WO2017014117A1 - 表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器 - Google Patents
表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器 Download PDFInfo
- Publication number
- WO2017014117A1 WO2017014117A1 PCT/JP2016/070620 JP2016070620W WO2017014117A1 WO 2017014117 A1 WO2017014117 A1 WO 2017014117A1 JP 2016070620 W JP2016070620 W JP 2016070620W WO 2017014117 A1 WO2017014117 A1 WO 2017014117A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- steel sheet
- plating
- treated steel
- alloy
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
Definitions
- the present invention relates to a surface-treated steel sheet obtained by coating an organic resin layer on nickel plating and tin plating, and in particular, an organic resin-coated steel sheet having excellent corrosion resistance and adhesion of the organic resin layer after processing, and its
- the present invention relates to a manufacturing method and a container such as a metal can using the organic resin-coated steel sheet.
- a so-called three-piece type can (hereinafter also referred to as a three-piece can) comprising a can body, a canopy, and a bottom cover has been widely used.
- chromate treatment has been performed for the purpose of improving the adhesion and corrosion resistance of the paint to TFS (tin-free steel) or tinplate as a base material.
- TFS titanium-free steel
- tinplate tinplate
- Ni plating nickel (Ni) plating
- TFS electrolytic chromate-treated steel plates
- combinations of Ni plating and Sn plating are also used. ing.
- Ni easily diffuses into Sn, depending on the plating conditions, Ni diffuses into Sn. As one of the causes, for example, a three-piece can deteriorates weldability.
- Patent Document 1 a surface-treated steel sheet that has been subjected to tin plating after non-uniform island-like nickel plating has been proposed (see, for example, Patent Document 1).
- fine particles having an uneven shape made of nickel are formed by a dilute nickel plating bath without using chromium.
- a technique for realizing a surface-treated steel sheet having excellent processing adhesion with an organic coating resin is also known (see, for example, Patent Document 2).
- Patent Document 1 Certainly, if non-uniform island-like Ni plating is applied as in Patent Document 1, the weldability can be improved to some extent, but Ni is still in a state where it is easily diffused during Sn plating. Also in Patent Document 2, it can be said that Ni is easily diffused during Sn plating because a very small amount of Sn is added to the Ni plating bath. As a result of intensive studies by the inventors, it is important to control the diffusion of Ni in order to improve the corrosion resistance and the adhesion to the paint. Therefore, if the diffusion of Ni is suppressed, the corrosion resistance is remarkably improved. I found out that I can contribute.
- the present invention has been made in view of solving such problems, and is a surface-treated steel sheet and organic resin excellent in weldability while maintaining high adhesion and corrosion resistance with an organic resin such as paint without using chromium.
- An object of the present invention is to provide a coated steel sheet, a method for producing the same, and a container using the organic resin-coated steel sheet.
- a surface-treated steel sheet includes a base material, a granular or acicular Ni—Sn alloy layer formed on the base material, and the Ni—Sn. And a surface treatment layer including an Fe—Sn alloy layer or an Sn layer disposed on the other part of the alloy. Furthermore, in the surface-treated steel sheet having the feature (1) described above, (2) Sn / Ni, which is the ratio of Sn and Ni in the surface-treated layer, is preferably 5.0 to 70. In the surface-treated steel sheet having the characteristics of (1) or (2) described above, (3) the Ni—Sn alloy mainly has Ni 3 Sn 4 and further contains Fe, The Fe content is preferably 10 at% or less.
- the Fe—Sn alloy layer disposed on the other part of the Ni—Sn alloy contains FeSn 2 . It is preferable.
- the Ni—Sn alloy layer is the Fe—Sn alloy in the in-plane direction of the surface treatment layer. It is preferable to be surrounded by a layer or the Sn layer.
- the coating layer preferably contains an oxide of P (phosphorus).
- an organic resin-coated steel sheet according to one embodiment of the present invention has an organic resin layer coated on the surface-treated steel sheet according to any one of (1) to (7). It is characterized by.
- the container concerning one Embodiment of this invention consists of an above described organic resin coating steel plate. Examples of the container include a metal can, a lid, or a metal case that stores beverages, food, medicines, and the like.
- the manufacturing method of the surface treatment steel plate concerning one Embodiment of this invention is a method of forming Ni layer on the said base material by performing Ni plating to a base material, and said Ni By performing Sn plating on the base material on which the layer is formed, a step of forming an Sn layer on the Ni layer, and a melt heat treatment on the base material on which the Ni layer and the Sn layer are formed By performing, a surface treatment layer including a granular or acicular Ni—Sn alloy layer and a Fe—Sn alloy layer or a Sn layer disposed on the other part of the Ni—Sn alloy is formed on the base material. And a process.
- the Ni plating amount in the Ni plating is 0.01 to 0.3 g / m 2
- the Sn plating amount in the Sn plating is 0.4 to 3. It is preferably 0 g / m 2 .
- Ni or Sn can be stably present in Sn by forming a granular or needle-like Ni—Sn alloy layer and forming the other portion as an Fe—Sn alloy layer or Sn layer.
- the diffusion of Ni can be suppressed, whereby an excellent surface-treated steel sheet having both corrosion resistance and weldability can be realized.
- the surface-treated steel sheet according to the present embodiment includes at least a base material and a surface treatment layer formed on the base material.
- the surface treatment layer is characterized in that Ni is in a stable phase (metastable state) in the surface treatment layer so that diffusion of Ni in the surface treatment layer is suppressed.
- each element is explained in full detail about the surface treatment steel plate concerning this embodiment.
- a metal plate such as iron or various alloys is used.
- the metal plate include steel plates that have been subjected to various surface treatments such as tinplate, TFS, and nickel-plated steel plates.
- a particularly suitable steel plate for example, a low carbon aluminum killed steel having a carbon content of 0.01 to 0.15% by mass generally used for cans can be used.
- non-aging ultra-low carbon aluminum killed steel having a carbon content of less than 0.01% by mass with addition of niobium or titanium is also applicable.
- These aluminum killed steel hot-rolled sheets are pickled with electrolytic pickling, etc. to remove surface scales, then cold-rolled, and then subjected to electrolytic cleaning, annealing, rolling, etc. It may be used as
- the surface treatment layer of this embodiment is formed on at least one surface side of the base material, and is a granular or needle-like Ni—Sn alloy layer, and an Fe—Sn alloy layer or Sn layer disposed on the other part of the Ni—Sn alloy. It is comprised including.
- the Fe—Sn alloy layer and the Sn layer are collectively referred to as an envelope layer.
- envelope layer In other words, except for the case where individual layers are specified and described, when “enclosure layer” is simply described, “Fe—Sn alloy layer”, “Sn layer”, or “Fe—Sn alloy layer and Sn layer” are described. ". FIG.
- the surface treatment layer 2 includes a Ni—Sn alloy layer 21, a first envelope layer 22, and a second envelope layer 23.
- the Ni—Sn alloy layer 21 has a granular or needle-like appearance on the substrate 1.
- the “granular or needle-like” refers to a shape that rises in the height direction from the surrounding portion when focusing on the Ni component.
- the Ni—Sn alloy layer 21 protrudes in a convex shape in the height direction, which is the vertical direction of the base material 1, with respect to the planar direction (surface direction of the base material). Therefore, it can be said that the shape is raised in the height direction from the above-described surrounding portion.
- FIG. 1 is shown in cross section, as is apparent from FIG.
- the surface treatment layer 2 when the surface treatment layer 2 is viewed in plan view from above the substrate 1, the Ni—Sn alloy layer 21 is It is located so as to be surrounded by the one envelope layer 22 and the second envelope layer 23.
- the surface treatment layer 2 of the present embodiment can be expressed as follows. That is, in the surface treatment layer 2, the Ni—Sn alloy layers 21 are scattered on the substrate 1 by a predetermined distance, and the first envelope layer 22 is interposed between the adjacent Ni—Sn alloy layers 21.
- the second envelope layer 23 is formed so as to cover the Ni—Sn alloy layer 21 and the first envelope layer 22.
- the structure of the Ni—Sn alloy layer 21 is preferably mainly Ni 3 Sn 4 .
- “mainly” means the most common form when the crystal structure is analyzed.
- the crystal structure can be analyzed using, for example, an X-ray diffractometer or a transmission electron microscope.
- the reason why it is desirable that the Ni—Sn alloy layer 21 is mainly Ni 3 Sn 4 is as follows. In other words, in addition to Ni 3 Sn 4 , there is a metastable state (metastable phase) for Ni—Sn alloys such as Ni 3 Sn and Ni 3 Sn 2 in the bonding mode between Ni and Sn. Ni 3 Sn 4 is optimum when the Sn plating amount obtained in step (1) is taken into consideration.
- Ni—Sn alloy layer 21 has a small amount of Sn, a metallic Ni phase or a Ni—Fe phase is formed. Therefore, a condition with a large amount of Sn plating is preferable. In this case, Ni 3 Sn 4 is the above-mentioned quasi-standard. This is because it becomes a stable phase.
- the form of particles (including granular or acicular state) in the Ni—Sn alloy layer 21 is preferably the following structure. That is, the average particle diameter of Ni particles in the Ni—Sn alloy layer 21 is preferably 0.1 to 1.0 ⁇ m, more preferably 0.2 to 0.4 ⁇ m. Further, the particle density of Ni particles in the Ni—Sn alloy layer 21 is preferably 10 to 100 particles / ⁇ m 2 , more preferably 10 to 20 particles / ⁇ m 2 .
- the “particle density” means that the surface of the surface treatment film 2 is observed with a scanning electron microscope (SEM), and the average particle diameter of the particles is within a range of 1 ⁇ 1 ⁇ m in the range of about 0.5 ⁇ m or less.
- the number of nickel particles per unit area is measured and obtained by counting the number of particles present in. In this case, 1 particle was completely included in the 1 ⁇ 1 ⁇ m frame, and 0.5 particles were counted for only a part of the particles contained in the frame. And this operation is performed about five places on the surface of a nickel plating layer, and particle density can be calculated
- the average particle size is about 0.5 ⁇ m or more
- the same operation is performed with the measurement range being 10 ⁇ 10 ⁇ m, and the number of particles obtained is converted to the number of particles per 1 ⁇ 1 ⁇ m to obtain the particle density.
- the “average particle size” is calculated by calculating the average occupied area per particle from the particle density per unit area of 1 ⁇ 1 ⁇ m obtained by observing the surface of the surface treatment film 2 with a scanning electron microscope (SEM). Then, it can be calculated and obtained as the diameter of a circle corresponding to the average occupied area.
- the Ni—Sn alloy layer 21 may contain impurities (substances inevitably mixed during production such as element diffusion from the base material) with respect to Ni 3 Sn 4 as long as the metastable phase described above is maintained.
- the component of the base material is iron (Fe)
- the Ni—Sn alloy layer 21 may contain Fe.
- the content of Fe (Fe / (Ni + Sn + Fe)) is preferably 10 at% or less. This is because if it exceeds 10 at%, it tends to dissolve in the contents and the corrosion resistance tends to decrease, which is not preferable.
- the envelope layer surrounding the Ni—Sn alloy layer 21 includes a first envelope layer 22 and a second envelope layer 23.
- the first envelope layer 22 is an “Fe—Sn alloy layer” or “Sn layer”, and is formed on the substrate 1 and located between the Ni—Sn alloy layers 21.
- the second envelope layer 23 is an “Fe—Sn alloy layer” or “Sn layer”, and is positioned on these layers so as to cover the Ni—Sn alloy layer 21 and the first envelope layer 22.
- the components of the first envelope layer 22 and the second envelope layer 23 can be changed depending on the degree of diffusion of the Fe component from the substrate 1. Therefore, the first envelope layer 22 and the second envelope layer 23 in the present embodiment can take, for example, patterns 1 to 3 shown in Table 1 below.
- the second envelope layer 23 does not necessarily need to cover the Ni—Sn alloy layer 21, and a part of the Ni—Sn alloy layer 21 may protrude from the second envelope layer 23.
- the Fe—Sn alloy layer preferably includes FeSn 2 .
- Sn / Ni which is the ratio of Sn and Ni in the surface treatment layer 2, is preferably 5.0 to 70.
- Sn / Ni is 5.0 or less, the structure is composed only of Ni 3 Sn 4 , so that weldability and corrosion resistance are deteriorated.
- Sn / Ni exceeds 70, the effect of Ni deposited in a granular form is small, and a characteristic close to that of tinplate is shown.
- the surface-treated steel sheet ST shown in FIG. 1 is manufactured in the following manner. That is, in this embodiment, Ni plating is deposited in fine particles, thereby forming a granular or needle-shaped Ni—Sn alloy in the melt heat treatment performed after Sn plating, thereby simultaneously providing high weldability and corrosion resistance.
- the surface treated steel plate ST is realized.
- the components of the plating solution are nickel sulfate 10 to 100 g / L, more preferably 40 to 80 g / L, ammonium sulfate 10 to 100 g / L, more preferably 40 to 80 g / L, citric acid 5 to 100 g / L, more preferably 10 to 20 g / L.
- the pH is 2.0 to 5.0, more preferably 3.5 to 4.5.
- the conditions for cathodic electrolysis are a current density of 30 to 100 A / dm 2 , more preferably 30 to 50 A / dm 2 .
- the Ni layer is formed on the base material 1 by first performing Ni plating on the base material 1 (step 1).
- the amount of Ni plating in this Ni plating is preferably 0.01 to 0.3 g / m 2 , for example. This is because if it is less than 0.01 g / m 2 , the effect of Ni plating is insufficient, and if it exceeds 0.3 g / m 2 , the necessary amount of Sn increases and the cost increases.
- the Sn layer is formed on the Ni layer by performing Sn plating on the substrate 1 on which the Ni layer is formed (step 2).
- the amount of Sn plating in this Sn plating is preferably 0.4 to 3.0 g / m 2 .
- the Ni plating amount is 0.01 to 0.1 g / m 2 and the Sn plating amount is 1.0 to 2.8 g / m 2 .
- the surface treatment layer 2 (granular or acicular Ni) described above is performed by performing reflow treatment (melting heat treatment) on the substrate 1 on which the Ni layer and the Sn layer are formed under predetermined conditions.
- a -Sn alloy layer and an Fe-Sn alloy layer or Sn layer as an envelope layer formed on the other part (remaining part) other than this Ni-Sn alloy are formed on the substrate 1 (step 3). Note that specific conditions for the reflow process will be described in detail in the embodiments described later.
- the surface-treated steel sheet ST of the present embodiment is manufactured through the processing of Step 1 to Step 3 described above.
- ⁇ Coating layer as chromium-free treatment> As shown in Step 4 of FIG. 2 and FIG. 3, for the base material 1 on which the surface treatment layer 2 of the present embodiment is formed, the surface on the surface treatment layer 2 or the other side described above of the base material 1. Further, a coating layer 3 as a film of at least one oxide of Zr, Ti, and Al (for example, ZrO 2 , TiO 2 , Al 2 O 3, etc.) may be formed. That is, in the present embodiment, the coating layer 3 is not essential, but it is more preferable if the coating layer 3 is on the surface treatment layer 2. In addition, the coating layer 3 of this embodiment may contain not only the above oxide but also a hydroxide. Therefore, the “oxide” in the present embodiment is used as a concept that may contain a hydroxide at least in part.
- the formation of the coating layer 3 is not limited to the above.
- a film having a form utilizing a passivating action such as molybdic acid (including a form added with a predetermined ratio of phosphoric acid) or tungstic acid;
- Reactive coatings based on fluorides, phosphates, nitrates and sulfates of transition metals such as Ti, Zr, V, Mn, Ni and Co, and polypinylphenol derivatives and polyacrylic acid Coated coating type coatings (3) reactive type coatings based on chlorides and nitrates of rare elements such as Y, La, and Ce, or oxyacid salts such as molybdic acid and tungstic acid
- Films based on polyphenolic carboxylic acids such as tannic acid and chelating agents such as thiourea containing sulfur and nitrogen.
- Various forms of coating may be used.
- the coating layer 3 may contain an oxide of phosphorus in addition to the above oxide.
- a phosphate compound layer made of Fe or Sn may be formed, or may be formed in the form of a phosphate compound such as Zr phosphate or Al phosphate.
- phosphoric acid By containing phosphoric acid, adhesion with the organic resin layer can be improved and plating defects such as pinholes can be reduced.
- the coating amount of the coating layer 3 is Zr oxides, Al oxides, either 0.001 ⁇ 0.03g / m 2 of Ti oxides, oxides of phosphorus is 0.0001 ⁇ 0.05g / m 2 Preferably there is.
- the oxide of phosphorus when a coating layer mainly composed of oxides of P (phosphorus) and Al (aluminum) is formed, the Al coating amount is preferably 0.001 to 0.015 g. / M 2 , and the preferable coating amount of P on this Al is 0.0005 to 0.003 g / m 2 .
- the organic resin layer 4 may be formed on the surface-treated steel plate ST described above. More specifically, after the above-described surface-treated steel plate ST is manufactured, or when the above-described coating layer 3 is formed, after the formation of the coating layer 3, an organic resin layer 4 is formed thereon to form an organic layer. A resin-coated steel sheet RT is manufactured. Various organic paints can be applied as the organic resin layer 4.
- Thermoplastic resins include polyethylene, polypropylene, ethylene-propylene copolymers, ethylene-vinyl acetate copolymers, ethylene-acrylic ester copolymers, olefin resin films such as ionomers, and polyesters such as polyethylene terephthalate and polybutylene terephthalate.
- a film, an unstretched film such as a polyvinyl chloride film or a polyvinylidene chloride film or a biaxially stretched film, or a polyamide film such as nylon 6, nylon 6, 6, nylon 11, or nylon 12 can be used.
- non-oriented polyethylene terephthalate obtained by copolymerizing isophthalic acid is particularly preferable.
- the organic material for comprising such an organic resin layer 4 may be used independently, and a different organic material may be blended and used. Moreover, the multilayer structure which consists of a some organic resin layer may be sufficient.
- thermosetting resin epoxy-phenol resin, polyester resin, or the like can be used.
- polyester resins are preferred because they are easy to paint and bake, have excellent workability, adhesion to metals, and retort resistance, and do not generate toxic or corrosive gases during incineration.
- polyester resins include ethylene terephthalate, butylene terephthalate, 1,4-cyclohexanedimethyl terephthalate, ethylene isophthalate, butylene isophthalate, ethylene adipate, butylene adipate, ethylene naphthalate, and butylene naphthalate.
- polyester resins containing the above esters include polyester resins containing the above esters.
- the organic resin layer 4 of the present embodiment may be a multilayer film composed of a plurality of layers, and may preferably be composed of a two-layer film or a three-layer film.
- the above-described surface-treated steel sheet ST and organic resin-coated steel sheet RT of the present embodiment can be applied to various containers C.
- the container C that can be applied in the present embodiment include a can (such as a known three-piece can) or a case that encloses and stores beverages and foods, and a metal can that has a predetermined shape using welding in particular. Is a good example.
- a can body without an upper cover is shown, not a finished product of a three-piece can.
- Example 1 A cold rolled steel sheet of low carbon aluminum killed steel having a thickness of 0.225 mm was used as a base material.
- this base material was electrolytically degreased in an aqueous alkaline solution, washed with water, further washed with sulfuric acid and washed with water, and then formed into a concavo-convex shape with a nickel plating film amount of 0.01 g / m 2 in a nickel plating bath. A fine granular Ni plating layer was formed.
- the Sn plating layer was formed by setting the amount of Sn plating to 0.7 g / m 2 in a tin plating bath.
- the surface-treated steel sheet ST obtained under the above conditions was subjected to reflow treatment (heat treatment) to form a Ni—Sn alloy layer on the substrate.
- the melt heat treatment was performed for 5.6 seconds at a temperature of 240 ° C. higher than the melting point of Sn.
- the heating temperature can be appropriately selected as long as it is within the melting point of tin or higher, and the heating time can be appropriately selected as long as it is within the range of 0.1 to 8 seconds. .
- the heating temperature or heating time is not particularly limited as long as the alloying of Ni and Sn progresses and Ni 3 Sn 4 is formed.
- the specific plating bath conditions were as follows. ⁇ Nickel plating bath and plating conditions> Nickel sulfate 40g / L Ammonium sulfate 20g / L Citric acid 15g / L pH 4.0 Bath temperature 45 ° C Current density 50A / dm 2 The amount of nickel sulfate may be adjusted as appropriate as long as it is 40 to 60 g / L. The amount of ammonium sulfate may be adjusted as appropriate as long as it is 20 to 100 g / L. In Table 5, “fine particle Ni” is indicated for those using this nickel plating bath.
- ⁇ Tin plating bath and plating conditions Stannous sulfate 80g / L Phenolsulfonic acid 60g / L Additive A (Ethoxylated- ⁇ -naphthol) 3g / L Additive B (Ethoxynaphtholsulfonic acid) 3g / L pH 1 or less Bath temperature 40 ° C Current density 10 A / dm 2 The amount of stannous sulfate may be adjusted as appropriate as long as it is 10 to 200 g / L. Further, the amount of phenolsulfonic acid may be appropriately adjusted as long as it is 5 to 100 g / L. In Table 5, “PSA bath” is indicated for those using the present tin plating bath.
- the surface-treated steel sheet produced through the above steps is subjected to cathodic electrolysis in a pH 3.0 treatment bath mainly composed of aluminum nitrate as a post-treatment, followed by washing with water and drying to obtain a surface.
- a coating layer mainly composed of an oxide of aluminum was formed on the treated steel plate (the Al coating amount was 0.005 g / m 2 ).
- the surface-treated steel sheet coated layer is formed after the heat treatment for 10 minutes at a temperature 190 ° C., after coating an epoxy-phenolic paint such that the film thickness after baking and drying is 70 mg / dm 2, temperature 200 ° C. Was baked for 10 minutes to obtain an organic resin-coated steel sheet formed with an organic resin layer on the surface-treated steel sheet.
- Example 2 The same operation as in Example 1 was conducted except that the Sn plating amount was 1.4 g / m 2 .
- Example 3 The same operation as in Example 1 was performed except that the Ni plating amount was 0.03 g / m 2 .
- the SEM image regarding the surface form of the surface treatment layer 2 in this Example 3 is shown in FIG. This SEM image was obtained by observing the surface using a scanning electron microscope (JSM-6330F, manufactured by JEOL Ltd.) under conditions of an acceleration voltage of 5 kV and a current of 12 ⁇ A, and performing imaging.
- Example 4 The same operation as in Example 1 was performed except that the Ni plating amount was 0.03 g / m 2 and the Sn plating amount was 1.4 g / m 2 .
- the SEM image regarding (a) surface form of the surface treatment layer 2 in this Example 4 and the (b) SEM image regarding the surface form after detinning are shown in FIG.
- FIG. 8 shows a TEM image showing measurement points
- Table 2 shows the analysis result.
- the TEM analysis was performed using a JEM-2010F manufactured by JEOL, and the EDX analysis was performed using a Nolan UTW type Si (Li) semiconductor detector.
- the NBD analysis was performed as nanobeam analysis (camera length: 50 cm, measurement area: about 30 nm in diameter).
- the envelope layer (the other part of Table 2) of the surface treatment layer 2 is disposed so as to surround the Ni—Sn alloy layer 21 (corresponding to the Ni—Sn alloy part in Table 2). And two layers having different characteristics.
- Example 4 a FeSn 2 layer, which is an Fe—Sn alloy layer, is formed as the first envelope layer 22, and a Sn envelope as the second envelope layer 23 is formed on the first envelope layer 22 (FeSn 2 layer). A layer is formed.
- a granular or acicular Ni—Sn alloy layer 21 is confirmed as in FIG. 7A, and the envelope layer is an Fe—Sn alloy layer. I know that there is.
- the exposure of pinholes or underlying metal component (Fe), which is a defect of corrosion, is not confirmed, suggesting that the structure is resistant to corrosion from the appearance.
- Example 5 The amount of Ni plating was set to 0.03 g / m 2 , the amount of Sn plating was set to 1.4 g / m 2, and the cathode electrolysis treatment was performed as a post-treatment in a pH 3.0 treatment bath mainly composed of zirconium fluoride. This was performed in the same manner as in Example 1 except that a Zr oxide formed by washing and then washing and drying (the coating amount of Zr was 0.01 g / m 2 ) was used.
- Example 6 The same operation as in Example 1 was performed except that the Ni plating amount was 0.03 g / m 2 and the Sn plating amount was 2.8 g / m 2 .
- Example 7 The same procedure as in Example 1 was performed except that the Ni plating amount was 0.03 g / m 2 , the Sn plating amount was 2.8 g / m 2, and Zr oxide was used as a post-treatment.
- Example 8> The same operation as in Example 1 was performed except that the Ni plating amount was 0.1 g / m 2 and the Sn plating amount was 1.4 g / m 2 .
- Example 9 The same operation as in Example 1 was performed except that the Ni plating amount was 0.25 g / m 2 and the Sn plating amount was 2.8 g / m 2 .
- Example 10 The Ni plating amount was 0.03 g / m 2 and the Sn plating amount was 0.9 g / m 2 .
- anodic electrolysis was performed in a treatment solution having a pH of 2.4 containing phosphoric acid and sodium dihydrogen phosphate as main components, followed by water washing. Furthermore, the cathode is electrolyzed in a pH 3.0 treatment bath containing aluminum nitrate as a main component, followed by washing with water and drying to oxidize P (phosphorus) and Al (aluminum) on the surface-treated steel sheet.
- a coating layer mainly composed of an object was formed. Coating amount of P and Al in the coating layer was 0.002 g / m 2 and 0.005 g / m 2. Except for the above, the same procedure as in Example 1 was performed.
- Ni plating amount is 0.04g / m 2
- coating amount of P and Al in the coating layer was 0.002 g / m 2 and 0.005 g / m 2. Except for the above, the same procedure as in Example 10 was performed.
- Example 12 The Ni plating amount was 0.03 g / m 2 , the Sn plating amount was 0.9 g / m 2 , and the coating amounts of P and Al in the coating layer were 0.002 g / m 2 and 0.01 g / m 2 . Except for the above, the same procedure as in Example 11 was performed.
- Example 13 The Ni plating amount was 0.03 g / m 2 , the Sn plating amount was 1.4 g / m 2 , and the coating amounts of P and Al in the coating layer were 0.002 g / m 2 and 0.01 g / m 2 . Except for the above, the same procedure as in Example 11 was performed. For Examples 12 and 13, the ATC value was measured. The measured values are shown in Table 5, respectively.
- FIG. 9 shows a schematic structural diagram relating to (a) the surface form of the surface treatment layer 2 in Comparative Example 1, and (b) an SEM image relating to the surface form. Further, for the analysis of the crystal structure using the EDX analysis result and NBD (Nano-Beam-Diffraction) in the surface treatment layer 2, FIG. 10 shows a TEM image showing measurement points, and Table 3 shows the analysis result.
- Example 2 The same operation as in Example 1 was performed except that the Ni plating amount was 0.5 g / m 2 and the Sn plating amount was 0.7 g / m 2 .
- Example 3 The same operation as in Example 1 was performed except that the Ni plating amount was 0.5 g / m 2 and the Sn plating amount was 0.4 g / m 2 .
- Example 4 The same operation as in Example 1 was performed except that the Ni plating amount was 0.1 g / m 2 and the Sn plating amount was 0.3 g / m 2 .
- FIG. 11 shows a schematic structural diagram relating to (a) the surface form of the surface treatment layer 2 in Comparative Example 5, and (b) an SEM image relating to the surface form.
- Example 6 The same operation as in Example 1 was performed except that the Ni plating amount was 1.5 g / m 2 and the Sn plating amount was 0.4 g / m 2 .
- Example 7 The same operation as in Example 1 was performed except that the Ni plating amount was 1.5 g / m 2 and the Sn plating amount was 2.8 g / m 2 .
- Example 1 As an example of the prior art, Ni plating was not performed, and the same procedure as in Example 1 was performed except that Sn plating was performed with an Sn plating amount of 2.8 g / m 2 .
- Example 2 As an example of the prior art, for Ni plating, using a Watt bath under the following conditions, the Ni—Fe plating amount is set to 0.03 g / m 2 , the Sn plating amount is set to 0.9 g / m 2, and post-treatment It carried out similarly to Example 1 except having performed chromate treatment.
- the SEM image regarding the (a) surface form of the surface treatment layer 2 in this reference example 2 and the SEM image regarding the surface form after (b) detinning are shown in FIG.
- Nickel sulfate 240g / L Nickel chloride 45g / L Boric acid 30g / L Additives (saccharin, etc.) 2g / L pH 4.0 Bath temperature 45 ° C Current density 5A / dm 2
- Example 3 As an example of the prior art, the same procedure as in Example 1 was performed except that Ni plating was not performed, Sn plating was performed with an Sn plating amount of 1.3 g / m 2, and chromate treatment was performed as a post treatment.
- the SEM image regarding the (a) surface form of the surface treatment layer 2 in this reference example 3 and the (b) SEM image regarding the surface form after detinning are shown in FIG.
- FIG. 14 shows a TEM image showing measurement points
- Table 4 shows the analysis result.
- ATC values were measured for Reference Examples 2 and 3. The measured values are shown in Table 5, respectively.
- the ATC value is a value indicating the corrosion resistance in acidic foods.
- the metal Sn (free Sn) of the surface treatment plate was dissolved by electrolysis in an aqueous sodium hydroxide solution to produce a test piece exposing the alloy layer.
- a test solution 1300 ml of grapefruit (Sunfesta Grapefruit 100 manufactured by Suntory) was diluted with 200 ml of distilled water, 0.285 g of stannous chloride and 0.9 g of potassium sorbate were added and ripened to prepare a test solution.
- the test piece and Sn were coupled in the test solution, and the coupled current was measured after 20 hours at 27 ° C. in a nitrogen gas atmosphere.
- the coating amount was measured, the surface morphology was observed, and various evaluations were performed by the following methods.
- ⁇ Measurement of coating amount of Ni and Sn> The coating amount of Ni and Sn on the surface-treated steel sheet was measured with a fluorescent X-ray apparatus (fluorescent X-ray analyzer (manufactured by Rigaku Corporation, ZSX100e)).
- ⁇ Method for measuring (observing) surface morphology The surface form of the surface treatment layer was observed by observation using a SEM (scanning electron microscope). The configuration of the precipitated particles was performed by cross-sectional observation using a TEM (transmission electron microscope). The compound present in the surface treatment layer was identified by crystal diffraction. In addition, quantitative analysis of Ni, Sn, and Fe present in the surface treatment layer was performed by point analysis with TEM-EDX (energy dispersive X-ray spectroscopy).
- the obtained organic resin-coated steel sheet was evaluated for paint adhesion and corrosion resistance in the model solution.
- the model solution includes a mixed aqueous solution of 0.5% by weight of acetic acid and 1.5% by weight of sodium chloride (salt), a 0.5% by weight aqueous solution of acetic acid, and 1.5% of citric acid and sodium chloride (salt).
- a 1.5% by weight mixed aqueous solution was used. More specifically, a shallow drawn can (container) with a drawing ratio of 2.0 is produced using an organic resin-coated steel plate in which an organic resin layer is formed on the surface-treated steel plate, and scratches reaching the substrate on the side wall of the can (Cross cut) was given. Then, after performing the retort process for 30 minutes at the temperature of 125 degreeC in a model liquid, it passed for 2 weeks in 37 degreeC environment. The corrosion situation around the crosscut after 2 weeks was visually observed and evaluated according to the following criteria.
- the weldability of the organic resin-coated steel sheet or the surface-treated steel sheet was evaluated by measuring the surface resistance. More specifically, for example, a contact load of 100 gf was applied to the surface-treated steel sheet, and the resistance was measured when a set load (for example, 100 gf) was reached in one cycle from loading to unloading. The measurement was performed using an electrical contact simulator CRS-153-AU type manufactured by Yamazaki Seiki Laboratory. In addition, weldability evaluation was performed about all the Examples and the comparative examples. 3 points: As a result of determination by the resistance value, it was equal to or less than that of Reference Example 2.
- Table 5 shows the materials, film amounts, and surface forms of the Examples, Comparative Examples, and Reference Examples described above, and Table 6 shows the results of various evaluations.
- the corrosion resistance evaluation is an evaluation with a model solution, and there are some contents that are not applied in the conventional technique (Reference Examples 1 to 3).
- the ATC value of the surface-treated plate obtained in the present invention was smaller than those of Comparative Examples 2 and 3, indicating excellent corrosion resistance.
- the surface-treated steel sheet, the organic resin-coated steel sheet and the container using the same according to the present invention have high levels of corrosion resistance, paint adhesion and weldability at the same time, and can be applied to a wide range of industries. Is possible.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
【課題】高い加飾性や光輝性を維持しつつ過酷な成形加工にも耐える塗料密着性に優れたポリエステル樹脂被覆金属板およびそれを用いた容器を提供する。 【解決手段】本発明の表面処理鋼板は、基材と、前記基材上に形成されるとともに、粒状又は針状のNi-Sn合金層と、前記Ni-Sn合金の他部に配置されるFe-Sn合金層又はSn層とを含む表面処理層と、を備えたことを特徴とする。
Description
本発明は、ニッケルめっきおよび錫めっき上に有機樹脂層を被覆してなる表面処理鋼板に関し、特に加工を施した際に加工後の耐食性・有機樹脂層の密着性が優れる有機樹脂被覆鋼板及びその製造方法並びにこの有機樹脂被覆鋼板を用いた金属缶などの容器に関する。
飲料用あるいは食品用などに好適な金属缶の分野では、従来より、缶胴、天蓋、底蓋からなるいわゆる3ピースタイプの缶(以下、3ピース缶とも称する)が広く用いられている。この3ピース缶においては、基材となるTFS(ティンフリースチール)やぶりきなどに対する塗料の密着性や耐食性向上を目的としてクロメート処理が行われていた。
しかしながら近年の世界的な環境負荷低減に向けた対応への要望から、6価クロムを用いないで表面処理を行うクロムフリー処理の検討が行われている。
例えば飲料や食品分野では、ぶりき、TFS(電解クロメート処理鋼板)以外の表面処理鋼板としてニッケル(Ni)めっきを施した鋼板が使用されており、NiめっきとSnめっきを組み合わせたものも使用されている。
しかしながら近年の世界的な環境負荷低減に向けた対応への要望から、6価クロムを用いないで表面処理を行うクロムフリー処理の検討が行われている。
例えば飲料や食品分野では、ぶりき、TFS(電解クロメート処理鋼板)以外の表面処理鋼板としてニッケル(Ni)めっきを施した鋼板が使用されており、NiめっきとSnめっきを組み合わせたものも使用されている。
NiはSn中に拡散しやすいため、めっき条件次第ではSn中にNiが拡散してしまい、これが原因の1つとして例えば3ピース缶では溶接性の低下が生じてしまう。
これに対してニッケルめっき鋼板の密着性と耐食性を向上させるため、不均一な島状ニッケルめっきを施した後に錫めっきを行う表面処理鋼板が提案されている(例えば特許文献1参照)。
更に、従来のニッケルめっき鋼板では有機被覆樹脂層との密着性が充分でないという課題を克服するため、クロムを使用せずに希薄なニッケルめっき浴によってニッケルから成る凹凸形状をした微細粒状を形成して有機被覆樹脂との加工密着性に優れる表面処理鋼板を実現する技術も知られている(例えば特許文献2参照)。
これに対してニッケルめっき鋼板の密着性と耐食性を向上させるため、不均一な島状ニッケルめっきを施した後に錫めっきを行う表面処理鋼板が提案されている(例えば特許文献1参照)。
更に、従来のニッケルめっき鋼板では有機被覆樹脂層との密着性が充分でないという課題を克服するため、クロムを使用せずに希薄なニッケルめっき浴によってニッケルから成る凹凸形状をした微細粒状を形成して有機被覆樹脂との加工密着性に優れる表面処理鋼板を実現する技術も知られている(例えば特許文献2参照)。
たしかに特許文献1のごとく不均一な島状Niめっきを施したりすれば、ある程度は溶接性の向上が見込めるものの、依然としてNiはSnめっき中に拡散されやすい状態に変わりはない。
また、特許文献2においても、Niめっき浴中に微量なSnを添加しているため、やはりNiはSnめっき中に拡散されやすい状態であると言える。
発明者が鋭意検討した結果、上記耐食性や塗料との密着性を向上させるためにはNiの拡散を如何にして制御するかが重要であり、したがってNiの拡散を抑制すれば耐食性の向上に格段に寄与できることを突き止めた。
また、特許文献2においても、Niめっき浴中に微量なSnを添加しているため、やはりNiはSnめっき中に拡散されやすい状態であると言える。
発明者が鋭意検討した結果、上記耐食性や塗料との密着性を向上させるためにはNiの拡散を如何にして制御するかが重要であり、したがってNiの拡散を抑制すれば耐食性の向上に格段に寄与できることを突き止めた。
本発明は、かような課題を解決することを鑑みてなされ、クロムを用いずに塗料などの有機樹脂との高い密着性と耐食性を維持しつつ溶接性にも優れた表面処理鋼板や有機樹脂被覆鋼板、及びこれらの製造方法並びにこの有機樹脂被覆鋼板を用いた容器を提供することを目的とする。
上記課題を解決するため、本発明の一実施形態にかかる表面処理鋼板は、基材と、前記基材上に形成されるとともに、粒状又は針状のNi-Sn合金層と、前記Ni-Sn合金の他部に配置されるFe-Sn合金層又はSn層とを含む表面処理層と、を備えたことを特徴とする。
さらに、前記した(1)の特徴を備えた表面処理鋼板においては、(2)前記表面処理層におけるSnとNiとの比であるSn/Niが、5.0~70であることが好ましい。
また、前記した(1)又は(2)の特徴を備えた表面処理鋼板においては、(3)前記Ni-Sn合金は、その構造が主としてNi3Sn4であるとともにFeを更に含有し、前記Feの含有率が10at%以下であることが好ましい。
さらに、前記した(1)の特徴を備えた表面処理鋼板においては、(2)前記表面処理層におけるSnとNiとの比であるSn/Niが、5.0~70であることが好ましい。
また、前記した(1)又は(2)の特徴を備えた表面処理鋼板においては、(3)前記Ni-Sn合金は、その構造が主としてNi3Sn4であるとともにFeを更に含有し、前記Feの含有率が10at%以下であることが好ましい。
また前記した(1)~(3)のいずれかの特徴を備えた表面処理鋼板においては、(4)前記Ni-Sn合金の他部に配置されるFe-Sn合金層は、FeSn2を含むことが好ましい。
また前記した(1)~(4)のいずれかの特徴を備えた表面処理鋼板においては、(5) 前記表面処理層における面内方向に関し、前記Ni-Sn合金層は、前記Fe-Sn合金層又は前記Sn層に囲まれてなることが好ましい。
また前記した(1)~(5)のいずれかの特徴を備えた表面処理鋼板においては、(6)前記表面処理層上、又は前記基材のうち前記表面処理層とは反対側に、Zr、Ti、及びAlの少なくとも1つ以上の酸化物を含むコーティング層が形成されてなることが好ましい。
また前記した(6)の特徴を備えた表面処理鋼板においては、(7)前記コーティング層が、P(リン)の酸化物を含むことが好ましい。
また前記した(1)~(4)のいずれかの特徴を備えた表面処理鋼板においては、(5) 前記表面処理層における面内方向に関し、前記Ni-Sn合金層は、前記Fe-Sn合金層又は前記Sn層に囲まれてなることが好ましい。
また前記した(1)~(5)のいずれかの特徴を備えた表面処理鋼板においては、(6)前記表面処理層上、又は前記基材のうち前記表面処理層とは反対側に、Zr、Ti、及びAlの少なくとも1つ以上の酸化物を含むコーティング層が形成されてなることが好ましい。
また前記した(6)の特徴を備えた表面処理鋼板においては、(7)前記コーティング層が、P(リン)の酸化物を含むことが好ましい。
また、上記課題を解決するため、本発明の一実施形態にかかる有機樹脂被覆鋼板は、前記した(1)~(7)のいずれかに記載の表面処理鋼板の上に有機樹脂層が被覆されてなることを特徴とする。
また、上記課題を解決するため、本発明の一実施形態にかかる容器は、前記した有機樹脂被覆鋼板から成ることを特徴とする。なお、当該容器としては、例えば飲料や食料、医薬品などを貯留する金属缶や缶蓋、あるいは金属ケースなどが例示される。
また、上記課題を解決するため、本発明の一実施形態にかかる容器は、前記した有機樹脂被覆鋼板から成ることを特徴とする。なお、当該容器としては、例えば飲料や食料、医薬品などを貯留する金属缶や缶蓋、あるいは金属ケースなどが例示される。
また、上記課題を解決するため、本発明の一実施形態にかかる表面処理鋼板の製造方法は、 基材にNiめっきを行うことで、当該基材上にNi層を形成する工程と、前記Ni層が形成された基材に対してSnめっきを行うことで、前記Ni層上にSn層を形成する工程と、前記Ni層および前記Sn層が形成された基材に対して溶融加熱処理を行うことで、粒状又は針状のNi-Sn合金層と、前記Ni-Sn合金の他部に配置されるFe-Sn合金層又はSn層とを含む表面処理層を前記基材上に形成する工程と、を含むことを特徴とする。
なお、上記した表面処理鋼板の製造方法においては、前記NiめっきにおけるNiめっき量は、0.01~0.3g/m2であり、前記SnめっきにおけるSnめっき量は、0.4~3.0g/m2であることが好ましい。
なお、上記した表面処理鋼板の製造方法においては、前記NiめっきにおけるNiめっき量は、0.01~0.3g/m2であり、前記SnめっきにおけるSnめっき量は、0.4~3.0g/m2であることが好ましい。
本発明によれば、粒状あるいは針状のNi-Sn合金層を形成させつつ他部をFe-Sn合金層又はSn層とすることで、NiがSnの中で安定して存在することが可能となってNiの拡散を抑制することができ、これにより耐食性と溶接性を共に備える優れた表面処理鋼板を実現することができる。
≪実施形態≫
以下、本発明を実施するための実施形態について説明する。
本実施形態に係る表面処理鋼板は、基材と、この基材上に形成される表面処理層とを少なくとも含んで構成されている。そしてこの表面処理層は、当該表面処理層中におけるNiの拡散が抑制されるように、この表面処理層内でNiが安定した相(準安定状態)となっていることを特徴としている。
以下、本実施形態に係る表面処理鋼板につき個々の要素を詳述していく。
以下、本発明を実施するための実施形態について説明する。
本実施形態に係る表面処理鋼板は、基材と、この基材上に形成される表面処理層とを少なくとも含んで構成されている。そしてこの表面処理層は、当該表面処理層中におけるNiの拡散が抑制されるように、この表面処理層内でNiが安定した相(準安定状態)となっていることを特徴としている。
以下、本実施形態に係る表面処理鋼板につき個々の要素を詳述していく。
<基材>
表面処理鋼板の基材としては、鉄や各種の合金などの金属板が用いられる。この金属板には、例えば、ぶりき、TFS、ニッケルめっき鋼板などの各種の表面処理がなされた鋼板も含まれる。
具体的に好適な鋼板としては、例えば一般的に缶用に用いられる炭素量0.01~0.15質量%の低炭素アルミキルド鋼を用いることができる。更にはニオブやチタンを添加した炭素量0.01質量%未満の非時効性極低炭素アルミキルド鋼も適用可能である。なお、これらのアルミキルド鋼の熱間圧延板を電解酸洗等で酸洗して表面のスケールを除去した後、冷間圧延し、次いで、電解洗浄、焼鈍、圧延など施したものを冷延鋼板として用いてもよい。
表面処理鋼板の基材としては、鉄や各種の合金などの金属板が用いられる。この金属板には、例えば、ぶりき、TFS、ニッケルめっき鋼板などの各種の表面処理がなされた鋼板も含まれる。
具体的に好適な鋼板としては、例えば一般的に缶用に用いられる炭素量0.01~0.15質量%の低炭素アルミキルド鋼を用いることができる。更にはニオブやチタンを添加した炭素量0.01質量%未満の非時効性極低炭素アルミキルド鋼も適用可能である。なお、これらのアルミキルド鋼の熱間圧延板を電解酸洗等で酸洗して表面のスケールを除去した後、冷間圧延し、次いで、電解洗浄、焼鈍、圧延など施したものを冷延鋼板として用いてもよい。
<表面処理層>
本実施形態の表面処理層は、基材の少なくとも一面側に形成され、粒状又は針状のNi-Sn合金層と、Ni-Sn合金の他部に配置されるFe-Sn合金層又はSn層とを含んで構成されている。なお、以下では、Fe-Sn合金層とSn層とを総称する場合には包囲層と称する。すなわち、個々の層を特定して説明する場合を除き、単に「包囲層」と記載した場合には、「Fe-Sn合金層」、「Sn層」、又は「Fe-Sn合金層とSn層」のいずれかを指すこととする。
図1は、本実施形態に係る表面処理鋼板STの構造を模式的に示した断面図であり、より具体的には上記した基材1と表面処理層2とが模式的に示されている。このうち、表面処理層2は、Ni-Sn合金層21、第一包囲層22および第二包囲層23とを含んで構成されている。
本実施形態の表面処理層は、基材の少なくとも一面側に形成され、粒状又は針状のNi-Sn合金層と、Ni-Sn合金の他部に配置されるFe-Sn合金層又はSn層とを含んで構成されている。なお、以下では、Fe-Sn合金層とSn層とを総称する場合には包囲層と称する。すなわち、個々の層を特定して説明する場合を除き、単に「包囲層」と記載した場合には、「Fe-Sn合金層」、「Sn層」、又は「Fe-Sn合金層とSn層」のいずれかを指すこととする。
図1は、本実施形態に係る表面処理鋼板STの構造を模式的に示した断面図であり、より具体的には上記した基材1と表面処理層2とが模式的に示されている。このうち、表面処理層2は、Ni-Sn合金層21、第一包囲層22および第二包囲層23とを含んで構成されている。
Ni-Sn合金層21は、基材1上で粒状又は針状の様相を呈している。ここで、「粒状又は針状」とは、Ni成分に着目した場合における周囲の部位よりも高さ方向に盛り上がった形状をいう。例えば図1で見た場合、Ni-Sn合金層21は、平面方向(基材の面方向)に関して、Ni成分を含有する部位が基材1の鉛直方向である高さ方向に凸状に突出しており、上記した周囲の部位よりも高さ方向に盛り上がった形状と言える。
なお図1は断面で示されているが、後述する図4などから明らかなとおり、基材1の上方から表面処理層2を平面視で見た場合には、Ni-Sn合金層21は第一包囲層22と第二包囲層23に囲まれるように位置している。
換言すれば、本実施形態の表面処理層2は次のようにも表現できる。すなわち、表面処理層2内では、Ni-Sn合金層21は基材1上で所定の距離だけ隔てて点在するとともに、この隣り合うNi-Sn合金層21の間には第一包囲層22が介在するとともに、このNi-Sn合金層21と第一包囲層22を覆うように第二包囲層23が形成された形態となっている。
なお図1は断面で示されているが、後述する図4などから明らかなとおり、基材1の上方から表面処理層2を平面視で見た場合には、Ni-Sn合金層21は第一包囲層22と第二包囲層23に囲まれるように位置している。
換言すれば、本実施形態の表面処理層2は次のようにも表現できる。すなわち、表面処理層2内では、Ni-Sn合金層21は基材1上で所定の距離だけ隔てて点在するとともに、この隣り合うNi-Sn合金層21の間には第一包囲層22が介在するとともに、このNi-Sn合金層21と第一包囲層22を覆うように第二包囲層23が形成された形態となっている。
Ni-Sn合金層21は、その構造が主としてNi3Sn4であることが望ましい。ここで、「主として」とは、結晶構造を解析した際に一番多い形態であることを言う。なお、結晶構造の解析は、例えばX線回折装置、透過型電子顕微鏡などにより行うことができる。
Ni-Sn合金層21は主としてNi3Sn4であることが望ましい理由は以下のとおりである。すなわち、NiとSnの結合態様にはNi3Sn4以外にもNi3SnやNi3Sn2のごときNi-Sn合金に対する準安定状態(準安定相)が存在するのであるが、本実施形態で求められるSnめっき量を考慮するとNi3Sn4が最適となる。Ni-Sn合金層21のSnが少ない場合には金属Ni相あるいはNi-Fe相が形成されてしまうのでSnめっき量が多い条件の方が好ましく、この場合にはNi3Sn4が上記した準安定相となるためである。
Ni-Sn合金層21は主としてNi3Sn4であることが望ましい理由は以下のとおりである。すなわち、NiとSnの結合態様にはNi3Sn4以外にもNi3SnやNi3Sn2のごときNi-Sn合金に対する準安定状態(準安定相)が存在するのであるが、本実施形態で求められるSnめっき量を考慮するとNi3Sn4が最適となる。Ni-Sn合金層21のSnが少ない場合には金属Ni相あるいはNi-Fe相が形成されてしまうのでSnめっき量が多い条件の方が好ましく、この場合にはNi3Sn4が上記した準安定相となるためである。
なおNi-Sn合金層21における粒子(粒状又は針状の状態も含む)の形態については、以下の構造となることが望ましい。すなわち、Ni-Sn合金層21におけるNi粒子の平均粒径は0.1~1.0μmが好適であり、より好ましくは0.2~0.4μmである。また、Ni-Sn合金層21におけるNi粒子の粒子密度は、10~100個/μm2が好適であり、より好ましくは10~20個/μm2である。
ここで「粒子密度」は、表面処理膜2の表面を走査型電子顕微鏡(SEM)で観察し、粒子の平均粒径がおよそ0.5μm以下の範囲では1×1μmの範囲について、該範囲内に存在する粒子の数をカウントすることで、単位面積当たりのニッケルの粒子数を測定して求める。この場合、1×1μmの枠内に完全に収まっている粒子は1個、一部のみが枠内に入っている粒子については0.5個としてカウントした。そして、この操作を、ニッケルめっき層の表面の5箇所について行い、最大値、最小値の2つを除き、3箇所の測定結果を平均することにより、粒子密度を求めることができる。
また、平均粒径がおよそ0.5μm以上の場合は、測定範囲を10×10μmとして同様の操作を行い、得られた粒子数を1×1μm当たりの粒子数に換算することにより粒子密度を求めることができる。
なお「平均粒径」は、表面処理膜2の表面を走査型電子顕微鏡(SEM)で観察して求めた1×1μmの単位面積当たりの粒子密度から、粒子1個当たりの平均占有面積を計算し、その平均占有面積に相当する円の直径として算出し求めることができる。
なお「平均粒径」は、表面処理膜2の表面を走査型電子顕微鏡(SEM)で観察して求めた1×1μmの単位面積当たりの粒子密度から、粒子1個当たりの平均占有面積を計算し、その平均占有面積に相当する円の直径として算出し求めることができる。
Ni-Sn合金層21は、上記した準安定相を維持する限りにおいてNi3Sn4に対して不純物(基材から元素拡散など製造時に不回避的に混入する物質)が含有されていてもよい。
基材の成分が鉄(Fe)の場合には、Ni-Sn合金層21(Ni3Sn4)にFeが含有されることがある。この場合におけるFeの含有率(Fe/(Ni+Sn+Fe))の値は10at%以下であることが望ましい。10at%を超えると、内容物中へ溶解しやすくなり、耐食性が低下しやすくなるため、好ましくないからである。
基材の成分が鉄(Fe)の場合には、Ni-Sn合金層21(Ni3Sn4)にFeが含有されることがある。この場合におけるFeの含有率(Fe/(Ni+Sn+Fe))の値は10at%以下であることが望ましい。10at%を超えると、内容物中へ溶解しやすくなり、耐食性が低下しやすくなるため、好ましくないからである。
Ni-Sn合金層21を包囲する包囲層は、第一包囲層22と第二包囲層23を含んでいる。
第一包囲層22は、「Fe-Sn合金層」又は「Sn層」であり、基材1上に形成されてNi-Sn合金層21の間に位置している。
第二包囲層23は、「Fe-Sn合金層」又は「Sn層」であり、Ni-Sn合金層21及び第一包囲層22を覆うように、これらの層上に位置している。なお第一包囲層22と第二包囲層23の成分に関しては、基材1からのFe成分の拡散度合によって変化し得る。したがって本実施形態における第一包囲層22と第二包囲層23は、例えば次の表1に示すパターン1~パターン3を取り得る。
第一包囲層22は、「Fe-Sn合金層」又は「Sn層」であり、基材1上に形成されてNi-Sn合金層21の間に位置している。
第二包囲層23は、「Fe-Sn合金層」又は「Sn層」であり、Ni-Sn合金層21及び第一包囲層22を覆うように、これらの層上に位置している。なお第一包囲層22と第二包囲層23の成分に関しては、基材1からのFe成分の拡散度合によって変化し得る。したがって本実施形態における第一包囲層22と第二包囲層23は、例えば次の表1に示すパターン1~パターン3を取り得る。
なお、第二包囲層23は、必ずしもNi-Sn合金層21を覆う必要はなく、Ni-Sn合金層21の一部が第二包囲層23から突き出た形態でもよい。
また、第一包囲層22又は第二包囲層23がFe-Sn合金層の場合には、当該Fe-Sn合金層はFeSn2を含むことが望ましい。
また、表面処理層2におけるSnとNiとの比であるSn/Niは、5.0~70であることが望ましい。Sn/Niが5.0以下ではNi3Sn4のみで構成された構造となるため、溶接性、耐食性が悪くなる。Sn/Niが70を超えると粒状に析出したNiによる効果が小さく、ぶりきに近い特性を示す。
また、第一包囲層22又は第二包囲層23がFe-Sn合金層の場合には、当該Fe-Sn合金層はFeSn2を含むことが望ましい。
また、表面処理層2におけるSnとNiとの比であるSn/Niは、5.0~70であることが望ましい。Sn/Niが5.0以下ではNi3Sn4のみで構成された構造となるため、溶接性、耐食性が悪くなる。Sn/Niが70を超えると粒状に析出したNiによる効果が小さく、ぶりきに近い特性を示す。
<表面処理鋼板>
図1で示した表面処理鋼板STは、以下の態様にて製造される。すなわち、本実施形態ではNiめっきを微細粒状に析出させることにより、Snめっき後に行われる溶融加熱処理において、粒状あるいは針状のNi-Sn合金を形成させ、これにより高い溶接性と耐食性を同時に備えた表面処理鋼板STを実現している。
なお、Niめっきを微細粒状に析出させる条件としては、例えば、めっき液の成分は硫酸ニッケル10~100g/L、より好ましくは40~80g/L、硫酸アンモニウム10~100g/L、より好ましくは40~80g/L、クエン酸5~100g/L、より好ましくは10~20g/Lである。pHは2.0~5.0、より好ましくは3.5~4.5である。また、陰極電解での条件としては電流密度30~100A/dm2、より好ましくは30~50A/dm2である。
以下、具体的な表面処理鋼板STの製造工程について、図2を用いて順を追って説明する。なお、以下の説明においては本実施形態の表面処理層2が基材1の少なくとも一面側に形成される例を示すが、この態様に限られず更に基材1の他側の面に形成されていてもよい。
図1で示した表面処理鋼板STは、以下の態様にて製造される。すなわち、本実施形態ではNiめっきを微細粒状に析出させることにより、Snめっき後に行われる溶融加熱処理において、粒状あるいは針状のNi-Sn合金を形成させ、これにより高い溶接性と耐食性を同時に備えた表面処理鋼板STを実現している。
なお、Niめっきを微細粒状に析出させる条件としては、例えば、めっき液の成分は硫酸ニッケル10~100g/L、より好ましくは40~80g/L、硫酸アンモニウム10~100g/L、より好ましくは40~80g/L、クエン酸5~100g/L、より好ましくは10~20g/Lである。pHは2.0~5.0、より好ましくは3.5~4.5である。また、陰極電解での条件としては電流密度30~100A/dm2、より好ましくは30~50A/dm2である。
以下、具体的な表面処理鋼板STの製造工程について、図2を用いて順を追って説明する。なお、以下の説明においては本実施形態の表面処理層2が基材1の少なくとも一面側に形成される例を示すが、この態様に限られず更に基材1の他側の面に形成されていてもよい。
図2に示すとおり、まず基材1にNiめっきを行うことで、当該基材1上にNi層を形成する(ステップ1)。このNiめっきにおけるNiめっき量は、例えば0.01~0.3g/m2であることが好ましい。0.01g/m2を下回るとNiめっきの効果が不十分であり、0.3g/m2を超えるとSnの必要量も多くなりコスト高となるからである。
ステップ1の後、続いてNi層が形成された基材1に対してSnめっきを行うことで、Ni層上にSn層を形成する(ステップ2)。このSnめっきにおけるSnめっき量は、0.4~3.0g/m2であることが好ましい。0.4g/m2を下回るとSnめっきの効果が不十分であり、3.0g/m2を超えても大幅な改善効果は見込めずコスト高となるからである。
なお、より好ましくは、Niめっき量が0.01~0.1g/m2であり、且つ、Snめっき量が1.0~2.8g/m2である。
ステップ1の後、続いてNi層が形成された基材1に対してSnめっきを行うことで、Ni層上にSn層を形成する(ステップ2)。このSnめっきにおけるSnめっき量は、0.4~3.0g/m2であることが好ましい。0.4g/m2を下回るとSnめっきの効果が不十分であり、3.0g/m2を超えても大幅な改善効果は見込めずコスト高となるからである。
なお、より好ましくは、Niめっき量が0.01~0.1g/m2であり、且つ、Snめっき量が1.0~2.8g/m2である。
ステップ2の後は、Ni層およびSn層が形成された基材1に対して所定条件下でリフロー処理(溶融加熱処理)を行うことで、上述した表面処理層2(粒状又は針状のNi-Sn合金層と、このNi-Sn合金以外の他部(残部)に形成される包囲層としてのFe-Sn合金層又はSn層)を基材1上に形成する(ステップ3)。なお、リフロー処理の具体的な条件については、後述する実施例の中で詳述する。
以上説明したステップ1~ステップ3の処理を経て、本実施形態の表面処理鋼板STが製造される。
以上説明したステップ1~ステップ3の処理を経て、本実施形態の表面処理鋼板STが製造される。
<クロムフリー化処理としてのコーティング層>
図2のステップ4及び図3に示すとおり、本実施形態の表面処理層2が形成された基材1に対しては、さらに表面処理層2上又は基材1のうち上述した他側の面に、Zr、Ti、及びAlの少なくとも1つ以上の酸化物(例えばZrO2、TiO2、Al2O3など)の皮膜としてのコーティング層3が形成されていてもよい。すなわち、本実施形態においてコーティング層3は必須ではないが、表面処理層2上にコーティング層3があれば尚好ましい。
なお、本実施形態のコーティング層3は、上記した酸化物だけでなく水酸化物をも含むことがある。従って、本実施形態でいう「酸化物」とは、少なくともその一部に水酸化物が含まれていてもよい概念として用いられている。
図2のステップ4及び図3に示すとおり、本実施形態の表面処理層2が形成された基材1に対しては、さらに表面処理層2上又は基材1のうち上述した他側の面に、Zr、Ti、及びAlの少なくとも1つ以上の酸化物(例えばZrO2、TiO2、Al2O3など)の皮膜としてのコーティング層3が形成されていてもよい。すなわち、本実施形態においてコーティング層3は必須ではないが、表面処理層2上にコーティング層3があれば尚好ましい。
なお、本実施形態のコーティング層3は、上記した酸化物だけでなく水酸化物をも含むことがある。従って、本実施形態でいう「酸化物」とは、少なくともその一部に水酸化物が含まれていてもよい概念として用いられている。
コーティング層3の形成は上記に限定されず、例えば(1)モリブデン酸(所定比率のリン酸を添加した形態を含む)やタングステン酸などの不動態化作用を利用した形態の皮膜、(2)Ti・Zr・V・Mn・Ni・Coなどの遷移金属のフッ化物やリン酸塩、硝酸塩および硫酸塩などをベースとする反応型形態の皮膜、さらにポリピニルフェノール誘導体やポリアクリル酸などをブレンドした塗布型形態の皮膜、(3)Y・La・Ceなどの希士類元素の塩化物、硝酸塩などをベースとする反応型形態の皮膜、またはその酸素酸塩にモリブデン酸やタングステン酸などをブレンドした塗布型形態の皮膜、(4)タンニン酸など多価フェノールカルボン酸や硫黄や窒素を含むチオ尿素などのキレート剤をベースとする形態の皮膜など、公知の種々の形態の皮膜を用いてもよい。
コーティング層3は、上記の酸化物以外にリンの酸化物を含んでもよい。コーティング層3を形成する前にFeあるいはSnからなるリン酸化合物層を形成させてもよいし、リン酸Zr,リン酸Alなどのリン酸化合物の形態として形成させてもよい。リン酸を含むことにより、有機樹脂層との密着性を向上させるとともに、ピンホールなどのめっき欠陥を低減することができる。
なお、コーティング層3の皮膜量はZr酸化物、Al酸化物、Ti酸化物のいずれも0.001~0.03g/m2、リンの酸化物は0.0001~0.05g/m2であることが好ましい。
このうち、リンの酸化物に関しては、P(リン)およびAl(アルミニウム)の酸化物を主成分とするコーティング層を形成する場合には、好ましくはAlの皮膜量が0.001~0.015g/m2であり、このAlに対する好ましいPの皮膜量は0.0005~0.003g/m2である。
このうち、リンの酸化物に関しては、P(リン)およびAl(アルミニウム)の酸化物を主成分とするコーティング層を形成する場合には、好ましくはAlの皮膜量が0.001~0.015g/m2であり、このAlに対する好ましいPの皮膜量は0.0005~0.003g/m2である。
<有機樹脂層>
図2のステップ5及び図4に示すとおり、上記した表面処理鋼板ST上には、有機樹脂層4が形成されてもよい。より具体的には、上記した表面処理鋼板STの製造後、又は上記したコーティング層3が形成される場合にはそのコーティング層3形成の後に、これらの上に有機樹脂層4が形成されて有機樹脂被覆鋼板RTが製造される。
なお有機樹脂層4としては種々の塗料などが適用可能である。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリルエステル共重合体、アイオノマー等のオレフィン系樹脂フィルム、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステルフィルム、ポリ塩化ビニルフィルムやポリ塩化ビニリデンフィルム等の未延伸フィルム又は二軸延伸したフィルム、又はナイロン6、ナイロン6,6、ナイロン11、ナイロン12等のポリアミドフィルムなどを用いることができる。その中でも、イソフタル酸を共重合化してなる無配向のポリエチレンテレフタレートが特に好ましい。また、このような有機樹脂層4を構成するための有機材料は、単独で用いてもよく、異なる有機材料をブレンドして用いてもよい。また複数の有機樹脂層からなる多層構成であってもよい。熱硬化性樹脂としては、エポキシ-フェノール樹脂、ポリエステル樹脂等を用いることができる。
図2のステップ5及び図4に示すとおり、上記した表面処理鋼板ST上には、有機樹脂層4が形成されてもよい。より具体的には、上記した表面処理鋼板STの製造後、又は上記したコーティング層3が形成される場合にはそのコーティング層3形成の後に、これらの上に有機樹脂層4が形成されて有機樹脂被覆鋼板RTが製造される。
なお有機樹脂層4としては種々の塗料などが適用可能である。熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリルエステル共重合体、アイオノマー等のオレフィン系樹脂フィルム、ポリエチレンテレフタレートやポリブチレンテレフタレート等のポリエステルフィルム、ポリ塩化ビニルフィルムやポリ塩化ビニリデンフィルム等の未延伸フィルム又は二軸延伸したフィルム、又はナイロン6、ナイロン6,6、ナイロン11、ナイロン12等のポリアミドフィルムなどを用いることができる。その中でも、イソフタル酸を共重合化してなる無配向のポリエチレンテレフタレートが特に好ましい。また、このような有機樹脂層4を構成するための有機材料は、単独で用いてもよく、異なる有機材料をブレンドして用いてもよい。また複数の有機樹脂層からなる多層構成であってもよい。熱硬化性樹脂としては、エポキシ-フェノール樹脂、ポリエステル樹脂等を用いることができる。
このうちポリエステル樹脂は、塗装や焼付けが容易であり、加工性や金属との密着性、耐レトルト性に優れ、更には焼却時に有毒、腐食ガスを発生しない点から好適である。かようなポリエステル樹脂としては、例えば、エチレンテレフタレート、ブチレンテレフタレート、1,4-シクロヘキサンジメチルテレフタレート、エチレンイソフタレート、ブチレンイソフタレート、エチレンアジペート、ブチレンアジペート、エチレンナフタレート、ブチレンナフタレートのいずれか1種類以上のエステルを含有するポリエステル樹脂などが例示される。
さらに本実施形態の有機樹脂層4は、複数の層で構成された多層フィルムであってもよく、好ましくは2層あるいは3層のフィルムで構成されていてもよい。
さらに本実施形態の有機樹脂層4は、複数の層で構成された多層フィルムであってもよく、好ましくは2層あるいは3層のフィルムで構成されていてもよい。
<容器>
図2のステップ6及び図5に示すとおり、上記した本実施形態の表面処理鋼板STや有機樹脂被覆鋼板RTは、種々の容器Cに適用が可能である。本実施形態で適用が可能な容器Cとしては、飲料や食品を封入して保存する缶(公知の3ピース缶など)やケースなどが例示され、特に溶接を用いて所定の形状とする金属缶が好例である。
なお図5においては、構造把握の容易化のため、3ピース缶の完成品ではなく上蓋が未装着の缶胴を示している。
図2のステップ6及び図5に示すとおり、上記した本実施形態の表面処理鋼板STや有機樹脂被覆鋼板RTは、種々の容器Cに適用が可能である。本実施形態で適用が可能な容器Cとしては、飲料や食品を封入して保存する缶(公知の3ピース缶など)やケースなどが例示され、特に溶接を用いて所定の形状とする金属缶が好例である。
なお図5においては、構造把握の容易化のため、3ピース缶の完成品ではなく上蓋が未装着の缶胴を示している。
≪実施例≫
以下に、実施例を挙げて本発明について、より具体的に説明する。
<実施例1>
厚さ0.225mmの低炭素アルミキルド鋼の冷延鋼板を基材として用いた。まず、この基材をアルカリ水溶液中で電解脱脂して水洗いを行い、更に硫酸酸洗と水洗いを行った後に、ニッケルめっき浴でNiめっきの皮膜量を0.01g/m2として凹凸形状をした微細粒状のNiめっき層を形成させた。その後、錫めっき浴でSnめっきの皮膜量を0.7g/m2として、Snめっき層を形成させた。
上記の条件にて得られた表面処理鋼板STに対し、リフロー処理(加熱処理)を行い、基材上にNi-Sn合金層を形成させた。なお、このときのリフロー条件としては、Snの融点以上の温度240℃にて5.6秒で溶融加熱処理を行った。
なお、リフロー条件のうち、加熱温度については錫の融点以上という条件内であれば適宜選択可能であり、また、加熱時間については0.1~8秒という条件内であれば適宜選択可能である。加熱温度あるいは加熱時間は、NiとSnとの合金化が進み、Ni3Sn4が形成される条件であれば特に限定はされない。
以下に、実施例を挙げて本発明について、より具体的に説明する。
<実施例1>
厚さ0.225mmの低炭素アルミキルド鋼の冷延鋼板を基材として用いた。まず、この基材をアルカリ水溶液中で電解脱脂して水洗いを行い、更に硫酸酸洗と水洗いを行った後に、ニッケルめっき浴でNiめっきの皮膜量を0.01g/m2として凹凸形状をした微細粒状のNiめっき層を形成させた。その後、錫めっき浴でSnめっきの皮膜量を0.7g/m2として、Snめっき層を形成させた。
上記の条件にて得られた表面処理鋼板STに対し、リフロー処理(加熱処理)を行い、基材上にNi-Sn合金層を形成させた。なお、このときのリフロー条件としては、Snの融点以上の温度240℃にて5.6秒で溶融加熱処理を行った。
なお、リフロー条件のうち、加熱温度については錫の融点以上という条件内であれば適宜選択可能であり、また、加熱時間については0.1~8秒という条件内であれば適宜選択可能である。加熱温度あるいは加熱時間は、NiとSnとの合金化が進み、Ni3Sn4が形成される条件であれば特に限定はされない。
なお、具体的なめっき浴の条件は次のとおりであった。
<ニッケルめっき浴およびめっき条件>
硫酸ニッケル 40g/L
硫酸アンモニウム 20g/L
クエン酸 15g/L
pH 4.0
浴温 45℃
電流密度50A/dm2
なお、硫酸ニッケルの量は、40~60g/Lであれば適宜調整してもよい。また、硫酸アンモニウムの量は、20~100g/Lであれば適宜調整してもよい。
表5では、本ニッケルめっき浴を用いたものには「微粒子Ni」と記した。
<ニッケルめっき浴およびめっき条件>
硫酸ニッケル 40g/L
硫酸アンモニウム 20g/L
クエン酸 15g/L
pH 4.0
浴温 45℃
電流密度50A/dm2
なお、硫酸ニッケルの量は、40~60g/Lであれば適宜調整してもよい。また、硫酸アンモニウムの量は、20~100g/Lであれば適宜調整してもよい。
表5では、本ニッケルめっき浴を用いたものには「微粒子Ni」と記した。
<錫めっき浴およびめっき条件>
硫酸第一錫 80g/L
フェノールスルホン酸 60g/L
添加剤A(エトキシ化-α-ナフトール) 3g/L
添加剤B(エトキシナフトールスルホン酸) 3g/L
pH 1以下
浴温 40 ℃
電流密度 10 A/dm2
なお、硫酸第一錫の量は、10~200g/Lであれば適宜調整してもよい。また、フェノールスルホン酸の量は、5~100g/Lであれば適宜調整してもよい。
表5では、本錫めっき浴を用いたものには「PSA浴」と記した。
硫酸第一錫 80g/L
フェノールスルホン酸 60g/L
添加剤A(エトキシ化-α-ナフトール) 3g/L
添加剤B(エトキシナフトールスルホン酸) 3g/L
pH 1以下
浴温 40 ℃
電流密度 10 A/dm2
なお、硫酸第一錫の量は、10~200g/Lであれば適宜調整してもよい。また、フェノールスルホン酸の量は、5~100g/Lであれば適宜調整してもよい。
表5では、本錫めっき浴を用いたものには「PSA浴」と記した。
上記工程を経て製造された表面処理鋼板に対し、後処理として、硝酸アルミニウムを主成分とするpH3.0の処理浴中にて陰極電解処理を行い、次いで水洗いを行って乾燥させることで、表面処理鋼板上にアルミニウムの酸化物を主成分とするコーティング層を形成させた(Alの皮膜量が0.005g/m2)。
コーティング層が形成された表面処理鋼板を温度190℃で10分間の熱処理を行った後に、焼付け乾燥後の塗膜厚が70mg/dm2となるようにエポキシフェノール系塗料を塗装後、温度200℃で10分間の焼付けを行うことで、表面処理鋼板上に有機樹脂層を形成してなる有機樹脂被覆鋼板を得た。
コーティング層が形成された表面処理鋼板を温度190℃で10分間の熱処理を行った後に、焼付け乾燥後の塗膜厚が70mg/dm2となるようにエポキシフェノール系塗料を塗装後、温度200℃で10分間の焼付けを行うことで、表面処理鋼板上に有機樹脂層を形成してなる有機樹脂被覆鋼板を得た。
<実施例2>
Snめっき量を1.4g/m2とした以外は、実施例1と同様に行った。
Snめっき量を1.4g/m2とした以外は、実施例1と同様に行った。
<実施例3>
Niめっき量を0.03g/m2とした以外は、実施例1と同様に行った。
なお、この実施例3における表面処理層2の表面形態に関するSEM画像を図6に示す。このSEM画像は、走査型電子顕微鏡(日本電子社製、JSM-6330F)を用いて、加速電圧5kV、電流12μAの条件で表面を観察し、撮像を行って取得した。
Niめっき量を0.03g/m2とした以外は、実施例1と同様に行った。
なお、この実施例3における表面処理層2の表面形態に関するSEM画像を図6に示す。このSEM画像は、走査型電子顕微鏡(日本電子社製、JSM-6330F)を用いて、加速電圧5kV、電流12μAの条件で表面を観察し、撮像を行って取得した。
<実施例4>
Niめっき量を0.03g/m2とし、Snめっき量を1.4g/m2とした以外は、実施例1と同様に行った。
なお、この実施例4における表面処理層2の(a)表面形態に関するSEM画像、および(b)脱錫後の表面形態に関するSEM画像を図7に示す。
さらに、表面処理層2におけるEDX分析結果とNBD(Nano-Beam-Diffraction)を用いた結晶構造の解析につき、図8に測定点を示すTEM像を、表2にその分析結果をそれぞれ示す。なお、このTEM分析に際しては、日本電子製JEM-2010F、EDX分析に際しては、ノーラン製UTW型Si(Li)半導体検出器を用いて行った。また、NBD分析に際しては、ナノビーム解析(カメラ長50cm、測定領域約直径30nm)として行った。
また、表2から明らかなとおり、表面処理層2のうち包囲層(表2の他部)は、Ni-Sn合金層21(表2ではNi-Sn合金部に相当)を囲むように配置されるとともに、特性の異なる2つの層により構成されている。より具体的に本実施例4では、第一包囲層22としてFe-Sn合金層であるFeSn2層が形成され、この第一包囲層22(FeSn2層)上に第二包囲層23としてSn層が形成される形態となっている。
なお図7(b)に示す脱錫後の表面形態を観察すると、図7(a)と同様に粒状あるいは針状のNi-Sn合金層21が確認され、包囲層はFe-Sn合金層であることがわかる。腐食の欠点となるピンホールあるいは下地の金属成分(Fe)の露出は確認されず、外観上からも腐食しにくい構造であることが示唆される。
Niめっき量を0.03g/m2とし、Snめっき量を1.4g/m2とした以外は、実施例1と同様に行った。
なお、この実施例4における表面処理層2の(a)表面形態に関するSEM画像、および(b)脱錫後の表面形態に関するSEM画像を図7に示す。
さらに、表面処理層2におけるEDX分析結果とNBD(Nano-Beam-Diffraction)を用いた結晶構造の解析につき、図8に測定点を示すTEM像を、表2にその分析結果をそれぞれ示す。なお、このTEM分析に際しては、日本電子製JEM-2010F、EDX分析に際しては、ノーラン製UTW型Si(Li)半導体検出器を用いて行った。また、NBD分析に際しては、ナノビーム解析(カメラ長50cm、測定領域約直径30nm)として行った。
また、表2から明らかなとおり、表面処理層2のうち包囲層(表2の他部)は、Ni-Sn合金層21(表2ではNi-Sn合金部に相当)を囲むように配置されるとともに、特性の異なる2つの層により構成されている。より具体的に本実施例4では、第一包囲層22としてFe-Sn合金層であるFeSn2層が形成され、この第一包囲層22(FeSn2層)上に第二包囲層23としてSn層が形成される形態となっている。
なお図7(b)に示す脱錫後の表面形態を観察すると、図7(a)と同様に粒状あるいは針状のNi-Sn合金層21が確認され、包囲層はFe-Sn合金層であることがわかる。腐食の欠点となるピンホールあるいは下地の金属成分(Fe)の露出は確認されず、外観上からも腐食しにくい構造であることが示唆される。
<実施例5>
Niめっき量を0.03g/m2とし、Snめっき量を1.4g/m2とし、さらに後処理として、フッ化ジルコニウムを主成分とするpH3.0の処理浴中にて陰極電解処理を行い、次いで水洗いを行って乾燥させることにより形成させたZr酸化物(Zrの皮膜量が0.01g/m2)を用いた以外は、実施例1と同様に行った。
Niめっき量を0.03g/m2とし、Snめっき量を1.4g/m2とし、さらに後処理として、フッ化ジルコニウムを主成分とするpH3.0の処理浴中にて陰極電解処理を行い、次いで水洗いを行って乾燥させることにより形成させたZr酸化物(Zrの皮膜量が0.01g/m2)を用いた以外は、実施例1と同様に行った。
<実施例6>
Niめっき量を0.03g/m2とし、Snめっき量を2.8g/m2とした以外は、実施例1と同様に行った。
Niめっき量を0.03g/m2とし、Snめっき量を2.8g/m2とした以外は、実施例1と同様に行った。
<実施例7>
Niめっき量を0.03g/m2とし、Snめっき量を2.8g/m2とし、さらに後処理としてZr酸化物を用いた以外は、実施例1と同様に行った。
Niめっき量を0.03g/m2とし、Snめっき量を2.8g/m2とし、さらに後処理としてZr酸化物を用いた以外は、実施例1と同様に行った。
<実施例8>
Niめっき量を0.1g/m2とし、Snめっき量を1.4g/m2とした以外は、実施例1と同様に行った。
Niめっき量を0.1g/m2とし、Snめっき量を1.4g/m2とした以外は、実施例1と同様に行った。
<実施例9>
Niめっき量を0.25g/m2とし、Snめっき量を2.8g/m2とした以外は、実施例1と同様に行った。
Niめっき量を0.25g/m2とし、Snめっき量を2.8g/m2とした以外は、実施例1と同様に行った。
<実施例10>
Niめっき量を0.03g/m2とし、Snめっき量を0.9g/m2とした。後処理として、リン酸およびリン酸二水素ナトリウムを主成分とするpH2.4の処理液中にて陽極電解を行い、水洗を行った。さらに、硝酸アルミニウムを主成分とするpH3.0の処理浴中にて陰極電解処理を行い、次いで水洗いを行って乾燥させることで、表面処理鋼板上にP(リン)およびAl(アルミニウム)の酸化物を主成分とするコーティング層を形成させた。コーティング層のPおよびAlの皮膜量は0.002g/m2および0.005g/m2とした。上記以外は実施例1と同様に行った。
Niめっき量を0.03g/m2とし、Snめっき量を0.9g/m2とした。後処理として、リン酸およびリン酸二水素ナトリウムを主成分とするpH2.4の処理液中にて陽極電解を行い、水洗を行った。さらに、硝酸アルミニウムを主成分とするpH3.0の処理浴中にて陰極電解処理を行い、次いで水洗いを行って乾燥させることで、表面処理鋼板上にP(リン)およびAl(アルミニウム)の酸化物を主成分とするコーティング層を形成させた。コーティング層のPおよびAlの皮膜量は0.002g/m2および0.005g/m2とした。上記以外は実施例1と同様に行った。
<実施例11>
Niめっき量を0.04g/m2とし、Snめっき量を1.2g/m2、コーティング層のPおよびAlの皮膜量は0.002g/m2および0.005g/m2とした。上記以外は実施例10と同様に行った。
Niめっき量を0.04g/m2とし、Snめっき量を1.2g/m2、コーティング層のPおよびAlの皮膜量は0.002g/m2および0.005g/m2とした。上記以外は実施例10と同様に行った。
<実施例12>
Niめっき量を0.03g/m2とし、Snめっき量を0.9g/m2、コーティング層のPおよびAlの皮膜量は0.002g/m2および0.01g/m2とした。上記以外は実施例11と同様に行った。
Niめっき量を0.03g/m2とし、Snめっき量を0.9g/m2、コーティング層のPおよびAlの皮膜量は0.002g/m2および0.01g/m2とした。上記以外は実施例11と同様に行った。
<実施例13>
Niめっき量を0.03g/m2とし、Snめっき量を1.4g/m2、コーティング層のPおよびAlの皮膜量は0.002g/m2および0.01g/m2とした。上記以外は実施例11と同様に行った。 なお、実施例12および13について、ATC値の測定を行った。測定値を表5にそれぞれ示す。
Niめっき量を0.03g/m2とし、Snめっき量を1.4g/m2、コーティング層のPおよびAlの皮膜量は0.002g/m2および0.01g/m2とした。上記以外は実施例11と同様に行った。 なお、実施例12および13について、ATC値の測定を行った。測定値を表5にそれぞれ示す。
<比較例1>
Niめっき量を0.03g/m2とし、Snめっき量を0.3g/m2とした以外は、実施例1と同様に行った。
なお、この比較例1における表面処理層2の(a)表面形態に関する模式的な構造図、および(b)表面形態に関するSEM画像を図9に示す。
さらに、表面処理層2におけるEDX分析結果とNBD(Nano-Beam-Diffraction)を用いた結晶構造の解析につき、図10に測定点を示すTEM像を、表3にその分析結果をそれぞれ示す。
Niめっき量を0.03g/m2とし、Snめっき量を0.3g/m2とした以外は、実施例1と同様に行った。
なお、この比較例1における表面処理層2の(a)表面形態に関する模式的な構造図、および(b)表面形態に関するSEM画像を図9に示す。
さらに、表面処理層2におけるEDX分析結果とNBD(Nano-Beam-Diffraction)を用いた結晶構造の解析につき、図10に測定点を示すTEM像を、表3にその分析結果をそれぞれ示す。
<比較例2>
Niめっき量を0.5g/m2とし、Snめっき量を0.7g/m2とした以外は、実施例1と同様に行った。
Niめっき量を0.5g/m2とし、Snめっき量を0.7g/m2とした以外は、実施例1と同様に行った。
<比較例3>
Niめっき量を0.5g/m2とし、Snめっき量を0.4g/m2とした以外は、実施例1と同様に行った。
Niめっき量を0.5g/m2とし、Snめっき量を0.4g/m2とした以外は、実施例1と同様に行った。
<比較例4>
Niめっき量を0.1g/m2とし、Snめっき量を0.3g/m2とした以外は、実施例1と同様に行った。
Niめっき量を0.1g/m2とし、Snめっき量を0.3g/m2とした以外は、実施例1と同様に行った。
<比較例5>
Niめっき量を0.9g/m2とし、Snめっき量を1.6g/m2とした以外は、実施例1と同様に行った。
なお、この比較例5における表面処理層2の(a)表面形態に関する模式的な構造図、および(b)表面形態に関するSEM画像を図11に示す。
Niめっき量を0.9g/m2とし、Snめっき量を1.6g/m2とした以外は、実施例1と同様に行った。
なお、この比較例5における表面処理層2の(a)表面形態に関する模式的な構造図、および(b)表面形態に関するSEM画像を図11に示す。
<比較例6>
Niめっき量を1.5g/m2とし、Snめっき量を0.4g/m2とした以外は、実施例1と同様に行った。
Niめっき量を1.5g/m2とし、Snめっき量を0.4g/m2とした以外は、実施例1と同様に行った。
<比較例7>
Niめっき量を1.5g/m2とし、Snめっき量を2.8g/m2とした以外は、実施例1と同様に行った。
Niめっき量を1.5g/m2とし、Snめっき量を2.8g/m2とした以外は、実施例1と同様に行った。
<参考例1>
従来技術の一例として、Niめっきは行わず、Snめっき量を2.8g/m2としたSnめっきを施した以外は実施例1と同様に行った。
従来技術の一例として、Niめっきは行わず、Snめっき量を2.8g/m2としたSnめっきを施した以外は実施例1と同様に行った。
<参考例2>
従来技術の一例として、Niめっきについては以下に示す条件のワット浴を用いてNi-Feのめっき量を0.03g/m2とし、Snめっき量を0.9g/m2とし、後処理としてクロメート処理を行った以外は実施例1と同様に行った。
なお、この参考例2における表面処理層2の(a)表面形態に関するSEM画像、および(b)脱錫後の表面形態に関するSEM画像を図12に示す。
従来技術の一例として、Niめっきについては以下に示す条件のワット浴を用いてNi-Feのめっき量を0.03g/m2とし、Snめっき量を0.9g/m2とし、後処理としてクロメート処理を行った以外は実施例1と同様に行った。
なお、この参考例2における表面処理層2の(a)表面形態に関するSEM画像、および(b)脱錫後の表面形態に関するSEM画像を図12に示す。
<ワット浴でのめっき浴およびめっき条件>
硫酸ニッケル 240g/L
塩化ニッケル 45g/L
ホウ酸 30g/L
添加剤(サッカリン等) 2g/L
pH 4.0
浴温 45℃
電流密度 5A/dm2
硫酸ニッケル 240g/L
塩化ニッケル 45g/L
ホウ酸 30g/L
添加剤(サッカリン等) 2g/L
pH 4.0
浴温 45℃
電流密度 5A/dm2
<参考例3>
従来技術の一例として、Niめっきは行わず、Snめっき量を1.3g/m2としたSnめっきを施し、後処理としてクロメート処理を行った以外は実施例1と同様に行った。
なお、この参考例3における表面処理層2の(a)表面形態に関するSEM画像、および(b)脱錫後の表面形態に関するSEM画像を図13に示す。
さらに、表面処理層2におけるEDX分析結果とNBD(Nano-Beam-Diffraction)を用いた結晶構造の解析につき、図14に測定点を示すTEM像を、表4にその分析結果をそれぞれ示す。
従来技術の一例として、Niめっきは行わず、Snめっき量を1.3g/m2としたSnめっきを施し、後処理としてクロメート処理を行った以外は実施例1と同様に行った。
なお、この参考例3における表面処理層2の(a)表面形態に関するSEM画像、および(b)脱錫後の表面形態に関するSEM画像を図13に示す。
さらに、表面処理層2におけるEDX分析結果とNBD(Nano-Beam-Diffraction)を用いた結晶構造の解析につき、図14に測定点を示すTEM像を、表4にその分析結果をそれぞれ示す。
また、参考例2および3について、ATC値の測定を行った。測定値を表5にそれぞれ示す。なお、ATC値とは、酸性食品中での耐食性を示す値である。
<ATC値の測定方法>
表面処理板の金属Sn(フリーSn)を水酸化ナトリウム水溶液中で電解を行うことにより溶解させ、合金層を露出した試験片を作製した。試験液として、グレープフルーツ(サントリー製サンフェスタグレープフルーツ100)1300mlを蒸留水200mlで薄め、塩化第一錫0.285gおよびソルビン酸カリウム0.9gを添加熟成後、試験液とした。試験液中で試験片とSnとをカップルさせ窒素ガス雰囲気中、27℃で20時間後のカップル電流を測定した。
表面処理板の金属Sn(フリーSn)を水酸化ナトリウム水溶液中で電解を行うことにより溶解させ、合金層を露出した試験片を作製した。試験液として、グレープフルーツ(サントリー製サンフェスタグレープフルーツ100)1300mlを蒸留水200mlで薄め、塩化第一錫0.285gおよびソルビン酸カリウム0.9gを添加熟成後、試験液とした。試験液中で試験片とSnとをカップルさせ窒素ガス雰囲気中、27℃で20時間後のカップル電流を測定した。
以上の各実施例、比較例および参考例では、次に示す手法にて皮膜量の測定や表面形態の観察、各種評価を行った。
<NiおよびSnの皮膜量測定>
表面処理鋼板のNiおよびSnの皮膜量は、蛍光X線装置(蛍光X線分析装置(リガク社製、ZSX100e)により測定した。
<NiおよびSnの皮膜量測定>
表面処理鋼板のNiおよびSnの皮膜量は、蛍光X線装置(蛍光X線分析装置(リガク社製、ZSX100e)により測定した。
<表面形態の測定(観察)方法>
表面処理層の表面形態は、SEM(走査型電子顕微鏡)を用いた観察により行った。
析出粒子の構成はTEM(透過型電子顕微鏡)を用いた断面観察にて行った。
表面処理層中に存在する化合物の同定は結晶回折により行った。また、TEM-EDX(エネルギー分散型X線分光法)での点分析にて、表面処理層中に存在するNi、SnおよびFeの定量分析を行った。
表面処理層の表面形態は、SEM(走査型電子顕微鏡)を用いた観察により行った。
析出粒子の構成はTEM(透過型電子顕微鏡)を用いた断面観察にて行った。
表面処理層中に存在する化合物の同定は結晶回折により行った。また、TEM-EDX(エネルギー分散型X線分光法)での点分析にて、表面処理層中に存在するNi、SnおよびFeの定量分析を行った。
<塗料密着性および耐食性の評価方法>
得られた有機樹脂被覆鋼板について、モデル液中での塗料密着性および耐食性を評価した。なお、モデル液としては、酢酸0.5重量%および塩化ナトリウム(食塩)1.5重量%の混合水溶液、酢酸0.5%重量%水溶液、およびクエン酸1.5%と塩化ナトリウム(食塩)1.5重量%の混合水溶液を用いた。
より具体的には、表面処理鋼板に有機樹脂層を形成してなる有機樹脂被覆鋼板を用いて絞り比2.0の浅絞り缶(容器)を作製し、缶側壁部に基材に達するキズ(クロスカット)を付与した。その後、モデル液中にて温度125℃で30分間のレトルト処理を行った後、37℃環境下で2週間経時した。2週間経時後のクロスカット周囲の腐食状況を目視にて観察し、以下の基準で評価した。
得られた有機樹脂被覆鋼板について、モデル液中での塗料密着性および耐食性を評価した。なお、モデル液としては、酢酸0.5重量%および塩化ナトリウム(食塩)1.5重量%の混合水溶液、酢酸0.5%重量%水溶液、およびクエン酸1.5%と塩化ナトリウム(食塩)1.5重量%の混合水溶液を用いた。
より具体的には、表面処理鋼板に有機樹脂層を形成してなる有機樹脂被覆鋼板を用いて絞り比2.0の浅絞り缶(容器)を作製し、缶側壁部に基材に達するキズ(クロスカット)を付与した。その後、モデル液中にて温度125℃で30分間のレトルト処理を行った後、37℃環境下で2週間経時した。2週間経時後のクロスカット周囲の腐食状況を目視にて観察し、以下の基準で評価した。
[塗料密着性評価]
塗料密着性評価は、後述する全ての実施例及び比較例について行った。
3点:目視で判定した結果、塗料の剥離がクロスカット部より2mm以内であった。
2点:目視で判定した結果、塗料の剥離がクロスカット部より2mmを超え5mm以内で認められた。
1点:目視で判定した結果、塗料の剥離がクロスカット部より5mmを超える範囲で認められた。
なお、塗料密着性の評価において、上記基準で評価が2点以上である場合には、かような表面処理鋼板を、飲食缶用途として用いた際に十分な塗料密着性を有するものであると判断した。
塗料密着性評価は、後述する全ての実施例及び比較例について行った。
3点:目視で判定した結果、塗料の剥離がクロスカット部より2mm以内であった。
2点:目視で判定した結果、塗料の剥離がクロスカット部より2mmを超え5mm以内で認められた。
1点:目視で判定した結果、塗料の剥離がクロスカット部より5mmを超える範囲で認められた。
なお、塗料密着性の評価において、上記基準で評価が2点以上である場合には、かような表面処理鋼板を、飲食缶用途として用いた際に十分な塗料密着性を有するものであると判断した。
[耐食性評価]
耐食性評価は、全ての実施例及び比較例について行った。
3点:目視で判定した結果、参考例2と比較して腐食の程度が同等であった。
2点:目視で判定した結果、参考例2と比較して腐食の程度がわずかに大きかった。
1点:目視で判定した結果、参考例2と比較して明らかに腐食の程度が大きかった。
なお、耐食性の評価においては、上記基準で評価が2点以上である場合に、表面処理鋼板を、飲食缶用途として用いた際に十分な耐食性を有するものであると判断した。
耐食性評価は、全ての実施例及び比較例について行った。
3点:目視で判定した結果、参考例2と比較して腐食の程度が同等であった。
2点:目視で判定した結果、参考例2と比較して腐食の程度がわずかに大きかった。
1点:目視で判定した結果、参考例2と比較して明らかに腐食の程度が大きかった。
なお、耐食性の評価においては、上記基準で評価が2点以上である場合に、表面処理鋼板を、飲食缶用途として用いた際に十分な耐食性を有するものであると判断した。
<溶接性の評価方法>
有機樹脂被覆鋼板又は表面処理鋼板の溶接性は、表面抵抗を測定することにより評価した。より具体的には、例えば表面処理鋼板に接触荷重100gfを負荷し、負荷から除荷に至る1サイクルの中で、設定荷重(例えば100gf)到達時にその抵抗を測定した。測定に際しては、(株)山崎精機研究所製の電気接点シミュレーターCRS-153-AU型を用いて行った。
なお溶接性評価は全ての実施例及び比較例について行った。
3点:抵抗値で判定した結果、参考例2と比較して同等かそれ以下であった。
2点:抵抗値で判定した結果、参考例2と比較して抵抗値が2倍以内であった。
1点:抵抗値で判定した結果、参考例2と比較して抵抗値が2倍を超えた。
なお、溶接性の評価においては、上記基準で評価が3点以上である場合に、表面処理鋼板を、飲食缶用途として用いた際に十分な溶接性を有するものであると判断した。
有機樹脂被覆鋼板又は表面処理鋼板の溶接性は、表面抵抗を測定することにより評価した。より具体的には、例えば表面処理鋼板に接触荷重100gfを負荷し、負荷から除荷に至る1サイクルの中で、設定荷重(例えば100gf)到達時にその抵抗を測定した。測定に際しては、(株)山崎精機研究所製の電気接点シミュレーターCRS-153-AU型を用いて行った。
なお溶接性評価は全ての実施例及び比較例について行った。
3点:抵抗値で判定した結果、参考例2と比較して同等かそれ以下であった。
2点:抵抗値で判定した結果、参考例2と比較して抵抗値が2倍以内であった。
1点:抵抗値で判定した結果、参考例2と比較して抵抗値が2倍を超えた。
なお、溶接性の評価においては、上記基準で評価が3点以上である場合に、表面処理鋼板を、飲食缶用途として用いた際に十分な溶接性を有するものであると判断した。
以上説明した各実施例、比較例および参考例に関する材料と皮膜量、表面形態を表5に示すとともに、各種評価の結果を表6に示す。耐食性評価はモデル液での評価であり、従来技術(参考例1から3)では適用されていない内容物もある。本発明で得られた表面処理板のATC値は比較例2および3よりも小さく、耐食性に優れることが示された。今回用いたモデル液での評価以外でも本発明が耐食性に優れることが示唆されるものである。
実施例は写真のような粒子が確認されたが、比較例および参考例では確認されていない。表面処理鋼板の表面に存在する金属錫をアルカリ溶液中にて電解処理を行い、金属錫を溶解させた場合の合金層の形態を写真に示す。これにおいても、実施例は写真のような粒子が確認されたが、比較例および参考例では確認されていない。
なお上記した実施形態と各実施例は、本発明の趣旨を逸脱しない範囲で種々の変形が可能である。
以上説明したように、本発明の表面処理鋼板、有機樹脂被覆鋼板およびそれを用いた容器は、耐食性、塗料密着性および溶接性を同時に高い次元で備えており、広い分野の産業への適用が可能である。
1 基材
2 表面処理層
21 Ni-Sn合金層
22 第一包囲層
23 第二包囲層
3 コーティング層
4 有機樹脂層
ST 表面処理鋼板
RT 有機樹脂被覆鋼板
C 容器
2 表面処理層
21 Ni-Sn合金層
22 第一包囲層
23 第二包囲層
3 コーティング層
4 有機樹脂層
ST 表面処理鋼板
RT 有機樹脂被覆鋼板
C 容器
Claims (11)
- 基材と、
前記基材上に形成されるとともに、粒状又は針状のNi-Sn合金層と、前記Ni-Sn合金の他部に配置されるFe-Sn合金層又はSn層とを含む表面処理層と、
を備えたことを特徴とする表面処理鋼板。 - 前記表面処理層におけるSnとNiとの比であるSn/Niが、5.0~70である請求項1に記載の表面処理鋼板。
- 前記Ni-Sn合金は、その構造が主としてNi3Sn4であるとともにFeを更に含有し、
前記Feの含有率が10at%以下である請求項1又は2に記載の表面処理鋼板。 - 前記Ni-Sn合金の他部に配置されるFe-Sn合金層は、FeSn2を含む請求項1~3のいずれか一項に記載の表面処理鋼板。
- 前記表面処理層における面内方向に関し、前記Ni-Sn合金層は、前記Fe-Sn合金層又は前記Sn層に囲まれてなる請求項1~4のいずれか一項に記載の表面処理鋼板。
- 前記表面処理層上、又は前記基材のうち前記表面処理層とは反対側に、Zr、Ti、及びAlの少なくとも1つ以上の酸化物を含むコーティング層が形成されてなる請求項1~5のいずれか一項に記載の表面処理鋼板。
- 前記コーティング層が、Pの酸化物を含む請求項6に記載の表面処理鋼板。
- 請求項1~7のいずれか一項に記載の表面処理鋼板上に有機樹脂層が更に被覆されてなる有機樹脂被覆鋼板。
- 請求項8に記載の有機樹脂被覆鋼板から成る容器。
- 基材にNiめっきを行うことで、当該基材上にNi層を形成する工程と、
前記Ni層が形成された基材に対してSnめっきを行うことで、前記Ni層上にSn層を形成する工程と、
前記Ni層および前記Sn層が形成された基材に対して溶融加熱処理を行うことで、粒状又は針状のNi-Sn合金層と、前記Ni-Sn合金の他部に配置されるFe-Sn合金層又はSn層とを含む表面処理層を前記基材上に形成する工程と、
を含むことを特徴とする表面処理鋼板の製造方法。 - 前記NiめっきにおけるNiめっき量は、0.01~0.3g/m2であり、
前記SnめっきにおけるSnめっき量は、0.4~3.0g/m2である請求項10に記載の表面処理鋼板の製造方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015-144390 | 2015-07-21 | ||
JP2015144390 | 2015-07-21 | ||
JP2015223918A JP6650251B2 (ja) | 2015-07-21 | 2015-11-16 | 表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器 |
JP2015-223918 | 2015-11-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017014117A1 true WO2017014117A1 (ja) | 2017-01-26 |
Family
ID=57834930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/070620 WO2017014117A1 (ja) | 2015-07-21 | 2016-07-12 | 表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017014117A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173086A (ja) * | 1992-12-08 | 1994-06-21 | Nippon Steel Corp | 高速シーム溶接性、耐食性、耐熱性および塗料密着性に優れた溶接缶用素材 |
JP2009001854A (ja) * | 2007-06-20 | 2009-01-08 | Nippon Steel Corp | 容器用鋼板 |
JP2012062520A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板およびその製造方法 |
-
2016
- 2016-07-12 WO PCT/JP2016/070620 patent/WO2017014117A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173086A (ja) * | 1992-12-08 | 1994-06-21 | Nippon Steel Corp | 高速シーム溶接性、耐食性、耐熱性および塗料密着性に優れた溶接缶用素材 |
JP2009001854A (ja) * | 2007-06-20 | 2009-01-08 | Nippon Steel Corp | 容器用鋼板 |
JP2012062520A (ja) * | 2010-09-15 | 2012-03-29 | Jfe Steel Corp | 容器用鋼板およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
BINARY ALLOY PHASE DIAGRAMS SECOND EDITION, vol. 3, 2001, pages 2863 - 2864, ISBN: 0-87170-406-4 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5760355B2 (ja) | 容器用鋼板 | |
JP5978576B2 (ja) | 容器用鋼板およびその製造方法 | |
EP2857557B1 (en) | Surface-treated steel sheet for container having excellent processing adhesion to resin, method for manufacturing same, and can | |
EP2551378B1 (en) | Steel sheet for vessel having excellent corrosion resistance | |
WO2011118846A1 (ja) | 表面処理鋼板、その製造方法およびそれを用いた樹脂被覆鋼板 | |
JP6658878B2 (ja) | 容器用鋼板 | |
JP5986342B1 (ja) | 表面処理鋼板、金属容器及び表面処理鋼板の製造方法 | |
JP6119930B2 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
WO2018042980A1 (ja) | 表面処理鋼板、有機樹脂被覆鋼板、及びこれらを用いた容器 | |
JP6540801B2 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
JP5986343B1 (ja) | 表面処理鋼板、金属容器及び表面処理鋼板の製造方法 | |
WO2017018286A1 (ja) | 表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器 | |
WO2017014117A1 (ja) | 表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器 | |
JP6650251B2 (ja) | 表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器 | |
WO2021261155A1 (ja) | 表面処理鋼板、金属容器および表面処理鋼板の製造方法 | |
JP6119931B2 (ja) | 容器用鋼板及び容器用鋼板の製造方法 | |
JP6590651B2 (ja) | 表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器 | |
JP6635761B2 (ja) | 表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器 | |
WO2017018289A1 (ja) | 表面処理鋼板およびその製造方法、並びにこの表面処理鋼板を用いた容器 | |
JP7284372B2 (ja) | 容器用鋼板 | |
JP6220226B2 (ja) | 表面処理鋼板の製造方法、表面処理鋼板、および有機樹脂被覆金属容器 | |
JP6003910B2 (ja) | 容器用鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16827677 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16827677 Country of ref document: EP Kind code of ref document: A1 |