WO2017013705A1 - 投写レンズの組み立て方法および投写映像表示装置 - Google Patents

投写レンズの組み立て方法および投写映像表示装置 Download PDF

Info

Publication number
WO2017013705A1
WO2017013705A1 PCT/JP2015/070527 JP2015070527W WO2017013705A1 WO 2017013705 A1 WO2017013705 A1 WO 2017013705A1 JP 2015070527 W JP2015070527 W JP 2015070527W WO 2017013705 A1 WO2017013705 A1 WO 2017013705A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
projection
image display
assembling
block
Prior art date
Application number
PCT/JP2015/070527
Other languages
English (en)
French (fr)
Inventor
平田 浩二
谷津 雅彦
有紀 松宮
加藤 修二
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2015/070527 priority Critical patent/WO2017013705A1/ja
Priority to US15/738,453 priority patent/US10444606B2/en
Priority to JP2017529178A priority patent/JP6417478B2/ja
Priority to CN201580080953.6A priority patent/CN107710069B/zh
Publication of WO2017013705A1 publication Critical patent/WO2017013705A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/145Housing details, e.g. position adjustments thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor

Definitions

  • the present invention relates to a projection image display apparatus including an oblique projection optical system, and more particularly to a method for assembling a projection lens in the oblique projection optical system.
  • projection is performed by projecting images projected on a display device such as a transmissive liquid crystal panel or a reflective liquid crystal panel onto a screen that is a projection surface using a projection lens.
  • a display device such as a transmissive liquid crystal panel or a reflective liquid crystal panel
  • Type image display devices are known.
  • Patent Document 1 includes a projection lens including a first optical system including a transmissive refracting element and a second optical system including a reflective refracting element, and some lenses of the first optical system include a second optical system.
  • An apparatus housed in a lower space with the lower end of the lower limit as the lower limit is disclosed.
  • Patent Document 2 discloses a projection optical system capable of projecting a high-quality projected image on a large screen while having a short overall length by combining a lens system and a concave mirror.
  • Patent Document 1 In the prior art including Patent Document 1 and Patent Document 2, generally, a single lens divided into a plurality of blocks is arranged for each block with respect to the size of the image display element used in the apparatus. Each of them is designed and changed including dimensions. This makes it difficult to efficiently assemble the device. For this reason, the design process and assembly cost of each lens block increased, and there was a problem that the manufacturing cost of the video display device increased.
  • a projection lens system (second optical system) including a free-form surface mirror includes a lens having a non-axisymmetric shape including the free-form surface mirror.
  • the present invention has been made in view of the above-described problems in the prior art, and is configured by dividing a projection lens for projecting an image projected on an image display element into a plurality of lens blocks.
  • the present invention relates to a method of assembling a projection lens system of an oblique projection optical system in an inclined projection image display apparatus configured by combining lens barrel parts, and a projection image display apparatus using the same, and more particularly, an image display element
  • the external dimensions of the single lens for each block are changed according to the size of the lens, the lens barrel and the single lens are set so that the necessary luminous flux can pass according to the lens specifications, and these lens barrels are set for each block according to the lens specifications.
  • an assembling method of a projection lens in an oblique projection optical system that enables efficient production, and a projection display apparatus using the same
  • a method of assembling a projection lens in an oblique projection optical system for a tilted projection image display device including a spherical lens block and an aspheric lens block, and images of different sizes incorporated in the projection image display device A spherical lens block having a size suitable for the display element and a common aspheric lens block are prepared in advance, and the spherical lens block selected according to the size of the incorporated video display element and the block
  • the projection lens system is assembled by assembling a common aspheric lens block to assemble the projection lens system.
  • a light source a video display element that modulates the intensity of light from the light source according to a video signal, and a modulation from the video display element.
  • An inclined projection image display apparatus having a projection lens for projecting the projected image light on the projection surface from an oblique direction, the projection lens being a plastic lens having a spherical lens surface and an aspheric lens
  • a plastic lens having a surface, and a plurality of lens blocks incorporated along the optical axis at a position closest to the projection surface, and the projection lens of the projection lens system described above
  • a projection image display apparatus assembled by the assembling method is provided.
  • a method for assembling a projection lens in an oblique projection optical system that enables efficient manufacture even if the size of the image display element mounted on the apparatus varies, and a projection-type image display using the same
  • the device provides a practically excellent effect.
  • FIG. 1 is an overall perspective view showing the appearance of a projection display apparatus according to an embodiment of the present invention.
  • FIG. 2 is a lens arrangement diagram for explaining an example of a projection lens for an oblique projection optical system in the projection image display apparatus of FIG. 1.
  • FIG. 3 is a lens arrangement diagram illustrating a projection lens configuration for the projection optical system of FIG. 2. It is a figure explaining the principle of operation of the projection lens for the projection optical system of FIG.
  • FIG. 3 is a plan view showing an image light flux passage region on an incident surface of an aspheric lens constituting a front lens block composed of an aspheric lens and a spherical lens shown in FIG. 2.
  • FIG. 2 is a lens arrangement diagram for explaining an example of a projection lens for an oblique projection optical system in the projection image display apparatus of FIG. 1.
  • FIG. 3 is a lens arrangement diagram illustrating a projection lens configuration for the projection optical system of FIG. 2. It is a figure explaining the principle of operation of the projection lens for the projection
  • FIG. 3 is a plan view showing an image light flux passage region on an incident surface of an aspheric lens constituting the middle group lens block shown in FIG. 2.
  • FIG. 3 is a plan view illustrating an example of a passage region of an image light beam on an incident surface of a free-form surface lens that constitutes the rear group lens block illustrated in FIG. 2.
  • FIG. 6 is a plan view showing another example of the image light flux passage region on the entrance surface of the free-form lens constituting the rear group lens block shown in FIG. 2.
  • FIG. 3 is a plan view showing an image light flux passage region on a reflection surface of the free-form curved mirror shown in FIG. 2. It is a figure for demonstrating the assembly process of the projection lens for the oblique projection optical system shown in FIG. It is a figure which shows an example of the assembly structure of the front group lens block and middle group lens block in the projection lens for the oblique projection optical system shown in FIG.
  • FIG. 1 is an overall perspective view showing the external appearance of the projection display apparatus.
  • reference numeral 100 denotes the projection display apparatus
  • reference numerals 101 and 102 denote an upper surface cover (housing) and a lower surface cover (housing), respectively.
  • a window portion 103 that is opened when the apparatus is used is attached to a part of the upper surface cover 101 so as to be opened and closed.
  • a state in which the window portion 103 is opened is shown, and a free-form surface lens constituting a part of the projection optical system described below is indicated by a reference symbol L12.
  • an internal space formed by the upper surface cover 101 and the lower surface cover 102 is a component for constituting the projection display apparatus, for example, a solid light source or lamp as a light source.
  • a light modulation unit that modulates light from the light source into video light based on an external video signal or the like (for example, DLP (Digital Light Processing), video display element such as a liquid crystal panel), and the video light to the wall surface Inclined projection optics including so-called free-form surface lenses and free-form surface mirrors, which can project with extremely small distances (large tilt angles) with reduced trapezoidal distortion, etc.
  • the system further includes various circuit components including a power supply circuit and a control circuit that supply necessary power and control signals to the above components, A cooling fan or the like for directing heat to the exterior of the apparatus are mounted.
  • FIG. 2 is a lens arrangement diagram for explaining the operation principle of the projection lens in the tilted projection optical system.
  • a total of twelve lenses indicated by reference numerals L1 to L12 It is composed of one mirror indicated by reference numeral M13.
  • the reflecting surface of the mirror M13 and the lens surfaces of the lenses indicated by reference numerals L11 and L12 each form a free-form surface.
  • the above-mentioned free-form surface lens shape has a design freedom of about 5 times that of an aspheric lens shape, and good aberration correction is possible.
  • a light source in this example, a semiconductor light source, but not shown
  • the light enters the image display element indicated by P1
  • the image light beam (indicated by ⁇ 0 as a whole) from the image display element P1 (reflection type image display element) passes through different locations of the respective lenses in the projection lens with respect to the image formation position on the projection surface.
  • the free-form surface mirror M13 and the free-form surface lenses L11 and L12 are located above the optical axis shared by almost all other lenses, so that the unnecessary lens effective area can be eliminated and the size can be reduced. Therefore, the cost of the entire apparatus can be reduced.
  • the lens denoted by reference numeral L10 in the drawing corrects coma and spherical aberration by using an aspheric lens surface. Further, since the lens indicated by the symbol L10 is disposed at a position where the light beam is deflected and passes, the lens surface is aspherical so that the light beam is obliquely incident on the lens. It corrects high-order coma that occurs.
  • a light beam ⁇ 2 that forms an image at the upper end portion of the projection surface and a light beam ⁇ 1 that forms an image at a substantially central portion of the projection surface are individual lenses (reference numerals L1 to L in the figure). This indicates which part of (displayed by L12) passes. Since the upper limit light of the light beam ⁇ 2 that forms an image at the upper end portion of the projection surface and the lower limit light of the light beam ⁇ 1 that forms an image at almost the center portion of the projection surface do not overlap in the aspherical lens L10 and the free-form surface lenses L11 and L12, Aberration can be corrected independently, and the correction capability is greatly improved.
  • the lenses (L1 to L10) that contribute to aberration correction in a region relatively close to the optical axis are incorporated in the lens barrel B1, and the lenses (L11 and L12) that contribute to aberration correction in a region away from the optical axis.
  • the lens is incorporated in a lens barrel B2 that is separate from the lens barrel, and the distance between the lenses L10 and L11 and between the lens L12 and the mirror M13 is adjusted, and the distance between the lenses L11 and L12 is also adjusted at the same time.
  • the configuration is adjustable.
  • the free-form surface mirror M13 is attached to a mirror base and has a structure that can be opened and closed by, for example, an electric motor (not shown). Furthermore, since all of these are fixed to the projection lens base with high accuracy, a predetermined focusing performance can be obtained.
  • the 12 lenses L1 to L12 constituting the projection lens described above are divided into the following three groups: a front group, a middle group, and a rear group. These are incorporated into individual lens barrels to form a plurality of lens blocks (front group lens block G1, middle group lens block G2, rear group lens block G3). More specifically, in the above example, the aspherical lenses L11 and L12 are the rear group lens block G3, and the spherical lenses L1 to L5 arranged from the lens closest to the image display element P1 to just before the stop S1 are the front group lenses.
  • the spherical lens L6 to L10 arranged from the stop S1 to immediately before the aspherical lens L11 is defined as a middle group lens block G2.
  • positioning structure which showed these lenses which comprise a projection lens by each lens block (group) is shown in FIG.
  • a plurality of video display elements P1 of different sizes are prepared, and the lens blocks (front group lens block G1, middle group lens block G2, rear group lens block) described above corresponding to each size. G3), and further, a free-form surface mirror M13 (in the figure, the free-form surface mirror M13 is displayed as a lens) is designed and created, and these are selected and assembled as appropriate, whereby the image display element P1.
  • Projection-type image display devices with different sizes were manufactured and their performance was confirmed.
  • the front group lens block G1, the middle group lens block G2, the rear group lens block G3, and the free-form surface mirror M13 are designed and created according to the size of the image display element P1, it is not always desired. Optical performance could not be obtained, and therefore the inventors conducted various studies. As a result, the following was confirmed.
  • a lens block having a lens diameter corresponding to the image display element P1 having a different size that is, for the image display element P1 having a small size.
  • the light beams ⁇ 1 and ⁇ 2 from the image display element P1 are spherical lenses.
  • the desired optical performance can be obtained by designing so as to be within the effective diameter of the aspherical lens.
  • the front group consisting of an aspheric lens and a spherical lens. Similar to the lens block G1 and the middle group lens block G2, it has been found that desired optical performance cannot be obtained simply by changing the size.
  • the present invention has been achieved on the basis of the above-described examination results. That is, the front group lens block G1 and the middle group lens block G2 corresponding to the sizes of the image display elements P1 having different sizes are selected.
  • the desired shape accuracy and surface roughness can be maintained by using a common block for the image display elements P1 of different sizes. It has been found that a projection lens system capable of obtaining optical performance can be assembled. Since the rear lens group block G3 is a common block, it is designed so that the light beams ⁇ 1 and ⁇ 2 from the image display element P1 having the largest size can be accommodated in the free-form surface lens.
  • the free-form surface mirror M13 can obtain the desired optical performance just by changing its size, similarly to the front group lens block G1 and the middle group lens block G2 made of spherical lenses.
  • the reflecting surface of the mirror M13 requires a surface roughness that is less than half that of the lens surface of the above-described free-form surface lens, and therefore requires the same shape accuracy as the rear group lens block G3.
  • the reflective film is formed by vapor deposition, the vapor deposition cost varies greatly depending on the size of the mirror M13, and the influence of the price of the projection lens is great. For this reason, when using a small image display element, it is preferable to set the minimum required mirror outer dimension.
  • the reflective image display element is prepared, and the image light flux from the image displayed on the reflective image display element having a diagonal dimension of 0.3 inches (aspect ratio 16: 9) and the diagonal dimension is 0.45.
  • the results of studying whether to pass or reflect are shown as XY coordinate values in FIGS. 5 to 9 and Tables 1 to 5 below.
  • FIG. 5 is a plan view showing a passing region of the image light flux on the incident surface (side surface of the image display element) of the aspheric lens L2 constituting the front lens block G1 including the aspheric lens and the spherical lens shown in FIG.
  • the area indicated by A1 in the figure corresponds to (the size of the video display element corresponds to 0.45 inches, while the area indicated by A2 corresponds to the size of the video display element (0.3 inches).
  • Table 1 a point sequence corresponding to one side, that is, the + X axis with respect to the Y axis of a specific passing region is indicated by an absolute value of an optical axis reference (X: both Y axis is zero).
  • the lenses constituting the front group lens block G1 are appropriately different in lens diameter (ie, the lens diameter is reduced) in accordance with the size of the image display element. (See the dashed circle in the figure).
  • FIG. 6 is a plan view showing the passage region of the image light flux on the incident surface (side surface of the image display element) of the aspheric lens L10 constituting the middle group lens block G2 shown in FIG.
  • the size of the video display element corresponds to 0.45 inches, while the area indicated by A2 (corresponds to the size of the video display element of 0.3 inches. 2
  • the point sequence corresponding to one side, that is, the + X axis with respect to the Y axis of a specific passing region is indicated by the absolute value of the optical axis reference (X: Y axis is zero).
  • the aspherical lenses constituting the middle group lens block G2 are adapted to the size of the image display element, and the lenses having different lens diameters (as shown in FIG. It can be seen that a broken circle can be used.
  • FIG. 7 shows an image light flux passage region on the entrance surface of the free-form surface lens L11 constituting the rear group lens block G3 shown in FIG. 2, and the region indicated by A1 in FIG.
  • the area indicated by A2 corresponds to 0.45 inch (the size of the image display element corresponds to 0.3 inch.
  • Table 3 below, the Y axis of a specific passing area is shown.
  • a point sequence corresponding to one side, that is, the + X axis is indicated by the absolute value of the optical axis reference (X: Y axis is zero).
  • FIG. 8 shows a passage region of the image light flux on the entrance surface of the free-form surface lens L12 constituting the rear group lens block G3 shown in FIG. 2, and the region indicated by A1 in FIG.
  • the area indicated by A2 corresponds to the size of 0.45 inch (the size of the image display element corresponds to 0.3 inch.
  • the specific passing area Y A point sequence corresponding to one side of the axis, that is, the + X axis is indicated by an absolute value of the optical axis reference (X: Y axis is zero).
  • the free-form surface lenses L11 and L12 constituting the rear lens group block G3 are not necessarily concerned even if the size of the image display element is reduced due to the complexity of the surface shape. It turns out that it does not lead to reduction of a lens diameter.
  • These free-form curved lenses L11 and L12 are difficult to obtain desired characteristics only by changing the size (reduction of the lens diameter) due to the complexity of the surface shape, and as described above, they are desired in different manufacturing processes. Therefore, it is difficult to maintain the processing accuracy, and therefore, the desired optical performance cannot be obtained by simply reducing the lens diameter.
  • FIG. 9 is a plan view showing a passing region of the image light flux on the reflecting surface of the free-form curved mirror M13 shown in FIG.
  • the areas indicated by A1 and A2 in the figure are also the same as described above, and the description thereof is omitted here.
  • Table 5 below a point sequence corresponding to one side, that is, the + X axis with respect to the Y axis of a specific passing region is indicated by an absolute value of the optical axis reference (X: both Y axis is zero).
  • the free-form surface mirror M13 is appropriately selected for the image display element P1 having different sizes. It has been found that it is effective to assemble the projection lens system by making the selection in order to assemble the projection lens system efficiently and economically. In the manufacture of the mirror M13, the area of the reflective film deposited on the reflective surface can be appropriately reduced in accordance with the size of the video display element P1 having a small size. This greatly affects the reduction of the manufacturing cost, and an economic effect is obtained.
  • ⁇ Assembly method of projection lens system> As is clear from the above, according to the projection lens system assembling method of the present invention, a plurality of video display elements P1 having different sizes (dimensions of diagonal lines) incorporated in the manufactured projection video display device are used. A plurality of types of lens blocks designed and manufactured in accordance with the size, that is, the front group lens block G1 and the middle group lens block G2 are prepared in advance. Similarly, a plurality of types of free-form surface mirror M13 are prepared in advance. The rear group lens block G3 described above is prepared as a common part.
  • the front group lens block G1 and the middle group lens block G2 that are suitable for the image display element P1 selectively incorporated in the image display device are selected. These are assembled and further combined with a common rear group lens block G3 to form a lens group.
  • the lens group configured as described above is mounted in an internal space formed by the upper surface cover 101 and the lower surface cover 102 together with various components constituting the projection display apparatus, and further selected in the same manner as described above.
  • the free-form surface mirror M13 is attached to the mirror base to complete the assembly of the projection lens.
  • the lens barrels 21 and 22 are integrally extended before and after the stop S1 (20).
  • the front part 21 has a rear barrel of the front group lens block G1
  • the rear part 22 has a front barrel of the middle group lens block G2.
  • the diaphragm 20 shown in FIG. 10 including the lens barrels 21 and 22 is also adapted to the selectively incorporated video display element P1 similarly to the front group lens block G1 and the middle group lens block G2. A plurality of sizes are prepared in advance.
  • the rear lens block G3 in which it is difficult to maintain the desired processing accuracy, is used in common regardless of the size of the image display element P1, thereby achieving desired optical performance.
  • a projection lens system capable of obtaining performance can be assembled.
  • the front group lens block G1 and the middle group lens block G2 are selected and assembled according to the size of the video display element P1, and particularly for the small size video display element P1. Since the outer size of the front group lens block G1, the middle group lens block G2, and the free-form surface mirror M13 can be reduced, the manufacturing cost can be reduced.
  • a part of a lens block group for example, Only the front group lens block G1 may be variable. Specifically, a plurality of front group lens blocks having different sizes are prepared, or all of them may be variable, that is, a plurality of front group lenses having different sizes.
  • a block G1, a middle group lens block G2, and a free-form surface mirror M13 may be prepared.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments are described in detail for the entire system in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • SYMBOLS 100 Projection type video display apparatus, 101 ... Top cover, 102 ... Bottom cover, L1-L12 ... Lens, P1 ... Image display element, PL ... Prism optical element, G1 ... Front group lens block, G2 ... Middle group lens block, G3: Rear group lens block, M13: Free-form curved mirror, S1 (20): Aperture, 21, 22 ... Lens barrel

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Projection Apparatus (AREA)
  • Lens Barrels (AREA)

Abstract

本発明の目的は、搭載される映像表示素子のサイズが変動しても効率的な製造が可能な斜投写光学系投写レンズの組み立て方法およびそれを用いた投写型映像表示装置を提供することである。本発明は、球面レンズのブロックと非球面レンズブロックとを含んでいる傾斜型の投写映像表示装置のための斜投写光学系における投写レンズの組み立て方法であって、当該投写映像表示装置に組み込まれる異なるサイズの映像表示素子に対して適合するサイズの球面レンズのブロックと、共通の非球面レンズブロックを予め用意しておき、当該組み込まれた映像表示素子のサイズに応じて選択された前記球面レンズのブロックと前記共通の非球面レンズブロックとを組み立てて前記投写レンズを組み立てる、投写レンズの組み立て方法である。

Description

投写レンズの組み立て方法および投写映像表示装置
 本発明は、斜投写光学系を備えた投写映像表示装置に関し、特に、その斜投写光学系における投写レンズの組み立て方法に関する。
 表示画面を大きくした大型の投写型映像表示装置として、透過型の液晶パネルや反射型の液晶パネルなどの映像表示素子に映し出された映像を、投写レンズにより、投写面であるスクリーンに投写する投写型映像表示装置が知られている。
 近年、スクリーンから投写型映像表示装置までの距離が短い、所謂、短投写距離の投写レンズを用いた投写型映像表示装置が普及してきた。例えば、特許文献1には、透過型屈折素子を含む第一光学系と反射型屈折素子を含む第二光学系からなる投写レンズからなり、第一光学系の一部のレンズが第二光学系の下端を下限とする下方スペース内に収納された装置が開示されている。また、特許文献2には、レンズ系と凹面鏡との組み合わせで短い全長でありながら、大画面で良質な投写画像を投写しうる投写光学系が開示されている。
特開2009-86315号公報 特開2008-250296号公報
 しかしながら、上記特許文献1および特許文献2を含めた従来技術では、一般的には、装置で使用する映像表示素子のサイズに対し、複数のブロックに分割された単レンズを、ブロック毎にその外形寸法を含めて夫々に設計・変更することが行われている。そのため、効率的に装置を組み立てることが困難となる。このため、各レンズブロックの設計工程や組み立て費用が嵩み、映像表示装置の製造コストが上昇してしまうという問題点があった。
 特に、自由曲面ミラーを含む投写レンズ系(第二光学系)は、当該自由曲面ミラーを含め、非軸対称形状のレンズを含むことから、複数の映像表示素子のサイズに対応して必要なレンズブロックをそれぞれ用意する場合には、その製造過程において、その表面形状を所望の成形精度と面粗さに保つことが難しくなる。
 そこで、本発明は、上述した従来技術における問題点に鑑みたなされたものであり、映像表示素子に映し出された映像を傾斜拡大投写する投写レンズを複数のレンズブロックごとに分割して構成された鏡筒部品を組合せて構成される傾斜型の投写映像表示装置における斜投写光学系の投射レンズ系の組み立て方法と、それを利用した投写型映像表示装置に関わり、より詳細には、映像表示素子のサイズによってブロック毎の単レンズの外形寸法を変更し、レンズ仕様に合わせて必要な光束が通過するように、鏡筒と単レンズを設定し、そして、これらの鏡筒をレンズ仕様によってブロック毎に組み替えが可能であり、もって、効率的な製造を可能とする斜投写光学系における投写レンズの組み立て方法およびそれを用いた投写型映像表示装置を提供することをその目的とする。
 上述した目的を達成するため、本発明によれば、その望ましい態様の一つは次の通りである。球面レンズのブロックと非球面レンズブロックとを含んでいる傾斜型の投写映像表示装置のための斜投写光学系における投写レンズの組み立て方法であって、当該投写映像表示装置に組み込まれる異なるサイズの映像表示素子に対して適合するサイズの球面レンズのブロックと、共通の非球面レンズブロックを予め用意しておき、当該組み込まれた映像表示素子のサイズに応じて選択された前記球面レンズのブロックと前記共通の非球面レンズブロックとを組み立てて前記投写レンズ系を組み立てる投射レンズ系の組み立て方法である。
 また、同様に、本発明によれば、やはり上述した目的を達成するため、光源と、前記光源からの光の強度を映像信号に応じて変調する映像表示素子と、前記映像表示素子からの変調された映像光を投写面に斜め方向から投影する投写レンズを筐体内に備えた傾斜型の投写映像表示装置であって、前記投写レンズは、球面のレンズ面を有するプラスチックレンズと非球面のレンズ面を有するプラスチックレンズと、さらには、投写面に最も近い位置に光軸に沿って組み込まれる複数のレンズブロックとして組み合わせて構成されており、前記投写レンズは、前記に記載された投写レンズ系の組み立て方法によって組み立てられたものである投写映像表示装置が提供される。
 上述した本発明によれば、装置に搭載される映像表示素子のサイズが変動しても効率的な製造を可能とする斜投写光学系における投写レンズの組み立て方法およびそれを用いた投写型映像表示装置が提供されるという、実用的にも優れた効果を発揮する。
本発明の一実施の形態になる投写型映像表示装置の外観を示した全体斜視図である。 図1の写型映像表示装置における斜投写光学系のための投写レンズの一例を説明するレンズ配置図である。 図2の投写光学系のための投写レンズ構成を説明するレンズ配置図である。 図3の投写光学系のための投写レンズの動作原理を説明する図である。 図2に示した非球面レンズや球面レンズからなる前群レンズブロックを構成する非球面レンズの入射面における映像光束の通過領域を示した平面図である。 図2に示した中群レンズブロックを構成する非球面レンズの入射面における映像光束の通過領域を示した平面図である。 図2に示した後群レンズブロックを構成する自由曲面レンズの入射面における映像光束の通過領域の一例を示した平面図である。 図2に示した後群レンズブロックを構成する自由曲面レンズの入射面における映像光束の通過領域の他の例を示した平面図である。 図2に示した自由曲面ミラーの反射面における映像光束の通過領域を示した平面図である。 図3に示す斜投写光学系のための投写レンズの組み立て工程を説明するための図である。 図3に示す斜投写光学系のための投写レンズにおける前群レンズブロックと中群レンズブロックの組み立て構造の一例を示す図である。
 以下、本発明になる実施の形態について、添付の図面を参照しながら詳細に説明する。
 図1は、投写型映像表示装置の外観を示した全体の斜視図である。同図において、参照符号100は、当該投写型映像表示装置を示しており、参照符号101と102は、当該装置の上面カバー(筐体)と下面カバー(筐体)をそれぞれ示している。図からも明らかなように、上記上面カバー101の一部には、当該装置の使用時には開かれる窓部103が、開閉可能に取り付けられている。なお、この図では、窓部103が開いた状態が示されており、以下にも述べる投写光学系の一部を構成する自由曲面レンズが参照符号L12により示されている。
 また、ここでは図示しないが、上記上面カバー101と下面カバー102により形成される内部空間には、当該投写型映像表示装置を構成するための構成部品である、例えば、光源である固体光源またはランプ、当該光源からの光を外部からの映像信号などに基づいた映像光に変調する光変調部(例えば、DLP(Digital Light Procesing),液晶パネル等の映像表示素子)、当該映像光を壁面に対して極めて近距離(大きな傾斜角度)からでも台形歪等を低減して投写することが可能であり、もって、優れた投写映像が得られる、所謂、自由曲面レンズや自由曲面ミラーを含む傾斜投写光学系が、さらには、上記構成部品に対して必要な電力や制御信号を供給する電源回路や制御回路を含む各種回路部品、その発熱を装置外部に導くための冷却ファン等が搭載されている。
 次に、図2は、上記傾斜投写光学系における投写レンズの動作原理を説明するためのレンズ配置図であり、図からも明らかなように、符号L1~L12で示す計12枚のレンズと、符号M13で示す1枚のミラーから構成されている。ここで、ミラーM13の反射面、および符号L11とL12で示されたレンズのレンズ面は、それぞれ、自由曲面形状を形成している。このため、極めて大きな傾斜角度で映像を投写する傾斜投写光学系であっても、台形歪を低減した投写映像を得ることができる。上述した自由曲面レンズ形状は非球面レンズ形状に対して設計自由度が約5倍程度と大きく、良好な収差補正が可能となる。
 また、図中に符号PLで示したプリズム光学素子の対向面に配置された光源(本例では、一例として、半導体光源。但し、図示せず)からの光はプリズム面で全反射し、符号P1で示す映像表示素子に入射し映像表示素子により映像光束に変換され、プリズム面を透過して投写レンズに入射する。当該映像表示素子P1(反射型映像表示素子)からの映像光束(全体をφ0で示す)は、投影面の結像位置に対して、投写レンズ内ではそれぞれのレンズの異なった場所を通過する。自由曲面ミラーM13と自由曲面レンズL11とL12は、その他の殆どのレンズが共有する光軸よりも上部に位置しており、そのため不要なレンズ有効領域をなくして小型化が出来る。そのため、装置全体のコスト低減が可能となる。
 また、図中に符号L10で示したレンズは、そのレンズ面を非球面レンズとすることで、コマ収差と球面収差の補正を行っている。さらに、この符号L10で示したレンズは、光束が偏って通過する位置に配置されていることから、そのレンズ面を非球面形状とすることで、レンズに対して光束が斜めに入射することで発生する高次のコマ収差の補正を行っている。
 そして、この非球面レンズL10に続き、上記傾斜投写光学系を形成する投写レンズの一部として、符号L11およびL12で示される、所謂、自由曲面のプラスチックレンズと、符号M13で示される自由曲面のプラスチックミラーが取り付けられている。
 ここでは、説明の都合上、投影面の上端部分で結像する光束φ2と、投影面のほぼ中央部分で結像する光束φ1が、投写レンズを構成する個々のレンズ(図中に符号L1~L12で表示)のどの部分を通過するかを示している。投影面の上端部分で結像する光束φ2の上限光と、投影面のほぼ中央部分で結像する光束φ1の下限光は、非球面レンズL10および自由曲面レンズL11とL12では重なり合わないので、単独で収差補正が可能となり、補正能力が大幅に向上される。
 この傾向は、自由曲面ミラーM13ではさらに顕著となる。比較的光軸に近い領域での収差補正に寄与するレンズ(L1~L10)は、鏡筒B1内に組み込まれ、光軸から離れた領域での収差補正に寄与するレンズ(L11、L12)は、フォーカス調整のため、上記鏡筒とは別体をなす鏡筒B2内に組み込まれ、もって、レンズL10とL11およびレンズL12とミラーM13の間隔を調整すると共に、レンズL11とL12の間隔も同時に調整可能な構成としている。
 一方、自由曲面ミラーM13はミラーベースに取り付けられ、例えば、電動モータ(図示せず)により開閉可能な構造となっている。さらに、これら全てが投写レンズベースに高精度で固定されていることで、所定のフォーカス性能が得られるようになっている。
<投写レンズ系のレンズ構成と検討結果>
 そして、本発明では、図3にも示すように、上述した投写レンズを構成するレンズ12枚のレンズL1~L12を、以下の三つの群、即ち、前群、中群、後群に分けて、それぞれ、個別の鏡筒内に組み込んで複数のレンズブロック(前群レンズブロックG1、中群レンズブロックG2、後群レンズブロックG3)とする。より具体的に上記の例では、非球面レンズL11とL12を後群レンズブロックG3とし、映像表示素子P1に最も近いレンズから絞りS1の直前までに配置された球面レンズL1~L5を前群レンズブロックG1とし、そして、当該絞りS1から上記非球面レンズL11の直前までに配置された球面レンズL6~L10を中群レンズブロックG2とした。なお、投写レンズを構成するこれらのレンズを、各レンズブロック(群)で示したレンズ配置構成を図4に示す。
 複数のサイズの異なる映像表示素子P1(半導体光源P0を含む)を用意し、とそれぞれのサイズに対応して、上述したレンズブロック(前群レンズブロックG1、中群レンズブロックG2、後群レンズブロックG3)、さらには、自由曲面ミラーM13(なお、図では、自由曲面ミラーM13はレンズとして表示する)を設計・作成しておき、これらを、適宜、選択して組み立てることにより、映像表示素子P1のサイズの異なる投写型映像表示装置を製造してその性能を確認した。その結果、映像表示素子P1のサイズに合わせて上記の前群レンズブロックG1、中群レンズブロックG2、後群レンズブロックG3、さらには、自由曲面ミラーM13を設計・作成しても、必ずしも所望の光学性能が得られず、そこで、発明者等は種々の検討を行った。その結果、以下のことが確認された。
 まず、複数の球面レンズを組み合わせた前群レンズブロックG1と中群レンズブロックG2については、サイズの異なる映像表示素子P1に対応したレンズ径のレンズブロック(即ち、サイズの小さな映像表示素子P1に対してはレンズ径の小さなレンズのブロック、サイズの大きな映像表示素子P1に対してはレンズ径の大きなレンズブロックとする)を選択することによっても、映像表示素子P1からの光束φ1、φ2が球面レンズおよび非球面レンズの有効径内に収まるように設計することによれば、所望の光学性能が得られることが分かった。
 自由曲面レンズから構成される後群レンズブロックG3については、その表面形状の複雑さから、異なる製造工程において所望の加工精度を維持することが難しく、そのため、非球面レンズと球面レンズからなる前群レンズブロックG1や中群レンズブロックG2と同様に、そのサイズを変更するだけでは、所望の光学性能が得られないことが分かった。
 本発明は、上述した検討結果に基づいて達成したものであり、即ち、サイズの異なる映像表示素子P1に対しても、そのサイズに対応した前群レンズブロックG1や中群レンズブロックG2を選択し、他方、後群レンズブロックG3については、異なるサイズの映像表示素子P1に対して共通のブロックとすることにより、所望の形状精度と面粗さを維持することができ、効率的に、所望の光学性能が得られる投写レンズ系を組み立てられることが分かった。なお、この後群レンズブロックG3については、共通のブロックとすることから、最も大きなサイズの映像表示素子P1からの光束φ1、φ2がその自由曲面レンズ内に収まるように設計される。
 さらに、自由曲面ミラーM13に関しても、球面レンズからなる前群レンズブロックG1や中群レンズブロックG2と同様に、そのサイズを変更するだけで所望の光学性能が得られることが分かった。一方、ミラーM13の反射面は上述した自由曲面レンズのレンズ面よりも要求される面荒さが半分以下と小さく、そのため、上記後群レンズブロックG3と同等の形状精度が要求される。さらに、反射膜を蒸着により成膜する場合にはミラーM13の大きさにより蒸着コストが大きく変化し投写レンズの価格影響が大きい。このため小型の映像表示素子を使用する場合には必要最小限のミラー外形寸法とするとよい。
 より具体的な実施例について、以下に詳細に示す。まず、対角寸法の異なる映像表示素子として、対角寸法が0.3インチ(アスペクト比16:9)の反射型映像表示素子と、対角寸法が0.45インチ(アスペクト比16:9)の反射型映像表示素子を用意し、これら対角寸法が0.3インチ(アスペクト比16:9)の反射型映像表示素子に表示された映像からの映像光束と、対角寸法が0.45インチ(アスペクト比16:9)の反射型映像表示素子に表示された映像からの映像光束が、図2に示した投写レンズを構成する非球面レンズおよび自由曲面レンズ、自由曲面ミラーのどの領域を通過または反射するかについて、検討した結果を、以下の図5~9および表1~5において、XY座標の値で示す。
 図5は、図2に示した非球面レンズや球面レンズからなる前群レンズブロックG1を構成する非球面レンズL2の入射面(映像表示素子側面)における映像光束の通過領域を示した平面図であり、図にA1で示した領域は(映像表示素子のサイズが0.45インチに対応し、他方、A2で示した領域は(映像表示素子のサイズが0.3インチに対応している。また、以下の表1では、具体的な通過領域のY軸に対して片面即ち、+X軸に対応した点列を光軸基準(X:Y軸共にゼロ)の絶対値で示す。
Figure JPOXMLDOC01-appb-T000001
 以上の図および表からも明らかなように、前群レンズブロックG1を構成するレンズについては、映像表示素子のサイズに適合して、適宜、レンズ径の異なる(即ち、レンズ径を縮小した)レンズ(図の破線の円を参照)を採用することが出来ることが分かる。
 同様に、図6は、図2に示した中群レンズブロックG2を構成する非球面レンズL10の入射面(映像表示素子側面)における映像光束の通過領域を示した平面図であり、図にA1で示した領域は(映像表示素子のサイズが0.45インチに対応し、他方、A2で示した領域は(映像表示素子のサイズが0.3インチに対応している。また、以下の表2では、具体的な通過領域のY軸に対して片面即ち、+X軸に対応した点列を光軸基準(X:Y軸共にゼロ)の絶対値で示す。
Figure JPOXMLDOC01-appb-T000002
この場合にも、上記前群レンズブロックG1と同様に、中群レンズブロックG2を構成する非球面レンズについても、映像表示素子のサイズに適合して、適宜、そのレンズ径の異なるレンズ(図の破線の円を参照)を採用することが出来ることが分かる。
 図7は、図2に示した後群レンズブロックG3を構成する自由曲面レンズL11の入射面における映像光束の通過領域を示しており、図にA1で示した領域は(映像表示素子のサイズが0.45インチに対応し、他方、A2で示した領域は(映像表示素子のサイズが0.3インチに対応している。また、以下の表3では、具体的な通過領域のY軸に対して片面即ち、+X軸に対応した点列を光軸基準(X:Y軸共にゼロ)の絶対値で示す。
Figure JPOXMLDOC01-appb-T000003
 図8も同様に、図2に示した後群レンズブロックG3を構成する自由曲面レンズL12の入射面における映像光束の通過領域を示しており、図にA1で示した領域は(映像表示素子のサイズが0.45インチに対応し、他方、A2で示した領域は(映像表示素子のサイズが0.3インチに対応している。また、以下の表4では、具体的な通過領域のY軸に対して片面即ち、+X軸に対応した点列を光軸基準(X:Y軸共にゼロ)の絶対値で示す。
Figure JPOXMLDOC01-appb-T000004
 なお、これら図7および図8からは、後群レンズブロックG3を構成する自由曲面レンズL11およびL12については、その表面形状の複雑さから、映像表示素子のサイズが減少しても、必ずしも、当該レンズ径の縮小につながらないことが分かる。これら自由曲面レンズL11およびL12は、その表面形状の複雑さからサイズを変更(レンズ径の縮小)だけで所望の特性を得るのは難しく、また、上記にも述べたが、異なる製造工程において所望の加工精度を維持することが難しく、そのため、単なるレンズ径の縮小だけでは、所望の光学性能が得られない。
 図9は、図2に示した自由曲面ミラーM13の反射面における映像光束の通過領域を示した平面図である。図中のA1、A2で示した領域についても上記と同じであるので、ここではその説明を割愛する。また、以下の表5では、具体的な通過領域のY軸に対して片面即ち、+X軸に対応した点列を光軸基準(X:Y軸共にゼロ)の絶対値で示す。
Figure JPOXMLDOC01-appb-T000005
 なお、この場合にも、映像表示素子のサイズに適合して、適宜、そのサイズが異なる(即ち、全体のサイズを縮小した)ミラー(図の破線を参照)を採用することが出来ることが分かる。
 以上に述べたことからは、サイズの異なる映像表示素子P1に対しては、上述した前群レンズブロックG1や中群レンズブロックG2だけでなく、さらには、当該自由曲面ミラーM13についても、適宜に選択を行うことにより、投写レンズ系を組み立てられることが、効率的かつ経済的に投写レンズ系を組み立てられるためには、有効であることが分かった。なお、このミラーM13の製造では、その反射面に蒸着する反射膜の面積も、サイズの小さな映像表示素子P1に対してはそのサイズに合わせて、適宜、縮小することが可能であることから、製造コストの低減に大きく影響することとなり、経済的な効果が得られることとなる。
<投写レンズ系の組み立て方法>
 上記からも明なように、本発明になる投写レンズ系の組み立て方法によれば、製造される投写型映像表示装置に組み込まれるサイズ(対角線の寸法)の異なる複数の映像表示素子P1に対し、そのサイズに適合して設計・製造した複数の種類のレンズブロック、即ち、前群レンズブロックG1や中群レンズブロックG2を予め用意しておく。また、自由曲面ミラーM13についても、同様に、予め複数の種類のものを用意しておく。なお、上述した後群レンズブロックG3については、共通の部品として用意しておく。
 その後、投写レンズの組み立てに際しては、図10にも示すように、像表示装置に選択的に組み込まれた映像表示素子P1に対し適合する前群レンズブロックG1と中群レンズブロックG2を選択してこれらを組み立て、さらには、共通の後群レンズブロックG3と組み合わせてレンズ群を構成する。このように構成されたレンズ群を、投写型映像表示装置を構成する各種の部品と共に、上面カバー101と下面カバー102により形成される内部空間に搭載し、さらには、上記と同様に選択された自由曲面ミラーM13をミラーベースに取り付けて投写レンズの組み立てを完了する。
 なお、この時、前群レンズブロックG1と中群レンズブロックG2を組み立てる際には、図11にも示すように、絞りS1(20)の前後には鏡筒21、22が一体に延長して形成された部材を使用することにより、その前部21には上記前群レンズブロックG1の後方の鏡筒が、他方、その後部22には上記中群レンズブロックG2の前方の鏡筒が、それぞれ、羅合または挿入される。即ち、かかる組み立て構造によれば、絞りS1に対して前群レンズブロックG1と中群レンズブロックG2を、同一光軸上の所定の位置に、容易に固定して組み立てることが可能となる。なお、この鏡筒21、22を含む図10に示す絞り20も、上記前群レンズブロックG1や中群レンズブロックG2と同様に、選択的に組み込まれた映像表示素子P1に対し適合するように、予め複数のサイズのものを用意しておく。
 即ち、上述した投写レンズの組み立て方法によれば、特に、所望の加工精度を維持することが難しい後群レンズブロックG3を、映像表示素子P1のサイズによらず、共通化することによって所望の光学性能が得られる投写レンズ系を組み立てられることが可能となる。他方、前群レンズブロックG1や中群レンズブロックG2については、こられを映像表示素子P1のサイズに応じて選択して組み立てることにより、特に、サイズの小さな映像表示素子P1に対しては、これら前群レンズブロックG1や中群レンズブロックG2および自由曲面ミラーM13の外形サイズを縮小することが可能であることから、その製造コストを低減することが出来る。さらに、前群レンズブロックG1や中群レンズブロックG2の外形サイズを縮小する第二の効果として投写型映像表示装置内においても十分な冷却通路を確保することができ、外気による自然空冷を実現することが可能となり、装置性能の向上にも資することとなる。
 以上、絞り20、中群レンズブロックG2、前群レンズブロックG1がそれぞれ別体となった実施形態について説明したが、他方構造上の制約から絞り20が中群レンズブロックG2或いは前群レンズブロックG1と一体化され他方のレンズブロックが取替え可能な構造となっても同様の効果を得ることが可能となることは言うまでもない。
 具体的には、製造される投写型映像表示装置に組み込まれる異なるサイズ(対角線の寸法など)の映像表示素子P1に対しは、そのサイズの変動に応じて、レンズブロック群の一部、例えば、前群レンズブロックG1だけを可変としてもよく、具体的には、サイズの異なる複数の前群レンズブロックを用意しておく、またはその全部を可変としても、即ち、サイズの異なる複数の前群レンズブロックG1、中群レンズブロックG2、さらには、自由曲面ミラーM13を用意しておいてもよい。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するためにシステム全体を詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 100…投写型映像表示装置、101…上面カバー、102…下面カバー、L1~L12…レンズ、P1…映像表示素子、PL…プリズム光学素子、G1…前群レンズブロック、G2…中群レンズブロック、G3…後群レンズブロック、M13…自由曲面ミラー、S1(20)…絞り、21、22…鏡筒

Claims (4)

  1.  球面レンズを含むブロックと非球面レンズを含むブロックとを含んでいる傾斜型の投写映像表示装置のための斜投写光学系における投写レンズの組み立て方法であって、
     前記投写映像表示装置に組み込まれる異なるサイズの映像表示素子に対して適合するサイズの球面レンズを含むブロックと、共通の非球面レンズを含むブロックとを予め用意しておき、
     前記組み込まれた映像表示素子のサイズに応じて選択された前記球面レンズを含むブロックと前記共通の非球面レンズを含むブロックとを組み立てて前記投写レンズを組み立てる、投射レンズの組み立て方法。
  2.  請求項1記載の投射レンズの組み立て方法において、
     さらに、前記投写映像表示装置に組み込まれる異なるサイズの映像表示素子に対して適合するサイズのミラーを予め用意しておき、
     前記組み込まれた映像表示素子のサイズに応じて選択された前記球面レンズを含むブロックと前記共通の非球面レンズを含むブロックと前記ミラーとを組み立て、もって、前記投写レンズを組み立てる、投射レンズの組み立て方法。
  3.  請求項1または2記載の投射レンズ系の組み立て方法において、
    前記球面レンズを含むブロックは、内部に開口絞りを有しており、
     前記球面レンズを含むブロックは、光軸に沿って前記開口絞りの前に組み込まれる前群レンズブロックと、前記開口絞りの後に組み込まれる中群レンズブロックとから構成されており、
     前記映像表示素子のサイズに応じて選択される球面レンズのブロックは、前記前群レンズブロックと前記中群レンズブロックのいずれか一方、または双方である、投射レンズ系の組み立て方法。
  4.  光源と、前記光源からの光の強度を映像信号に応じて変調する映像表示素子と、前記映像表示素子からの変調された映像光を投写面に斜め方向から投影する投写レンズとを筐体内に備えた傾斜型の投写映像表示装置であって、
     前記投写レンズは、
     映像表示素子に最も近い位置に球面レンズを配置し、前記球面レンズの開口絞り側に非球面を有するプラスチックレンズと、
     投写面に最も近い位置に配置したミラーと、
    を含み、
    前記プラスチックレンズは、前記投写レンズの開口絞りの前後に光軸に沿って組み込まれる複数のレンズブロックとして組み合わせて構成されており、
     前記投写レンズは、請求項1~3のいずれか1項に記載された投射レンズの組み立て方法によって組み立てられる、投写映像表示装置。
PCT/JP2015/070527 2015-07-17 2015-07-17 投写レンズの組み立て方法および投写映像表示装置 WO2017013705A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2015/070527 WO2017013705A1 (ja) 2015-07-17 2015-07-17 投写レンズの組み立て方法および投写映像表示装置
US15/738,453 US10444606B2 (en) 2015-07-17 2015-07-17 Projection lens assembly method and projection image display apparatus
JP2017529178A JP6417478B2 (ja) 2015-07-17 2015-07-17 投写レンズの組み立て方法および投写映像表示装置
CN201580080953.6A CN107710069B (zh) 2015-07-17 2015-07-17 投影透镜的组装方法和投影影像显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070527 WO2017013705A1 (ja) 2015-07-17 2015-07-17 投写レンズの組み立て方法および投写映像表示装置

Publications (1)

Publication Number Publication Date
WO2017013705A1 true WO2017013705A1 (ja) 2017-01-26

Family

ID=57834100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070527 WO2017013705A1 (ja) 2015-07-17 2015-07-17 投写レンズの組み立て方法および投写映像表示装置

Country Status (4)

Country Link
US (1) US10444606B2 (ja)
JP (1) JP6417478B2 (ja)
CN (1) CN107710069B (ja)
WO (1) WO2017013705A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10962775B2 (en) * 2019-04-21 2021-03-30 GuoPing Chen Optical lens barrel having transmissive liquid crystal display function, liquid crystal display module and display screen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006398A (ja) * 2000-05-24 2002-01-09 Acer Communications & Multimedia Inc プロジェクタの反射投影ユニット
JP2006292900A (ja) * 2005-04-08 2006-10-26 Hitachi Ltd 投写光学ユニット及びそれを用いた投写型映像表示装置
JP2012177846A (ja) * 2011-02-28 2012-09-13 Canon Inc 画像投射装置
JP2013235215A (ja) * 2012-05-11 2013-11-21 Seiko Epson Corp プロジェクター

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100601608B1 (ko) * 1999-06-03 2006-07-14 삼성전자주식회사 칼라 프로젝트장치
JP5217146B2 (ja) * 2006-10-13 2013-06-19 株式会社日立製作所 光学ユニット
JP5039399B2 (ja) * 2007-03-06 2012-10-03 日東光学株式会社 レンズシステム
JP5274030B2 (ja) 2007-03-07 2013-08-28 リコー光学株式会社 投射光学系およびプロジェクタ装置および画像読取装置
JP4829196B2 (ja) 2007-09-28 2011-12-07 株式会社リコー 投射光学装置
JP5571512B2 (ja) * 2009-09-16 2014-08-13 リコー光学株式会社 投射結像光学系およびプロジェクタ装置
CN202306108U (zh) * 2010-10-04 2012-07-04 日立民用电子株式会社 投影型影像显示装置
JPWO2014104083A1 (ja) * 2012-12-27 2017-01-12 コニカミノルタ株式会社 変倍機能を有する投射レンズ及びプロジェクター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006398A (ja) * 2000-05-24 2002-01-09 Acer Communications & Multimedia Inc プロジェクタの反射投影ユニット
JP2006292900A (ja) * 2005-04-08 2006-10-26 Hitachi Ltd 投写光学ユニット及びそれを用いた投写型映像表示装置
JP2012177846A (ja) * 2011-02-28 2012-09-13 Canon Inc 画像投射装置
JP2013235215A (ja) * 2012-05-11 2013-11-21 Seiko Epson Corp プロジェクター

Also Published As

Publication number Publication date
CN107710069A (zh) 2018-02-16
CN107710069B (zh) 2020-07-10
JP6417478B2 (ja) 2018-11-07
US10444606B2 (en) 2019-10-15
JPWO2017013705A1 (ja) 2018-03-22
US20180224730A1 (en) 2018-08-09

Similar Documents

Publication Publication Date Title
US10645353B2 (en) Projection optical system and projector
US9766438B2 (en) Projection optical system and image display apparatus including a refraction optical system and first and second reflecing surfaces
JP6604090B2 (ja) 投射光学系および投射装置および投射システム
JP6582728B2 (ja) 投射光学系及びプロジェクター
JP4538598B2 (ja) 軸外れ投影システムおよび方法
CN105892027B (zh) 投影光学系统
JP6270128B2 (ja) 投射光学系および画像投射装置
JP5571512B2 (ja) 投射結像光学系およびプロジェクタ装置
JP2006292900A (ja) 投写光学ユニット及びそれを用いた投写型映像表示装置
US5790305A (en) Projection system comprising a free form reflector and a free form lens
JP2002296503A (ja) 反射型投映用光学系
JP6793133B2 (ja) 投写型映像表示装置
JP2008026793A (ja) 画像投影装置
JP6417478B2 (ja) 投写レンズの組み立て方法および投写映像表示装置
JP5706746B2 (ja) 投写光学ユニット及びそれを用いた投写型映像表示装置
JP2019049722A (ja) 投射光学系の製造方法および画像表示装置の製造方法
JP2011048211A (ja) 傾斜投写光学系及びそれを用いた投写型映像表示装置
JP4063782B2 (ja) 照明光学系及び投射型表示装置
JP6409839B2 (ja) 投射光学系の製造方法および画像表示装置の製造方法
JP7067572B2 (ja) 投射光学系の製造方法および画像表示装置の製造方法
WO2022044674A1 (ja) 反射光学系および投写型表示装置
JP2019139143A (ja) レンズユニットおよび画像投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529178

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15738453

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898867

Country of ref document: EP

Kind code of ref document: A1