WO2017012593A1 - 一种锡槽顶盖砖和锡槽顶盖结构 - Google Patents

一种锡槽顶盖砖和锡槽顶盖结构 Download PDF

Info

Publication number
WO2017012593A1
WO2017012593A1 PCT/CN2016/091575 CN2016091575W WO2017012593A1 WO 2017012593 A1 WO2017012593 A1 WO 2017012593A1 CN 2016091575 W CN2016091575 W CN 2016091575W WO 2017012593 A1 WO2017012593 A1 WO 2017012593A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbon
top cover
tin
carbon rod
brick
Prior art date
Application number
PCT/CN2016/091575
Other languages
English (en)
French (fr)
Inventor
张建华
Original Assignee
北京诠道科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201510451164.0A external-priority patent/CN105174695B/zh
Priority claimed from CN201520556023.0U external-priority patent/CN204981598U/zh
Priority claimed from CN201510451252.0A external-priority patent/CN105110608B/zh
Application filed by 北京诠道科技有限公司 filed Critical 北京诠道科技有限公司
Publication of WO2017012593A1 publication Critical patent/WO2017012593A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/16Construction of the float tank; Use of material for the float tank; Coating or protection of the tank wall
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/18Controlling or regulating the temperature of the float bath; Composition or purification of the float bath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to a float glass tin bath technology, in particular to a tin tank top cover brick and a tin tank top cover structure.
  • the float method refers to a method in which molten glass floats on the surface of molten metal tin to produce flat glass.
  • the process of forming the float process is done in a tin bath.
  • the tin bath structure includes a top cover, a chest wall, a trough bottom, a steel structure, an electric heating, a nitrogen, a hydrogen shielding gas system, and the like.
  • the main source of the glass optical distortion point is the tin drop in the tin bath.
  • the mechanism of tin droplet generation is that the tin liquid will be deposited on the joint seam of the tin tank when it is oxidized and volatilized, and will fall on the glass original plate with the pressure fluctuation of the tin bath. .
  • Most of the top covers in the prior art are formed by splicing 2-4 kinds of structures such as hanging bricks and tiles. When this structure is used, a large number of tin-slot top joint joints are generated, which increases the probability of tin drop deposition, and thus The phenomenon of glass light distortion becomes severe and the quality of glass is reduced.
  • the types of roof bricks are numerous, the construction is complicated, and the construction period is long, which is not conducive to controlling the progress and quality of the construction.
  • the present invention provides a tin tank top cover brick and a tin tank top cover composed of the tin tank top cover brick.
  • the invention overcomes the problem of the deterioration of the quality of the glass caused by the many seams of the tin tank cover in the prior art.
  • Another aspect of the invention solves the problems of high cost and long construction period of the existing tin tank top cover bricks due to the use of various brick types.
  • the present invention relates to a tin tank top cover brick comprising: a brick body, a hanging groove, a first lap and a second lap; wherein the brick body comprises two first sides and two a second side surface, an upper surface and a lower surface; the hanging groove is disposed on the upper surface of the brick body and penetrates to the two first sides; the first lap is disposed on the upper surface of the brick body and a second side The second rim is disposed at a joint of the lower surface of the brick body and the other second side.
  • the hanging trough of the present invention is a hanging part hanging for hanging the tin trough top cover brick.
  • the hanging slot is two inverted T-shaped slots, and more preferably, the two inverted T-shaped slots are symmetric structures.
  • the first lap and the second lap according to the present invention are used for lap joints of the two aforementioned tin groove top cover bricks to form a working surface of the tin groove top cover.
  • the cross section of the first lap and the second lap is rectangular or triangular.
  • the first lap and the second lap are rectangular in cross section, and more preferably, the first The edge and the second edge are anti-symmetric structures.
  • the brick body of the present invention is further provided with a through hole.
  • the through hole penetrates from the upper surface to the lower surface for providing a silicon carbon rod.
  • the through hole is one or more, more preferably, the The through holes are 2, 3, 4 or 6 and so on. Most preferably, the through holes are 2, 4 or 6 or even.
  • the tin tank top cover brick adopts a sillimanite material.
  • the invention also relates to a tin tank top cover, comprising: a tin tank top cover brick and a hanging structure; wherein the tin tank top cover brick comprises: a brick body, a hanging groove, a first lap and a second lap; Wherein the brick body comprises two first sides, two second sides, an upper surface and a lower surface; the hanging groove is disposed on the upper surface of the brick body and penetrates to the two first sides; The rim is disposed at a joint of the upper surface of the brick body and a second side, and the second lap is disposed at a joint of the lower surface of the brick body and the other second side.
  • the hanging structure comprises a hook, and the hook is inserted into the hanging slot to be connected with the tin tank top cover brick.
  • At least two tin groove top bricks in the tin tank top cover are connected by a first lap and a second lap.
  • the hanging structure further comprises a hanging component, wherein one end of the hook is inserted into the hanging slot and detachably connected to the tin slot cover brick, and the other end is detachably connected with the hanging component.
  • the hanging member is fixed on the steel structure for fixing the tin tank top cover.
  • the two adjacent tin slot top bricks are connected by a first lap and a second lap, and the second side is attached.
  • two tin slots are vertically adjacent to each other.
  • the first lap of a tin trough top cover brick in the top cover brick is joined to the second lap joint of the other tin trough top cover brick.
  • two laterally adjacent tin bath roof tiles are joined by the first side. Due to the connection method of the present invention, the tin tank top cover brick of the present invention integrates the functions of the hanging brick and the tile in the existing tin tank top cover, and one joint is missing, and the product single block area can be The preparation is twice as large as the existing product area.
  • the seam of the existing product is 6.96 meters per square meter
  • the joint of the tin tank cover of the present invention is 3.67 meters per square meter, which is reduced by about 50%, thereby reducing the defects of tin droplets formed during the operation of the tin bath.
  • the tin tank top cover of the present invention further comprises an insulation brick, and the insulation brick is disposed on an upper portion of the upper surface of the tin tank top cover brick.
  • the insulating brick is provided with two card slots, and the hooks are embedded in the two card slots.
  • the thermal insulation brick comprises a lower surface and an upper surface, and the lower surface of the thermal insulation brick is in abutting connection with the upper surface of the tin trough top cover brick.
  • the lower surface area of the insulating brick is larger than the area of the upper surface.
  • the insulating brick of the present invention is further provided with a through hole.
  • the through hole corresponds to a through hole of the tin slot top cover brick for setting a silicon carbon rod.
  • the through holes are an even number of 2, 4, 6, and the like.
  • the heat insulating brick described in the present invention is a light mullite material, and more preferably, the light mullite material is selected from the group consisting of a light mass of 2300 ° C and a bulk density of 0.5 g / m 3 . Stone material, most preferably, the insulating brick has a thickness of 140 mm. Compared with the existing 230 mm thick product, the thermal insulation brick of the present invention can reduce the weight of the structural thermal insulation brick by 100 kg per square meter, and significantly reduce the cost.
  • the tin bath cap described in the present invention includes at least one or more insulating bricks.
  • the insulating brick is a single layer structure, and in another preferred embodiment of the present invention, the insulating brick is a multi-layer structure.
  • the tin bath cap described in the present invention includes the same number of the tin bath cap bricks and the insulating bricks.
  • the tin bath top cover of the present invention adopts a sillimanite and a lightweight mullite composite structure, which is specifically described in the present invention.
  • the tin bath top cover includes a tin bath roof tile made of sillimanite material and an insulating brick made of lightweight mullite material.
  • An embodiment of the invention further provides an electric heating system for a tin bath of a float glass production line, comprising: a thyristor controller and at least three silicon carbon rods disposed on the top of the tin bath, the silicon carbon rod comprising two Or three pillars and a connecting bridge for connecting the pillars, wherein the pillars of the silicon carbon rod protrude from the through holes provided in the top cover of the tin tank and are arranged on the top of the tin tank, the connecting bridge of the silicon carbon rod Located below the top of the tin bath.
  • the input of the thyristor controller is connected to an external three-phase power supply, and the output of each phase of the thyristor controller is connected to the ends of at least three silicon carbon rods.
  • the output on each phase of the thyristor controller may be connected to the ends of at least three silicon carbon rods using a three-phase three-wire or three-phase four-wire system.
  • the silicon carbon rod may be a claw type silicon carbon rod, and each of the pillars of the claw type silicon carbon rod is provided with a heat generating portion, and the connecting bridge of the claw type silicon carbon rod is used only as a conductor.
  • connecting the output end of each phase of the thyristor controller to the end of the at least three claw-type silicon carbon rods comprises: the output end of the first phase of the thyristor controller and the first claw type The end of the first of the three pillars of the silicon carbon rod, the end of the first of the three pillars of the second claw type silicon carbon rod, and the third of the three pillars of the third claw type silicon carbon rod An end of a struts; an output of the second phase of the thyristor controller and a second of the three struts of the first claw type silicon carbon rod, the second claw type silicon carbon rod The end of the second of the three struts and the end of the second of the three struts of the third claw type silicon carbon rod; and the output of the third phase of the thyristor controller The end of the third of the three pillars of the first claw type silicon carbon rod, the end of the third pillar of the three pillars of the second claw type silicon carbon rod, and the third of the
  • the silicon carbon rod is a right angle U-shaped silicon carbon rod, and the connecting bridge of the two pillars of the right angle U-shaped silicon carbon rod is used as a heat generating portion, and the two pillars of the right angle U-shaped silicon carbon rod Used only as an electrical conductor.
  • each phase of the thyristor controller is connected to the ends of at least three right angle U-shaped silicon carbon rods by a single phase connection.
  • the output of the first phase of the thyristor controller is coupled to the end of a post of the first right angle U-shaped silicon carbon rod, the output of the second phase of the thyristor controller and the second right angle U-shaped silicon carbon
  • the end of one of the struts of the rod is connected
  • the output of the third phase of the thyristor controller is connected to the end of a pillar of the third right angle U-shaped silicon carbon rod.
  • the end of the other leg of the first right angle U-shaped silicon carbon rod, the end of the other leg of the second right angle U-shaped silicon carbon rod, and the end of the other leg of the third right angle U-shaped silicon carbon rod are connected to each other.
  • An embodiment of the present invention further provides a tin tank top cover for a float glass production line, comprising a refractory brick layer composed of a plurality of refractory bricks and at least one silicon carbon rod disposed through the refractory brick layer.
  • the at least one silicon carbon rod is at least one right angle U-shaped silicon carbon rod.
  • the right angle U-shaped silicon carbon rod includes two pillars and a connecting bridge for connecting the two pillars, the connecting bridge serves as a heating body of the silicon carbon rod, and the two pillars serve only as electrical conductors.
  • Two pillars are protruded from the through holes provided in the top cover of the tin tank and arranged on the top of the tin tank, and the connecting bridge is located below the top of the tin tank.
  • the length of the right angle U-shaped silicon carbon rod heating element is between 50 and 400 mm.
  • At least one right angle U-shaped silicon carbon rod is arranged vertically or horizontally perpendicular to the tin slot cover.
  • At least one right-angle U-shaped silicon carbon rod may be disposed in a form movable up and down in the vertical direction to accommodate the thickness variation of the material to be heated in the tin bath of the production line, so that the heat source is fully utilized.
  • At least one right angle U-shaped silicon carbon rod is disposed in a line in the center of the tin bath cap.
  • a right angle U-shaped silicon carbon rod is interleaved with adjacent right angle U-shaped silicon carbon rods on the front and rear sides below the tin slot cover.
  • two right angle U-shaped silicon carbon rods of at least one right angle U-shaped silicon carbon rod are arranged in parallel below a refractory brick.
  • the tin tank top cover of the present invention adopts a single brick type splicing method, under the same conditions, the length of the joint groove of the tin tank top cover of the present invention can be reduced by more than 50%, thereby significantly reducing The generation of glass optical distortion point defects greatly improves the quality of glass products.
  • the tin tank top cover of the invention optimizes the brick type and reduces the thickness, thereby reducing the overall weight of the brick structure as a whole, and is well solved for improving production safety and reliability, reducing production cost and pursuing light insulation performance.
  • the tin tank top cover brick structure is a contradiction technical problem.
  • the thermal insulation material of the tin tank top cover according to the present invention uses a light mullite brick having a lower thermal conductivity, the heat preservation performance is remarkably improved, and the heat insulation effect is remarkably improved.
  • the invention improves the top cover brick type by optimizing and improving the existing hanging composite brick structure, thereby making the construction process simple and the construction period shortening, which is beneficial to improving the construction progress and quality.
  • the tin bath top cover of the float glass production line provided by the embodiment of the present invention is combined with the silicon carbide rod of the right angle U-shaped structure in the tin tank top cover of the float glass production line, and the heating element is closer to the production line, and the heat is reduced. Thermal damage to the top of the tin bath. At the same time, the height of the heating element can be adjusted from the production line, so that the utilization rate of the heat source is further improved.
  • the arrangement of right-angle U-shaped silicon carbon rods is more flexible and can meet different power requirements under the same conditions.
  • FIG. 1 is a perspective view of a tin tank top cover brick according to an embodiment of the present invention
  • FIG. 2 is a front view of a tin tank top cover brick according to an embodiment of the present invention
  • FIG. 3 is a bottom view of a tin tank top cover brick according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a tin tank top cover according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a tin tank top cover using a claw type silicon carbon rod provided by the prior art
  • FIG. 6 is a schematic circuit diagram of a claw-type silicon carbon rod electric heating system for a tin bath provided by the prior art
  • FIG. 7 is a schematic diagram of electrical connection of a claw-type silicon carbon rod according to an embodiment of the present invention using a three-phase connection method
  • FIG. 8 is a schematic view of a tin tank top cover using a right angle U-shaped silicon carbon rod according to an embodiment of the present invention
  • FIG. 9 is a schematic diagram of electrical connection of a right angle U-shaped silicon carbon rod using a single-phase connection method according to an embodiment of the present invention.
  • FIG. 10 is a schematic view showing a structure of a claw-type silicon carbon rod provided by the prior art
  • FIG. 11 is a schematic structural view of a tin tank top cover (partial) of a claw type silicon carbon rod provided by the prior art;
  • FIG. 12 is a schematic view showing an arrangement form of a through hole on a tin tank top cover using a claw type silicon carbon rod provided by the prior art;
  • FIG. 13 is a schematic structural diagram of a right angle U-shaped silicon carbon rod according to an embodiment of the present invention.
  • FIG. 14 is a schematic view of a tin bath top cover using a right angle U-shaped silicon carbon rod according to an embodiment of the present invention.
  • FIG. 15 is a schematic structural view showing the arrangement of two right-angle U-shaped silicon carbon rods arranged in a line on a refractory brick in a center of a tin tank top cover according to an embodiment of the present invention
  • 16 is a schematic structural view showing the arrangement of two right-angle U-shaped silicon carbon rods arranged in a staggered manner on the front side and the rear side of the tin tank top cover according to an embodiment of the present invention
  • FIG. 17 is a structural schematic view showing the arrangement of two right-angle U-shaped silicon carbon rods arranged in parallel under a refractory brick according to an embodiment of the present invention.
  • FIGS. 1 is a perspective view of a tin tank top cover brick according to an embodiment of the present invention.
  • 2 is a front elevational view of a tin tank top cover brick according to an embodiment of the present invention.
  • 3 is a bottom plan view of a tin tank top cover brick according to an embodiment of the present invention. As shown in FIGS.
  • the tin tank top cover brick comprises: a brick body 1, an inverted T-shaped hanging groove 2, a first lap 31 and a second lap 32; wherein the brick 1 comprises two first a side surface 11, two second side surfaces 12, an upper surface 13 and a lower surface 14; the inverted T-shaped hanging groove 2 is located on the upper surface 13 of the brick body 1 and penetrates to the two first side surfaces 11; the first edge 31 is located At the junction of the upper surface 13 of the tile body and the second side 12, the second lap 32 is located at the junction of the lower surface 14 of the tile and the second side 12.
  • the inverted T-shaped hanging groove 2 is two inverted T-shaped hanging grooves 2 and has a symmetrical structure, and the first overlapping edge 31 and the first overlapping edge 32 are of an anti-symmetric structure.
  • the first side 11 of the laterally adjacent brick body 1 can be closely attached by inserting the hook into the T-shaped hanging slot 2; the first edge 31 and the anti-weighing can be used.
  • Two overlapping sides 32 overlapping side The second side 12 of the longitudinally adjacent brick body 1 is closely attached to form a criss-crossing tin groove top cover.
  • the tin trough top cover brick of the invention adopts a brick type structure, and the multiple brick type overlapping structure is required compared with the prior art, the thickness of the tin trough top cover brick can be reduced, and the tin trough top cover brick structure can be reduced.
  • the overall weight and the use of a brick-type structure can both increase production safety and reliability, and reduce production costs without compromising thermal insulation.
  • the tin bath cap brick further includes a through hole 4 through which the through hole 4 penetrates from the upper surface 13 to the lower surface 14.
  • the through holes 4 may be one or more. In the embodiment of the present invention, there are six through holes 4 for inserting silicon carbon rods which can be used for heat generation. The size of the through hole diameter and the position of the hole are not limited in the present invention.
  • the brick body 1 in the embodiment of the invention adopts a light mullite material, the thermal conductivity of the material is lower than that of the existing brick material, the heat preservation performance is remarkably improved, and the heat insulation effect is obviously improved.
  • the tin slot top cover comprises a tin slot top cover brick and a hook 5; wherein the tin slot top cover brick comprises a brick body 1, an inverted T-shaped hanging slot 2, a first edge 31 and a second a side 32; wherein the brick body comprises two first side faces 11, two second side faces 12, an upper surface 13 and a lower surface 14; the inverted T-shaped hanging groove 2 is located on the upper surface 13 of the brick body 1 and penetrates to two The first side 31 is located at the junction of the upper surface 13 of the brick and the second side 12, and the second edge 32 is located at the junction of the lower surface 14 of the brick and the second side 12.
  • one end of the hook 5 is inserted into the inverted T-shaped hanging slot 2 and detachably connected with at least one tin groove top cover brick; the longitudinally adjacent tin groove top cover brick passes through the first lap 31 and the second lap 32 connection.
  • the tin tank top cover further comprises a heat insulating brick 6; wherein two sides of the heat insulating brick 6 are provided with two card slots 61; the two card slots 61 are symmetrical structures; the heat insulating brick 6 comprises a lower surface 62 and an upper surface 63, and the heat insulating brick 6
  • the lower surface area 62 is greater than the area 63 of the upper surface, and the lower surface 62 of the insulating brick is attached to the upper surface 13 of the tin roof tile.
  • the thickness of the heat insulating brick 6 may be 140 mm, and the thickness of the tin tank top cover brick in the prior art is 230 mm.
  • top covers in the prior art are formed by splicing two or four kinds of structures, such as hanging bricks and tiles. With this structure, a large number of tin-slot top joints are formed, and tin droplets in the tin grooves are followed. The increase, which in turn causes the phenomenon of the glass optical distortion to become serious, resulting in a decrease in the quality of the glass; compared with the prior art, the tin tank top cover of the present invention is formed by splicing a structure of bricks, and the tin groove top cover The joint seam is reduced, which reduces the distortion of the glass and improves the quality of the glass.
  • the structure using the invention is easy to construct and the construction period is short, which can better speed up the construction progress and improve the construction quality.
  • the tin tank top cover brick of the invention can be reduced by 100 kg per square meter than the tin tank top cover brick in the prior art, thereby reducing the cost; at the same time, the use of the tin tank top cover brick of the invention can reduce the cost of the hook.
  • the prior art also has the following problem: the electric heating system for maintaining the temperature of the tin bath is an important component of the tin bath, and the electric heating system of the tin bath of the existing float glass production line The cost is too high.
  • a claw-type silicon carbon rod is generally used in the electric heating system of the existing tin bath of the float glass production line.
  • Figure 5 shows the structure of a tin tank top cover (partial) using a claw-type silicon carbon rod provided by the prior art. Make a schematic. As shown in FIG. 5, one claw type silicon carbon rod 50 includes three pillars 51 and a connecting bridge 52 for connecting the pillars.
  • the tin trough top cover 60 is constructed of refractory bricks (possibly multi-layered).
  • the three pillars are formed as a heat generating portion, specifically, a portion between the connecting bridge and the tin tank top cover, and the connecting bridge is only made to serve as an electric conductor, and is not used for heating.
  • the thyristor controller is used to adjust the heating power of the silicon carbon rod.
  • the thyristor controller can be a thyristor regulator and a thyristor regulator.
  • Figure 6 shows a circuit schematic of a claw-type silicon carbon rod electric heating system that is commonly used in the prior art to control a tin bath by a thyristor controller.
  • the heat generating portions of the three pillars 51 of the claw-type silicon carbon rod 50 shown in Fig. 5 are shown by the circuit equivalent element L.
  • the input end of the thyristor controller 71 is used to connect a three-phase external power source (not shown), and its output terminal is connected to a claw-type silicon carbon rod 50 through a transformer T, that is, in a controllable manner
  • a transformer T is connected between the silicon controller 71 and a claw type silicon carbon rod 50.
  • the claw-type silicon carbon rod 50 is connected to the transformer T by a three-phase connection, that is, each of the pillars 51 of the claw-type silicon carbon rod is connected to the transformer T.
  • its connecting bridge 52 acts as a circuit neutral point.
  • an embodiment of the present invention also provides a new electric heating system for a tin bath of a float glass production line.
  • FIG. 7 is a schematic diagram of electrical connection of a claw-type silicon carbon rod according to an embodiment of the present invention using a three-phase connection method.
  • the claw-type silicon carbon rods 501, 502, and 503 for the tin bath of the float glass production line are directly connected to the thyristor controller 71 by a three-phase connection.
  • the output connection on each phase of the thyristor controller 71 is connected to the end of one branch of the claw-type silicon carbon rod.
  • a right angle U-shaped silicon carbon rod may be used for the tin bath top cover of the float glass production line.
  • FIG. 8 is a schematic diagram of a tin bath top cover using a right angle U-shaped silicon carbon rod according to an embodiment of the present invention.
  • the tin trough top cover 90 is constructed of refractory bricks (possibly multi-layered), and the right angle U-shaped silicon carbon rod 80 includes two struts 81 and a connecting bridge 82 for connecting the struts.
  • the connecting bridge 82 is formed to function as a heat generating portion, and the two pillars are made only as electric conductors, and are not used for heat generation.
  • the connecting bridge since the connecting bridge is closer to the molten glass in the tin bath below the tin tank top cover 90 than the pillar, away from the tin tank top cover, the heat generated by the connecting bridge will make the heating system more efficient and the connecting bridge continues.
  • the damage to the top of the tin bath is also less.
  • a plurality of right angle U-shaped silicon carbon rods are always used side by side, and the connecting bridges can be arranged to be in the same horizontal position. Since the connecting bridges are all heated at the same horizontal position, the heat generated will be more uniform.
  • a right angle U-shaped silicon carbon rod for a tin bath of a float glass production line is connected to the thyristor controller 71 by a single phase connection.
  • the output of each phase of the thyristor controller 71 is connected to a right angle U-shaped silicon carbon rod.
  • the output end of each phase of the thyristor controller 71 is connected to one end of a right angle U-shaped silicon carbon rod, and the other ends of the right angle U-shaped silicon carbon rods 801, 802 and 803 are connected to each other.
  • FIG. 9 only shows an example in which one thyristor controller 71 and three right-angle U-shaped silicon carbon rods are connected by a single-phase connection, such a connection method exists in the case of a plurality of right-angle U-shaped silicon carbon rods. It's easy to expand.
  • there are fourth, fifth, and sixth right-angle U-shaped silicon carbon rods which can be used on the first phase of the thyristor controller.
  • the output end (connecting the first right-angle U-shaped silicon carbon rod in FIG.
  • embodiments of the present invention utilize the characteristics of the thyristor itself for voltage regulation such that it is possible to withstand asymmetric loads to some extent.
  • embodiments of the present invention may be applied to the case of connecting five right-angle U-shaped silicon carbon rods.
  • a three-phase three-wire connection method is adopted between the thyristor controller and the silicon carbon rod as a load controlled by the thyristor, that is, the neutral point of the load is not A neutral connection to a three-phase power supply at the neutral end of the thyristor, but embodiments of the present invention may also employ a three-phase, four-wire connection between the thyristor controller and the silicon carbon rod as a load. That is, the neutral point of the connected load is not connected to the neutral line of the external three-phase power supply.
  • the thyristor controller according to the embodiment of the present invention can select, for example, a three-phase thyristor AC voltage-regulating phase shifting trigger of Hangzhou Longke Electronics Co., Ltd.
  • the "refractory brick” used to construct the tin tank top cover 90 in the description of the embodiment of the present invention has the same concept as the "tin tank top cover brick", and thus is used to construct the "refractory brick” of the tin tank top cover 90.
  • the tin bath top cover brick structure provided by the embodiment shown in FIG. 1 to FIG. 3 can also be used.
  • the tin bath top cover 90 can also adopt the tin bath top cover structure provided by the embodiment shown in FIG.
  • the tin tank top cover may also include a plurality of "refractory brick layers", each layer of "refractory brick layer” consisting of "refractory bricks". The concept of "refractory brick” and “tin tank top cover brick” will not be conceptually distinguished in the description of the subsequent embodiments of the present invention.
  • the present invention it is possible to eliminate dozens of possible transformers used therein compared to a conventional electric heating system for a tin bath of a float glass production line, which can be made electric due to the high cost of the transformer.
  • the cost of the system is greatly reduced.
  • the transformer is eliminated and it is also able to withstand a certain degree of unbalanced load.
  • the heat generating portion is only in the connecting bridge of the pillars of the silicon carbon rod, so that the generated heat is more uniform, and the damage to the tin tank top cover is further reduced by continuous heating. .
  • the prior art also has the following problem: in the float glass process, the silicon carbon rod installed in the top of the tin bath is required to maintain the temperature of the tin bath, and the existing silicon carbon rod At the top of the tin slot
  • the integrated method of the cover has large thermal damage to the tin tank top cover and is low in thermal efficiency.
  • a claw type silicon carbon rod is generally used in the prior art. As shown in FIG. 10, a claw type silicon carbon rod includes three struts 1011 and a connecting bridge 1012 for connecting the struts.
  • FIG. 11 shows a schematic view of the construction of an exemplary tin bath cap (partial) using a claw-type silicon carbon rod. It mainly includes a claw-shaped silicon carbon rod 1010, a refractory brick (multilayer) 1020 with a through hole, and a hanging member 1030. Wherein, a plurality of refractory bricks adjacent to each layer of refractory bricks are lapped to each other, and the distribution form of the upper through holes 1021 is shown in FIG.
  • an embodiment of the present invention also provides an improved float glass. Production line tin tank top cover.
  • FIG. 13 is a schematic structural view of a right angle U-shaped silicon carbon rod according to an embodiment of the present invention.
  • the tin bath top cover of the float glass production line adopts a right angle U-shaped silicon carbon rod for electric heating.
  • the connecting bridge 1342 of the two pillars 1341 of the right angle U-shaped silicon carbon rod serves as a heating element, and the two pillars 1341 of the right angle U-shaped silicon carbon rod are used only as electrical conductors.
  • FIG. 14 is a schematic diagram of a tin bath top cover using a right angle U-shaped silicon carbon rod according to an embodiment of the present invention.
  • the tin tank top cover 1450 is constructed of a refractory brick layer composed of a plurality of refractory bricks, and the right-angle U-shaped silicon carbon rod 1340 has two pillars 1341 passing through the through-holes of the tin tank top cover from the tin tank top cover. The middle extension is extended, and the retention bridge 1342 is located below the top of the tin slot.
  • the connecting bridge 1342 is formed to function as a heating element, and the two pillars are made only as electric conductors, and are not used for heat generation.
  • the connecting bridge since the connecting bridge is closer to the molten glass in the tin bath below the tin bath top cover 1450 than the pillar, away from the tin bath top cover, the junction bridge heating will make the heating system more thermally efficient and the connecting bridge continues. The damage to the top of the tin bath is also less.
  • a plurality of right angle U-shaped silicon carbon rods are always used side by side, and the connecting bridges can be arranged to be in the same horizontal position. It is possible to make the bridges heat up at the same horizontal position, so that the generated heat is more uniform.
  • 15-17 illustrate a possible arrangement of a plurality of right angle U-shaped silicon carbon rods in a tin tank top cover according to an embodiment of the present invention.
  • Fig. 15 is a structural schematic view showing the arrangement of two right-angle U-shaped silicon carbon rods arranged in a line in the center of the tin tank top cover.
  • the partial tin tank top cover shown comprises two refractory bricks (or brick layers) each with two through holes, and two through holes on each refractory brick are used for a right angle.
  • U-shaped silicon carbon rods pass through. Specifically, the intermediate position of each refractory brick is arranged with two through holes in the lateral direction, and each right angle U-shaped silicon carbon rod is pierced from the bottom through hole of one refractory brick, then two right-angle U-shaped silicon carbon rods are laterally Lined up in a line.
  • each refractory brick may also be longitudinal, that is, the line between the two through holes is perpendicular to the line between the two through holes as shown in FIG.
  • Two right-angle U-shaped silicon carbon rods arranged in two refractory bricks as shown in Fig. 15 are arranged in parallel.
  • Fig. 16 is a structural schematic view showing the arrangement of the through holes on the refractory bricks when the two right-angle U-shaped silicon carbon rods are alternately arranged on the front side and the rear side of the tin tank top cover.
  • the partial tin tank top cover shown includes two refractory bricks (or brick layers) each having two through holes, 2 on each refractory brick.
  • a through hole is provided for a right angle U-shaped silicon carbon rod to pass through.
  • each refractory brick is arranged with two through holes in a lateral direction
  • one end of the first refractory brick is arranged with a through hole facing forward
  • one end of the second refractory brick is arranged with a through hole facing backward.
  • each refractory brick may also be longitudinal, that is, the line between the two through holes is perpendicular to the line between the two through holes as shown in FIG.
  • Two right-angle U-shaped silicon carbon rods arranged in two refractory bricks as shown in Fig. 16 are staggered in parallel.
  • Fig. 17 is a structural schematic view showing the arrangement of through holes in the refractory bricks when two right-angle U-shaped silicon carbon rods are arranged in parallel under one refractory brick.
  • the illustrated partial tin bath cover includes two refractory bricks (or brick layers) each having two pairs of through holes, 2 on each refractory brick. The through holes are used for the passage of two right angle U-shaped silicon carbon rods.
  • each refractory brick are respectively arranged with two pairs of through holes in the lateral direction, and the first right angle U-shaped silicon carbon rod passes through a pair of through holes of the first refractory brick, and the second right angle U-shaped silicon The carbon rod passes through the other pair of through holes of the same refractory brick, and the third right angle U-shaped silicon carbon rod passes through a pair of through holes of the adjacent second refractory brick, and the fourth right angle U-shaped silicon carbon rod From the other pair of through holes of the second refractory brick, every two right-angle U-shaped silicon carbon rods arranged under the same refractory brick are arranged in parallel in the lateral direction or the longitudinal direction, and are arranged in two adjacent refractory bricks.
  • the four right-angle U-shaped silicon carbon rods below are arranged in parallel in the lateral or longitudinal direction or staggered in the transverse or longitudinal direction of the brick.
  • the length of the right angle U-shaped silicon carbon rod heating element can be variously designed. According to one embodiment, the length of the right angle U-shaped silicon carbon rod heating element is between 50 and 400 mm, so that the heating of the right angle U-shaped silicon carbon rod is made without increasing the diameter of the connecting bridge of the silicon carbon rod.
  • the power reaches a level of heating power of a conventional claw-type silicon carbon rod; preferably about 250 mm.
  • the arrangement of the right angle U-shaped silicon carbon rods is also flexible.
  • the right-angle U-shaped silicon carbon rod can be set to move up and down in the vertical direction, and the vertical movement distance is from the bottom of the tin bath to the bottom of the top cover.
  • a tin tank top cover combined with a right angle U-shaped silicon carbon rod is used as a heating element in comparison with a conventional claw-shaped silicon carbon rod for a tin bath top cover of a float glass production line. Only the connecting bridge of the pillars of the silicon carbon rod makes the generated heat more uniform, and the damage caused by the continuous heating to the tin tank top cover is also smaller. In addition, the arrangement of the right-angle U-shaped silicon carbon rods is more flexible, and the vertical height inside the tin bath is easy to control, which greatly improves the utilization of the heat source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

一种锡槽顶盖砖及锡槽顶盖,所述锡槽顶盖砖包括:砖体(1)、吊挂槽(2)、第一搭边(31)和第二搭边(32);其中,砖体(1)包括两个第一侧面(11)、两个第二侧面(12)、上表面(13)和下表面(14);吊挂槽(2)位于砖体(1)的上表面(13)上且贯穿至两个第一侧面(11);第一搭边(31)位于砖体上表面(13)与第二侧面(12)的连接处,第二搭边(32)位于砖体下表面(14)与第二侧面(12)的连接处。所述锡槽顶盖砖及锡槽顶盖解决了由于锡槽顶盖砖缝多而导致的玻璃质量的下降的问题以及由于采用多种砖型导致的成本高,施工周期长的问题。

Description

一种锡槽顶盖砖和锡槽顶盖结构 技术领域
本发明涉及浮法玻璃锡槽技术,具体涉及一种锡槽顶盖砖和锡槽顶盖结构。
发明背景
浮法是指玻璃液漂浮在熔融金属锡表面上生产平板玻璃的方法。浮法生产的工艺成型过程是在锡槽内完成的。锡槽结构包括顶盖、胸墙、槽底、钢结构、电加热、氮,氢保护气系统等。
众所周知,玻璃光畸变点的主要来源是锡槽中的锡滴,锡滴产生的机理是:锡液氧化挥发后会沉积于锡槽顶盖连接缝处,随锡槽压力波动落到玻璃原板上。现有技术中的顶盖大多是采用吊挂砖和面砖等2-4种结构拼接而成的,采用这种结构会产生大量的锡槽顶盖连接缝,增加锡滴沉积概率,进而会使玻璃光畸变点现象变得严重,降低玻璃质量;现有技术中,顶盖砖型种类繁多,施工复杂,施工周期长,不利于控制施工的进度和质量。
为克服上述缺陷,本发明提供了一种锡槽顶盖砖以及由所述锡槽顶盖砖组成的锡槽顶盖。
发明内容
本发明一方面克服了现有技术中由于锡槽顶盖砖缝多而导致的玻璃质量下降问题。
本发明另一方面解决了现有锡槽顶盖砖由于采用多种砖型导致的成本高,施工周期长的问题。
为实现上述目的,本发明涉及一种锡槽顶盖砖,包括:砖体、吊挂槽、第一搭边和第二搭边;其中,所述砖体包括两个第一侧面、两个第二侧面、上表面和下表面;所述吊挂槽设置于砖体的上表面且贯穿至两个第一侧面;所述的第一搭边设置于砖体上表面与一个第二侧面的连接处,所述的第二搭边设置于砖体下表面与另一个第二侧面的连接处。
本发明所述吊挂槽为吊挂件吊挂处,用于吊挂起所述锡槽顶盖砖。优选的,所述的吊挂槽为两个倒T形槽,更优选的,所述两个倒T形槽为对称结构。
本发明所述的第一搭边和第二搭边用于将前后两个所述的锡槽顶盖砖搭接形成锡槽顶盖工作层面。所述的第一搭边和第二搭边的横截面为矩形或三角形,优选的,所述的第一搭边和第二搭边的横截面为矩形,更优选的,所述的第一搭边和第二搭边为反对称结构。
本发明所述的砖体上还进一步设置有通孔。所述通孔从所述上表面贯穿至所述下表面,用于设置硅碳棒。优选的,所述通孔为一个或多个,更优选的,所述 的通孔为2、3、4或6个等,最优选的,所述的通孔为2、4或6个等偶数个。
在本发明的一个优选的技术方案中,所述锡槽顶盖砖采用硅线石材料。
本发明还涉及一种锡槽顶盖,包括:锡槽顶盖砖和吊挂结构;其中所述锡槽顶盖砖包括:砖体、吊挂槽、第一搭边和第二搭边;其中,所述砖体包括两个第一侧面、两个第二侧面、上表面和下表面;所述吊挂槽设置于砖体的上表面且贯穿至两个第一侧面;所述第一搭边设置于砖体上表面与一个第二侧面的连接处,所述第二搭边设置于砖体下表面与另一个第二侧面的连接处。
所述的吊挂结构包括吊钩,所述的吊钩插入吊挂槽中与锡槽顶盖砖连接。
所述的锡槽顶盖中至少两个锡槽顶盖砖通过第一搭边和第二搭边连接。
在本发明的具体实施方式中,所述吊挂结构中还包括吊挂件,所述的吊钩的一端插入吊挂槽中与锡槽顶盖砖可拆卸连接,另一端与吊挂件可拆卸连接,所述的吊挂件固定在钢结构上,用于固定所述的锡槽顶盖。
在本发明的具体实施方式中,纵向相邻的两个锡槽顶盖砖通过第一搭边和第二搭边连接,使第二侧面贴合,具体的,纵向相邻的两个锡槽顶盖砖中一个锡槽顶盖砖的第一搭边与另一个锡槽顶盖砖的第二搭边贴合连接。在本发明的另一个具体实施方式中,横向相邻的两个锡槽顶盖砖通过所述的第一侧面贴合连接。由于采用本发明所述的连接方式,本发明所述的锡槽顶盖砖将现有锡槽顶盖中吊挂砖和面砖功能合为一体,少了一道接缝,且产品单块面积可以制备成为现有产品面积的2倍。相同情况下,现有产品接缝每平米6.96米,本发明所述的锡槽顶盖接缝每平米3.67米,减少约50%,降低了锡槽运行过程中由此形成锡滴缺陷。
本发明所述的锡槽顶盖还进一步包括保温砖,所述的保温砖设置于锡槽顶盖砖上表面的上部。所述保温砖设有两个卡槽,所述的吊钩嵌入所述两个卡槽中。所述的保温砖包括下表面和上表面,所述的保温砖的下表面与锡槽顶盖砖的上表面贴合连接。优选的,所述的保温砖的下表面面积大于上表面的面积,此种设计方式便于所述的保温砖设置在锡槽顶盖上部,且相邻的保温砖间能够紧密连接。
优选的,本发明所述的保温砖上还进一步设置有通孔。所述通孔与锡槽顶盖砖的通孔相对应,用于设置硅碳棒。优选的,所述通孔为2,4,6等偶数个。
本发明中所述的保温砖为轻质莫来石材料,更优选的,所述的轻质莫来石材料选自最高使用为温度2300℃,体积密度为0.5g/m3的轻质莫来石材料,最优选的,所述的保温砖厚度为140mm。本发明所述的保温砖与现有230mm厚产品相比可使本结构保温砖每平方米降低重量100kg,并明显降低成本。
本发明中所述的锡槽顶盖至少包括一个或多个保温砖。在本发明的一个具体实施方式中,所述的保温砖为单层结构,在本发明的另一个优选的实施方式中,所述的保温砖为多层结构。优选的,本发明中所述的锡槽顶盖中包括数量相同的所述的锡槽顶盖砖和所述的保温砖。
本发明所述的锡槽顶盖采用硅线石和轻质莫来石复合结构,具体本发明所述 的锡槽顶盖包括采用硅线石材料的锡槽顶盖砖以及采用轻质莫来石材料的保温砖。
本发明一实施例还提供一种用于浮法玻璃生产线锡槽的电加热系统,包括:可控硅控制器和布置在锡槽顶盖上的至少三个硅碳棒,硅碳棒包括两个或三个支柱和用于连接支柱的连接桥,其中硅碳棒的所述支柱从设置在锡槽顶盖的通孔中伸出而布置在锡槽顶盖上,硅碳棒的连接桥位于所述锡槽顶盖的下方。可控硅控制器的输入端与外部三相电源相连接,而可控硅控制器的每个相上的输出端与至少三个硅碳棒的末端连接。
进一步地,可控硅控制器的每个相上的输出端可以采用三相三线制或三相四线制与至少三个硅碳棒的末端连接。
在一个实施方式中,硅碳棒可以为爪型硅碳棒,该爪型硅碳棒的每个支柱都设置有发热部,而爪型硅碳棒的连接桥仅用作导电体。
进一步地,可控硅控制器的每个相上的输出端与至少三个爪型硅碳棒的末端连接包括:所述可控硅控制器的第一相上的输出端与第一爪型硅碳棒的三个支柱中的第一个支柱的末端、第二爪型硅碳棒的三个支柱中的第一个支柱的末端以及第三爪型硅碳棒的三个支柱中的第一个支柱的末端连接;所述可控硅控制器的第二相上的输出端与第一爪型硅碳棒的三个支柱中的第二个支柱的末端、第二爪型硅碳棒的三个支柱中的第二个支柱的末端以及第三爪型硅碳棒的三个支柱中的第二个支柱的末端连接;以及所述可控硅控制器的第三相上的输出端与第一爪型硅碳棒的三个支柱中的第三个支柱的末端、第二爪型硅碳棒的三个支柱中的第三个支柱的末端以及第三爪型硅碳棒的三个支柱中的第三个支柱的末端连接。
在一个实施方式中,硅碳棒为可以直角U型硅碳棒,该直角U型硅碳棒的两个支柱的连接桥用作发热部,而所述直角U型硅碳棒的两个支柱仅用做导电体。
进一步地,可控硅控制器的每个相上的输出端采用单相接法与至少三个直角U型硅碳棒的末端连接。可控硅控制器的第一相上的输出端与第一直角U型硅碳棒的一个支柱的末端连接,可控硅控制器的第二相上的输出端与第二直角U型硅碳棒的一个支柱的末端连接,可控硅控制器的第三相上的输出端与第三直角U型硅碳棒的一个支柱的末端连接。第一直角U型硅碳棒的另一个支柱的末端、第二直角U型硅碳棒的另一个支柱的末端以及第三直角U型硅碳棒的另一个支柱的末端互相连接。
本发明一实施例还提供一种浮法玻璃生产线锡槽顶盖,包括由多块耐火砖构成的耐火砖层和穿过所述耐火砖层布置的至少一个硅碳棒。该至少一个硅碳棒是至少一个直角U型硅碳棒。直角U型硅碳棒包括两个支柱和用于连接两个支柱的连接桥,连接桥用作所述硅碳棒的发热体,而两个支柱仅用做导电体。两个支柱从设置在锡槽顶盖的通孔中伸出而布置在锡槽顶盖上,而连接桥位于所述锡槽顶盖的下方。
进一步地,直角U型硅碳棒发热体的长度在50-400毫米之间。
进一步地,至少一个直角U型硅碳棒垂直于所述锡槽顶盖纵向排列或者横向排列。
进一步地,至少一个直角U型硅碳棒可以设置为可沿垂直方向上下移动的形式,以适应生产线锡槽中待加热的材料的厚度变化,以使得热源得到充分利用。
在一个实施方式中,至少一个直角U型硅碳棒成一线地布置在所述锡槽顶盖中央。
在一个实施方式中,直角U型硅碳棒与相邻的直角U型硅碳棒交错地布置在锡槽顶盖下方的前侧和后侧。
在一个实施方式中,至少一个直角U型硅碳棒中的两个直角U型硅碳棒平行地布置在一块耐火砖的下方。
本发明的有益效果在于:
(1)由于本发明所述的锡槽顶盖是采用一种单砖型拼接方式,在相同条件下,本发明所述的锡槽顶盖连接缝长度减少可达50%以上,从而显著减少玻璃光畸变点缺陷的产生,大幅提高玻璃产品质量。
(2)本发明所述的锡槽顶盖通过优化砖型,减薄厚度,从而整体上降低砖结构总体重量,很好的解决了提高生产安全可靠性、降低生产成本与追求轻型保温性能好的锡槽顶盖砖结构互为矛盾的技术问题。
(3)本发明所述的锡槽顶盖的保温材料采用导热系数更低的轻质莫来石砖,保温性能显著提高,绝热效果明显改善。
(4)本发明通过对现有吊挂组合砖结构的优化改进,使顶盖砖型减少,从而使得施工过程简易,施工周期缩短,有利于提高施工进度和质量。
(5)采用本发明实施例所提供的用于浮法玻璃生产线锡槽的电加热系统,利用创新性的硅碳棒连接方式,直接利用可控硅自身的调压功能,而消除变压器的使用,使得该电加热系统的成本能够大幅地减小,改进了现有的浮法玻璃生产线锡槽的电加热系统,节省了成本。
(6)采用本发明实施例所提供的浮法玻璃生产线锡槽顶盖,在浮法玻璃生产线锡槽顶盖中,结合直角U型结构的硅碳棒,其发热体更加靠近生产线,降低了对锡槽顶盖的热损伤。同时发热体距离生产线的高度可以调节,使热源的利用率得到进一步提高。直角U型硅碳棒的排列形式更灵活多样,可以在同等条件下,满足不同的功率需求。
附图简要说明
图1为本发明一实施例所提供的锡槽顶盖砖的立体图;
图2为本发明一实施例所提供的锡槽顶盖砖的主视图;
图3为本发明一实施例所提供的锡槽顶盖砖的仰视图;
图4为本发明一实施例所提供的锡槽顶盖的立体图;
图5为现有技术提供的一种采用爪型硅碳棒的锡槽顶盖的构造示意图;
图6为现有技术提供的一种用于锡槽的爪型硅碳棒电加热系统的电路示意图;
图7为本发明一实施例所提供的爪型硅碳棒采用三相接法的电气连接示意图;
图8为本发明一实施例所提供的采用直角U型硅碳棒的锡槽顶盖的示意图;
图9为本发明一实施例所提供的直角U型硅碳棒采用单相接法的电气连接示意图;
图10为现有技术提供的一种爪型硅碳棒结构的示意图;
图11为现有技术提供的一种爪型硅碳棒的锡槽顶盖(局部)的构造示意图;
图12为现有技术提供的一种采用爪型硅碳棒的锡槽顶盖上通孔的布置形式示意图;
图13为本发明一实施例所提供的直角U型硅碳棒的结构示意图;
图14为本发明一实施例所提供的采用直角U型硅碳棒的锡槽顶盖的示意图;
图15为本发明一实施例所提供的2个直角U型硅碳棒成一线地布置在锡槽顶盖中央时耐火砖上通孔排布的结构示意图;
图16为本发明一实施例所提供的2个直角U型硅碳棒交错地布置在锡槽顶盖下方的前侧和后侧时耐火砖上通孔排布的结构示意图;以及
图17为本发明一实施例所提供的2个直角U型硅碳棒平行地布置在一块耐火砖的下方时耐火砖上通孔排布的结构示意图。
实施本发明的方式
为使本发明的目的、技术手段和优点更加清楚明白,以下结合附图对本发明作进一步详细说明。
图1为本发明一实施例所提供的锡槽顶盖砖的立体图。图2为本发明一实施例所提供的锡槽顶盖砖的主视图。图3为本发明一实施例所提供的锡槽顶盖砖的仰视图。如图1至3所示,该锡槽顶盖砖包括:砖体1、倒T形吊挂槽2、第一搭边31和第二搭边32;其中,砖体1包括两个第一侧面11、两个第二侧面12、上表面13和下表面14;倒T型吊挂槽2位于砖体1的上表面13上且贯穿至两个第一侧面11;第一搭边31位于砖体上表面13与第二侧面12的连接处,第二搭边32位于砖体下表面14与第二侧面12的连接处。倒T形吊挂槽2为两个倒T形吊挂槽2且为对称结构,第一搭边31和第一搭边32为反对称结构。
该锡槽顶盖砖在使用时,可用吊钩插入T形吊挂槽2的方式将横向相邻的砖体1的第一侧面11紧密贴合;可用反对称的第一搭边31与第二搭边32搭接的方 式将纵向相邻的砖体1的第二侧面12紧密贴合,进而形成纵横交错的锡槽顶盖。
本发明的锡槽顶盖砖采用一种砖型的结构,相比于现有技术需要多种砖型搭接的结构,可以减少锡槽顶盖砖的厚度,进而降低锡槽顶盖砖结构的总体重量,并且采用一种砖型的结构既可以提高生产安全可靠性,又可以在不损害保温性的情况下降低生产成本。
如图1和图2所示,该锡槽顶盖砖进一步包括通孔4,其中通孔4从上表面13贯穿至下表面14。其中,通孔4可为一个或多个,在本发明实施例中为六个通孔4,上述通孔用来插可用来发热的硅碳棒。对于通孔直径的大小、孔的位置本发明不做限定。
本发明实施例中的砖体1采用轻质莫来石材料,该材料导热系数比现有的砖体材料的导热系数更低,保温性能显著提高,绝热效果明显改善。
图4为本发明一实施例所提供的锡槽顶盖的立体图。如图4所示,该锡槽顶盖包括锡槽顶盖砖和吊钩5;其中锡槽顶盖砖包括砖体1、倒T形吊挂槽2、第一搭边31和第二搭边32;其中,砖体包括两个第一侧面11、两个第二侧面12、上表面13和下表面14;倒T型吊挂槽2位于砖体1的上表面13上且贯穿至两个第一侧面11;第一搭边31位于砖体上表面13与第二侧面12的连接处,第二搭边32位于砖体下表面14与第二侧面12的连接处。
其中,吊钩5的一端插入倒T形吊挂槽2中与至少一个锡槽顶盖砖可拆卸连接;纵向相邻的锡槽顶盖砖通过第一搭边31和第二搭边32相连接。
该锡槽顶盖进一步包括保温砖6;其中保温砖6的两侧设有两个卡槽61;两个卡槽61为对称结构;保温砖6包括下表面62和上表面63,保温砖6的下表面面积62大于上表面的面积63,保温砖的下表面62与锡槽顶盖砖的上表面13贴合连接。
在本发明的一实施方式中保温砖6的厚度可为140mm,而现有技术中的锡槽顶盖砖的厚度为230mm。
现有技术中的顶盖大多是采用吊挂砖和面砖等2-4种结构拼接而成的,采用这种结构会产生大量的锡槽顶盖连接缝,锡槽中的锡滴会随之增加,进而会使玻璃光畸变点现象变得严重,造成玻璃的质量降低;和现有技术相比,本发明的锡槽顶盖是采用一种结构的砖拼接而成的,锡槽顶盖连接缝会随之减少,从而减少了玻璃光畸变点现象,提高了玻璃的质量。
采用本发明的结构施工容易,施工周期短,可更好地加快施工进度和提高施工质量。本发明的锡槽顶盖砖比现有技术中的锡槽顶盖砖每平方米可降低100kg,从而降低成本;与此同时,采用本发明的锡槽顶盖砖可降低吊钩的造价。
在本发明一实施例中,考虑到现有技术中还存在如下问题:维持锡槽温度的电加热系统是锡槽的重要组成部分,而现有的浮法玻璃生产线锡槽的电加热系统的成本过高。具体而言,在现有的浮法玻璃生产线锡槽的电加热系统中,普遍采用爪型硅碳棒。图5为现有技术提供的采用爪型硅碳棒的锡槽顶盖(局部)的构 造示意图。如图5所示,一个爪型硅碳棒50包括三个支柱51和用于连接支柱的连接桥52。锡槽顶盖60由耐火砖(可能是多层)构建。在制作爪型硅碳棒50时,将其三个支柱制作为发热部,具体是连接桥与锡槽顶盖之间的部分,而其连接桥仅被制作为充当导电体,而不用于发热。在现有的锡槽的爪型硅碳棒电加热系统中,利用可控硅控制器来调节硅碳棒的发热功率。可控硅控制器可以是可控硅调压器和可控硅调工器。图6示出了现有技术中普遍使用的,通过可控硅控制器来控制锡槽的爪型硅碳棒电加热系统的电路示意图。在图6的电路中,如图5所示的爪型硅碳棒50的三个支柱51的发热部用电路等效元件L示出。如图6所示,可控硅控制器71的输入端用于连接三相外部电源(未示出),其输出端通过变压器T连接至一个爪型硅碳棒50,即,在一个可控硅控制器71和一个爪型硅碳棒50之间连接有一个变压器T。由此可见,如图5和图6所示,在现有技术中爪型硅碳棒50采用三相接法与变压器T连接,即,爪型硅碳棒每个支柱51连接到变压器T的一相中,而其连接桥52充当电路中性点。自浮法玻璃工艺锡槽的电加热系统中引入硅碳棒的十余年来,在该硅碳棒电加热系统中,在可控硅控制器和爪型硅碳棒之间一直使用的是如图6所示的经由变压器、三相接法的电气连接方式。而在浮法玻璃工艺中,需要的爪型硅碳棒的数量经常达到成百上千个,即便将多个爪型硅碳棒构成的群组连接到一个变压器,需要的变压器的数量在四五十个左右。爪型硅碳棒的工作电压为60V,将380V的工业电压转换为60V的电压的变压器造价是数千元。硅碳棒的造价本身就高,再加上四五十个这样的变压器的造价,这样的电加热系统的成本更是不菲。然而,这是目前各个浮法玻璃生成厂都不得不面对的负担。因此为了解决上述现有的浮法玻璃生产线锡槽的电加热系统的成本过高的问题,本发明一实施例还提供了一种新的用于浮法玻璃生产线锡槽的电加热系统。
图7为本发明一实施例所提供的爪型硅碳棒采用三相接法的电气连接示意图。如图7所示,用于浮法玻璃生产线锡槽的爪型硅碳棒501、502和503采用三相接法直接连接到可控硅控制器71。在图7中,可控硅控制器71的每个相上的输出端连接与爪型硅碳棒的一个分支的末端连接。
作为本发明的另一个实施例,如图8所示,对于浮法玻璃生产线锡槽顶盖可以采用一种直角U型硅碳棒。
图8为本发明一实施例所提供的采用直角U型硅碳棒的锡槽顶盖的示意图。如图8所示,锡槽顶盖90由耐火砖(可能是多层)构建,直角U型硅碳棒80包括两个支柱81和用于连接支柱的连接桥82。
在制作直角U型硅碳棒80时,将其连接桥82制作为充当发热部,而将其两个支柱仅制作为导电体,不用于发热。这样,由于与支柱相比,连接桥更加靠近锡槽顶盖90下方的锡槽中的玻璃液而远离锡槽顶盖,因而连接桥发热将使得加热系统的热效率更高,并且连接桥的持续发热对于锡槽顶盖的损伤也更小。此外,实践中,总是并排使用多个直角U型硅碳棒,其连接桥可以被布置为都处于同一水平位置。由于连接桥都在同一水平位置发热,将使得产生的热量更加均匀。
如图9所示,用于浮法玻璃生产线锡槽的直角U型硅碳棒采用单相接法连接到可控硅控制器71。在图9中,可控硅控制器71的每个相上的输出端连接有一个直角U型硅碳棒。具体而言,可控硅控制器71的每个相上的输出端与一个直角U型硅碳棒的一个末端相连,而直角U型硅碳棒801、802和803的另一个末端互相连接。
虽然图9仅示出了一个可控硅控制器71和三个直角U型硅碳棒采用单相接法进行连接的示例,但是对于存在多个直角U型硅碳棒情形,这样的连接方式很容易进行扩展。例如,对于图9所示的三个直角U型硅碳棒以外,还存在第四、第五和第六直角U型硅碳棒的情形,可以将可控硅控制器的第一相上的输出端(图9中连接第一直角U型硅碳棒)与第四直角U型硅碳棒的一个支柱的末端连接,将可控硅控制器的第二相上的输出端(图9中连接第二直角U型硅碳棒)与第五直角U型硅碳棒的一个支柱的末端连接,将可控硅控制器的第三相上的输出端(图9中连接第三直角U型硅碳棒)与第六直角U型硅碳棒的一个支柱的末端连接。这六个直角U型硅碳棒的另一个支柱的末端互相连接在一起。
还应当注意,本发明的实施方式利用可控硅自身的特性进行调压,使得有可能在一定程度上承受不对称负载。例如,本发明的实施方式可以适用于连接五个直角U型硅碳棒的情形。
应当理解,虽然在前述的实施例中,在可控硅控制器和作为可控硅所调节的负载的硅碳棒之间采用了三相三线制的接线方式,即负载的中性点未与连接到可控硅的零线端的三相电源的零线连接,但是本发明的实施方式在可控硅控制器和作为负载的硅碳棒之间也可以采用三相四线制的接线方式,即连接负载的中性点未与外部三相电源的零线。
根据本发明实施方式的可控硅控制器例如可以选用杭州龙科电子有限公司的三相可控硅交流调压移相触发器。
应当理解,在本发明实施例描述中用于构建锡槽顶盖90的“耐火砖”与“锡槽顶盖砖”为相同的概念,因此用于构建锡槽顶盖90的“耐火砖”也可采用如图1-图3所示实施例所提供的锡槽顶盖砖结构,锡槽顶盖90也可采用如图4所示实施例所提供的锡槽顶盖结构。锡槽顶盖也可能包括多个“耐火砖层”,每层“耐火砖层”由“耐火砖”所构成。在本发明后续的实施例描述中将不对“耐火砖”和“锡槽顶盖砖”做概念区分。
根据本发明的实施方式,与用于浮法玻璃生产线锡槽的传统电加热系统相比,已经消除了其中使用的可能数十个的变压器,由于变压器的成本昂贵,因而可以使得这样的电加热系统的成本大幅地减小。此外,如前所述,消除了变压器,也使得能够承受一定程度的不平衡负载。
另外,采用本发明实施方式的直角U型硅碳棒,其发热部仅在硅碳棒的支柱的连接桥中,使得产生的热量更加均匀,并且持续加热对锡槽顶盖的损伤也更小。
在本发明一实施例中,考虑到现有技术中还存在如下问题:浮法玻璃工艺中需要利用安装在锡槽顶盖中的硅碳棒来维持锡槽温度,而现有的硅碳棒在锡槽顶 盖上的集成方式对锡槽顶盖的热损伤大,并且热效率低。具体而言,在浮法玻璃生产线锡槽顶盖中,现有技术中普遍采用爪型硅碳棒。如图10所示,一个爪型硅碳棒包括三个支柱1011和用于连接支柱的连接桥1012。在制作爪型硅碳棒时,将其三个支柱制作为发热体,具体是连接桥与锡槽顶盖之间的部分,而其连接桥仅制作为导电体,不用于发热。图11示出采用爪型硅碳棒的一种示例性的锡槽顶盖(局部)的构造示意图。主要包括爪形硅碳棒1010、带有通孔的耐火砖(多层)1020、吊挂件1030。其中,每一层耐火砖相邻的多块耐火砖左右搭接而成,其上通孔1021的分布形式如图12示,具体地是,在每一块耐火砖的两端分别布置三个上下贯穿的通孔,将一个爪形结构的硅碳棒的三个支柱从耐火砖一端的下方通孔穿出,并固定。如图11所示,一块耐火砖可以通过两个爪形硅碳棒。两块耐火砖的衔接处恰好处于一个吊挂件的中心位置。由此可见,在现有技术中,爪型硅碳棒的发热体距离顶盖较近,发热体的持续加热易对浮法玻璃生产线锡槽顶盖造成损害,同时爪型硅碳棒的发热体垂直于锡槽中的玻璃液,也存在单个爪型硅碳棒加热效率不高的问题。因此为了解决上述现有的硅碳棒在锡槽顶盖上的集成方式对锡槽顶盖的热损伤大,并且热效率低的问题,本发明一实施例还提供了一种改进的浮法玻璃生产线锡槽顶盖。
图13为本发明一实施例所提供的直角U型硅碳棒的结构示意图。如图13所示,与现有技术中采用的爪型硅碳棒不同,浮法玻璃生产线锡槽顶盖采用直角U型结构的硅碳棒,用于进行电加热。该直角U型硅碳棒的两个支柱1341的连接桥1342用作发热体,而直角U型硅碳棒的两个支柱1341仅用做导电体。
图14为本发明一实施例所提供的采用直角U型硅碳棒的锡槽顶盖的示意图。如图14所示,锡槽顶盖1450由多块耐火砖构成的耐火砖层构建,直角U型硅碳棒1340两个支柱1341在锡槽顶盖下方经过其中的通孔从锡槽顶盖中伸出,保留连接桥1342位于锡槽顶盖下方。
在制作直角U型硅碳棒1340时,将其连接桥1342制作为充当发热体,而将其两个支柱仅制作为导电体,不用于发热。这样,由于与支柱相比,连接桥更加靠近锡槽顶盖1450下方的锡槽中的玻璃液而远离锡槽顶盖,因而连接桥发热将使得加热系统的热效率更高,并且连接桥的持续发热对于锡槽顶盖的损伤也更小。此外,实践中,总是并排使用多个直角U型硅碳棒,其连接桥可以被布置为都处于同一水平位置。可以使连接桥都在同一水平位置发热,从而使得产生的热量更加均匀。
图15-图17为本发明一实施例所提供的多个直角U型硅碳棒在锡槽顶盖中可能的布置形式。
图15是示出2个直角U型硅碳棒成一线地布置在所述锡槽顶盖中央时耐火砖上通孔排布的结构示意图。如图15所示,所示出的局部的锡槽顶盖包括2块各自带有2个通孔的耐火砖(或者砖层),每块耐火砖上的2个通孔用于供一个直角U型硅碳棒穿过。具体为,每一块耐火砖的中间位置沿横向布置有两个通孔,每个直角U型硅碳棒从一块耐火砖的底部通孔穿出,则,两个直角U型硅碳棒沿横向 排成一线。
需要指出,每一块耐火砖上的两个通孔也可以是沿纵向的,即该两个通孔之间的连线与如图15所示的两个通孔之间的连线垂直,则布置在如图15所示的两块耐火砖中的两个直角U型硅碳棒平行布置。
图16是示出2个直角U型硅碳棒交错地布置在锡槽顶盖下方的前侧和后侧时耐火砖上通孔排布的结构示意图。作为本发明的一个实施例,如图16所示,所示出的局部的锡槽顶盖包括2块各自带有2个通孔的耐火砖(或者砖层),每块耐火砖上的2个通孔用于供一个直角U型硅碳棒穿过。具体为,每一块耐火砖的一端沿横向布置有两个通孔,将第一块耐火砖布置有通孔的一端朝前放置,将第二块耐火砖布置有通孔的一端朝后放置,形成相邻的两块耐火砖的两个通孔前后交叉分布的形式,每个直角U型硅碳棒从一块耐火砖的底部通孔穿出,则,两个直角U型硅碳棒沿横向交叉排列。
需要指出,每一块耐火砖上的两个通孔也可以是沿纵向的,即该两个通孔之间的连线与如图16所示的两个通孔之间的连线垂直,则布置在如图16所示的两块耐火砖中的两个直角U型硅碳棒平行地交错布置。
图17是示出2个直角U型硅碳棒平行地布置在一块耐火砖的下方时耐火砖上通孔排布的结构示意图。作为本发明的一个实施例,如图17所示,所示出的局部的锡槽顶盖包括2块各自带有2对通孔的耐火砖(或者砖层),每块耐火砖上的2对通孔用于供两个直角U型硅碳棒穿过。具体为,每一块耐火砖的两端沿横向分别布置有两对通孔,第一个直角U型硅碳棒从第一块耐火砖的一对通孔穿出,第二个直角U型硅碳棒从同一块耐火砖另一对通孔穿出,第三个直角U型硅碳棒从相邻的第二块耐火砖的一对通孔穿出,第四个直角U型硅碳棒从该第二块耐火砖另一对通孔穿出,则,布置于同一块耐火砖下方的每2个直角U型硅碳棒沿横向或者纵向平行排列,布置于相邻的两块耐火砖下方的4个直角U型硅碳棒沿横向或者纵向平行排列或者按砖沿横向或者纵向交错排列。
应当注意,根据耐火砖上两孔之间距离的不同等具体应用需要,直角U型硅碳棒发热体的长度可以有多种设计方案。根据一个实施例,直角U型硅碳棒发热体的长度在50-400毫米之间,以使得在不增大硅碳棒的连接桥直径的情况下,使得该直角U型硅碳棒的发热功率达到一个传统的爪型硅碳棒的发热功率的程度;优选为250毫米左右。另外,根据耐火砖上通孔个数以及分布形式的不同,直角U型硅碳棒的排列形式也是灵活多变的。
同时,为了使热源得到更好的利用,可以将直角U型硅碳棒设置为可在垂直方向上下移动的形式,其垂直移动距离为从锡槽底部到顶盖底部。
根据本发明的实施方式,与用于浮法玻璃生产线锡槽顶盖的传统爪形硅碳棒相比,采用本发明实施方式的结合直角U型硅碳棒的锡槽顶盖,其发热体仅在硅碳棒的支柱的连接桥,使得产生的热量更加均匀,并且持续加热对锡槽顶盖的损伤也更小。另外,直角U型硅碳棒的排列形式更加灵活,并且,其在锡槽内部的垂直高度易于控制,大大提高了热源的利用率。
以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (22)

  1. 一种锡槽顶盖砖,包括砖体、吊挂槽、第一搭边和第二搭边,其特征在于,所述砖体包括两个第一侧面、两个第二侧面、上表面和下表面;所述吊挂槽设置于砖体的上表面且贯穿至两个第一侧面;所述第一搭边设置于砖体上表面与一个第二侧面的连接处,所述第二搭边设置于砖体下表面与另一个第二侧面的连接处。
  2. 权利要求1所述的一种锡槽顶盖砖,其特征在于,所述的吊挂槽为两个倒T形槽。
  3. 权利要求1所述的一种锡槽顶盖砖,其特征在于,所述的砖体上还设置有通孔。
  4. 一种锡槽顶盖,包括锡槽顶盖砖和吊挂结构,其特征在于,其中所述锡槽顶盖砖包括砖体、吊挂槽、第一搭边和第二搭边;其中,所述砖体包括两个第一侧面、两个第二侧面、上表面和下表面;所述吊挂槽设置于砖体的上表面且贯穿至两个第一侧面;所述第一搭边设置于砖体的上表面与一个第二侧面的连接处,所述第二搭边设置于砖体的下表面与另一个第二侧面的连接处。
  5. 权利要求4所述的一种锡槽顶盖,其特征在于,所述的锡槽顶盖中包括至少两个锡槽顶盖砖通过第一搭边和第二搭边连接。
  6. 权利要求4-5任意一项所述的一种锡槽顶盖,其特征在于,所述的吊挂结构包括吊钩和吊挂件,所述的吊钩的一端插入吊挂槽中与锡槽顶盖砖可拆卸连接,另一端与吊挂件可拆卸连接。
  7. 权利要求6所述的一种锡槽顶盖,其特征在于,所述的锡槽顶盖还包括保温砖,所述的保温砖设置于锡槽顶盖砖上表面的上部;其中,所述保温砖设有两个卡槽,所述的吊钩嵌入所述两个卡槽中。
  8. 权利要求7所述的一种锡槽顶盖,其特征在于,所述的保温砖包括下表面和上表面,所述的保温砖的下表面与锡槽顶盖砖的上表面贴合连接。
  9. 权利要求7所述的一种锡槽顶盖,其特征在于,所述的保温砖上还设置有通孔。
  10. 权利要求7-9任意一项所述的一种锡槽顶盖,其特征在于,所述锡槽顶盖采用硅线石和轻质莫来石复合结构。
  11. 一种用于浮法玻璃生产线锡槽的电加热系统,包括:可控硅控制器和布置在锡槽顶盖上的至少三个硅碳棒,硅碳棒包括两个或三个支柱和用于连接支柱的连接桥,其中硅碳棒的所述支柱从设置在锡槽顶盖的通孔中伸出而布置在锡槽顶盖上,硅碳棒的所述连接桥位于所述锡槽顶盖的下方,
    其中,所述可控硅控制器的输入端与外部三相电源相连接,而所述可控硅控制器的每个相上的输出端与所述至少三个硅碳棒的末端连接。
  12. 根据权利要求11所述的电加热系统,其中所述可控硅控制器的每个相上 的输出端与所述至少三个硅碳棒的末端连接包括:采用三相三线制或者采用三相四线制。
  13. 根据权利要求11或12所述的电加热系统,其中所述硅碳棒为爪型硅碳棒,所述爪型硅碳棒的每个支柱都设置有发热部,而所述爪型硅碳棒的连接桥仅用作导电体。
  14. 根据权利要求13所述的电加热系统,其中,所述可控硅控制器的每个相上的输出端与至少三个爪型硅碳棒的末端连接包括:
    所述可控硅控制器的第一相上的输出端与第一爪型硅碳棒的三个支柱中的第一个支柱的末端、第二爪型硅碳棒的三个支柱中的第一个支柱的末端以及第三爪型硅碳棒的三个支柱中的第一个支柱的末端连接;
    所述可控硅控制器的第二相上的输出端与第一爪型硅碳棒的三个支柱中的第二个支柱的末端、第二爪型硅碳棒的三个支柱中的第二个支柱的末端以及第三爪型硅碳棒的三个支柱中的第二个支柱的末端连接;
    所述可控硅控制器的第三相上的输出端与第一爪型硅碳棒的三个支柱中的第三个支柱的末端、第二爪型硅碳棒的三个支柱中的第三个支柱的末端以及第三爪型硅碳棒的三个支柱中的第三个支柱的末端连接。
  15. 根据权利要求11或12所述的电加热系统,其中所述硅碳棒为直角U型硅碳棒,所述直角U型硅碳棒的两个支柱的连接桥用作发热部,而所述直角U型硅碳棒的两个支柱仅用作导电体。
  16. 根据权利要求15所述的电加热系统,其中,所述可控硅控制器的每个相上的输出端采用单相接法与至少三个直角U型硅碳棒的末端连接,具体包括:
    所述可控硅控制器的第一相上的输出端与第一直角U型硅碳棒的一个支柱的末端连接;
    所述可控硅控制器的第二相上的输出端与第二直角U型硅碳棒的一个支柱的末端连接;
    所述可控硅控制器的第三相上的输出端与第三直角U型硅碳棒的一个支柱的末端连接;并且
    所述第一直角U型硅碳棒的另一个支柱的末端、所述第二直角U型硅碳棒的另一个支柱的末端以及所述第三直角U型硅碳棒的另一个支柱的末端互相连接。
  17. 一种浮法玻璃生产线锡槽顶盖,包括由多块耐火砖构成的耐火砖层和穿过所述耐火砖层布置的至少一个硅碳棒,其特征在于,所述至少一个硅碳棒是至少一个直角U型硅碳棒,所述直角U型硅碳棒包括两个支柱和用于连接所述两个支柱的连接桥,所述连接桥用作所述硅碳棒的发热体,而所述两个支柱仅用做导电体,其中所述两个支柱从设置在锡槽顶盖的通孔中伸出而布置在所述锡槽顶盖上,而所述连接桥位于所述锡槽顶盖的下方。
  18. 根据权利要求17所述的浮法玻璃生产线锡槽顶盖,其特征在于,所述直 角U型硅碳棒发热体的长度在50-400毫米之间。
  19. 根据权利要求17或18所述的浮法玻璃生产线锡槽顶盖,其特征在于,所述至少一个直角U型硅碳棒垂直于所述锡槽顶盖纵向排列或者横向排列。
  20. 根据权利要求19所述的浮法玻璃生产线锡槽顶盖,其特征在于,所述至少一个直角U型硅碳棒成一线地布置在所述锡槽顶盖中央。
  21. 根据权利要求19所述的浮法玻璃生产线锡槽顶盖,其特征在于,所述至少一个直角U型硅碳棒中的一个直角U型硅碳棒与相邻的直角U型硅碳棒交错地布置在所述锡槽顶盖下方的前侧和后侧。
  22. 根据权利要求19所述的浮法玻璃生产线锡槽顶盖,其特征在于,所述至少一个直角U型硅碳棒中的两个直角U型硅碳棒平行地布置在一块耐火砖的下方。
PCT/CN2016/091575 2015-07-23 2016-07-25 一种锡槽顶盖砖和锡槽顶盖结构 WO2017012593A1 (zh)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201510438175.5 2015-07-23
CN201510438175 2015-07-23
CN201510438790 2015-07-23
CN201520540797.4 2015-07-23
CN201510438790.6 2015-07-23
CN201520540797 2015-07-23
CN201520556023.0 2015-07-28
CN201510451164.0A CN105174695B (zh) 2015-07-23 2015-07-28 用于浮法玻璃生产线锡槽的电加热系统
CN201520556023.0U CN204981598U (zh) 2015-07-28 2015-07-28 浮法玻璃生产线锡槽顶盖
CN201510451252.0 2015-07-28
CN201510451252.0A CN105110608B (zh) 2015-07-23 2015-07-28 一种锡槽顶盖砖
CN201510451164.0 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017012593A1 true WO2017012593A1 (zh) 2017-01-26

Family

ID=57835014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091575 WO2017012593A1 (zh) 2015-07-23 2016-07-25 一种锡槽顶盖砖和锡槽顶盖结构

Country Status (1)

Country Link
WO (1) WO2017012593A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650919A (zh) * 2019-01-31 2019-04-19 河南中原特种耐火材料有限公司 一种用于制备锡槽底砖的骨料及其制备方法、锡槽底砖
CN110306716A (zh) * 2019-04-12 2019-10-08 深圳全景空间工业有限公司 一种用于装配式住宅的砖块及砖块墙
CN110306715A (zh) * 2019-04-12 2019-10-08 深圳全景空间工业有限公司 一种砖块墙
CN115448578A (zh) * 2022-09-16 2022-12-09 青岛融合新材料科技有限公司 用于浮法工艺锡槽的顶盖
CN115745378A (zh) * 2022-11-28 2023-03-07 蚌埠中光电科技有限公司 一种浮法玻璃锡槽顶盖

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2645014Y (zh) * 2003-06-04 2004-09-29 吕志乾 组合式锡槽顶盖砖
CN202808580U (zh) * 2012-07-23 2013-03-20 华尔润玻璃产业股份有限公司 一种浮法玻璃锡槽边部加热器
CN203247182U (zh) * 2013-04-29 2013-10-23 辽阳宏图碳化物有限公司 一种三相硅碳棒
CN105110608A (zh) * 2015-07-23 2015-12-02 北京诠道科技有限公司 一种锡槽顶盖砖
CN105174695A (zh) * 2015-07-23 2015-12-23 北京诠道科技有限公司 用于浮法玻璃生产线锡槽的电加热系统
CN204958711U (zh) * 2015-07-28 2016-01-13 北京诠道科技有限公司 一种锡槽顶盖砖及锡槽顶盖
CN204981603U (zh) * 2015-07-28 2016-01-20 北京诠道科技有限公司 用于浮法玻璃生产线锡槽的电加热系统
CN204981598U (zh) * 2015-07-28 2016-01-20 北京诠道科技有限公司 浮法玻璃生产线锡槽顶盖

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2645014Y (zh) * 2003-06-04 2004-09-29 吕志乾 组合式锡槽顶盖砖
CN202808580U (zh) * 2012-07-23 2013-03-20 华尔润玻璃产业股份有限公司 一种浮法玻璃锡槽边部加热器
CN203247182U (zh) * 2013-04-29 2013-10-23 辽阳宏图碳化物有限公司 一种三相硅碳棒
CN105110608A (zh) * 2015-07-23 2015-12-02 北京诠道科技有限公司 一种锡槽顶盖砖
CN105174695A (zh) * 2015-07-23 2015-12-23 北京诠道科技有限公司 用于浮法玻璃生产线锡槽的电加热系统
CN204958711U (zh) * 2015-07-28 2016-01-13 北京诠道科技有限公司 一种锡槽顶盖砖及锡槽顶盖
CN204981603U (zh) * 2015-07-28 2016-01-20 北京诠道科技有限公司 用于浮法玻璃生产线锡槽的电加热系统
CN204981598U (zh) * 2015-07-28 2016-01-20 北京诠道科技有限公司 浮法玻璃生产线锡槽顶盖

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109650919A (zh) * 2019-01-31 2019-04-19 河南中原特种耐火材料有限公司 一种用于制备锡槽底砖的骨料及其制备方法、锡槽底砖
CN110306716A (zh) * 2019-04-12 2019-10-08 深圳全景空间工业有限公司 一种用于装配式住宅的砖块及砖块墙
CN110306715A (zh) * 2019-04-12 2019-10-08 深圳全景空间工业有限公司 一种砖块墙
CN115448578A (zh) * 2022-09-16 2022-12-09 青岛融合新材料科技有限公司 用于浮法工艺锡槽的顶盖
CN115745378A (zh) * 2022-11-28 2023-03-07 蚌埠中光电科技有限公司 一种浮法玻璃锡槽顶盖
CN115745378B (zh) * 2022-11-28 2024-01-05 蚌埠中光电科技有限公司 一种浮法玻璃锡槽顶盖

Similar Documents

Publication Publication Date Title
WO2017012593A1 (zh) 一种锡槽顶盖砖和锡槽顶盖结构
CN103951157B (zh) 一种用于连续玄武岩纤维大规模生产的池窑及加热方法
KR20210041013A (ko) 유리 제조 공정에서 금속성 용기를 가열하기 위한 방법들
CN112556425A (zh) 热处理用中温箱式电阻炉及其温度控制系统
CN115159812A (zh) 一种电主熔较大规模节能玻璃熔窑
CN107828958A (zh) 焊后热处理支撑工具及焊后热处理支撑装置
CN208201171U (zh) 多晶硅铸锭炉顶侧加热器
CN110255868B (zh) 一种提高保护气体利用效率的浮法玻璃成型装置及成型方法
CN203768205U (zh) 一种用于连续玄武岩纤维大规模生产的池窑
CN203304546U (zh) 一种连铸中间包钢水加热装置
CN105780053A (zh) 一种以铝作为阴极的铝电解方法
CN204958711U (zh) 一种锡槽顶盖砖及锡槽顶盖
CN211999793U (zh) 高炉冷却壁
CN208151522U (zh) 密周期多晶硅铸锭炉侧加热器
CN105110608B (zh) 一种锡槽顶盖砖
CN204198576U (zh) 一种用于tft—lcd窑炉池壁固定和膨胀限位的砖结构
CN207570343U (zh) 熔分炉
CN108330537A (zh) 一种密周期多晶硅铸锭炉侧加热器
CN101956216A (zh) 异型阴极结构铝电解槽焙烧方法
CN208279322U (zh) 艾奇逊石墨炉
CN213327932U (zh) 加热器和铸锭设备
CN105174695B (zh) 用于浮法玻璃生产线锡槽的电加热系统
CN204981598U (zh) 浮法玻璃生产线锡槽顶盖
CN210945859U (zh) 一种多功能的铸锭炉
CN209692361U (zh) 一种水冷散热型静止无功发生器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827284

Country of ref document: EP

Kind code of ref document: A1