WO2017012587A1 - 一种设备到设备通信方法及装置 - Google Patents

一种设备到设备通信方法及装置 Download PDF

Info

Publication number
WO2017012587A1
WO2017012587A1 PCT/CN2016/091042 CN2016091042W WO2017012587A1 WO 2017012587 A1 WO2017012587 A1 WO 2017012587A1 CN 2016091042 W CN2016091042 W CN 2016091042W WO 2017012587 A1 WO2017012587 A1 WO 2017012587A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power value
path loss
parameter
control signaling
Prior art date
Application number
PCT/CN2016/091042
Other languages
English (en)
French (fr)
Inventor
贺海港
吴栓栓
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017012587A1 publication Critical patent/WO2017012587A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/08Closed loop power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/10Open loop power control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This paper relates to the field of device-to-device communication, especially a device-to-device communication method and device.
  • the D2D communication may also be referred to as a Proximity Service (ProSe), that is, the first user equipment (User Equipment, UE for short) located in the same cell and the second UE directly communicate data through the air interface without passing through the base station. And forwarding of the core network.
  • ProSe Proximity Service
  • the first UE or the second UE may detect a Physical Hybrid ARQ Indicator Channel (PHICH) channel that the base station sends to the third UE.
  • the third UE is a UE that performs data communication with the base station, and if a Negative ACKnowledgement (NACK) is detected, it is determined that the D2D communication between the first UE and the second UE causes interference to the cellular communication of the base station. , thereby reducing the D2D transmission power, and if no NACK is detected, the D2D transmission power is boosted.
  • NACK Negative ACKnowledgement
  • the first UE or the second UE cannot determine whether the NACK sent by the base station is caused by its own D2D communication, thereby causing unnecessary D2D communication power between the first UE and the second UE.
  • the reduction which in turn reduces the performance of D2D communication.
  • the embodiment of the invention provides a device-to-device communication method and device, which can avoid unnecessary reduction of D2D communication power between terminals and improve performance of D2D communication.
  • An embodiment of the present invention provides a device-to-device communication method, including: a device-to-device communication method, including:
  • the first user equipment UE obtains a first power value, where the first power value is a maximum standard power value of the first UE that sends D2D data, and the maximum standard power value is that the first UE adopts the maximum standard power.
  • the value of the first UE received by the base station is less than or equal to a preset first target power value when the value is sent by the D2D data;
  • the first UE acquires a second power value, where the second power value is a power value of device-to-device D2D communication between the first UE and the second UE;
  • the first UE compares the first power value, the second power value, and the third power value on the same carrier, and determines that the minimum power is not causing interference to the cellular communication of the base station, where the A UE sends an output power of data to the second UE, where the third power value is a maximum transmit power value of the first UE on the carrier.
  • the embodiment of the invention further provides a device-to-device communication device, comprising:
  • a first acquiring module configured to obtain a first power value, where the first power value is a maximum standard power value of the first UE that sends D2D data, where the maximum standard power value is the maximum used by the first UE
  • the base station receives the power value of the first UE is less than or equal to a preset first target power value
  • a second acquiring module configured to acquire a second power value, where the second power value is a power value of device-to-device D2D communication between the first UE and the second UE;
  • a determining module configured to compare the first power value, the second power value, and the third power value on the same carrier, and determine that the minimum power is in a situation that does not cause interference to the cellular communication of the base station, where the A UE sends an output power of data to the second UE, where the third power value is a maximum transmit power value of the first UE on the carrier.
  • the embodiment of the present invention includes: the first user equipment UE acquires a first power value, where the first power value is a maximum standard power value of the first UE that sends D2D data, and the maximum standard power value When the first UE sends the D2D data by using the maximum standard power value, the power value of the first UE received by the base station is less than or equal to a preset first target power value; and the first UE acquires the second power.
  • the second power value is a power value of device-to-device D2D communication between the first UE and the second UE, and the first UE uses the first power value and the second power on the same carrier Value and third
  • the power value is compared, and the minimum power is determined to be: when the interference is not caused to the cellular communication of the base station, the first UE sends the output power of the data to the second UE, where the third power value is the first UE.
  • the determination of the output power of the data sent by the first UE to the second UE is implemented, so that the interference power of the first UE to the base station does not exceed the preset first target power value without affecting the performance of the D2D communication.
  • FIG. 1 is a schematic flow chart of an embodiment of a device communication method according to the present invention.
  • FIG. 2 is a schematic flowchart of a second embodiment of a device communication method according to the present invention.
  • FIG. 3 is a schematic flowchart of a third embodiment of a device communication method according to the present invention.
  • FIG. 4 is a schematic flowchart diagram of a fourth embodiment of a device communication method according to the present invention.
  • FIG. 5 is a schematic flowchart diagram of a fifth embodiment of a device communication method according to the present invention.
  • FIG. 6 is a schematic flowchart of a sixth embodiment of a device communication method according to the present invention.
  • FIG. 7 is a schematic flowchart of a seventh embodiment of a device communication method according to the present invention.
  • FIG. 8 is a schematic structural diagram of an apparatus communication apparatus according to an embodiment of the present invention.
  • the device-to-device communication method provided by the embodiment of the present invention may be specifically applied to the D2D communication between the first UE and the second UE, where the first UE or the second UE may be any terminal device such as a mobile phone terminal or a smart computer.
  • the device-to-device communication method provided in this embodiment may be specifically implemented by a device-to-device communication device, where the device-to-device communication device may be integrated in a terminal device or separately configured, wherein the device-to-device communication device may adopt software and / or hardware way to achieve.
  • the device-to-device communication method and apparatus provided in this embodiment are described in detail below.
  • FIG. 1 is a schematic flowchart of a device communication method according to an embodiment of the present invention.
  • a device communication method provided by an embodiment of the present invention includes:
  • Step 101 The first user equipment UE acquires a first power value.
  • the applicable scenario in this embodiment is that the first UE performs D2D communication with the second UE, that is, the link between the first UE and the second UE is a signal link, and the base station can also receive data sent by the first UE, that is, The link between the base station and the first UE is an interference link.
  • the transmit power of the D2D is determined according to the link quality of the signal link and the interference link.
  • the first power value is a maximum standard power value of the first UE that sends D2D data, where the maximum standard power value includes when the first UE sends the D2D data by using the maximum standard power value.
  • the power value of the first UE received by the base station is less than or equal to a preset first target power value, where the first target power value may be configured by the base station RRC signaling.
  • the signal transmitted by the first UE is attenuated by the path loss and arrives at the base station, if the signal strength received by the base station is greater than the first target power value configured by the base station RRC signaling. It is considered that UE1 causes strong interference to the base station, that is, the power value of the first UE transmitting data is greater than the maximum standard power value.
  • Obtaining the first power value for the first user equipment UE includes the following implementation manners:
  • the first UE directly acquires a first power value sent by the base station. and / or
  • the first UE acquires the first type of open loop power control signaling sent by the base station, and the first type of open loop power control signaling includes any one of the following or a combination thereof: the first target power value a first path loss compensation factor parameter; the first UE acquires a reference signal sent by the base station, and determines a first path loss according to the power of the reference signal, where the first path loss includes the first UE and the base station Between the uplink path loss, the reference signal includes at least one or any combination of the following: a common reference signal CRS, a channel state information reference signal CSI-RS; and the first UE according to the first type of open loop power value Control signaling and the first path loss determine a first power value.
  • the first target power value a first path loss compensation factor parameter
  • the first UE acquires a reference signal sent by the base station, and determines a first path loss according to the power of the reference signal, where the first path loss includes the first UE and the base station
  • the reference signal includes at least one or any combination of
  • the method for determining, by the first UE, the first path loss according to the power of the reference signal sent by the obtained base station includes: acquiring, by the first UE, the transmit power of the reference signal from the base station before acquiring the reference signal sent by the base station
  • the received power of the reference signal may be obtained after the first UE receives the reference signal, where the difference between the transmit power and the received power is a path loss.
  • the first UE determines the first power value according to the first type of open loop power control signaling and the first path loss, including:
  • the first type of open loop power control signaling does not include the first target power value
  • the first power value of the first UE on the carrier c the subframe i, P Celluar, c (i) for:
  • P Celluar,c (i) 10log10(M D2D,c (i))+P O_Celluar,c + ⁇ Celluar,c ⁇ PL Celluar,c , where P O_Celluar,c is a predefined fixed value.
  • Step 102 The first UE acquires a second power value.
  • the second power value in this embodiment is: a power value of the device-to-device D2D communication between the first UE and the second UE.
  • Obtaining the second power value for the first UE includes the following implementation manners:
  • the first UE directly acquires a second power value sent by the base station or the second UE. and / or
  • the first UE acquires the second type of open loop power control signaling sent by the base station, and the second type of open loop power control signaling includes any one of the following or a combination thereof: the second target power parameter And a second path loss compensation factor parameter; the first UE acquires parameter response information sent by the second UE, and determines a second path loss according to the power of the parameter response information, where the second path loss includes the first A path loss of the D2D communication link between the UE and the second UE, where the parameter response information includes at least one of the following or a combination thereof: a channel sounding reference signal SRS, a demodulation reference signal No. DMRS, acknowledgement character ACK, negative acknowledgement NACK; the first UE determines a second power value according to the second type of open loop power control signaling and the second path loss.
  • the second path loss includes the first A path loss of the D2D communication link between the UE and the second UE
  • the parameter response information includes at least one of the following or a combination thereof: a channel
  • the method for determining, by the first UE, the second path loss according to the obtained power of the parameter response information sent by the second UE includes: the first UE may obtain the parameter response information sent by the second UE from the second UE Acquiring the transmit power of the parameter response information, and the received power of the parameter response information is obtained after the first UE receives the parameter response information, where the difference between the transmit power and the received power is the second path loss.
  • the first UE determines the second power value according to the second type of open loop power control signaling and the second path loss, including:
  • the first UE is according to the following formula:
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c ,
  • the second power value P D2D,c of the first UE on the carrier c and the subframe i i): P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c +PL D2D,c ;
  • the second type of open loop power control signaling does not include the second target power parameter
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c , where P O_D2D,c is a predefined fixed value.
  • a third implementation manner after the acquiring, by the first UE, the second type of open loop power control signaling sent by the base station, the method further includes:
  • the first UE acquires a second type of closed loop power control signaling, and the second type of closed loop power control signaling includes any one or a combination of the following: a first parameter, a second parameter, and the first parameter is a closed loop power control adjustment amount configured by the first UE, where the second parameter is an amount related to the D2D MCS configured by the first UE;
  • the first UE determines a second power value according to the second type of open loop power control signaling, the second path loss, and the second type of closed loop power control signaling.
  • the first UE determines the second power value according to the second type of open loop power control signaling, the second path loss, and the second type of closed loop power control signaling, including:
  • the second power value P D2D,c (i) wherein the second target power parameter P O_D2D,c is the D2D target received power in the D2D link on the carrier c, and the ⁇ D2D,c is the second path loss compensation factor.
  • PL D2D,c is a path loss estimation value of a unicast D2D link between the first UE and the second UE, and the second parameter ⁇ TF_D2D,c (i) is an amount related to the D2D MCS,
  • the first parameter f D2D,c (i) is the closed loop power control adjustment amount.
  • Step 103 The first UE compares the first power value, the second power value, and the third power value on the same carrier, and determines that the minimum power is not causing interference to the cellular communication of the base station.
  • the first UE transmits the output power of the data to the second UE.
  • the third power value is a maximum transmit power value of the first UE on the carrier.
  • the output power of the UE transmitting data to the second UE includes the following implementation manners:
  • the first UE compares the first power value, the second power value, and the third power value, and determines that the minimum power is not causing interference to the cellular communication of the base station, where the A UE transmits the output power of the data to the second UE. and / or
  • the first UE compares the first power value with the second power value, and determines that the minimum value is the first output power; the first UE is configured according to the first output power
  • the second type of closed loop power control signaling determines a second output power; the first UE compares the second output power with a third power value to determine a minimum value as output power.
  • the determining, by the first UE, the second output power according to the first output power and the second type of closed loop power control signaling may include:
  • the first UE sums the first output power and the first parameter to obtain the second Output power
  • the first UE sums the first output power and the second parameter to obtain the second output power
  • the first UE sums the first output power, the first parameter, and the second parameter to obtain the second output power.
  • the first user equipment UE acquires a first power value, where the first power value is a maximum standard power value of the first UE that sends D2D data, and the maximum standard power value includes the first UE.
  • the first UE power value received by the base station is less than or equal to a preset first target power value;
  • the first UE acquires a second power value, the second power a value of the power value of the device-to-device D2D communication between the first UE and the second UE;
  • the first UE compares the first power value, the second power value, and the third power value to determine a minimum
  • the power is the output power of the data sent by the first UE to the second UE, where the power is not caused by the cellular communication of the base station, where the third power value is the maximum of the first UE on the carrier.
  • the determination of the output power of the data sent by the first UE to the second UE is implemented, so that the interference power of the first UE to the base station does not exceed the preset first target power value without affecting the performance of the D2D communication.
  • the device communication method provided by the embodiment of the present invention includes:
  • Step 201 The first UE, that is, the UE1, acquires the first type of open loop power control signaling sent by the base station, where the first type of open loop power control signaling includes a first target power value.
  • Step 202 The first UE acquires a reference signal sent by the base station, and determines a first path loss according to the power of the reference signal.
  • the first path loss includes an uplink path loss between the first UE and the base station, and the reference signal includes at least one or any combination of the following: a common reference signal CRS, a channel state information reference signal CSI-RS ;
  • Step 203 The first UE determines the first power value according to the first type of open loop power value control signaling and the first path loss.
  • Step 204 The first UE acquires a second type of open loop power control signaling sent by the base station, where the second type of open loop power control signaling includes a second target power parameter.
  • Step 205 The first UE acquires parameter response information sent by the second UE, and determines a second path loss according to the power of the parameter response information.
  • the second path loss includes a path loss of the D2D communication link between the first UE and the second UE, where the parameter response information includes at least one of the following or a combination thereof: channel sounding reference Signal SRS, demodulation reference signal DMRS, acknowledgement character ACK, negative acknowledgement NACK;
  • the parameter response information includes at least one of the following or a combination thereof: channel sounding reference Signal SRS, demodulation reference signal DMRS, acknowledgement character ACK, negative acknowledgement NACK;
  • Step 206 The first UE determines the second power value according to the second type of open loop power control signaling and the second path loss.
  • the first UE is according to the following formula:
  • the second power value P D2D,c (i) is obtained, wherein the second target power parameter P O_D2D,c is the D2D target received power in the D2D link on the carrier c.
  • PL D2D,c is the second path loss of the D2D communication link between the first UE and the second UE.
  • Step 207 The first UE compares the first power value, the second power value, and the third power value on the same carrier, and determines that the minimum power is not causing interference to the cellular communication of the base station. The first UE transmits the output power of the data to the second UE.
  • the third power value P CMAX,c (i) is the maximum transmit power of UE1 on carrier c.
  • determining an actual transmit power of the UE1 on the carrier c and the subframe i, that is, the output power is:
  • P D2D_Final,c (i) min(P CMAX,c (i),P Celluar,c (i),P D2D,c (i))
  • Step 208 The UE1 transmits control signaling or data or a discovery signal of the D2D link according to the output power P D2D_Final, c 0i).
  • the device communication method provided by the embodiment of the present invention includes:
  • Step 301 The first UE, that is, the UE1, acquires the first type of open loop power control signaling sent by the base station, where the first type of open loop power control signaling includes a first target power value and a first path loss compensation factor parameter.
  • Step 302 The first UE acquires a reference signal sent by the base station, and determines a first path loss according to the power of the reference signal.
  • the first path loss includes an uplink path loss between the first UE and the base station, and the reference signal includes at least one or any combination of the following: a common reference signal CRS, a channel state information reference signal CSI-RS ;
  • Step 303 The first UE determines the first power value according to the first type of open loop power value control signaling and the first path loss.
  • P Celluar,c (i) 10log 10 (M D2D,c (i))+P O_Celluar,c + ⁇ Celluar,c ⁇ PL Celluar,c ,
  • M D2D,c (i) denotes carrier c, subframe i, the number of resource blocks RB used for the transmission of the physical channel in the device-to-device communication
  • P O_Celluar, c represents the first target power value of the physical channel on the carrier c
  • ⁇ Celluar, c represents the carrier c
  • the first path loss compensation factor of the physical channel, PL celluar, c represents the first path loss
  • the physical channel includes: a physical downlink control channel PSCCH or PSSCH or a packet switched data channel PSDCH.
  • Step 304 The first UE acquires a second type of open loop power control signaling sent by the base station, where the second type of open loop power control signaling includes a second target power parameter and a second path loss compensation factor.
  • Step 305 The first UE acquires parameter response information sent by the second UE, and determines a second path loss according to the power of the parameter response information.
  • the second path loss includes a path loss of the D2D communication link between the first UE and the second UE, where the parameter response information includes at least one of the following or a combination thereof: channel sounding reference Signal SRS, demodulation reference signal DMRS, acknowledgement character ACK, negative acknowledgement NACK;
  • the parameter response information includes at least one of the following or a combination thereof: channel sounding reference Signal SRS, demodulation reference signal DMRS, acknowledgement character ACK, negative acknowledgement NACK;
  • Step 306 The first UE is configured according to the second type of open loop power control signaling and the second path loss. The second power value is determined.
  • the first UE is according to the following formula:
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c ,
  • Step 307 The first UE compares the first power value, the second power value, and the third power value on the same carrier, and determines that the minimum power is in a situation that does not cause interference to the cellular communication of the base station.
  • the first UE transmits the output power of the data to the second UE.
  • the third power value P CMAX,c (i) is the maximum transmit power of UE1 on carrier c.
  • determining an actual transmit power of the UE1 on the carrier c and the subframe i, that is, the output power is:
  • P D2D_Final,c (i) min(P CMAX,c (i),P Celluar,c (i),P D2D,c (i))
  • Step 308 The UE1 transmits control signaling or data or a discovery signal of the D2D link according to the output power P D2D_Final,c (i).
  • steps 304-306 and steps 301-303 are in no particular order.
  • FIG. 4 is a schematic flowchart of a fourth embodiment of a device communication method according to the present invention.
  • the device communication method provided by the embodiment of the present invention includes:
  • Step 401 The first UE, that is, the UE1, acquires the first type of open loop power control signaling sent by the base station, where the first type of open loop power control signaling includes a first target power value and a first path loss compensation factor parameter.
  • Step 402 The first UE acquires a reference signal sent by the base station, and determines a first path loss according to the power of the reference signal.
  • the first path loss includes an uplink path loss between the first UE and the base station, and the reference signal includes at least one or any combination of the following: a common reference signal CRS, a channel state information reference signal signal CSI- RS;
  • Step 403 The first UE controls signaling and the first path according to the first type of open loop power value. Loss, determine the first power value.
  • P Celluar,c (i) 10log 10 (M D2D,c (i))+P O_Celluar,c + ⁇ Celluar,c ⁇ PL Celluar,c ,
  • M D2D,c (i) denotes carrier c, subframe i, the number of resource blocks RB used for the transmission of the physical channel in the device-to-device communication
  • P O_Celluar, c represents the first target power value of the physical channel on the carrier c
  • ⁇ Celluar, c represents the carrier c
  • the first path loss compensation factor of the physical channel, PL celluar, c represents the first path loss
  • the physical channel includes: a physical downlink control channel PSCCH or PSSCH or a packet switched data channel PSDCH.
  • Step 404 The first UE acquires a second type of open loop power control signaling sent by the base station, where the second type of open loop power control signaling includes a second target power parameter and a second path loss compensation factor.
  • Step 405 The first UE acquires a second type of closed loop power control signaling.
  • the second type of closed loop power control signaling includes any one or a combination of the following: a first parameter, a second parameter, where the first parameter is a closed loop power control adjustment configured by the first UE.
  • the second parameter is an amount related to a Device to Device Modulation and Coding Scheme (D2D MCS) configured by the first UE.
  • D2D MCS Device to Device Modulation and Coding Scheme
  • the MCS determines the debug mode (such as QPSK, 16QAM, 64QAM) and the code rate (the code rate is high, and the redundancy bit ratio is low).
  • Step 406 The first UE acquires parameter response information sent by the second UE, and determines a second path loss according to the power of the parameter response information.
  • the second path loss includes a path loss of the D2D communication link between the first UE and the second UE, where the parameter response information includes at least one of the following or a combination thereof: channel sounding reference Signal SRS, demodulation reference signal DMRS, acknowledgement character ACK, negative acknowledgement NACK;
  • the parameter response information includes at least one of the following or a combination thereof: channel sounding reference Signal SRS, demodulation reference signal DMRS, acknowledgement character ACK, negative acknowledgement NACK;
  • Step 407 The first UE determines the second power value according to the second type of open loop power control signaling, the second path loss, and the second type of closed loop power control signaling.
  • the UE1 estimates the path loss PL D2D,c of the UE1 and the UE2 by measuring the SRS and/or the DMRS and/or the ACK/NACK transmitted by the UE2.
  • PL D2D, c UE1 transmission bandwidth M D2D, c (i)
  • UE1 used MCS level UE1 used MCS level
  • second type of open loop power control signaling UE1 used MCS level
  • second type of open loop power control signaling calculate UE1 in carrier c, sub The second power value on frame i that satisfies the D2D unicast communication signal strength requirement:
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c + ⁇ TF_D2D,c (i)+f D2D,c (i)
  • Step 408 The first UE compares the first power value, the second power value, and the third power value on the same carrier, and determines that the minimum power is not causing interference to the cellular communication of the base station.
  • the first UE transmits the output power of the data to the second UE.
  • the third power value P CMAX,c (i) is the maximum transmit power of UE1 on carrier c.
  • determining an actual transmit power of the UE1 on the carrier c and the subframe i, that is, the output power is:
  • P D2D_Final,c (i) mln(P CMAX,c (i),P Celluar,c (i),P D2D,c (i))
  • Step 409 The UE1 transmits control signaling or data or a discovery signal of the D2D link according to the output power P D2D_Final,c (i).
  • steps 404-407 and steps 401-403 are in no particular order.
  • FIG. 5 is a schematic flowchart of a fifth embodiment of a device communication method according to the present invention. As shown in FIG. 5, the device communication method provided by the embodiment of the present invention includes:
  • Step 501 The first UE, that is, the UE1, acquires the first type of open loop power control signaling and the second type of open loop power control signaling sent by the base station, and the first type of open loop power control signaling includes the target power parameter P O_Celluar , c and path loss compensation factor parameter ⁇ Celluar,c .
  • the second type of open loop power control signaling includes a target power parameter P O_D2D,c and a path loss compensation factor ⁇ D2D,c .
  • Step 502 The base station or the second UE configures a second type of closed loop power control signaling to the first UE, that is, the transmitting end UE1.
  • Step 503 The UE1 estimates the uplink path loss PL Celluar,c of the UE and the serving base station by measuring the CRS and/or the CSI-RS pilot transmitted by the serving base station.
  • the UE1 calculates the power that does not cause strong interference to the base station on the carrier c and the subframe i. Limit, the first power value:
  • P Celluar,c (i) 10log 10 (M D2D,c (i))+P O_Celluar,c + ⁇ Celluar,c ⁇ PL Celluar,c
  • Step 504 The UE1 calculates the UE1 according to the path loss PL D2D,c of the UE1 and the UE2, the transmission bandwidth M D2D,c (i) of the UE1, the second type of open loop power control signaling, and the second type of closed loop power control signaling.
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c +f D2D,c (i)
  • the path loss PL D2D,c of the UE1 and the UE2 is estimated by measuring SRS and/or DMRS and/or ACK/NACK transmitted by the UE2.
  • Step 505 The UE1 calculates the actual transmit power of the UE1 on the carrier c and the subframe i, that is, the output power value:
  • P D2D_Final,c (i) min(P CMAX,c (i),P Celluar,c (i),P D2D,c (i))
  • P CMAX,c (i) is the maximum transmit power of UE1 on carrier c.
  • Step 506 The UE1 transmits a control signaling or data or a discovery signal of the D2D link according to the output power value P D2D_Final,c (i).
  • steps 502 to 504 can be arbitrarily replaced.
  • FIG. 6 is a schematic flowchart of a sixth embodiment of a device communication method according to the present invention. As shown in FIG. 6, the device communication method provided by the embodiment of the present invention includes:
  • Step 601 The base station configures the first type of open loop power control parameters and the second type of open loop power control parameters by using RRC signaling, and sends RRC signaling through the air interface.
  • the first type of open loop power control signaling includes a target power parameter P O_Celluar, c and a path loss compensation factor parameter ⁇ Celluar,c .
  • the second type of open loop power control signaling includes a target power parameter P O_D2D,c and a path loss compensation factor ⁇ D2D,c .
  • Step 602 The base station or the second UE configures a second type of closed loop power control signaling for the first UE, that is, the transmitting end UE1.
  • Step 603 The UE1 estimates the uplink path loss PL Celluar,c of the UE and the serving base station by measuring the CRS and/or the CSI-RS pilot transmitted by the serving base station.
  • P Celluar,c (i) 10log 10 (M D2D,c (i))+P O_Celluar,c + ⁇ Celluar,c ⁇ PL Celluar,c
  • Step 604 The UE1 calculates, according to the path loss PL D2D,c of the UE1 and the UE2, the number of resource blocks corresponding to the transmission bandwidth of the UE1, M D2D,c (i), the MCS level transmitted by the UE1D2D, and the second type of open loop power control signaling.
  • the carrier 1 can satisfy the power requirement of the D2D unicast communication signal strength on the carrier c and the subframe i, that is, the second power value:
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c + ⁇ TF_ D2D,c (i)
  • the path loss PL D2D,c of the UE1 and the UE2 is estimated by measuring SRS and/or DMRS and/or ACK/NACK transmitted by the UE2.
  • Step 605 The UE1 calculates the actual transmit power of the UE1 on the carrier c and the subframe i, that is, the output power value:
  • P D2D_Final,c (i) min(P CMAX,c (i),P Celluar,c (i),P D2D,c (i))
  • P CMAX,c (i) is the maximum transmit power of UE1 on carrier c.
  • Step 606 The UE1 transmits a control signaling or data or a discovery signal of the D2D link according to the transmit power value P D2D_Final,c (i) calculated in step 5.
  • steps 602 to 604 can be arbitrarily replaced.
  • FIG. 7 is a schematic flowchart of a seventh embodiment of a device communication method according to the present invention.
  • the device communication method provided by the embodiment of the present invention includes:
  • Step 701 The base station configures the first type of open loop power control parameters and the second type of open loop power control parameters by using RRC signaling, and sends RRC signaling through the air interface.
  • the first type of open loop power control signaling includes a target power parameter P O_Celluar, c and a path loss compensation factor parameter ⁇ Celluar,c .
  • the second type of open loop power control signaling includes a target power parameter P O_D2D,c and a path loss compensation factor ⁇ D2D,c .
  • Step 702 The base station or the second UE, that is, the receiving end UE2, configures a second type of closed loop power control signaling to the first UE, that is, the transmitting end UE1.
  • Step 703 The UE1 estimates an uplink path loss PL Celluar,c of the UE and the serving base station by measuring a CRS and/or a CSI-RS pilot transmitted by the serving base station.
  • the UE1 calculates the power that does not cause strong interference to the base station on the carrier c and the subframe i. Limit, the first power value:
  • P Celluar,c (i) 10log 10 (M D2D,c (i))+P O_Celluar,c + ⁇ Celluar,c ⁇ PL Celluar,c
  • Step 704 The UE1 estimates the path loss PL D2D,c of the UE1 and the UE2 by measuring the SRS and/or DMRS and/or ACK/NACK transmitted by the UE2.
  • UE1 can calculate D2D unicast communication signal strength on carrier c and subframe i.
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c
  • Step 705 The UE1 calculates the actual transmit power of the UE1 on the carrier c and the subframe i, that is, the output power value:
  • P D2D_Final,c (i) min ⁇ P CMAX,c (i),min[P Celluar,c (i),P D2D,c (i)]+ ⁇ TF_D2D,c (i)+f D2D,c ( i) ⁇
  • f D2D,c (i) is a closed-loop correction function (which may be cumulative correction or absolute correction), the value of which is related to the TPC command, ⁇ TF_D2D,c (i) is determined by the MCS of UE1, P CMAX,c (i) Is the maximum transmit power of UE1 on carrier c.
  • Step 706 The UE1 outputs a power value P D2D_Final,c (i), and transmits a control signaling or data or a discovery signal of the D2D link.
  • steps 702 to 704 can be arbitrarily replaced.
  • a device communication method provided by an embodiment of the present invention includes:
  • Step 801 The base station configures the first type of open loop power control parameters and the second type of open loop power control parameters by using RRC signaling, and sends RRC signaling through the air interface.
  • the first type of open loop power control signaling includes a target power parameter P O_Celluar, c and a path loss compensation factor parameter ⁇ Celluar,c .
  • the second type of open loop power control signaling includes target power parameters P O_D2D,c and path loss compensation factors ⁇ D2D,c
  • Step 802 The base station or the second UE, that is, the receiving end UE2, configures a second type of closed loop power control signaling to the transmitting end UE1.
  • Step 803 The UE1 estimates the uplink path loss PL Ceuuar,c of the UE and the serving base station by measuring the CRS and/or the CSI-RS pilot transmitted by the serving base station.
  • the UE1 calculates the power that does not cause strong interference to the base station on the carrier c and the subframe i. Limit, the first power value:
  • P Celluar,c (i) 10log 10 (M D2D,c (i))+P O_Celluar,c + ⁇ Celluar,c ⁇ PL Celluar,c
  • Step 804 The UE1 estimates the path loss PL D2D,c of the UE1 and the UE2 by measuring the SRS and/or the DMRS and/or the ACK/NACK transmitted by the UE2.
  • UE1 can calculate D2D unicast communication signal strength on carrier c and subframe i.
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c
  • Step 805 The UE1 calculates the actual transmit power of the UE1 on the carrier c and the subframe i, that is, the output power value:
  • P D2D_Final,c (i) min ⁇ P CMAx,c (i),min[P Celluar,c (i),P D2D,c (i)]+ ⁇ TF_D2D,c (i) ⁇
  • ⁇ TF_D2D,c (i) is determined by the MCS of UE1
  • P CMAX,c (i) is the maximum transmit power of UE1 on carrier c.
  • Step 806 The UE1 outputs a power value P D2D_Final,c (i), and transmits control signaling or data or a discovery signal of the D2D link.
  • steps 802 to 804 can be arbitrarily replaced.
  • the device communication method provided by the present invention is the same as the basic flow shown in FIG. 7. The difference is that the corresponding 701-706 corresponds to 901-906 of the embodiment, and the calculation method of obtaining the output power value in step 706 is different from step 906. .
  • a device communication method provided by an embodiment of the present invention includes:
  • Step 901 The base station configures the first type of open loop power control parameters and the second type of open loop power control parameters by using RRC signaling, and sends RRC signaling through the air interface.
  • the first type of open loop power control signaling includes a target power parameter P O_Celluar, c and a path loss compensation factor parameter ⁇ Celluar,c .
  • the second type of open loop power control signaling includes a target power parameter P O_D2D,c and a path loss compensation factor ⁇ D2D,c .
  • Step 902 The base station or the second UE, that is, the receiving end UE2, configures a second type of closed loop power control signaling to the first UE, that is, the transmitting end UE1.
  • Step 903 The UE1 estimates an uplink path loss PL Celluar,c of the UE and the serving base station by measuring a CRS and/or a CSI-RS pilot transmitted by the serving base station.
  • the UE1 calculates the power that does not cause strong interference to the base station on the carrier c and the subframe i. Limits:
  • P Celluar,c (i) 10log 10 (M D2D,c (i))+P O_Celluar,c + ⁇ Celluar,c ⁇ PL Celluar,c
  • Step 904 The UE1 estimates the path loss PL D2D,c of the UE1 and the UE2 by measuring the SRS and/or DMRS and/or ACK/NACK transmitted by the UE2.
  • UE1 can calculate D2D unicast communication signal strength on carrier c and subframe i. Required power:
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c
  • Step 905 The UE1 calculates the actual transmit power of the UE1 on the carrier c and the subframe i, that is, the output power value:
  • P D2D_Final,c (i) min ⁇ P CMAx,c (i),min[P Celluar,c (i),P D2D,c (i)]+f D2D,c (i) ⁇
  • f D2D,c (i) is a closed-loop correction function (which may be an accumulation correction or an absolute correction) whose value is related to the TPC command
  • P CMAX,c (i) is the maximum transmission power of UE1 on carrier c.
  • Step 906 The UE1 transmits control signaling or data or a discovery signal of the D2D link according to the output power value P D2D_Final,c (i).
  • steps 902 to 904 can be arbitrarily replaced.
  • FIG. 8 is a schematic structural diagram of a device communication device according to an embodiment of the present invention.
  • the device-to-device communication device includes: a first obtaining module 101, a second obtaining module 102, and a determining module. Block 103. among them,
  • the first obtaining module 101 is configured to acquire a first power value, where the first UE sends a maximum standard power value of the D2D data, where the maximum standard power value includes the first UE sending the D2D data by using the maximum standard power value.
  • the power value of the first UE received by the base station is less than or equal to a preset first target power value;
  • the second obtaining module 102 is configured to acquire a second power value, where the second power value is a power value of device-to-device D2D communication between the first UE and the second UE;
  • the determining module 103 is configured to compare the first power value, the second power value, and the third power value on the same carrier, and determine that the minimum power is not causing interference to the cellular communication of the base station, The first UE sends the output power of the data to the second UE, where the third power value is a maximum transmit power value of the first UE on the carrier.
  • the first user equipment UE acquires a first power value, where the first power value is a maximum standard power value of the first UE that sends D2D data, and the maximum standard power value includes the first UE.
  • the power value of the first UE received by the base station is less than or equal to a preset first target power value; the first UE acquires a second power value, and the second The power value is a power value of the device-to-device D2D communication between the first UE and the second UE; the first UE, the first power value, the second power value, and the third power value on the same carrier Comparing, determining that the minimum power is that the first UE does not cause interference to the cellular communication of the base station, the first UE sends the output power of the data to the second UE, and the third power value is that the first UE is in the The maximum transmit power value on the carrier.
  • the first acquiring module 101 is configured to acquire, by the first UE, a first type of open loop power control signaling sent by the base station, where the first type of open loop power control signal is The command includes: any one of the following or a combination thereof: a first target power value, a first path loss compensation factor parameter; acquiring a reference signal sent by the base station, and determining a first path loss according to a power of the reference signal, the first path loss Including an uplink path loss between the first UE and the base station, the reference signal includes at least one or any combination of the following: a common reference signal CRS, a channel state information reference signal CSI-RS; Open loop power control signaling and the first path loss, determining the first work Rate value.
  • the first acquiring module is configured to: determine, according to the obtained power of the reference signal sent by the base station, the first path loss by: acquiring the reference signal from the base station before acquiring the reference signal sent by the base station The received power of the reference signal is obtained after receiving the reference signal, and the difference between the transmit power and the received power is a path loss.
  • the first type of open loop power control signaling does not include the first target power value
  • the first power value of the first UE on the carrier c the subframe i, P Celluar, c (i) for:
  • P Celluar,c (i) 10log10(M D2D,c (i))+P O_Celluar,c + ⁇ Celluar,c ⁇ PL Celluar,c , where P O_Celluar,c is a predefined fixed value.
  • the second acquiring module 102 is configured to acquire a second type of open loop power control signaling sent by the base station, where the second type of open loop power control signaling includes the following Any one or a combination thereof: a second target power parameter, a second path loss compensation factor parameter; acquiring parameter response information sent by the second UE, and determining a second path loss according to power of the parameter response information, where
  • the second path loss includes a path loss of the D2D communication link between the first UE and the second UE, and the parameter response information includes at least one of the following or a combination thereof: a channel sounding reference signal SRS, a demodulation reference signal DMRS, acknowledgment character ACK, negative acknowledgment NACK; determining a second power value according to the second type of open loop power control signaling and the second path loss.
  • the second obtaining module is configured to determine, according to the acquired power of the parameter response information sent by the second UE, the second path loss: before acquiring the parameter response information sent by the second UE, from the second UE Obtaining a transmission power of the parameter response information, when receiving the The received power of the parameter response information may be obtained after the parameter response information, and the difference between the transmit power and the received power is the second path loss.
  • the second obtaining module 102 is set according to the following formula:
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c ,
  • the second power value P D2D,c of the first UE on the carrier c and the subframe i i): P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c +PL D2D,c ;
  • the second type of open loop power control signaling does not include the second target power parameter
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c , where P O_D2D,c is a predefined fixed value.
  • the second acquiring module 102 is further configured to acquire a second type of closed loop power control signaling, where the second type of closed loop power control signaling includes any one of the following or Combining: a first parameter, a second parameter, the first parameter is a closed loop power control adjustment amount configured by the first UE, and the second parameter is an amount related to the D2D MCS configured by the first UE;
  • the second type of open loop power control signaling, the second path loss, and the second type of closed loop power control signaling determine a second power value.
  • the second obtaining module 102 is set according to the following formula:
  • P D2D,c (i) 10log 10 (M D2D,c (i))+P O_D2D,c + ⁇ D2D,c ⁇ PL D2D,c + ⁇ TF_D2D,c (i)+f D2D,c (i)
  • the second power value P D2D,c (i) wherein the second target power parameter P O_D2D,c is the D2D target received power in the D2D link on the carrier c, and the ⁇ D2D,c is the second path loss compensation factor.
  • PL D2D,c is a path loss estimation value of a unicast D2D link between the first UE and the second UE, and the second parameter ⁇ TF_D2D,c (i) is a device-to-device modulation and coding mode D2D
  • the MCS related quantity, the first parameter f D2D,c (i) is a closed loop power control adjustment amount.
  • the determining module 103 is configured to compare the first power value and the second power value, and determine that the minimum value is the first output power;
  • the first output power and the second type of closed loop power control signaling determine a second output power; compare the second output power with the third power value to determine a minimum value as an output power.
  • the determining module 103 is configured to sum the first output power and the first parameter to obtain the second output power; or And summing the first output power with the second parameter to obtain the second output power; or, summing the first output power, the first parameter, and the second parameter to obtain the second Output Power.
  • the determination of the output power of the data sent by the first UE to the second UE is implemented, so that the interference power of the first UE to the base station does not exceed the preset number without affecting the performance of the D2D communication.
  • a target power value is implemented.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the foregoing technical solution ensures that the interference power of the first UE to the base station does not exceed the preset first target power value without affecting the performance of the D2D communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种设备到设备通信方法及装置。该设备到设备通信方法,包括:第一用户设备UE获取第一功率值,第一功率值为第一UE发送D2D数据的最大标准功率值;第一UE获取第二功率值,第二功率值为第一UE与第二UE进行设备到设备D2D通信的功率值;第一UE将相同载波上的第一功率值、第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,第一UE向第二UE发送数据的输出功率,第三功率值为所述第一UE在所述载波上的最大发射功率值。实现了第一UE向第二UE发送数据的输出功率的确定,进而在不影响D2D通信性能的情况下,保证第一UE对基站的干扰功率不会超过预设的第一目标功率值。

Description

一种设备到设备通信方法及装置 技术领域
本文涉及设备到设备通信领域,尤指一种设备到设备通信方法及装置。
背景技术
随着移动通信业务的多样化发展,设备到设备(Device-to-Device,简称D2D)通信受到广泛关注。D2D通信也可称之为邻近服务(Proximity Service,简称ProSe),即位于同一个蜂窝小区的第一用户设备(User Equipment,简称UE)和第二UE直接通过空口进行数据通信,而不经过基站和核心网的转发。
相关技术中,在第一UE与第二UE进行D2D通信时,第一UE或第二UE可以检测基站发送给第三UE的物理混合自动重传指示信道(Physical Hybrid ARQ Indicator Channel,PHICH)信道,该第三UE为与基站进行数据通信的UE,若检测到否定性确认(Negative ACKnowledgement,简称NACK),则确定第一UE与第二UE之间的D2D通信对基站的蜂窝通信造成了干扰,从而降低D2D发送功率,如没有检测到NACK,则提升D2D发送功率。
然而,在相关技术的实现的过程中,第一UE或第二UE无法确定基站发送的NACK,是否是由于自身D2D通信造成的,从而导致第一UE与第二UE之间D2D通信功率不必要的降低,进而降低了D2D通信的性能。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种设备到设备通信方法及装置,能够避免终端之间D2D通信功率不必要的降低,提高D2D通信的性能。
本发明实施例提供了一种设备到设备通信方法,包括:一种设备到设备通信方法,包括:
第一用户设备UE获取第一功率值,所述第一功率值为所述第一UE发送D2D数据的最大标准功率值,所述最大标准功率值为所述第一UE采用所述最大标准功率值发送D2D数据时,基站接收的所述第一UE的功率值小于或等于预设的第一目标功率值;
所述第一UE获取第二功率值,所述第二功率值为所述第一UE与第二UE进行设备到设备D2D通信的功率值;
所述第一UE将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率,所述第三功率值为所述第一UE在所述载波上的最大发射功率值。
本发明实施例还提供了一种设备到设备通信装置,包括:
第一获取模块,设置为获取第一功率值,所述第一功率值为所述第一UE发送D2D数据的最大标准功率值,所述最大标准功率值为所述第一UE采用所述最大标准功率值发送D2D数据时,基站接收所述第一UE的功率值小于或等于预设的第一目标功率值;
第二获取模块,设置为获取第二功率值,所述第二功率值为所述第一UE与第二UE进行设备到设备D2D通信的功率值;
确定模块,设置为将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率,所述第三功率值为所述第一UE在所述载波上的最大发射功率值。与相关技术相比,本发明实施例包括,第一用户设备UE获取第一功率值,所述第一功率值为所述第一UE发送D2D数据的最大标准功率值,所述最大标准功率值包括所述第一UE采用所述最大标准功率值发送D2D数据时,基站接收的所述第一UE的功率值小于或等于预设的第一目标功率值;所述第一UE获取第二功率值,所述第二功率值为所述第一UE与第二UE进行设备到设备D2D通信的功率值;所述第一UE将相同载波上的所述第一功率值、所述第二功率值和第三 功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率,所述第三功率值为所述第一UE在所述载波上的最大发射功率值。实现了第一UE向第二UE发送数据的输出功率的确定,进而在不影响D2D通信性能的情况下,保证第一UE对基站的干扰功率不会超过预设的第一目标功率值。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明设备通信方法一实施例的流程示意图;
图2为本发明设备通信方法二实施例的流程示意图;
图3为本发明设备通信方法三实施例的流程示意图;
图4为本发明设备通信方法四实施例的流程示意图;
图5为本发明设备通信方法五实施例的流程示意图;
图6为本发明设备通信方法六实施例的流程示意图;
图7为本发明设备通信方法七实施例的流程示意图;
图8为本发明设备通信装置一实施例的结构示意图。
本发明的实施方式
下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本发明实施例提供的设备到设备通信方法具体可以应用于第一UE与第二UE进行D2D通信时,其中,第一UE或第二UE可以是手机终端或智能电脑等任何终端设备。本实施例提供的设备到设备通信方法具体可以通过设备到设备通信装置来执行,该设备到设备通信装置可以集成在终端设备中,或者单独设置,其中,该设备到设备通信装置可以采用软件和/或硬件的方式来实现。以下对本实施例提供的设备到设备通信方法及装置进行详细地说明。
图1为本发明设备通信方法一实施例的流程示意图,如图1所示,本发明实施例提供的设备通信方法,包括:
步骤101、第一用户设备UE获取第一功率值。
本实施例的适用场景为:第一UE与第二UE进行D2D通信,即第一UE与第二UE之间的链路为信号链路,同时基站也可以接收第一UE发送的数据,即基站与第一UE之间的链路为干扰链路。本实施例根据信号链路和干扰链路的链路质量确定D2D的发射功率。
在本实施例中,所述第一功率值为所述第一UE发送D2D数据的最大标准功率值,所述最大标准功率值包括所述第一UE采用所述最大标准功率值发送D2D数据时,基站接收的所述第一UE的功率值小于或等于预设的第一目标功率值,所述第一目标功率值可由基站RRC信令配置。举例来讲,在第一UE与第二UE2通信的场景下,第一UE发射的信号经过路损衰减后到达基站,如果基站接收的信号强度大于基站RRC信令所配置的第一目标功率值,则认为UE1对基站造成了强干扰,也就是说第一UE发射数据的功率值大于最大标准功率值。
对于第一用户设备UE获取第一功率值包括以下实现方式:
第一种实现方式,所述第一UE直接获取基站发送的第一功率值。和/或
第二种实现方式,所述第一UE获取基站发送的第一类开环功率控制信令,所述第一类开环功率控制信令包括以下任意一种或其组合:第一目标功率值、第一路损补偿因子参数;所述第一UE获取基站发送的参考信号,根据所述参考信号的功率确定第一路损,所述第一路损包括所述第一UE与所述基站之间的上行路损,所述参考信号包括以下的至少一种或任意组合:公共参考信号CRS、信道状态信息参考信号CSI-RS;所述第一UE根据所述第一类开环功率值控制信令和所述第一路损,确定第一功率值。
其中,所述第一UE根据获取的基站发送的参考信号的功率确定第一路损的方法包括:第一UE在获取到基站发送的参考信号之前可从基站处获取所述参考信号的发送功率,当第一UE接收到所述参考信号后可获得所述参考信号的接收功率,所述发送功率与接收功率的差值即为路损。
举例来讲,所述第一UE根据所述第一类开环功率控制信令和所述第一路损,确定第一功率值,包括:
所述第一UE根据PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c,获得所述第一UE在载波c、子帧i上的所述第一功率值PCelluar,c(i),其中,MD2D,C(i)表示载波c、子帧i上,设备到设备通信中物理信道的传输所使用的资源块RB数目,PO_Celluar,c表示在载波c上所述物理信道的目标接收功率,即第一目标功率值,αCelluar,c表示载波c上所述物理信道的第一路损补偿因子,PLcelluar,c表示第一路损,所述物理信道包括:物理边路控制信道(Physical Sidelink Control Channel,简称PSCCH)或物理边路共享信道(Physical Sidelink Shared Channel,简称PSSCH)或物理边路发现信道(Physical Sidelink Discovery Channel,简称PSDCH)。
可选的,当第一类开环功率控制信令不包括第一路损补偿因子参数时,所述第一UE在载波c、子帧i上的所述第一功率值PCelluar,c(i)为:PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,c+PLCelluar,c
可选的,当第一类开环功率控制信令不包括第一目标功率值时,所述第一UE在载波c、子帧i上的所述第一功率值PCelluar,c(i)为:
PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c,其中,PO_Celluar,c为预定义的固定值。
步骤102、第一UE获取第二功率值。
本实施例中的第二功率值为:所述第一UE与第二UE进行设备到设备D2D通信的功率值。
对于第一UE获取第二功率值包括以下实现方式:
第一种实现方式,第一UE直接获取基站或第二UE发送的第二功率值。和/或
第二种实现方式,所述第一UE获取基站发送的第二类开环功率控制信令,所述第二类开环功率控制信令包括以下任意一种或其组合:第二目标功率参数、第二路损补偿因子参数;所述第一UE获取所述第二UE发送的参数响应信息,根据所述参数响应信息的功率确定第二路损,所述第二路损包括所述第一UE与第二UE之间进行D2D通信链路的路损,所述参数响应信息包括以下的至少任意一种或其组合:信道探测参考信号SRS、解调参考信 号DMRS、确认字符ACK、否定应答NACK;所述第一UE根据所述第二类开环功率控制信令和所述第二路损,确定第二功率值。
其中,所述第一UE根据获取的第二UE发送的参数响应信息的功率确定第二路损的方法包括:第一UE在获取到第二UE发送的参数响应信息之前可从第二UE处获取所述参数响应信息的发送功率,当第一UE接收到所述参数响应信息后可获得所述参数响应信息的接收功率,所述发送功率与接收功率的差值即为第二路损。
举例来讲,所述第一UE根据所述第二类开环功率控制信令和所述第二路损,确定第二功率值,包括:
所述第一UE根据以下公式:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,c
获得所述第二功率值PD2D,c(i),其中,第二目标功率参数PO_D2D,c是载波c上D2D链路中的D2D目标接收功率,αD2D,c是第二路损补偿因子。PLD2D,c是所述第一UE与所述第二UE之间D2D通信链路的所述第二路损。
可选的,当第二类开环功率控制信令不包括第二路损补偿因子参数时,所述第一UE在载波c、子帧i上的所述第二功率值PD2D,c(i):PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,c+PLD2D,c
可选的,当第二类开环功率控制信令不包括第二目标功率参数时,所述第一UE在载波c、子帧i上的所述第二功率值PD2D,c(i):
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,c,其中,PO_D2D,c为预定义的固定值。
和/或,
第三种实现方式,在上述第二种实现方式的基础上,所述第一UE获取基站发送的第二类开环功率控制信令之后,还包括:
所述第一UE获取第二类闭环功率控制信令,所述第二类闭环功率控制信令包括以下任意一种或其组合:第一参数、第二参数,所述第一参数为所述第一UE配置的闭环功率控制调整量,所述第二参数为所述第一UE配置的与D2D MCS相关的量;
所述第一UE根据所述第二类开环功率控制信令、所述第二路损和所述第二类闭环功率控制信令,确定第二功率值。
可选的,所述第一UE根据所述第二类开环功率控制信令、所述第二路损和所述第二类闭环功率控制信令,确定第二功率值,包括:
所述第一UE根据以下公式:PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,cTF_D2D,c(i)+fD2D,c(i)
获得所述第二功率值PD2D,c(i),其中,第二目标功率参数PO_D2D,c是载波c上D2D链路中的D2D目标接收功率,αD2D,c是第二路损补偿因子。PLD2D,c是所述第一UE与所述第二UE之间单播D2D链路的路损估计值,所述第二参数ΔTF_D2D,c(i)是与D2D MCS相关的量,所述第一参数fD2D,c(i)是闭环功率控制调整量。
步骤103、第一UE将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率。
在本实施例中,所述第三功率值为所述第一UE在所述载波上的最大发射功率值。
对于第一UE将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率包括以下实现方式:
第一种实现方式,第一UE将所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率。和/或
第二种实现方式,所述第一UE将所述第一功率值和所述第二功率值进行比较,确定最小值为第一输出功率;所述第一UE根据所述第一输出功率与所述第二类闭环功率控制信令,确定第二输出功率;所述第一UE将所述第二输出功率和第三功率值进行比较,确定最小值为输出功率。
举例来讲,第一UE根据所述第一输出功率与所述第二类闭环功率控制信令,确定第二输出功率,可以包括:
所述第一UE将所述第一输出功率与所述第一参数求和,获得所述第二 输出功率;或者
所述第一UE将所述第一输出功率与所述第二参数求和,获得所述第二输出功率;或者
所述第一UE将所述第一输出功率、所述第一参数与所述第二参数求和,获得所述第二输出功率。
在本实施例中,第一用户设备UE获取第一功率值,所述第一功率值为所述第一UE发送D2D数据的最大标准功率值,所述最大标准功率值包括所述第一UE采用所述最大标准功率值发送D2D数据时,基站接收的所述第一UE功率值小于或等于预设的第一目标功率值;所述第一UE获取第二功率值,所述第二功率值为所述第一UE与第二UE进行设备到设备D2D通信的功率值;所述第一UE将所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率,所述第三功率值为所述第一UE在所述载波上的最大发射功率值。实现了第一UE向第二UE发送数据的输出功率的确定,进而在不影响D2D通信性能的情况下,保证第一UE对基站的干扰功率不会超过预设的第一目标功率值。
图2为本发明设备通信方法二实施例的流程示意图,如图2所示,本发明实施例提供的设备通信方法,包括:
步骤201、第一UE,即UE1获取基站发送的第一类开环功率控制信令,所述第一类开环功率控制信令包括第一目标功率值。
步骤202、第一UE获取基站发送的参考信号,根据所述参考信号的功率确定第一路损。
所述第一路损包括所述第一UE与所述基站之间的上行路损,所述参考信号包括以下的至少一种或任意组合:公共参考信号CRS、信道状态信息参考信号CSI-RS;
步骤203、第一UE根据所述第一类开环功率值控制信令和所述第一路损,确定第一功率值。
可选的,UE1在载波c,子帧i上的第一功率值PCelluar,c(i):PCelluar,c(i)= 10log10(MD2D,c(i))+PO_Celluar,c+PLCelluar,c,其中,MD2D,c(i)表示载波c、子帧i上,设备到设备通信中物理信道的传输所使用的资源块RB数目,PO_Celluar,c表示在载波c上所述物理信道的第一目标功率值,所述物理信道包括:物理下行控制信道PSCCH或PSSCH或分组交换数据信道PSDCH。
步骤204、第一UE获取基站发送的第二类开环功率控制信令,所述第二类开环功率控制信令包括第二目标功率参数。
步骤205、第一UE获取所述第二UE发送的参数响应信息,根据所述参数响应信息的功率确定第二路损。
可选的,所述第二路损包括所述第一UE与第二UE之间进行D2D通信链路的路损,所述参数响应信息包括以下的至少任意一种或其组合:信道探测参考信号SRS、解调参考信号DMRS、确认字符ACK、否定应答NACK;
步骤206、第一UE根据所述第二类开环功率控制信令和所述第二路损,确定第二功率值。
可选的,第一UE根据以下公式:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,c+PLD2D,c
获得所述第二功率值PD2D,c(i),其中,第二目标功率参数PO_D2D,c是载波c上D2D链路中的D2D目标接收功率。PLD2D,c是所述第一UE与所述第二UE之间D2D通信链路的所述第二路损。
步骤207、第一UE将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率。
在本实施例中,所述第三功率值PCMAX,c(i)是UE1在载波c上的最大发射功率。
可选的,确定UE1在载波c、子帧i上的实际发射功率,即输出功率为:
PD2D_Final,c(i)=min(PCMAX,c(i),PCelluar,c(i),PD2D,c(i))
步骤208、UE1根据输出功率PD2D_Final,c0i),发射D2D链路的控制信令或 数据或发现信号。
图3为本发明设备通信方法三实施例的流程示意图,如图3所示,本发明实施例提供的设备通信方法,包括:
步骤301、第一UE,即UE1获取基站发送的第一类开环功率控制信令,所述第一类开环功率控制信令包括第一目标功率值和第一路损补偿因子参数。
步骤302、第一UE获取基站发送的参考信号,根据所述参考信号的功率确定第一路损。
所述第一路损包括所述第一UE与所述基站之间的上行路损,所述参考信号包括以下的至少一种或任意组合:公共参考信号CRS、信道状态信息参考信号CSI-RS;
步骤303、第一UE根据所述第一类开环功率值控制信令和所述第一路损,确定第一功率值。
可选的,UE1在载波c,子帧i上的第一功率值PCelluar,c(i):
PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c,其中,MD2D,c(i)表示载波c、子帧i上,设备到设备通信中物理信道的传输所使用的资源块RB数目,PO_Celluar,c表示在载波c上所述物理信道的第一目标功率值,αCelluar,c表示载波c上所述物理信道的第一路损补偿因子,PLcelluar,c表示第一路损,所述物理信道包括:物理下行控制信道PSCCH或PSSCH或分组交换数据信道PSDCH。
步骤304、第一UE获取基站发送的第二类开环功率控制信令,所述第二类开环功率控制信令包括第二目标功率参数和第二路损补偿因子。
步骤305、第一UE获取所述第二UE发送的参数响应信息,根据所述参数响应信息的功率确定第二路损。
可选的,所述第二路损包括所述第一UE与第二UE之间进行D2D通信链路的路损,所述参数响应信息包括以下的至少任意一种或其组合:信道探测参考信号SRS、解调参考信号DMRS、确认字符ACK、否定应答NACK;
步骤306、第一UE根据所述第二类开环功率控制信令和所述第二路损, 确定第二功率值。
可选的,第一UE根据以下公式:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,c
获得所述第二功率值PD2D,c(i),其中,第二目标功率参数PO_D2D,c是载波c上D2D链路中的D2D目标接收功率,αD2D,c是第二路损补偿因子。PLD2D,c是所述第一UE与所述第二UE之间D2D通信链路的所述第二路损。
步骤307、第一UE将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率。
在本实施例中,所述第三功率值PCMAX,c(i)是UE1在载波c上的最大发射功率。
可选的,确定UE1在载波c、子帧i上的实际发射功率,即输出功率为:
PD2D_Final,c(i)=min(PCMAX,c(i),PCelluar,c(i),PD2D,c(i))
步骤308、UE1根据输出功率PD2D_Final,c(i),发射D2D链路的控制信令或数据或发现信号。
需要说明的是,步骤304-306和步骤301-303之间不分先后顺序。
图4为本发明设备通信方法四实施例的流程示意图,如图4所示,本发明实施例提供的设备通信方法,包括:
步骤401、第一UE,即UE1获取基站发送的第一类开环功率控制信令,所述第一类开环功率控制信令包括第一目标功率值和第一路损补偿因子参数。
步骤402、第一UE获取基站发送的参考信号,根据所述参考信号的功率确定第一路损。
所述第一路损包括所述第一UE与所述基站之间的上行路损,所述参考信号包括以下的至少一种或任意组合:公共参考信号CRS、信道状态信息参考信号信号CSI-RS;
步骤403、第一UE根据所述第一类开环功率值控制信令和所述第一路 损,确定第一功率值。
可选的,UE1在载波c,子帧i上的第一功率值PCelluar,c(i):
PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c,其中,MD2D,c(i)表示载波c、子帧i上,设备到设备通信中物理信道的传输所使用的资源块RB数目,PO_Celluar,c表示在载波c上所述物理信道的第一目标功率值,αCelluar,c表示载波c上所述物理信道的第一路损补偿因子,PLcelluar,c表示第一路损,所述物理信道包括:物理下行控制信道PSCCH或PSSCH或分组交换数据信道PSDCH。
步骤404、第一UE获取基站发送的第二类开环功率控制信令,所述第二类开环功率控制信令包括第二目标功率参数和第二路损补偿因子。
步骤405、第一UE获取第二类闭环功率控制信令。
本实施例中,所述第二类闭环功率控制信令包括以下任意一种或其组合:第一参数、第二参数,所述第一参数为所述第一UE配置的闭环功率控制调整量,所述第二参数为所述第一UE配置的与设备到设备调制编码方式(Device to DeviceModulation and Coding Scheme,简称D2D MCS)相关的量。举例来讲,MCS决定了采用的调试方式(例如QPSK、16QAM、64QAM)和码率(码率高,则冗余比特比例低)。
步骤406、第一UE获取所述第二UE发送的参数响应信息,根据所述参数响应信息的功率确定第二路损。
可选的,所述第二路损包括所述第一UE与第二UE之间进行D2D通信链路的路损,所述参数响应信息包括以下的至少任意一种或其组合:信道探测参考信号SRS、解调参考信号DMRS、确认字符ACK、否定应答NACK;
步骤407、第一UE根据所述第二类开环功率控制信令、所述第二路损和所述第二类闭环功率控制信令,确定第二功率值。
可选的,UE1通过测量UE2发射的SRS和/或DMRS和/或ACK/NACK,估计该UE1与UE2的路损PLD2D,c。根据PLD2D,c、UE1的传输带宽MD2D,c(i)、UE1使用的MCS等级、第二类开环功率控制信令、第二类闭环功率控制信令,计算UE1在载波c、子帧i上能够满足D2D单播通信信号强度要求的第 二功率值:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,cTF_D2D,c(i)+fD2D,c(i)
步骤408、第一UE将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率。
在本实施例中,所述第三功率值PCMAX,c(i)是UE1在载波c上的最大发射功率。
可选的,确定UE1在载波c、子帧i上的实际发射功率,即输出功率为:
PD2D_Final,c(i)=mln(PCMAX,c(i),PCelluar,c(i),PD2D,c(i))
步骤409、UE1根据输出功率PD2D_Final,c(i),发射D2D链路的控制信令或数据或发现信号。
需要说明的是,步骤404-407和步骤401-403之间不分先后顺序。
图5为本发明设备通信方法五实施例的流程示意图,如图5所示,本发明实施例提供的设备通信方法,包括:
步骤501、第一UE,即UE1获取基站发送的第一类开环功率控制信令和第二类开环功率控制信令,第一类开环功率控制信令中,包含目标功率参数PO_Celluar,c和路损补偿因子参数αCelluar,c。第二类开环功率控制信令中,包含目标功率参数PO_D2D,c和路损补偿因子αD2D,c
步骤502、基站或第二UE向第一UE,即发送端UE1配置第二类闭环功率控制信令;
步骤503、UE1通过测量其服务基站发射的CRS和/或CSI-RS导频的方式,估计该UE与服务基站的上行的路损PLCelluar,c
可选的,根据PLCelluar,c、UE1的传输带宽MD2D,c(i)、第一类开环功率控制信令,计算UE1在载波c、子帧i上不对基站造成强干扰的功率上限值,即第一功率值:
PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c
步骤504、UE1根据UE1与UE2的路损PLD2D,c、UE1的传输带宽MD2D,c(i)、第二类开环功率控制信令、第二类闭环功率控制信令,计算UE1在载波c、子帧i上能够满足D2D单播通信信号强度要求的功率,即第二功率值:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,c+fD2D,c(i)
可选的,通过测量UE2发射的SRS和/或DMRS和/或ACK/NACK,估计该UE1与UE2的路损PLD2D,c
步骤505、UE1计算UE1在载波c、子帧i上的实际发射功率,即输出功率值:
PD2D_Final,c(i)=min(PCMAX,c(i),PCelluar,c(i),PD2D,c(i))
其中,PCMAX,c(i)是UE1在载波c上的最大发射功率。
步骤506、UE1根据输出功率值PD2D_Final,c(i),发射D2D链路的控制信令或数据或发现信号。
在本实施例中,步骤502~步骤504的顺序可以任意置换。
图6为本发明设备通信方法六实施例的流程示意图,如图6所示,本发明实施例提供的设备通信方法,包括:
步骤601、基站通过RRC信令配置第一类开环功率控制参数和第二类开环功率控制参数,并通过空口发送RRC信令。
第一类开环功率控制信令中,包含目标功率参数PO_Celluar,c和路损补偿因子参数αCelluar,c。第二类开环功率控制信令中,包含目标功率参数PO_D2D,c和路损补偿因子αD2D,c
步骤602、基站或第二UE,为第一UE,即发送端UE1配置第二类闭环功率控制信令;
步骤603、UE1通过测量其服务基站发射的CRS和/或CSI-RS导频的方式,估计该UE与服务基站的上行路损PLCelluar,c
根据PLCelluar,c、UE1的传输带宽MD2D,c(i)、第一类开环功率控制信令,计算UE1在载波c、子帧i上不对基站造成强干扰的功率上限值,即第一功 率值:
PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c
步骤604、UE1根据UE1与UE2的路损PLD2D,c、UE1的传输带宽对应的资源块数量MD2D,c(i)、UE1D2D传输的MCS等级、第二类开环功率控制信令,计算UE1在载波c、子帧i上能够满足D2D单播通信信号强度要求的功率,即第二功率值:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,c+ΔTF_D2D,c(i)
可选的,通过测量UE2发射的SRS和/或DMRS和/或ACK/NACK,估计该UE1与UE2的路损PLD2D,c.
步骤605、UE1计算UE1在载波c、子帧i上的实际发射功率,即输出功率值:
PD2D_Final,c(i)=min(PCMAX,c(i),PCelluar,c(i),PD2D,c(i))
其中,PCMAX,c(i)是UE1在载波c上的最大发射功率。
步骤606、UE1根据步骤5中计算的发射功率值PD2D_Final,c(i),发射D2D链路的控制信令或数据或发现信号。
在本实施例,步骤602~步骤604的顺序可以任意置换。
图7为本发明设备通信方法七实施例的流程示意图,如图7所示,本发明实施例提供的设备通信方法,包括:
步骤701、基站通过RRC信令配置第一类开环功率控制参数和第二类开环功率控制参数,并通过空口发送RRC信令。
可选的,第一类开环功率控制信令中,包含目标功率参数PO_Celluar,c和路损补偿因子参数αCelluar,c。第二类开环功率控制信令中,包含目标功率参数PO_D2D,c和路损补偿因子αD2D,c
步骤702、基站或第二UE,即接收端UE2,向第一UE,即发送端UE1配置第二类闭环功率控制信令;
步骤703、UE1通过测量其服务基站发射的CRS和/或CSI-RS导频的方式,估计该UE与服务基站的上行路损PLCelluar,c
可选的,根据PLCelluar,c、UE1的传输带宽MD2D,c(i)、第一类开环功率控制信令,计算UE1在载波c、子帧i上不对基站造成强干扰的功率上限值,即第一功率值:
PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c
步骤704、UE1通过测量UE2发射的SRS和/或DMRS和/或ACK/NACK,估计该UE1与UE2的路损PLD2D,c
可选的,根据PLD2D,c、UE1的传输带宽MD2D,c(i)、第二类开环功率控制信令,计算UE1在载波c、子帧i上能够满足D2D单播通信信号强度要求的功率,即第二功率值:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,c
步骤705、UE1计算UE1在载波c、子帧i上的实际发射功率,即输出功率值:
PD2D_Final,c(i)=min{PCMAX,c(i),min[PCelluar,c(i),PD2D,c(i)]+ΔTF_D2D,c(i)+fD2D,c(i)}
其中,fD2D,c(i)是闭环修正函数(可以是累加修正或绝对修正),其值与TPC命令有关,ΔTF_D2D,c(i)由UE1的MCS决定,PCMAX,c(i)是UE1在载波c上的最大发射功率。
步骤706、UE1输出功率值PD2D_Final,c(i),发射D2D链路的控制信令或数据或发现信号。
在本实施例中,步骤702~步骤704的顺序可以任意置换。
本发明提供的设备通信方法八实施例,基本流程如图7所示,区别在于对应的701-706对应本实施例的801-806,并且步骤706与步骤806中获取输出功率值的计算方法不同。本发明实施例提供的设备通信方法,包括:
步骤801:基站通过RRC信令配置第一类开环功率控制参数和第二类开环功率控制参数,并通过空口发送RRC信令。
可选的,第一类开环功率控制信令中,包含目标功率参数PO_Celluar,c和路损补偿因子参数αCelluar,c。第二类开环功率控制信令中,包含目标功率参数PO_D2D,c和路损补偿因子αD2D,c
步骤802:基站或第二UE,即接收端UE2,向发送端UE1配置第二类闭环功率控制信令;
步骤803:UE1通过测量其服务基站发射的CRS和/或CSI-RS导频的方式,估计该UE与服务基站的上行路损PLCeuuar,c
可选的,根据PLCeuuar,c、UE1的传输带宽MD2D,c(i)、第一类开环功率控制信令,计算UE1在载波c、子帧i上不对基站造成强干扰的功率上限值,即第一功率值:
PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c
步骤804、UE1通过测量UE2发射的SRS和/或DMRS和/或ACK/NACK,估计该UE1与UE2的路损PLD2D,c
可选的,根据PLD2D,c、UE1的传输带宽MD2D,c(i)、第二类开环功率控制信令,计算UE1在载波c、子帧i上能够满足D2D单播通信信号强度要求的功率,即第二功率:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,c
步骤805、UE1计算UE1在载波c、子帧i上的实际发射功率,即输出功率值:
PD2D_Final,c(i)=min{PCMAx,c(i),min[PCelluar,c(i),PD2D,c(i)]+ΔTF_D2D,c(i)}
其中,ΔTF_D2D,c(i)由UE1的MCS决定,PCMAX,c(i)是UE1在载波c上的最大发射功率。
步骤806、UE1输出功率值PD2D_Final,c(i),发射D2D链路的控制信令或数据或发现信号。
在本实施例中,步骤802~步骤804的顺序可以任意置换。
本发明提供的设备通信方法九实施例,基本流程如图7所示,区别在于对应的701-706对应本实施例的901-906,并且步骤706与步骤906中获取输出功率值的计算方法不同。本发明实施例提供的设备通信方法,包括:
步骤901、基站通过RRC信令配置第一类开环功率控制参数和第二类开环功率控制参数,并通过空口发送RRC信令。
可选的,第一类开环功率控制信令中,包含目标功率参数PO_Celluar,c和路损补偿因子参数αCelluar,c。第二类开环功率控制信令中,包含目标功率参数PO_D2D,c和路损补偿因子αD2D,c
步骤902、基站或第二UE,即接收端UE2,向第一UE,即发送端UE1配置第二类闭环功率控制信令;
步骤903、UE1通过测量其服务基站发射的CRS和/或CSI-RS导频的方式,估计该UE与服务基站的上行路损PLCelluar,c
可选的,根据PLCelluar,c、UE1的传输带宽MD2D,c(i)、第一类开环功率控制信令,计算UE1在载波c、子帧i上不对基站造成强干扰的功率上限值:
PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c
步骤904、UE1通过测量UE2发射的SRS和/或DMRS和/或ACK/NACK,估计该UE1与UE2的路损PLD2D,c
可选的,根据PLD2D,c、UE1的传输带宽MD2D,c(i)、第二类开环功率控制信令,计算UE1在载波c、子帧i上能够满足D2D单播通信信号强度要求的功率:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,c
步骤905、UE1计算UE1在载波c、子帧i上的实际发射功率,即输出功率值:
PD2D_Final,c(i)=min{PCMAx,c(i),min[PCelluar,c(i),PD2D,c(i)]+fD2D,c(i)}
其中,fD2D,c(i)是闭环修正函数(可以是累加修正或绝对修正),其值与TPC命令有关,PCMAX,c(i)是UE1在载波c上的最大发射功率。
步骤906、UE1根据输出功率值PD2D_Final,c(i),发射D2D链路的控制信令或数据或发现信号。
在本实施例中,步骤902~步骤904的顺序可以任意置换。
图8为本发明设备通信装置一实施例的结构示意图,如图8所示,该设备到设备通信装置,包括:第一获取模块101、第二获取模块102和确定模 块103。其中,
第一获取模块101,设置为获取第一功率值,所述第一UE发送D2D数据的最大标准功率值,所述最大标准功率值包括所述第一UE采用所述最大标准功率值发送D2D数据时,基站接收的所述第一UE的功率值小于或等于预设的第一目标功率值;
第二获取模块102,设置为获取第二功率值,所述第二功率值为所述第一UE与第二UE进行设备到设备D2D通信的功率值;
确定模块103,设置为将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率,所述第三功率值为所述第一UE在所述载波上的最大发射功率值。
在本实施例中,第一用户设备UE获取第一功率值,所述第一功率值为所述第一UE发送D2D数据的最大标准功率值,所述最大标准功率值包括所述第一UE采用所述最大标准功率值发送D2D数据时,基站接收的所述第一UE的功率值小于或等于预设的第一目标功率值;所述第一UE获取第二功率值,所述第二功率值为所述第一UE与第二UE进行设备到设备D2D通信的功率值;所述第一UE将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率,所述第三功率值为所述第一UE在所述载波上的最大发射功率值。实现了第一UE向第二UE发送数据的输出功率的确定,进而在不影响D2D通信性能的情况下,保证第一UE对基站的干扰功率不会超过预设的第一目标功率值。
可选的,在上述实施例的基础上,第一获取模块101,是设置为所述第一UE获取基站发送的第一类开环功率控制信令,所述第一类开环功率控制信令包括以下任意一种或其组合:第一目标功率值、第一路损补偿因子参数;获取基站发送的参考信号,根据所述参考信号的功率确定第一路损,所述第一路损包括所述第一UE与所述基站之间的上行路损,所述参考信号包括以下的至少一种或任意组合:公共参考信号CRS、信道状态信息参考信号CSI-RS;根据所述第一类开环功率控制信令和所述第一路损,确定第一功 率值。
其中,所述第一获取模块是设置为通过如下方式实现根据获取的基站发送的参考信号的功率确定第一路损:在获取到基站发送的参考信号之前从基站处获取所述参考信号的发送功率,当接收到所述参考信号后可获得所述参考信号的接收功率,所述发送功率与接收功率的差值即为路损。
可选的,在上述实施例的基础上,所述第一获取模块101,是设置为根据PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c,获得所述第一UE在载波c、子帧i上的所述第一功率值PCelluar,c(i),其中,MD2D,c(i)表示载波c、子帧i上,设备到设备通信中物理信道的传输所使用的资源块RB数目,PO_Celluar,c表示在载波c上所述物理信道的第一目标功率值,所述物理信道包括:物理边路控制信道PSCCH或物理边路共享信道PSSCH或物理边路发现信道PSDCH。
可选的,当第一类开环功率控制信令不包括第一路损补偿因子参数时,所述第一UE在载波c、子帧i上的所述第一功率值PCelluar,c(i)为:PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,c+PLCelluar,c
可选的,当第一类开环功率控制信令不包括第一目标功率值时,所述第一UE在载波c、子帧i上的所述第一功率值PCelluar,c(i)为:
PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,cCelluar,c·PLCelluar,c,其中,PO_Celluar,c为预定义的固定值。
可选的,在上述实施例的基础上,所述第二获取模块102,是设置为获取基站发送的第二类开环功率控制信令,所述第二类开环功率控制信令包括以下任意一种或其组合:第二目标功率参数、第二路损补偿因子参数;获取所述第二UE发送的参数响应信息,根据所述参数响应信息的功率确定第二路损,所述第二路损包括所述第一UE与第二UE之间进行D2D通信链路的路损,所述参数响应信息包括以下的至少任意一种或其组合:信道探测参考信号SRS、解调参考信号DMRS、确认字符ACK、否定应答NACK;根据所述第二类开环功率控制信令和所述第二路损,确定第二功率值。
其中,第二获取模块是设置为通过如下方式实现根据获取的第二UE发送的参数响应信息的功率确定第二路损:在获取到第二UE发送的参数响应信息之前,从第二UE处获取所述参数响应信息的发送功率,当接收到所述 参数响应信息后可获得所述参数响应信息的接收功率,所述发送功率与接收功率的差值即为第二路损。
可选的,在上述实施例的基础上,所述第二获取模块102,是设置为根据以下公式:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,c
获得所述第二功率值PD2D,c(i),其中,第二目标功率参数PO_D2D,c是载波c上D2D链路中的D2D目标接收功率,αD2D,c是第二路损补偿因子。PLD2D,c是所述第一UE与所述第二UE之间D2D通信链路的所述第二路损。
可选的,当第二类开环功率控制信令不包括第二路损补偿因子参数时,所述第一UE在载波c、子帧i上的所述第二功率值PD2D,c(i):PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,c+PLD2D,c
可选的,当第二类开环功率控制信令不包括第二目标功率参数时,所述第一UE在载波c、子帧i上的所述第二功率值PD2D,c(i):
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,c,其中,PO_D2D,c为预定义的固定值。
可选的,在上述实施例的基础上,所述第二获取模块102,还设置为获取第二类闭环功率控制信令,所述第二类闭环功率控制信令包括以下任意一种或其组合:第一参数、第二参数,所述第一参数为所述第一UE配置的闭环功率控制调整量,所述第二参数为所述第一UE配置的与D2D MCS相关的量;根据所述第二类开环功率控制信令、所述第二路损和所述第二类闭环功率控制信令,确定第二功率值。
可选的,在上述实施例的基础上,所述第二获取模块102,是设置为根据以下公式:
PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,cTF_D2D,c(i)+fD2D,c(i)
获得所述第二功率值PD2D,c(i),其中,第二目标功率参数PO_D2D,c是载波c上D2D链路中的D2D目标接收功率,αD2D,c是第二路损补偿因子。PLD2D,c是所述第一UE与所述第二UE之间单播D2D链路的路损估计值,所述第二参数ΔTF_D2D,c(i)是与设备到设备调制编码方式D2D MCS相关的量,所述第一参数fD2D,c(i)是闭环功率控制调整量。
可选的,在上述实施例的基础上,所述确定模块103,是设置为将所述第一功率值和所述第二功率值进行比较,确定最小值为第一输出功率;根据所述第一输出功率与所述第二类闭环功率控制信令,确定第二输出功率;将所述第二输出功率和第三功率值进行比较,确定最小值为输出功率。
可选的,在上述实施例的基础上,所述确定模块103,是设置为将所述第一输出功率与所述第一参数求和,获得所述第二输出功率;或者,将所述第一输出功率与所述第二参数求和,获得所述第二输出功率;或者,将所述第一输出功率、所述第一参数与所述第二参数求和,获得所述第二输出功率。
在本实施例中,实现了第一UE向第二UE发送数据的输出功率的确定,进而在不影响D2D通信性能的情况下,保证第一UE对基站的干扰功率不会超过预设的第一目标功率值。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细 节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。
工业实用性
上述技术方案实现了在不影响D2D通信性能的情况下,保证第一UE对基站的干扰功率不会超过预设的第一目标功率值。

Claims (18)

  1. 一种设备到设备D2D通信方法,包括:
    第一用户设备UE获取第一功率值,所述第一功率值为所述第一UE发送D2D数据的最大标准功率值,所述最大标准功率值为所述第一UE采用所述最大标准功率值发送D2D数据时,基站接收的所述第一UE的功率值小于或等于预设的第一目标功率值;
    所述第一UE获取第二功率值,所述第二功率值为所述第一UE与第二UE进行设备到设备D2D通信的功率值;
    所述第一UE将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率,所述第三功率值为所述第一UE在所述载波上的最大发射功率值。
  2. 根据权利要求1所述的方法,其中,所述第一用户设备UE获取第一功率值,包括:
    所述第一UE获取基站发送的第一类开环功率控制信令,所述第一类开环功率控制信令包括以下任意一种或其组合:第一目标功率值、第一路损补偿因子参数;
    所述第一UE获取基站发送的参考信号,根据所述参考信号的功率确定第一路损,所述第一路损包括所述第一UE与所述基站之间的上行路损;
    所述第一UE根据所述第一类开环功率控制信令和所述第一路损,确定第一功率值。
  3. 根据权利要求2所述的方法,其中,所述第一UE根据所述第一类开环功率控制信令和所述第一路损,确定第一功率值,包括:
    所述第一UE根据PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,c+αCelluar,c·PLCelluar,c,获得所述第一UE在载波c、子帧i上的所述第一功率值PCelluar,c(i),其中,MD2D,c(i)表示载波c、子帧i上,设备到设备通信中物理信道的传输所使用的资源块RB数目,PO_Celluar,c表示在载波c上所述物理信道的第一目标功率值,αCelluar,c表示载波c上所述物理信道的第一路损补偿因子,PLcelluar,c表示载波c的第一路损,所述物理信道包括:物理边路控制信道PSCCH或物 理边路共享信道PSSCH或物理边路发现信道PSDCH。
  4. 根据权利要求1-3任一项所述的方法,其中,所述第一UE获取第二功率值,包括:
    所述第一UE获取基站发送的第二类开环功率控制信令,所述第二类开环功率控制信令包括以下任意一种或其组合:第二目标功率参数、第二路损补偿因子参数;
    所述第一UE获取所述第二UE发送的参数响应信息,根据所述参数响应信息的功率确定第二路损,所述第二路损包括所述第一UE与第二UE之间进行D2D通信链路的路损;
    所述第一UE根据所述第二类开环功率控制信令和所述第二路损,确定第二功率值。
  5. 根据权利要求4所述的方法,其中,所述第一UE根据所述第二类开环功率控制信令和所述第二路损,确定第二功率值,包括:
    所述第一UE根据以下公式:
    PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,c+αD2D,c·PLD2D,c
    获得所述第二功率值PD2D,c(i),其中,第二目标功率参数PO_D2D,c是载波c上D2D链路中的D2D目标接收功率,αD2D,c是第二路损补偿因子,PLD2D,c是所述第一UE与所述第二UE之间D2D通信链路的所述第二路损。
  6. 根据权利要求1-3所述的方法,其中,所述第一UE获取第二功率值,包括:
    所述第一UE获取基站发送的第二类开环功率控制信令,所述第二类开环功率控制信令包括以下任意一种或其组合:第二目标功率参数、第二路损补偿因子参数;
    所述第一UE获取第二类闭环功率控制信令,所述第二类闭环功率控制信令包括以下任意一种或其组合:第一参数、第二参数,所述第一参数为所述第一UE配置的闭环功率控制调整量,所述第二参数为所述第一UE配置的与设备到设备调制编码方式D2D MCS相关的量;
    所述第一UE获取所述第二UE发送的参数响应信息,根据所述参数响 应信息的功率确定第二路损,所述第二路损包括所述第一UE与第二UE之间进行D2D通信链路的路损;
    所述第一UE根据所述第二类开环功率控制信令、所述第二路损和所述第二类闭环功率控制信令,确定第二功率值。
  7. 根据权利要求6所述的方法,其中,所述第一UE根据所述第二类开环功率控制信令、所述第二路损和所述第二类闭环功率控制信令,确定第二功率值,包括:
    所述第一UE根据以下公式:
    PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,cTF_D2D,c(i)+fD2D,c(i)
    获得所述第二功率值PD2D,c(i),其中,第二目标功率参数PO_D2D,c是载波c上D2D链路中的D2D目标接收功率,αD2D,c是第二路损补偿因子,PLD2D,c是所述第一UE与所述第二UE之间单播D2D链路的路损估计值,所述第二参数ΔTF_D2D,c(i)是与D2D MCS相关的量,所述第一参数fD2D,c(i)是闭环功率控制调整量。
  8. 根据权利要求5所述的方法,其中,所述第一UE将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率,所述第三功率值为所述第一UE在所述载波上的最大发射功率值,包括:
    所述第一UE将所述第一功率值和所述第二功率值进行比较,确定最小值为第一输出功率;
    所述第一UE根据所述第一输出功率与所述第二类闭环功率控制信令,确定第二输出功率;
    所述第一UE将所述第二输出功率和第三功率值进行比较,确定最小值为输出功率。
  9. 根据权利要求8所述的方法,其中,所述第一UE根据所述第一输出功率与所述第二类闭环功率控制信令,确定第二输出功率,包括:
    所述第一UE将所述第一输出功率与所述第一参数求和,获得所述第二输出功率;或者
    所述第一UE将所述第一输出功率与所述第二参数求和,获得所述第二输出功率;或者
    所述第一UE将所述第一输出功率、所述第一参数与所述第二参数求和,获得所述第二输出功率。
  10. 一种设备到设备通信装置,包括:
    第一获取模块,设置为获取第一功率值,所述第一功率值为所述第一UE发送D2D数据的最大标准功率值,所述最大标准功率值为所述第一UE采用所述最大标准功率值发送D2D数据时,基站接收所述第一UE的功率值小于或等于预设的第一目标功率值;
    第二获取模块,设置为获取第二功率值,所述第二功率值为所述第一UE与第二UE进行设备到设备D2D通信的功率值;
    确定模块,设置为将相同载波上的所述第一功率值、所述第二功率值和第三功率值进行比较,确定最小功率为在不对基站的蜂窝通信造成干扰的情况下,所述第一UE向所述第二UE发送数据的输出功率,所述第三功率值为所述第一UE在所述载波上的最大发射功率值。
  11. 根据权利要求10所述的装置,其中,所述第一获取模块,是设置为获取基站发送的第一类开环功率控制信令,所述第一类开环功率控制信令包括以下任意一种或其组合:第一目标功率值、第一路损补偿因子参数;获取基站发送的参考信号,根据所述参考信号的功率确定第一路损,所述第一路损包括所述第一UE与所述基站之间的上行路损;根据所述第一类开环功率控制信令和所述第一路损,确定第一功率值。
  12. 根据权利要求11所述的装置,其中,所述第一获取模块,是设置为根据PCelluar,c(i)=10log10(MD2D,c(i))+PO_Celluar,c+αCelluar,c·PLCelluar,c,获得所述第一UE在载波c、子帧i上的所述第一功率值PCelluar,c(i),其中,MD2D,c(i)表示载波c、子帧i上,设备到设备通信中物理信道的传输所使用的资源块RB数目,PO_Celluar,c表示在载波c上所述物理信道的第一目标功率值,αCelluar,c表示载波c上所述物理信道的第一路损补偿因子,PLcelluar,c表示载波c的第一路损,所述物理信道包括:物理边路控制信道PSCCH或物理边路共享信道PSSCH或物理边路发现信道PSDCH。
  13. 根据权利要求10-12任一项所述的装置,其中,所述第二获取模块, 是设置为获取基站发送的第二类开环功率控制信令,所述第二类开环功率控制信令包括以下任意一种或其组合:第二目标功率参数、第二路损补偿因子参数;获取所述第二UE发送的参数响应信息,根据所述参数响应信息的功率确定第二路损,所述第二路损包括所述第一UE与第二UE之间进行D2D通信链路的路损根据所述第二类开环功率控制信令和所述第二路损,确定第二功率值。
  14. 根据权利要求13所述的装置,其中,所述第二获取模块,是设置为根据
    PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,c+αD2D,c·PLD2D,c
    获得所述第二功率值PD2D,c(i),其中,第二目标功率参数PO_D2D,c是载波c上D2D链路中的D2D目标接收功率,αD2D,c是第二路损补偿因子,PLD2D,c是所述第一UE与所述第二UE之间D2D通信链路的所述第二路损。
  15. 根据权利要求12所述的装置,所述第二获取模块,还设置为获取第二类闭环功率控制信令,所述第二类闭环功率控制信令包括以下任意一种或其组合:第一参数、第二参数,所述第一参数为所述第一UE配置的闭环功率控制调整量,所述第二参数为所述第一UE配置的与设备到设备调制编码方式D2D MCS相关的量;根据所述第二类开环功率控制信令、所述第二路损和所述第二类闭环功率控制信令,确定第二功率值。
  16. 根据权利要求15所述的装置,其中,所述第二获取模块,是设置为根据:
    PD2D,c(i)=10log10(MD2D,c(i))+PO_D2D,cD2D,c·PLD2D,cTF_D2D,c(i)+fD2D,c(i);
    其中,PD2D,c(i)为所述第二功率值,第二目标功率参数PO_D2D,c是载波c上D2D链路中的D2D目标接收功率,αD2D,c是第二路损补偿因子,PLD2D,c是所述第一UE与所述第二UE之间单播D2D链路的路损估计值,所述第二参数ΔTF_D2D,c(i)是与设备到设备调制编码方式D2D MCS相关的量,所述第一参数fD2D,c(i)是闭环功率控制调整量。
  17. 根据权利要求14所述的装置,其中,所述确定模块,是设置为将所述第一功率值和所述第二功率值进行比较,确定最小值为第一输出功率;根据所述第一输出功率与所述第二类闭环功率控制信令,确定第二输出功率;将所述第二输出功率和第三功率值进行比较,确定最小值为输出功率。
  18. 根据权利要求17所述的装置,其中,所述确定模块,是设置为通过如下方式实现根据所述第一输出功率与所述第二类闭环功率控制信令,确定第二输出功率:
    将所述第一输出功率与所述第一参数求和,获得所述第二输出功率;或者,将所述第一输出功率与所述第二参数求和,获得所述第二输出功率;或者,将所述第一输出功率、所述第一参数与所述第二参数求和,获得所述第二输出功率。
PCT/CN2016/091042 2015-07-22 2016-07-22 一种设备到设备通信方法及装置 WO2017012587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510435417.5A CN106375930A (zh) 2015-07-22 2015-07-22 一种设备到设备通信方法及装置
CN201510435417.5 2015-07-22

Publications (1)

Publication Number Publication Date
WO2017012587A1 true WO2017012587A1 (zh) 2017-01-26

Family

ID=57833800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/091042 WO2017012587A1 (zh) 2015-07-22 2016-07-22 一种设备到设备通信方法及装置

Country Status (2)

Country Link
CN (1) CN106375930A (zh)
WO (1) WO2017012587A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453857A (zh) * 2017-08-14 2017-12-08 北京邮电大学 一种用于无调度上行传输的链路自适应方法
CN110278546A (zh) * 2019-05-27 2019-09-24 东南大学 一种延时不敏感d2d通信系统中平均能效最大化功率分配方法
CN111698769A (zh) * 2018-01-12 2020-09-22 Oppo广东移动通信有限公司 数据发送方法、装置及系统
CN112771938A (zh) * 2018-11-01 2021-05-07 Oppo广东移动通信有限公司 用户设备及其无线通信方法
WO2023226928A1 (zh) * 2022-05-23 2023-11-30 华为技术有限公司 一种功率控制方法以及中继设备

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107018564B (zh) * 2017-06-01 2019-09-10 重庆邮电大学 一种丢失覆盖场景中的d2d终端发送功率控制方法
CN113490260B (zh) * 2017-08-11 2022-12-27 华为技术有限公司 一种功率控制方法及相关设备
CN110149689B (zh) * 2018-02-11 2022-03-25 华为技术有限公司 一种功率控制的方法和装置
CN110381574A (zh) * 2018-04-12 2019-10-25 维沃移动通信有限公司 旁链路通信中的开环功率控制方法和设备
CN109005579A (zh) * 2018-08-16 2018-12-14 Oppo(重庆)智能科技有限公司 一种功率控制的方法、装置以及计算机存储介质
CN111148201B (zh) * 2018-11-02 2021-12-28 华为技术有限公司 数据传输方法和设备
CN111148205B (zh) * 2018-11-02 2022-03-25 华为技术有限公司 发送功率的确定方法和装置
CN111436036B (zh) * 2019-01-11 2022-03-29 华为技术有限公司 功率控制方法及功率控制装置
EP3932122A4 (en) * 2019-03-01 2023-01-18 Lenovo (Beijing) Limited METHOD AND APPARATUS FOR CONTROLLING TRANSMIT POWER ON A SIDE LINK
CN111741519B (zh) * 2019-03-25 2023-04-11 华为技术有限公司 一种边链路发射功率计算方法及通信装置
CN112020131B (zh) * 2019-05-31 2022-04-01 大唐移动通信设备有限公司 一种发射功率确定方法、信息传输方法及通信设备
WO2021003626A1 (zh) * 2019-07-05 2021-01-14 北京小米移动软件有限公司 直连通信的发送功率控制方法、装置、设备及存储介质
US20220286977A1 (en) * 2019-07-11 2022-09-08 Beijing Xiaomi Mobile Software Co., Ltd. Method of power control for sidelink communication, v2x device and storage medium
CN111800849B (zh) * 2019-08-09 2022-06-10 维沃移动通信有限公司 一种功率控制方法及设备
EP3993516A4 (en) 2019-08-15 2022-07-13 Huawei Technologies Co., Ltd. METHOD, APPARATUS, AND COMMUNICATION DEVICE
CN112399372A (zh) * 2019-08-15 2021-02-23 华为技术有限公司 一种通信方法、终端及网络设备
CN111448831B (zh) * 2020-03-04 2022-07-08 北京小米移动软件有限公司 开环功率控制方法、装置及计算机可读存储介质
CN116032312A (zh) * 2023-01-09 2023-04-28 中兴通讯股份有限公司 一种选择方法、第一节点及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139889A (zh) * 2011-11-28 2013-06-05 华为技术有限公司 D2d的功率控制方法、用户设备、基站和通讯系统
CN103327568A (zh) * 2012-03-21 2013-09-25 中国移动通信集团公司 资源分配消息发送方法、设备发现方法及相关设备
CN104105185A (zh) * 2013-04-03 2014-10-15 电信科学技术研究院 设备到设备通信中的发射功率控制方法、装置及系统
CN104202821A (zh) * 2014-03-20 2014-12-10 中兴通讯股份有限公司 设备到设备通信干扰避免方法和装置
CN104244392A (zh) * 2013-06-24 2014-12-24 华为技术有限公司 避免d2d传输造成上行干扰的方法、基站和用户设备
WO2015028357A1 (en) * 2013-08-30 2015-03-05 Alcatel Lucent Channel resource allocation for device-to-device communication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103139889A (zh) * 2011-11-28 2013-06-05 华为技术有限公司 D2d的功率控制方法、用户设备、基站和通讯系统
CN103327568A (zh) * 2012-03-21 2013-09-25 中国移动通信集团公司 资源分配消息发送方法、设备发现方法及相关设备
CN104105185A (zh) * 2013-04-03 2014-10-15 电信科学技术研究院 设备到设备通信中的发射功率控制方法、装置及系统
CN104244392A (zh) * 2013-06-24 2014-12-24 华为技术有限公司 避免d2d传输造成上行干扰的方法、基站和用户设备
WO2015028357A1 (en) * 2013-08-30 2015-03-05 Alcatel Lucent Channel resource allocation for device-to-device communication
CN104202821A (zh) * 2014-03-20 2014-12-10 中兴通讯股份有限公司 设备到设备通信干扰避免方法和装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453857A (zh) * 2017-08-14 2017-12-08 北京邮电大学 一种用于无调度上行传输的链路自适应方法
CN107453857B (zh) * 2017-08-14 2020-07-03 北京邮电大学 一种用于无调度上行传输的链路自适应方法
CN111698769A (zh) * 2018-01-12 2020-09-22 Oppo广东移动通信有限公司 数据发送方法、装置及系统
US11785560B2 (en) 2018-01-12 2023-10-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and device, and system
CN112771938A (zh) * 2018-11-01 2021-05-07 Oppo广东移动通信有限公司 用户设备及其无线通信方法
CN112771938B (zh) * 2018-11-01 2022-12-02 Oppo广东移动通信有限公司 用户设备及其无线通信方法
CN110278546A (zh) * 2019-05-27 2019-09-24 东南大学 一种延时不敏感d2d通信系统中平均能效最大化功率分配方法
CN110278546B (zh) * 2019-05-27 2022-02-22 东南大学 一种延时不敏感d2d通信系统中平均能效最大化功率分配方法
WO2023226928A1 (zh) * 2022-05-23 2023-11-30 华为技术有限公司 一种功率控制方法以及中继设备

Also Published As

Publication number Publication date
CN106375930A (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2017012587A1 (zh) 一种设备到设备通信方法及装置
JP6692953B2 (ja) 低レイテンシアップリンク電力制御
US10849109B2 (en) Resource allocation method and apparatus
TWI637643B (zh) 裝置對裝置(d2d)互鏈路功率控制
US9185733B2 (en) Method of device-to-device communication in wireless mobile communication system
JP6486342B2 (ja) 複数のアンテナを使用する時分割複信(tdd)デバイスによる送信のための方法および装置
US11356959B2 (en) Methods and apparatuses for power control in a wireless communication system
CN108632965B (zh) 一种上行发射功率控制的方法和设备
US8767605B2 (en) Transmit power control information and power control method, system and device
WO2017173920A1 (zh) 一种功率控制方法及设备
WO2013185672A1 (zh) 一种上行功率控制方法、终端及基站
WO2012100549A1 (zh) Cqi上报方法、获取cqi的方法、系统、终端及基站
CN103404192B (zh) 上行覆盖测量项的测量结果获取和上报方法、设备
WO2011060741A1 (zh) 上行发送功率控制参数的获取方法、基站和用户设备
WO2015180170A1 (zh) 一种d2d通信中发射功率的控制方法及设备
CN106465285B (zh) 无线通信系统中传输功率控制方法及装置
JP2012099920A (ja) 移動通信システム、基地局及び送信電力制御方法
WO2021003626A1 (zh) 直连通信的发送功率控制方法、装置、设备及存储介质
CN101106403A (zh) 一种调整hspa下行物理信道发射功率的方法和装置
US11178664B2 (en) Power control method and apparatus
WO2014091527A1 (ja) 無線通信装置、無線通信システムおよび無線通信方法
WO2015143600A1 (zh) 上行功率控制方法、用户设备和基站
WO2015168917A1 (zh) 一种通信方法及设备
US9629107B2 (en) Gain control method and device for TD-HSPA+terminal device
US20220377674A1 (en) Power control for bidirectional sidelink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827278

Country of ref document: EP

Kind code of ref document: A1