン、C12~18アルキン、C12~18アルコール、C12~C18脂肪酸又はそのアルキルエステルを含むトリアシルグリセロール、ジアシルグリセロール及びモノアシルグリセロール、ならびにC12~C18脂肪酸又はそのアルキルエステルを含む油脂が挙げられる。さらに好ましい例としては、C12~C18脂肪酸及びそのアルキルエステルが挙げられる。
 上記基質のより詳細な例としては、限定ではないが、上記C12~20脂肪酸としては、ドデカン酸(ラウリン酸)、トリデカン酸、テトラデカン酸(ミリスチン酸)、ペンタデカン酸(ペンタデシル酸)、ヘキサデカン酸(パルミチン酸)、ヘキサデセン酸、ヘプタデカン酸(マルガリン酸)、オクタデカン酸(ステアリン酸)、オクタデセン酸、オクタデカジエン酸、オクタデカントリデカエン酸、ノナデカン酸、エイコサン酸、エイコサジエン酸、エイコサトリエン酸、エイコサテトラエン酸などが挙げられ;上記C12~20のアルカン、アルケン、アルキン及びアルコールとしては、ドデカン、トリデカン、テトラデカン、ペンタデカン、ヘキサデカン、ヘキサデセン、へプタデカン、オクタデカン、オクタデセン、オクタデシン、ノナデカン、エイコサン、エイコセン、エイコシンドデカノール、トリデカノール、テトラデカノール、ペンタデカノール、ヘキサデカノール、ヘキサデセナール、へプタデカノール、オクタデカノール、オクタデセノール、オクタデシノール、ノナデカノール、エイコサノールなどが挙げられ;上記C12~20脂肪酸又はそのアルキルエステルを含む油脂としては、やし油、パーム油、パーム核油、オリーブ油、菜種油、米ぬか油、大豆油、ヒマシ油、マフア油などが挙げられる。
 上記脂肪酸のアルキルエステルとしては、上記に挙げた脂肪酸の炭素数1~4のアルキルエステル、好ましくはメチルエステル及びエチルエステルが挙げられる。
 上記に挙げた基質は、いずれか単独又は2種以上の組み合わせで用いることができる。好ましくは、C12~C18のいずれかの鎖長の脂肪酸若しくはそのアルキルエステル、又はそれらを含むトリアシルグリセロール、ジアシルグリセロール、モノアシルグリセロール若しくは油脂、あるいはC12~18のいずれかの鎖長のアルカン、アルケン、アルキン又はアルコールが使用され、より好ましくはC12~C18のいずれかの鎖長の脂肪酸又はそのアルキルエステルが使用される。
 培地中に含まれ得る上記基質の含有量(培養開始時)は、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上で、かつ好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下である。あるいは、好ましくは1~30質量%、1~20質量%、1~15質量%、3~30質量%、3~20質量%、3~15質量%、5~30質量%、5~20質量%、若しくは5~15質量%である。
 培養の条件は、本発明の変異株によりソフォロリピッドが発酵生産される条件であればよい。培養は、好気的条件下が好ましく、通気攪拌培養、振盪培養等の一般的な方法を適用することができる。培養温度は、20~33℃が好ましく、25~30℃がより好ましく、28~30℃がさらに好ましい。培地の初発pH(30℃)は2~7が好ましく、3~6がより好ましい。培養時間は、24時間~200時間程度が好ましく、50~200時間がより好ましい。
 上記培養では、本発明の変異株を細胞が増殖する条件下で培養して、ソフォロリピッドを発酵生産させてもよく、また、本発明の変異株が休止菌体の状態、すなわち生育及び増殖を止めた状態で培養して、ソフォロリピッドを発酵生産させてもよい。
 培養後の培地からソフォロリピッドを回収する方法は、特に限定されず、公知の回収方法に従って行えばよい。例えば、酢酸エチル等を用いた溶剤抽出、分別沈殿、液液分配、カラムクロマトグラフ、高速液体クロマトグラフ等を単独又は適宜組み合わせることによって、培地中のソフォロリピッドを回収又は精製することができる。
(5.例示的実施形態)
 本発明の例示的実施形態として、さらに以下の物質、製造方法、用途あるいは方法等を本明細書に開示する。ただし、本発明はこれらの実施形態に限定されない。
〔1〕配列番号2で示されるアミノ酸配列又は当該配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドが欠失又は不活性化した、ソフォロリピッド生産性酵母変異株。
〔2〕好ましくは、上記配列番号2で示されるアミノ酸配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドが推定転写因子タンパク質である、〔1〕記載の変異株。
〔3〕好ましくは、配列番号2で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子、又はこれに相当する遺伝子が欠失又は不活性化している、〔1〕又は〔2〕記載の変異株。
〔4〕好ましくは、
 上記配列番号2で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子が、配列番号1で示されるヌクレオチド配列からなる遺伝子であり、かつ
 上記相当する遺伝子が、配列番号1で示されるヌクレオチド配列と少なくとも80%の同一性を有するヌクレオチド配列からなり、かつ上記配列番号2で示されるアミノ配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドをコードする遺伝子である、
〔3〕記載の変異株。
〔5〕上記配列番号2で示されるアミノ酸配列又は当該配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドの発現量が、親株と比べて、好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%以下、さらに好ましくは20%以下、さらに好ましくは10%以下、なお好ましくは5%以下に低下している、〔1〕~〔4〕のいずれか1項記載の変異株。
〔6〕上記少なくとも80%の同一性が、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、さらにより好ましくは98%以上、なお好ましくは99%以上の同一性である、〔1〕~〔5〕のいずれか1項記載の変異株。
〔7〕上記ソフォロリピッド生産性酵母が、
 好ましくは、スターメレラ属微生物であり、
 より好ましくはスターメレラ・ボンビコーラである、〔1〕~〔6〕のいずれか1項記載の変異株。
〔8〕変異前の株と比べてソフォロリピッド生産性が向上している、〔1〕~〔7〕のいずれか1項記載の変異株。
〔9〕ソフォロリピッド生産性酵母において、配列番号2で示されるアミノ酸配列又は当該配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドを欠失又は不活性化することを含む、ソフォロリピッド生産性酵母変異株の製造方法。
〔10〕ソフォロリピッド生産性酵母において、配列番号2で示されるアミノ酸配列又は当該配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドを欠失又は不活性化することを含む、ソフォロリピッド生産性酵母のソフォロリピッド生産能の向上方法。
〔11〕好ましくは、上記配列番号2で示されるアミノ酸配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドが推定転写因子タンパク質である、〔9〕又は〔10〕記載の方法。
〔12〕好ましくは、配列番号2で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子、又はこれに相当する遺伝子を欠失又は不活性化することを含む、〔9〕~〔11〕のいずれか1項記載の方法。
〔13〕好ましくは、
 上記配列番号2で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子が、配列番号1で示されるヌクレオチド配列からなる遺伝子であり、かつ
 上記相当する遺伝子が、配列番号1で示されるヌクレオチド配列と少なくとも80%の同一性を有するヌクレオチド配列からなり、かつ上記配列番号2で示されるアミノ配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドをコードする遺伝子である、
〔12〕記載の方法。
〔14〕上記ソフォロリピッド生産性酵母変異株が、上記配列番号2で示されるアミノ酸配列又は当該配列と少なくとも80%の同一性を有するアミノ配列からなるポリペプチドの発現量が、親株と比べて、好ましくは50%以下、より好ましくは40%以下、さらに好ましくは30%以下、さらに好ましくは20%以下、さらに好ましくは10%以下、なお好ましくは5%以下に低下している株である、〔9〕、〔11〕~〔13〕のいずれか1項記載の方法。
〔15〕上記少なくとも80%の同一性が、好ましくは85%以上、より好ましくは90%以上、さらに好ましくは95%以上、さらにより好ましくは98%以上、なお好ましくは99%以上の同一性である、〔9〕~〔14〕のいずれか1項記載の方法。
〔16〕上記ソフォロリピッド生産性酵母が、
 好ましくは、スターメレラ属微生物であり、
 より好ましくはスターメレラ・ボンビコーラである、〔9〕~〔15〕のいずれか1項記載の方法。
〔17〕上記ソフォロリピッド生産性酵母変異株が、ソフォロリピッド生産性が向上した変異株である、〔9〕、〔11〕~〔16〕のいずれか1項記載の方法。
〔18〕上記〔1〕~〔8〕のいずれか1項記載のソフォロリピッド生産性酵母変異株を培養することを含む、ソフォロリピッドの製造方法。
〔19〕好ましくは、上記培養のための培地が下記基質を含有する、〔18〕記載の方法:
 C12~C20脂肪酸及びそのアルキルエステル、C12~C20アルカン、C12~C20アルケン、C12~C20アルキン、C12~C20アルコール、C12~C20脂肪酸又はそのアルキルエステルを含むトリアシルグリセロール、ジアシルグリセロール及びモノアシルグリセロール、ならびにC12~C20脂肪酸又はそのアルキルエステルを含む油脂からなる群より選択される少なくとも1種の基質;
 C12~C18脂肪酸及びそのアルキルエステル、C12~C18アルカン、C12~C18アルケン、C12~C18アルキン、C12~C18アルコール、C12~C18脂肪酸又はそのアルキルエステルを含むトリアシルグリセロール、ジアシルグリセロール及びモノアシルグリセロール、ならびにC12~C18脂肪酸又はそのアルキルエステルを含む油脂からなる群より選択される少なくとも1種の基質;
又は、
 C12~18脂肪酸及びそのアルキルエステルからなる群より選択される少なくとも1種の基質。
〔20〕上記培地中の基質の含有量が、
 好ましくは、1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上で、かつ好ましくは30質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下であるか、又は
 好ましくは、1~30質量%、1~20質量%、1~15質量%、3~30質量%、3~20質量%、3~15質量%、5~30質量%、5~20質量%、若しくは5~15質量%である、〔19〕記載の方法。
〔21〕好ましくは、上記培養後の培地からソフォロリピッドを回収することをさらに含む、〔18〕~〔20〕のいずれか1項記載の方法。
以下、実施例を示し、本発明をより具体的に説明する。
実施例1 遺伝子欠損変異株の作製
(1)遺伝子欠失用断片の構築
 SOE-PCR法を用いた相同組換え法により、配列番号1で示されるヌクレオチド配列からなる遺伝子を欠損した変異株を作製した。
 形質転換の選抜にはハイグロマイシン耐性遺伝子(配列番号3)を使用した。ハイグロマイシン耐性遺伝子断片は、ハイグロマイシン耐性遺伝子を有するプラスミドloxP-PGK-gb2-hygro-loxP(Gene Bridges)をテンプレートとして、配列番号8と9のプライマーを用いてPCRにより調製した。URA3遺伝子のプロモーター及びターミネーターの断片は、スターメレラ・ボンビコーラのゲノムをテンプレートとして、それぞれ配列番号10と11のプライマー、及び配列番号12と13のプライマーを用いてPCRにより調製した。SOE-PCRにて、ハイグロマイシン耐性遺伝子断片をURA3遺伝子のプロモーター断片及びターミネーター断片に連結した。
 配列番号1に示す遺伝子を欠損させるための遺伝子欠失用断片を調製した。スターメレラ・ボンビコーラのゲノムをテンプレートとして、配列番号1に示す遺伝子の上流領域の断片を配列番号4と5のプライマーを用いて、下流領域の断片を配列番号6と7のプライマーを用いて、それぞれPCRにより調製した。また、プロモーター断片及びターミネーターを含むハイグロマイシン耐性遺伝子断片を、上記SOE-PCR産物をテンプレートに、配列番号10と13のプライマーを用いたPCRにより調製した。得られた上流領域断片と下流領域断片、及びハイグロマイシン耐性遺伝子断片の3断片を、SOE-PCRにて連結した。得られた断片を、配列番号1に示す遺伝子の欠失用断片として使用した。
Figure JPOXMLDOC01-appb-T000001
(2)遺伝子欠損株の作製
 スターメレラ・ボンビコーラを、5mLのYPD Brothを含む100mL形試験管に一白金耳植菌し、30℃、250rpmで48時間培養した。得られた培養液を、YPD培地50mLを含む坂口フラスコに1%(v/v)植菌し、30℃、120rpmでOD600=1~2になるまで培養した。増殖した菌体を3000rpm、4℃で5分間遠心して集菌した後、氷上で冷やした滅菌水20mLで2回洗浄した。菌体を氷冷した1mLの1Mソルビトール溶液に懸濁し、5000rpm、4℃で5分間遠心した。上清を捨てたのち、400μLの1Mソルビトール溶液を加えて氷上におき、ピペッティングで懸濁した。この酵母懸濁液を50μLずつ分注し、形質転換用のDNA溶液(配列番号1に示す遺伝子の欠失用断片を含む)を1μg加え、氷冷した0.2cmギャップのチャンバーに移したのち、GENE PULSER II(BIO-RAD)を用いて25μF、350Ω、2.5kVのパルスをかけた。パルス印加した液に氷冷した1Mソルビトール入りYPD Brothを加えて1.5mL容チューブに移し、30℃で2時間振とうした後、5000rpm、4℃で5分間遠心して菌体を回収した。回収した菌体を200μLの1Mソルビトール溶液に再懸濁して100μLずつ選択培地に塗抹し、30℃で約1週間培養した。選択培地には、イーストエクストラクト1%(w/v)、ペプトン2%(w/v)、グルコース2%(w/v)、ハイグロマイシン500ppmを含む寒天培地を使用した。生育したコロニーをコロニーPCRにかけ、欠損標的遺伝子の領域から増幅される配列長が変化していることを確認して、配列番号1に示す遺伝子の欠損した変異株(Δseq1株)を得た。
実施例2 Δseq1株のソフォロリピッド生産性
(1)変異株の培養
 予め滅菌した酵母エキス1%(w/v)、ペプトン2%(w/v)、グルコース2%(w/v)を含む培地を大型試験管に5mL注入し、これへ実施例1で得られたΔseq1株及びそれらの親株のいずれかを一白金耳接種し、30℃、250rpmにて48時間振とう培養を行い、これを種培養液とした。上記種培養液を酵母エキス2%(w/v)、パルミチン酸エチル5%(w/v)、グルコース12.5%(w/v)を含む混合培地5mLに1%(v/v)となるように接種し、30℃、250rpmにて96時間振とう培養を行った。
(2)ソフォロリピッド生産性評価
 培養終了後、培養液中のパルミチン酸エチル(PE)とソフォロリピッド(SL)を抽出し、その量を測定した。PEの抽出では、まず(1)で培養した大型試験管中の培養液全量をファルコンチューブ(グライナー)に移し、次いで該大型試験管にヘキサンを4mL加えボルテックスで5秒間撹拌し、その全量を同じファルコンチューブに移した。ボルテックスを5秒行って液をよく混合した後、3000rpm、25℃、5分間遠心分離した。上清のヘキサン画分をパスツールピペットにてガラスチューブに全量回収した。残った液に対して上記と同じヘキサン抽出をもう一度繰り返すことで、PE全量を抽出した。SLの抽出では、(1)で培養した大型試験管に酢酸エチル6mLを加え5秒間ボルテックスし、全量をファルコンチューブへ回収した。その後、3000rpm、25℃、5分間遠心分離し、上清の酢酸エチル画分をパスツールピペットにて新しいガラスチューブに全量回収した。
 回収したヘキサン画分又は酢酸エチル画分から、窒素ガスの吹き付けによりヘキサン又は酢酸エチルを揮発させ、溶存していたPE又はSLを抽出した。抽出したPE又はSLを含むガラスチューブの重量と、回収前のガラスチューブの重量との差を、培養液中のPE量又はSL量として算出した。
 結果を図1に示す。また、親株のソフォロリピッド生産性を100%とした場合のΔseq1株のソフォロリピッド生産性の相対値を表2に示す。Δseq1株は親株と比べてソフォロリピッド生産性が向上した。
Figure JPOXMLDOC01-appb-T000002
実施例3 異なるパルミチン酸エチル濃度条件下におけるΔseq1株のソフォロリピッド生産性
 実施例2と同様の手順で、Δseq1株及びそれらの親株を培養し、培養液中のパルミチン酸エチルとソフォロリピッドの量を測定した。ただし、混合培地中のパルミチン酸エチルの量は、0、1、5、又は10%(w/v)に調整した。
 結果を図2に示す。また、親株における各パルミチン酸エチルの濃度におけるソフォロリピッド生産性を100%とした場合のΔseq1株におけるソフォロリピッド生産性の相対値を表3に示す。Δseq1株は、ソフォロリピッドの基質となるパルミチン酸エチルの濃度に関わらず、親株と比べてソフォロリピッド生産性が向上していた。さらにΔseq1株は、パルミチン酸エチルが添加されていない培地においても、親株よりも高いホロリピッド生産性を示した。
Figure JPOXMLDOC01-appb-T000003
実施例4 Jar Fermentor培養におけるΔseq1株のソフォロリピッド生産性
 予め滅菌した酵母エキス2%(w/v)、グルコース1%(w/v)を含む培地を坂口フラスコ30mLへ注入し、実施例1で得られたΔseq1株又は親株を一白金耳接種し、30℃、120rpmにて48時間往復振とう培養を行い、これを種培養液とした。酵母エキス2%(w/v)、パルミチン酸エチル5%(w/v)、グルコース12.5%(w/v)、尿素0.1%(w/v)を含む混合培地1200mLを2L JarFermentor培養器に投入し、ここに上記種培養液を1%(v/v)となるように接種し、30℃、800rpmにて168時間培養を行った。培養96時間でパルミチン酸エチル5%(w/v)及びグルコース10%(w/v)を培養器に流加した。
 適時培養液をサンプリングし、培養液中のパルミチン酸エチル(PE)とソフォロリピッド(SL)の量を測定した。PE又はSLの量の測定では、培養液をファルコンチューブ(グライナー)に5mLほど回収した後、実施例2と同様の手順でPE又はSLの全量をガラスチューブに回収し、回収前後のガラスチューブの重量差より培養液kgあたりのPE又はSLの量を算出した。
 結果を図3に示す。また、培養168時間目の親株のソフォロリピッド生産性を100%とした場合の、同培養時間におけるΔseq1株のソフォロリピッド生産性の相対値を表4に示す。Δseq1株は、Jar Fermentorを用いた大量培養の場合でも、親株と比べてソフォロリピッド生産性が向上していた。
Figure JPOXMLDOC01-appb-T000004

Claims (22)

  1.  配列番号2で示されるアミノ酸配列又は当該配列と少なくとも90%の同一性を有するアミノ配列からなるポリペプチドが欠失又は不活性化した、ソフォロリピッド生産性酵母変異株。
  2.  配列番号2で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子、又はこれに相当する遺伝子が欠失又は不活性化している、請求項1記載の変異株。
  3.  配列番号1で示されるヌクレオチド配列からなる遺伝子、又は当該配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、かつ前記配列番号2で示されるアミノ配列と少なくとも90%の同一性を有するアミノ配列からなるポリペプチドをコードする遺伝子が欠失又は不活性化している、請求項2記載の変異株。
  4.  前記配列番号2で示されるアミノ酸配列又は当該配列と少なくとも90%の同一性を有するアミノ配列からなるポリペプチドの発現量が、親株と比べて50%以下に低下している、請求項1~3のいずれか1項記載の変異株。
  5.  前記少なくとも90%の同一性が95%以上の同一性である、請求項1~4のいずれか1項記載の変異株。
  6.  前記ソフォロリピッド生産性酵母がスターメレラ属微生物である、請求項1~5のいずれか1項記載の変異株。
  7.  ソフォロリピッド生産性が向上している、請求項1~6のいずれか1項記載の変異株。
  8.  ソフォロリピッド生産性酵母において、配列番号2で示されるアミノ酸配列又は当該配列と少なくとも90%の同一性を有するアミノ配列からなるポリペプチドを欠失又は不活性化することを含む、ソフォロリピッド生産性酵母変異株の製造方法。
  9.  配列番号2で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子又はこれに相当する遺伝子を欠失又は不活性化することを含む、請求項8記載の方法。
  10.  配列番号1で示されるヌクレオチド配列からなる遺伝子、又は当該配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、かつ前記配列番号2で示されるアミノ配列と少なくとも90%の同一性を有するアミノ配列からなるポリペプチドをコードする遺伝子を欠失又は不活性化することを含む、請求項9記載の方法。
  11.  前記ソフォロリピッド生産性酵母変異株が、前記配列番号2で示されるアミノ酸配列又は当該配列と少なくとも90%の同一性を有するアミノ配列からなるポリペプチドの発現量が、親株と比べて50%以下に低下している株である、請求項8~10のいずれか1項記載の方法。
  12.  前記少なくとも90%の同一性が95%以上の同一性である、請求項8~11のいずれか1項記載の方法。
  13.  前記ソフォロリピッド生産性酵母がスターメレラ属微生物である、請求項8~12のいずれか1項記載の方法。
  14.  前記ソフォロリピッド生産性酵母変異株が、ソフォロリピッド生産性が向上した変異株である、請求項8~13のいずれか1項記載の方法。
  15.  ソフォロリピッド生産性酵母において、配列番号2で示されるアミノ酸配列又は当該配列と少なくとも90%の同一性を有するアミノ配列からなるポリペプチドを欠失又は不活性化することを含む、ソフォロリピッド生産性酵母のソフォロリピッド生産能の向上方法。
  16.  配列番号2で示されるアミノ酸配列からなるポリペプチドをコードする遺伝子又はこれに相当する遺伝子を欠失又は不活性化することを含む、請求項15記載の方法。
  17.  配列番号1で示されるヌクレオチド配列からなる遺伝子、又は当該配列と少なくとも90%の同一性を有するヌクレオチド配列からなり、かつ前記配列番号2で示されるアミノ配列と少なくとも90%の同一性を有するアミノ配列からなるポリペプチドをコードする遺伝子を欠失又は不活性化することを含む、請求項16記載の方法。
  18.  前記少なくとも90%の同一性が95%以上の同一性である、請求項15~17のいずれか1項記載の方法。
  19.  前記ソフォロリピッド生産性酵母がスターメレラ属微生物である、請求項15~18のいずれか1項記載の方法。
  20.  請求項1~7のいずれか1項記載のソフォロリピッド生産性酵母変異株を培養することを含む、ソフォロリピッドの製造方法。
  21.  前記培養のための培地が、C12~C20脂肪酸及びそのアルキルエステル、C12~C20アルカン、C12~C20アルケン、C12~C20アルキン、C12~C20アルコール、ならびにC12~C20脂肪酸又はそのアルキルエステルを含むトリアシルグリセロール、ジアシルグリセロール、モノアシルグリセロール及び油脂からなる群より選択される少なくとも1種の基質を含有する、請求項20記載の方法。
  22.  前記培地中の前記基質の含有量が、培養開始時において1~30質量%である、請求項21記載の方法。
PCT/JP2016/070962 2015-07-22 2016-07-15 ソフォロリピッド高生産性変異株 WO2017014176A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017529871A JP6725506B2 (ja) 2015-07-22 2016-07-15 ソフォロリピッド高生産性変異株
US15/740,073 US10590428B2 (en) 2015-07-22 2016-07-15 Sophorolipid highly-productive mutant strain
EP16827736.6A EP3327121B1 (en) 2015-07-22 2016-07-15 Sophorolipid highly-productive mutant strain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015144761 2015-07-22
JP2015-144761 2015-07-22

Publications (1)

Publication Number Publication Date
WO2017014176A1 true WO2017014176A1 (ja) 2017-01-26

Family

ID=57834359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070962 WO2017014176A1 (ja) 2015-07-22 2016-07-15 ソフォロリピッド高生産性変異株

Country Status (4)

Country Link
US (1) US10590428B2 (ja)
EP (1) EP3327121B1 (ja)
JP (1) JP6725506B2 (ja)
WO (1) WO2017014176A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453040B2 (en) * 2019-02-13 2022-09-27 Max Co., Ltd. Binding machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117025610A (zh) * 2023-06-28 2023-11-10 百葵锐(深圳)生物科技有限公司 熊蜂生假丝酵母诱导型Picl启动子及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511266A (ja) * 2009-11-18 2013-04-04 エボニック デグサ ゲーエムベーハー 細胞、核酸、酵素及びその使用並びにソホロリピッドの製造方法
WO2015028278A1 (en) * 2013-08-26 2015-03-05 Universiteit Gent Methods to produce bolaamphiphilic glycolipids

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4714377B2 (ja) 2001-06-29 2011-06-29 サラヤ株式会社 ソホロースリピッドの精製方法
US8530206B2 (en) 2008-05-21 2013-09-10 Ecover Coordination Center N.V. Method for the production of medium-chain sophorolipids
WO2012080116A1 (en) * 2010-12-15 2012-06-21 Universiteit Gent Producing unacetylated sophorolipids by fermentation
JP6171229B2 (ja) 2013-02-12 2017-08-02 アライドカーボンソリューションズ株式会社 ソホロリピッドの製造方法および該製造方法により得られたソホロリピッドを含有するソホロリピッド含有組成物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013511266A (ja) * 2009-11-18 2013-04-04 エボニック デグサ ゲーエムベーハー 細胞、核酸、酵素及びその使用並びにソホロリピッドの製造方法
WO2015028278A1 (en) * 2013-08-26 2015-03-05 Universiteit Gent Methods to produce bolaamphiphilic glycolipids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3327121A4 *
VAN BOGAERT INA ET AL.: "Knocking out the MFE-2 gene of Candida bombicola leads to improved medium-chain sophorolipid production", FEMS YEAST RES, vol. 9, no. 4, 2009, pages 610 - 617, XP009123208 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11453040B2 (en) * 2019-02-13 2022-09-27 Max Co., Ltd. Binding machine

Also Published As

Publication number Publication date
US20180208935A1 (en) 2018-07-26
EP3327121B1 (en) 2020-02-19
EP3327121A4 (en) 2019-01-02
JPWO2017014176A1 (ja) 2018-05-10
JP6725506B2 (ja) 2020-07-22
EP3327121A1 (en) 2018-05-30
US10590428B2 (en) 2020-03-17

Similar Documents

Publication Publication Date Title
Reznik et al. Use of sustainable chemistry to produce an acyl amino acid surfactant
US11401539B2 (en) Methods of producing polyol lipids
KR102128957B1 (ko) 조절가능한 프로모터
CN102482638A (zh) 制备己二酸的生物学方法
JP6779652B2 (ja) 脂質の製造方法
JP6629749B2 (ja) アシル−acpチオエステラーゼを用いた脂質の製造方法
EP3095874B1 (en) Manufacturing method for 7-dehydrocholesterol and vitamin d3
JP2023507891A (ja) リパーゼ改変株
AU2014288484B2 (en) Acyl-ACP thioesterase
WO2017014176A1 (ja) ソフォロリピッド高生産性変異株
EP3205728B1 (en) Process for producing 7-dehydrocholesterol and vitamin d3
JP4013535B2 (ja) 微生物によるプレニルアルコールの高生産方法
JP6709169B2 (ja) アシル−acpチオエステラーゼを用いた脂質の製造方法
US9828592B2 (en) Chemically modified sophorolipids and uses thereof
EP1214418B1 (de) Nukleinsäure aus tetrahymena kodierend fuer eine delta 6-desaturase, ihre herstellung und verwendung
JP6563721B2 (ja) ソフォロリピッド高生産性変異株
Ichihara et al. Sophorolipid highly-productive mutant strain
KR101147451B1 (ko) Thraustochytrid계 미세조류의 배양방법
JP7050528B2 (ja) 有用物質の生産方法
JP4059295B2 (ja) 微生物によるプレニルアルコールの高生産方法
JP2007190030A (ja) 微生物によるプレニルアルコールの高生産方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827736

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529871

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15740073

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016827736

Country of ref document: EP