WO2015143600A1 - 上行功率控制方法、用户设备和基站 - Google Patents

上行功率控制方法、用户设备和基站 Download PDF

Info

Publication number
WO2015143600A1
WO2015143600A1 PCT/CN2014/073941 CN2014073941W WO2015143600A1 WO 2015143600 A1 WO2015143600 A1 WO 2015143600A1 CN 2014073941 W CN2014073941 W CN 2014073941W WO 2015143600 A1 WO2015143600 A1 WO 2015143600A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
configuration information
rrc configuration
cell
subframe
Prior art date
Application number
PCT/CN2014/073941
Other languages
English (en)
French (fr)
Inventor
曲秉玉
贺传峰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480001736.9A priority Critical patent/CN105122901B/zh
Priority to EP14886731.0A priority patent/EP3113552B1/en
Priority to BR112016022035-8A priority patent/BR112016022035B1/pt
Priority to PCT/CN2014/073941 priority patent/WO2015143600A1/zh
Publication of WO2015143600A1 publication Critical patent/WO2015143600A1/zh
Priority to US15/274,554 priority patent/US10117189B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/365Power headroom reporting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex

Definitions

  • Uplink power control method user equipment, and base station
  • the present invention relates to communication technologies, and in particular, to an uplink power control method, a user equipment, and a base station. Background technique
  • CA Carrier Aggregation
  • LTE-A Long Term Evolution Advanced
  • CC component carriers
  • CC component carriers
  • the CA defined here is based on the assumption of ideal backhaul, that is, the backhaul between different network devices controlling each CC or between different units of the same network device has a low delay and can be fast.
  • eNodeB Evolved Node B
  • the backhaul between them is ideal, and fast information interaction can be achieved.
  • the dual connectivity (DC) technology is introduced.
  • the user equipment User Equipment, hereinafter referred to as UE
  • UE User Equipment
  • the connection is through a non-ideal backhaul.
  • a schematic diagram of a dual connection is shown in FIG. 1 , in which a macro cell and a small cell use carriers CC1 and CC2 respectively, wherein the duplex mode of CC1 is frequency division duplexing (Frequency Division Duplexing) , hereinafter referred to as FDD), the duplex mode of CC2 is Time Division Duplexing (hereinafter referred to as TDD).
  • FDD Frequency Division Duplexing
  • TDD Time Division Duplexing
  • the macro cell is controlled by a primary eNodeB (hereinafter referred to as MeNodeB), and the small cell is controlled by a secondary eNodeB (hereinafter referred to as SeNodeB).
  • MeNodeB primary eNodeB
  • SeNodeB secondary eNodeB
  • the MeNodeB and the SeNodeB are connected by a non-ideal backhaul, and the delay between the eNodeBs is large.
  • the uplink scheduling of the UE is relatively independent. For example, a cell controlled by a different eNodeB cannot acquire the power headroom (hereinafter referred to as PH) of other cells reported by the UE, so that the total transmit power required for the two cells to schedule the UE to transmit on each cell may exceed.
  • the maximum transmit power allowed causes the UE to perform power compression, which increases the probability of transmission errors.
  • there may be cases where the UE transmits power on each carrier is small, resulting in wasted power resources. For this problem, taking the scenario shown in FIG.
  • the radio resource control protocol Radio Resource Control, hereinafter referred to as RRC
  • RRC Radio Resource Control
  • the PH-related physical layer information is sent to the Macro cell, so that the MeNodeB learns the power usage of the UE in the Small cell according to the PH-related physical layer channel configuration information of the Small cell and the known RRC configuration information of the SeNodeB, thereby controlling the UE in the Macro cell.
  • the transmit power in the middle avoids the UE's total transmit power in both cells exceeding the maximum transmit power.
  • the present invention provides an uplink power control method, a user equipment, and a base station, which are used to solve the technical problem that when the MeNodeB and the SeNodeB adopt independent RRC, the prior art cannot accurately control the UE's transmit power in the Macro cell.
  • the present invention provides a user equipment, including:
  • a receiver configured to receive first radio resource control protocol RRC configuration information that is sent by the first base station, where the first RRC configuration information is used to calculate that the UE is in a first cell controlled by the first base station Power headroom PH parameter;
  • a transmitter configured to send the second RRC configuration information to the second base station, where the second RRC configuration information includes a parameter used to calculate a PH of the UE in the first cell.
  • the second RRC configuration information is used by the second base station to control the UE in a second cell controlled by the second base station Transmit power.
  • the second RRC configuration information further includes subframe ratio information;
  • the subframe matching information is used by the second base station to learn that the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, where the semi-persistent scheduling configuration information is used by the second base station Obtaining a location of a subframe in which the UE is semi-statically scheduled by the first base station.
  • the present invention provides a base station, including:
  • a receiver configured to receive second RRC configuration information sent by the user equipment UE, where the second RRC configuration information is sent by the UE after receiving the first RRC configuration message sent by the first base station
  • the first RRC configuration information and the second RRC configuration information each include a parameter for calculating a power headroom PH of the UE in the first cell controlled by the first base station;
  • a processor configured to control, according to the second RRC configuration information, a transmit power of the UE in a second cell controlled by the second base station.
  • the second RRC configuration information further includes subframe ratio information;
  • the processor is further configured to learn, according to the subframe ratio information, that the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, where the processor is further configured to configure information according to the semi-persistent scheduling Obtaining a location of a subframe in which the UE is semi-statically scheduled by the first base station.
  • the present invention provides a base station, including:
  • a processor configured to configure first radio resource control protocol RRC configuration information for the user equipment UE, where the first RRC configuration information includes used to calculate power of the UE in the first cell controlled by the first base station The parameter of the balance PH;
  • a transmitter configured to send the first RRC configuration information to the UE, to enable the UE to send second RRC configuration information to the second base station, where the second RRC configuration information includes The parameter of the PH of the UE in the first cell.
  • the second RRC configuration information is used by the second base station to control transmission of the UE in a second cell controlled by the second base station power.
  • the second RRC configuration information further includes subframe ratio information; The subframe matching information is used by the second base station to learn that the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, where the semi-persistent scheduling configuration information is used by the second base station to learn The location of the subframe that the UE is semi-statically scheduled by the first base station.
  • the present invention provides a user equipment, including:
  • a receiving module configured to receive first RRC configuration information that is sent by the first base station, where the first RRC configuration information is used to calculate that the UE is in the first cell controlled by the first base station Power headroom PH parameter;
  • a sending module configured to send the second RRC configuration information to the second base station, where the second RRC configuration information includes a parameter used to calculate a PH of the UE in the first cell.
  • the second RRC configuration information is used by the second base station to control the UE in a second cell controlled by the second base station Transmit power.
  • the second RRC configuration information further includes subframe ratio information;
  • the subframe matching information is used by the second base station to learn whether the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, where the semi-persistent scheduling configuration information is used by the second base station Obtaining a location of a subframe in which the UE is semi-statically scheduled by the first base station.
  • a receiving module configured to receive second RRC configuration information sent by the user equipment UE, where the second RRC configuration information is sent by the UE after receiving the first RRC configuration message sent by the first base station
  • the first RRC configuration information and the second RRC configuration information each include a parameter for calculating a power headroom PH of the UE in the first cell controlled by the first base station;
  • control module configured to control, according to the second RRC configuration information, the UE at the second base station Control the transmit power in the second cell.
  • the second RRC configuration information further includes subframe ratio information;
  • the control module is further configured to learn, according to the subframe ratio information, that the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information
  • the control module is further configured to configure according to the semi-persistent scheduling The information is learned of the location of the subframe in which the UE is semi-statically scheduled by the first base station.
  • the present invention provides a base station, including:
  • a configuration module configured to configure first radio resource control protocol RRC configuration information for the user equipment UE, where the first RRC configuration information includes used to calculate power of the UE in the first cell covered by the first base station The parameter of the balance PH;
  • a sending module configured to send the first RRC configuration information to the UE, to enable the UE to send second RRC configuration information to the second base station, where the second RRC configuration information includes The parameter of the PH of the UE in the first cell.
  • the second RRC configuration information is used by the second base station to control the UE in a second cell controlled by the second base station Transmit power.
  • the second RRC configuration information further includes subframe ratio information;
  • the subframe matching information is used by the second base station to learn whether the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, where the semi-persistent scheduling configuration information is used by the second base station Obtaining a location of a subframe in which the UE is semi-statically scheduled by the first base station.
  • the present invention provides an uplink power control method, including:
  • the user equipment UE receives the first RRC configuration information of the radio resource control protocol sent by the first base station, where the first RRC configuration information includes used to calculate a power balance of the UE in the first cell controlled by the first base station.
  • the second RRC configuration information is used by the second base station to control the UE in a second cell controlled by the second base station Transmit power.
  • the second RRC configuration information further includes subframe ratio information;
  • the subframe matching information is used by the second base station to learn whether the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, where the semi-persistent scheduling configuration information is used by the second base station Obtaining a location of a subframe in which the UE is semi-statically scheduled by the first base station.
  • the present invention provides an uplink power control method, including:
  • the first RRC configuration information and the second RRC configuration information each include a parameter for calculating a power headroom PH of the UE in the first cell controlled by the first base station.
  • the second base station controls, according to the second RRC configuration information, a transmit power of the UE in a second cell controlled by the second base station.
  • the second RRC configuration information further includes subframe ratio information;
  • the subframe matching information is used by the second base station to learn whether the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, so that the second base station learns according to the semi-static scheduling configuration information.
  • the present invention provides an uplink power control method, including:
  • the first base station configures first radio resource control protocol RRC configuration information for the user equipment UE, where the first RRC configuration information includes a power headroom for calculating the first cell controlled by the UE in the first base station.
  • the second RRC configuration information is sent by the second eNB, where the second RRC configuration information includes parameters for calculating a PH of the UE in the first cell.
  • the second RRC configuration information is used by the second base station to control the UE in a second cell controlled by the second base station Transmit power.
  • the second RRC configuration information further includes subframe ratio information;
  • the subframe matching information is used by the second base station to learn whether the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, where the semi-persistent scheduling configuration information is used by the second base station Obtaining a location of a subframe in which the UE is semi-statically scheduled by the first base station.
  • the uplink power control method, the user equipment, and the base station provided by the embodiment of the present invention receive the first RRC configuration information sent by the first base station by using the receiver, and send the second RRC configuration information to the second base station by using the transmitter, where the first RRC configuration is performed.
  • the information and the second RRC configuration information both include parameters for calculating the PH of the UE in the first cell, so that the second base station can control, according to the second RRC configuration information, the UE to perform uplink in the second cell controlled by the second base station at the next moment. Transmit power at transmission.
  • the user equipment provided by the embodiment of the present invention may be applicable to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the UE may also effectively control the transmit power of the UE. Upstream power control compatibility. DRAWINGS
  • Figure 1 is a schematic view of a dual connection provided by the present invention
  • Embodiment 1 of a user equipment according to the present invention is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention
  • 4 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention.
  • Embodiment 3 of a base station is a schematic structural diagram of Embodiment 3 of a base station according to the present invention.
  • FIG. 7 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention.
  • FIG. 8 is a schematic flowchart of Embodiment 1 of an uplink power control method according to the present invention
  • FIG. 9 is a schematic flowchart of Embodiment 2 of an uplink power control method provided by the present invention
  • the user equipment may be a wireless terminal or a wired terminal
  • the wireless terminal may be a device that provides voice and/or data connectivity to the user, a handheld device with wireless connection function, or is connected to Other processing devices for wireless modems.
  • the wireless terminal can communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network), which can be a mobile terminal, such as a mobile phone (or "cellular" phone) and with a mobile terminal Computers, for example, can be portable, pocket, handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a radio access network eg, RAN, Radio Access Network
  • a mobile terminal such as a mobile phone (or "cellular" phone)
  • Computers for example, can be portable, pocket, handheld, computer built-in or in-vehicle mobile devices that exchange language and/or data with the wireless access network.
  • a wireless terminal may also be called a system, a Subscriber Unit, a Subscriber Station, a Mobile Station, a Mobile, a Remote Station, an Access Point, Remote Terminal, Access Terminal, User Terminal, User Agent, User Device, or User Equipment.
  • a base station e.g., an access point
  • a base station referred to in this application may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), this application is not limited.
  • FIG. 2 is a schematic structural diagram of Embodiment 1 of a user equipment according to the present invention.
  • the user equipment includes: a receiver 10 and a transmitter 11.
  • the receiver 10 is configured to receive first RRC configuration information that is sent by the first base station, where the first RRC configuration information is used to calculate a PH of the UE in a first cell controlled by the first base station.
  • the transmitter 11 is configured to send the second RRC configuration information to the second base station, where the second RRC configuration information includes a parameter used to calculate a PH of the UE in the first cell.
  • the embodiment of the present invention is applicable to a dual-connection scenario, and two base stations in the dual-connection scenario adopt independent RRC, that is, the RRC of each base station separately configures the UE under the base station.
  • the first base station configures RRC configuration information for the UE, where the first RRC configuration information is high layer configuration information, where the UE and the second base station calculate the PH of the UE in the first cell controlled by the first base station.
  • the first RRC configuration information may include: ⁇ . _ ⁇ 5; ⁇ ( , a person f), 0_ PUCCH , A TxD (F ⁇ parameter 1 ( 8 and ; ⁇ ; where P.
  • _ PUSeH ⁇ is used to set the uplink shared channel (Physical) under different scheduling modes (j) uplink shared channel, hereinafter referred to as PUSCH), power offset; path (different scheduling method for calculating (j) the loss compensation coefficient; P._ PU «: H is provided for a physical uplink shared channel (physical uplink Control Channel, hereinafter referred to as PUCCH) power offset; for setting parameters related to PUCCH format; parameters Ks and ; ⁇ for calculating transmission format compensation value F ).
  • PUCCH physical uplink shared channel
  • the first base station sends the first RRC configuration information to
  • the UE receives the first RRC configuration information, and the UE can calculate the PH of the UE in the first cell controlled by the first base station according to the parameters in the first RRC configuration information and the physical layer information preset by the UE. And the UE may also learn, according to the preset physical layer information, the number of resource blocks (hereinafter referred to as RBs) that are scheduled by the first base station when the UE performs uplink transmission in the first cell, that is, the uplink resource. Number).
  • RBs resource blocks
  • the preset physical layer information in the UE may be configured for the first base station to the UE, where the physical layer information may include the number of RBs used by the first base station to schedule uplink transmission by the UE, the scheduling authorization mode, and the transmission format information. Wait.
  • the process of determining, by the UE, the PH of the UE in the uplink transmission in the first cell according to the first RRC configuration information and the preset physical layer information is specifically introduced:
  • the terminal sends data on the PUSCH and/or the PUCCH, where the data includes user data and/or signaling, and the PH determined by the UE in the first cell can be divided into two types of PHs, respectively 1 and type 2.
  • the uplink transmission of the UE can be divided into three cases.
  • the UE calculates the PH by three formulas:
  • the first type The UE sends a PUSCH on the subframe i of the serving cell (cell, abbreviated as c), and does not send the PUCCH.
  • cell abbreviated as c
  • the corresponding formula is:
  • P eMA3 ⁇ 4 is the maximum transmit power configured by the UE when there is a PUSCH channel transmission on the subframe i of the serving cell c.
  • the serving cell c herein may be the first cell covered by the first base station.
  • the transmitting PUSCH mentioned in this embodiment and all the following embodiments actually refers to transmitting data on the PUSCH, and transmitting the PUCCH refers to transmitting data on the PUCCH, but in the communication field, simply for transmitting PUSCH or sending PUCCH.
  • the UE sends PUSCH and PUCCH on the subframe i of the serving cell c, and the corresponding formula is:
  • the serving cell c may be the first cell covered by the first base station.
  • the third type When the UE does not send the PUSCH on the subframe i of the serving cell c, the UE sends a virtual type 1 PHR to the serving cell c, and the first type of virtual PHR uses the reference format of the PUSCH ( Reference format) ;
  • the corresponding formula is:
  • Equation 1 Equation 2, and Equation 3 above are: M PUSeH , . (0 is the number of RBs allocated by the first base station to the UE for transmitting the PUSCH on the subframe i. ⁇ PUSeH , ( ) is the open loop power control adjustment value, and the high layer configuration of the serving cell c is under different values of j. P .- p w( '1 ⁇ 2 value, where the variable j is related to the scheduling grant mode of the PUSCH.
  • (0 is the transmission format compensation value, the codeword stream sent by the UE
  • CQI Quality Indicator
  • PMI Preceding Matrix Indicator
  • also includes the Cyclic Redundancy Check (CRC) bit of CQI or PMI.
  • N RE is the number of REs; when there is no bearer control information on the PUSCH, BPRE ⁇ K r / N RE , where C is the number of coding blocks of the user data of the uplink PUSCH, and the coding block size of the rth block is Kr.
  • the uplink transmission can be divided into four cases.
  • the UE calculates the PH also has four formulas:
  • the first type the UE sends simultaneously on the subframe i of the primary cell (ie, the first cell is the primary cell)
  • the corresponding PH calculation formula can be: (Formula 4)
  • the corresponding PH calculation formula can be:
  • the third type The UE sends only the PUCCH in the subframe i of the primary cell (that is, the first cell is the primary cell), and does not send the PUSCH.
  • the corresponding PH calculation formula may be: (Formula 6);
  • the fourth type the UE does not send the PUSCH and the PUCCH on the subframe i of the primary cell (ie, the first cell is the primary cell), and the UE sends a second type virtual (virtual type 2) PHR to the primary cell, the second type of virtual
  • the PHR uses the reference format of the PUSCH and PUCCH; the corresponding PH calculation formula can be:
  • HARQ-ACK is related to the number of bits.
  • h( nc , n HARQ , nsR can be calculated according to the corresponding values of ⁇ , 3 ⁇ 4 ⁇ , 3 ⁇ 4 ;
  • is the open-loop power control adjustment
  • the value is determined by the RRC configuration parameter of the first base station; the parameter related to the number of the antenna port and the PUCCH format for transmitting the PUCCH; wherein, when the PUCCH is sent by using two antenna ports, the parameters related to the PUCCH format are used by the upper layer through a dedicated message.
  • Let the configuration be assigned to the UE; otherwise, A 3 ⁇ 4D (F ') 0 ; g (0 is the closed-loop power control adjustment value, and the power control command sent by the first base station is determined.
  • the UE may calculate that the UE is based on the parameters included in the first RRC configuration information and the content included in the preset physical layer information.
  • the first base station covers the PH in the first cell to be controlled, and sends the PH to the second base station through the transmitter 11.
  • the PH may be sent to the second base station in the form of a PHR; and, the transmitter 11 further And transmitting second RRC configuration information to the second base station, where the second RRC configuration information also includes a parameter for calculating a PH of the UE in the first cell.
  • the UE may send the PH in the first cell to the second base station, when the first base station reconfigures the parameters of the PH of the UE in the first cell for the UE, the second base station
  • the new PH can be calculated directly by using these parameters and the physical layer information preset in the second base station, and the UE calculation is no longer needed.
  • the physical layer information preset in the second base station is the same as the physical layer information preset in the UE, and may be forwarded by the UE, or may be directly sent by the first base station to the second base station when the ideal backhaul is performed, that is, here.
  • the preset physical layer information in the second base station may be configured for the first base station (of course, there is another in the second base station - the physical layer information is configured by the second base station itself).
  • the second base station is configured to perform uplink transmission in the first cell before the UE performs uplink transmission according to the second RRC configuration information, the physical layer information preset in the second base station, and the PH of the UE in the first cell sent by the UE, where the first base station is Physical layer information such as the number of RBs scheduled by the UE, the scheduling authorization mode, and the transport format information, and the parameters related to the PH that the UE calculates for the first base station, so that the power usage of the UE before uplink transmission in the first cell can be known.
  • the PH in the first cell refers to the remaining power in the first cell before the UE
  • the parameter included in the second RRC configuration information in the first cell is also configured by the first base station.
  • the second base station further performs, according to the RRC configuration information configured by the second base station for the UE, the physical layer information configured by the second base station for the UE, and the PHR of the second base station, that the UE performs the second time in the second cell controlled by the second base station.
  • the second base station is the number of RBs scheduled by the UE and the remaining power; that is, the second base station can learn the power usage of the UE when performing uplink transmission in the second cell.
  • the second base station uses the power usage of the previous UE in the first cell and the second cell as a reference, and controls the UE's next transmit power when the second cell performs uplink transmission, so that the total transmit power of the UE (the total UE)
  • the transmit power is equal to the sum of the transmit powers of the UEs in each cell) does not exceed the maximum transmit power allowed by the UE.
  • the UE after receiving the first RRC configuration information sent by the first base station, the UE sends the second RRC configuration information to the second base station by using the transmitter 11, and the second RRC configuration information also includes the calculation in the first
  • the parameter of the PH in the cell may not only enable the second base station to learn the specific calculation process of the PH in the first cell, but also when the first base station reconfigures the parameters in the first RRC configuration information for the UE. And transmitting, by the UE, the new parameter to the second RRC configuration information, and sending the second RRC configuration information to the second base station, to prevent the second base station from using the original parameter, if the parameter in the first RRC configuration information of the first base station has changed.
  • the first RRC configuration information and the second RRC configuration information may be the same or different, but both include parameters for calculating a PH of the UE in the first cell.
  • the second RRC configuration information is used by the second base station to control the transmit power of the UE in the second cell controlled by the second base station. If the first base station supports the TDD mode, the second RRC configuration information further includes subframe ratio information, where the subframe ratio information is used by the second base station to learn the subframe scheduled by the first base station at the next moment of the UE. It is up or down.
  • the second RRC configuration information may include the foregoing Embodiment 1 " e ( , ⁇ _ ⁇ , ⁇ ⁇ 0 ⁇ , parameter Ks and , also includes subframe ratio information.
  • the subframe matching information may also be configured by the first base station to the UE.
  • the UE The first base station and the second base station are respectively connected to serve the same, wherein the first base station supports the TDD mode, and the second base station supports the FDD mode.
  • the TDD and FDD cells serve one UE, which is also called TDD+FDD carrier aggregation, or TDD-FDD joint operation. If the RRC of the TDD eNB (first base station) and the RRC of the FDD eNodeB (second base station) are independent of each other.
  • the first eNB sends the first RRC configuration information to the UE, and the UE calculates, according to the first RRC configuration information and the preset physical layer information, the PH when the UE performs uplink transmission in the first cell, and the transmitter 11
  • the PH is sent to the second base station, and the second RRC configuration information is sent to the second base station.
  • the second base station can learn the specific parameter of the PH in the first cell according to the second RRC configuration information, and can also be configured according to the second RRC configuration information.
  • the subframe matching information learns which subframes in the TDD cell (first cell) are used for uplink and which subframes are used for downlink.
  • the second base station learns that the next time transmission of the UE is in the downlink subframe according to the subframe ratio information, the UE will not be scheduled for uplink transmission in the downlink subframe of the TDD cell (first cell). Then, the transmit power of the UE may be all used by the scheduling of the FDD cell (the second cell), without considering the power usage of the UE in the TDD cell, that is, the second base station may schedule more RBs, as long as the UE is transmitted in the second cell. The power does not exceed the maximum transmit power allowed by the UE. If the second base station learns that the next time the transmission of the UE is in the uplink subframe, the second base station may refer to the technical solution of the first embodiment to control the transmit power of the UE in the second cell. This will not be repeated here.
  • the second cell is not a FDD cell, and may be a TDD cell.
  • the UE may report the subframe matching information of any one of the TDD cells to another cell.
  • the user equipment provided by the embodiment of the present invention receives the first sent by the first base station by using the receiver.
  • the second RRC configuration information includes calculating a parameter of the PH of the UE in the first cell and subframe ratio information configured by the first base station for the UE,
  • the second base station is configured to learn, according to the subframe ratio information in the second RRC configuration information, whether the transmission subframe of the next time of the UE is uplink or downlink, so that the second base station can better control the next UE according to the second RRC configuration information.
  • the transmission power at the time of uplink transmission in the second cell controlled by the second base station.
  • the user equipment provided by the embodiment of the present invention may be applicable to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the UE may also effectively control the transmit power of the UE. Upstream power control compatibility.
  • the optional one may be further implemented as follows: If the first base station supports the TDD mode, and the first base station schedules the UE to be in the downlink subframe, the second RRC configuration information sent by the first base station to the UE may include only the subframe ratio information, that is, the foregoing does not include the foregoing. A parameter used to calculate the PH of the UE in the first cell. In this case, the subframe matching information is used by the second base station to learn that the subframe scheduled by the first base station at the next moment is a downlink subframe, and then the downlink subframe in the TDD cell (first cell).
  • the UE may not be scheduled for uplink transmission, and the UE's transmit power may all be used by the FDD cell (second cell), regardless of the power usage of the UE in the TDD cell, that is, the second base station may schedule more RBs. As long as the UE's transmit power in the second cell does not exceed the maximum transmit power allowed by the UE.
  • the parameter and the subframe ratio information used to calculate the PH of the UE in the first cell included in the foregoing second RRC configuration information may be a relationship of "and/or", that is, the second RRC configuration information may be Include only the parameters for calculating the PH of the UE in the first cell (see the technical solution of the embodiment), and may also include only the subframe ratio information (that is, the UE is scheduled by the first base station at the next moment is a downlink sub
  • the scenario of the frame may also include the parameter for calculating the PH of the UE in the first cell and the subframe ratio information (that is, the scenario in which the UE is scheduled by the first base station to be the uplink subframe at the next moment).
  • the user equipment receives the first RRC configuration information sent by the first base station by using the receiver, and sends the second RRC configuration information to the second base station by using the transmitter, where the second RRC configuration information includes the first base station as the UE.
  • the configured subframe matching information so that the second base station learns, according to the subframe ratio information in the second C configuration information, that the transmission subframe of the next moment of the UE is downlink, so that the second base station can better according to the second RRC.
  • the configuration information controls the transmit power when the UE performs uplink transmission in the second cell controlled by the second base station at the next moment.
  • the user equipment provided by the embodiment of the present invention may be applicable to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the UE may also effectively control the transmit power of the UE. Upstream power control compatibility.
  • the second RRC configuration information includes semi-persistent scheduling configuration information, where the semi-persistent scheduling configuration information is used by the second base station to learn that the UE is semi-statically scheduled by the first base station. The position of the sub-frame.
  • the second RRC configuration information includes not only the first embodiment but also the first embodiment.
  • _ ⁇ ⁇ 5; (: ⁇ ⁇ ( , a c ⁇ j) , P 0 PUCCH , AH parameters Ks and ⁇ also includes semi-persistent scheduling configuration information.
  • the specific parameter of the PH in the first cell may be learned according to the second RRC configuration information, and the location of the subframe in which the first base station performs semi-persistent scheduling on the UE may be obtained according to the semi-persistent scheduling configuration information in the second RRC configuration information.
  • the physical layer information that is configured by the first base station to the UE is fixed, for example, in the semi-persistently scheduled subframe, the first base station is an uplink transmission scheduling of the UE in the first cell.
  • the number of RBs is constant (the RB scheduling in the first embodiment is dynamic scheduling, and the number of RBs scheduled by the first base station may be different each time the UE transmits the uplink)
  • the second base station may use the physical layer information on the semi-persistent scheduling subframe preset by the previous UE.
  • the RB scheduling situation in the first cell controlled by the first base station at the next moment the number of scheduled RBs of the first base station on each semi-persistent scheduling subframe is fixed, so that the second base station can be accurate
  • the RB scheduling situation in the second cell controlled by the second base station at the next moment of the UE is estimated, and then the transmission power of the UE in the second cell at the next moment is controlled.
  • the second base station learns that the next time transmission of the UE is on the non-semi-persistent scheduling subframe according to the semi-persistent scheduling configuration information, that is, the UE is dynamically scheduled by the first base station in the subframe, the second base station refers to The technical solution of the first embodiment controls the transmit power of the UE in the second cell at the next moment, and details are not described herein again.
  • the duplex mode of the first cell and the second cell is not limited. Moreover, when both the first base station and the second base station configure the semi-persistent scheduling configuration information for the UE, the UE may report the semi-persistent scheduling configuration information of any one cell to another cell.
  • the user equipment provided by the embodiment of the present invention receives the first RRC configuration information sent by the first base station by using the receiver, and sends the second RRC configuration information to the second base station by using the transmitter, where the second RRC configuration information includes: The parameter of the PH in the cell and the semi-persistent scheduling configuration information configured by the first base station for the UE, so that the second base station learns, according to the semi-persistent scheduling configuration information in the second RRC configuration information, that the transmission subframe of the next moment of the UE is semi-persistent scheduling.
  • the subframe is also a non-semi-static scheduling subframe, so that the second base station can better control the transmission power when the UE performs uplink transmission in the second cell controlled by the second base station at the next moment according to the second RRC configuration information.
  • the user equipment provided by the embodiment of the present invention may be applicable to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the UE may also effectively control the transmit power of the UE. Upstream power control compatibility.
  • the system may be further configured by the first base station to the UE.
  • the second RRC configuration information may include only semi-persistent scheduling configuration information, that is, does not include the foregoing method for calculating the PH of the UE in the first cell. parameter.
  • the semi-persistent scheduling configuration information is used by the second base station to learn that the subframe scheduled by the first base station at the next moment of the UE is a semi-persistent scheduling subframe, and the location of the semi-persistently scheduled subframe is obtained.
  • the physical layer information that is configured by the first base station to the UE is fixed, for example, in the semi-persistently scheduled subframe, the first base station is an uplink transmission scheduling of the UE in the first cell.
  • the number of RBs is constant (the RB scheduling in the first embodiment is dynamic scheduling, and the number of RBs scheduled by the first base station may be different each time the UE transmits the uplink)
  • the second base station learns, according to the semi-persistent scheduling configuration information, that the next time the transmission of the UE is in the semi-persistent scheduling subframe, the second base station can learn according to the physical layer information in the semi-persistent scheduling subframe preset by the previous UE.
  • the RB scheduling situation in the first cell controlled by the first base station at the next time (the number of scheduled RBs of the first base station on each semi-persistent scheduling subframe is fixed), so that the second base station can accurately estimate
  • the RB scheduling situation in the second cell controlled by the second base station at the next moment of the UE is controlled, and then the transmission power of the UE in the second cell at the next moment is controlled.
  • the parameter for calculating the PH of the UE in the first cell and the semi-persistent scheduling subframe configuration information included in the foregoing second RRC configuration information may be a relationship of "and/or", that is, the second RRC configuration.
  • the information may include only parameters for calculating the PH of the UE in the first cell (see the technical solution of the embodiment), or may only include semi-persistent scheduling configuration information (ie, the UE is scheduled by the first base station at the next moment).
  • the scenario of the semi-persistent scheduling subframe may also include the parameter for calculating the PH of the UE in the first cell and the subframe ratio information (that is, the UE is scheduled by the first base station at the next moment to be a non-semi-static scheduling subframe. Scenes) .
  • the user equipment receives the first RRC configuration information sent by the first base station by using the receiver, and sends the second RRC configuration information to the second base station by using the transmitter, where the second RRC configuration information includes the first base station as the UE.
  • the configured semi-persistent scheduling subframe configuration information so that the second base station learns, according to the semi-persistent scheduling configuration information in the second RRC configuration information, that the transmission subframe of the next moment of the UE is
  • the semi-persistent scheduling subframe further enables the second base station to better control the transmit power of the UE in the uplink transmission in the second cell controlled by the second base station at the next moment according to the second RRC configuration information.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of a base station according to the present invention. As shown in FIG.
  • the base station is a second base station
  • the base station includes: a receiver 20 and a processor 21, wherein the receiver 20 receives the second RRC configuration information sent by the UE, where the second RRC configuration information is And transmitting, by the UE, the first RRC configuration message sent by the first base station, where the first RRC configuration information and the second RRC configuration information respectively include parameters for calculating a PH of the UE in the first cell controlled by the first base station.
  • the processor 21 is configured to control, according to the second RRC configuration information, a transmit power of the UE in the second cell controlled by the second base station.
  • the embodiment of the present invention is applicable to a dual-connection scenario, and two base stations in the dual-connection scenario adopt independent RRC, that is, the RRC of each base station separately configures the UE under the base station.
  • the first eNB configures the first RRC configuration information for the UE, where the first RRC configuration information is high layer configuration information, where the UE and the second base station calculate the PH of the UE in the first cell covered by the first base station.
  • the first RRC configuration information may include: ⁇ . _ ⁇ ⁇ 5; ⁇ ⁇ , a c (j) , Po_ mC cu ⁇ UF' The parameter Ks and where ⁇ .
  • _ ⁇ 5 ⁇ ⁇ is used to set the power offset of the PUSCH under different scheduling modes (j); ⁇ ⁇ is used to calculate the path loss compensation coefficient under different scheduling modes (j); _ ⁇ : ⁇ is used to set the power offset of the PUCCH; is used to set the parameters related to the PUCCH format; the parameter Ks is used to calculate the transmission format compensation value ⁇ ( ).
  • the first base station sends the first RRC configuration information to the UE, and the UE may calculate, according to the parameters in the first RRC configuration information, the physical layer information preset in the UE, that the UE is in the first cell controlled by the first base station.
  • the number of RBs (ie, the number of uplink resources) scheduled by the first base station when the UE performs uplink transmission in the first cell is obtained by the UE according to the preset physical layer information.
  • the preset physical layer information in the UE may be sent to the UE by the first base station, where the physical layer information may include the number of RBs used by the first base station to schedule uplink transmission by the UE, the scheduling authorization mode, and the transmission format information. Wait.
  • the process of determining, by the UE, the PH of the UE in the uplink transmission in the first cell according to the first RRC configuration information and the preset physical layer information refer to Embodiment 1 The description in the description will not be repeated here.
  • the UE may calculate that the UE is based on the parameters included in the first RRC configuration information and the content included in the preset physical layer information.
  • a PH in the first cell controlled by the first base station, and sending the PH to the second base station.
  • the PH may be sent to the second base station in the form of a PHR; and the UE further sends the second base station to the second base station.
  • RRC configuration information, the second RRC configuration information also includes parameters for calculating a PH of the UE in the first cell.
  • the UE may send the PH in the first cell to the second base station, when the first base station reconfigures the parameters of the PH of the UE in the first cell for the UE, the second base station
  • the new PH can be calculated directly by using these parameters and the physical layer information preset in the second base station, and the UE calculation is no longer needed.
  • the physical layer information preset in the second base station is the same as the physical layer information preset in the UE, and may be forwarded by the UE, or may be directly sent by the first base station to the second base station when the ideal backhaul is performed, that is, here.
  • the preset physical layer information in the second base station may be configured by the first base station (of course, another physical layer information in the second base station is configured by the second base station itself).
  • the receiver 20 receives the second RRC configuration information sent by the UE, and the processor 21 may be first according to the second RRC configuration information, the physical layer information preset in the second base station, and the UE knowing the UE in the PH in the first cell.
  • the first base station is configured with the physical layer information such as the number of RBs scheduled by the UE, the scheduling authorization mode, and the transmission format information, and the parameters related to the PH corresponding to the UE by the UE, so that the UE is known before Power usage when performing uplink transmission in a cell.
  • the PH in the first cell refers to the remaining power in the first cell before the UE
  • the parameter included in the second RRC configuration information in the first cell is also configured by the first base station.
  • the processor 21 further performs, according to the RRC configuration information configured by the second base station for the UE, the physical layer information configured by the second base station for the UE, and the PHR of the second base station, that the UE performs the second time in the second cell controlled by the second base station.
  • the second base station is the number of RBs scheduled by the UE and the remaining power; that is, the processor 21 can learn the power usage of the UE when performing uplink transmission in the second cell.
  • the processor 21 uses the power usage of the UE in the first cell and the second cell as a reference to control the transmit power of the UE when the next cell performs uplink transmission, so that the total transmit power of the UE (the total UE)
  • the transmit power is equal to the sum of the transmit powers of the UEs in each cell) The maximum transmit power allowed by the UE.
  • the UE after receiving the first RRC configuration information sent by the first base station, the UE sends the second RRC configuration information to the second base station, and the second RRC configuration information also includes calculating the PH in the first cell.
  • the parameter may not only enable the second base station to learn the specific calculation process of the PH for the uplink transmission of the UE in the first cell, but also enable the first base station to reconfigure the parameters in the first RRC configuration information for the UE.
  • the new parameter is carried in the second RRC configuration information and sent to the second base station, to prevent the processor 21 of the second base station from using the original parameters to learn that the parameters in the first RRC configuration information of the first base station have changed.
  • the first RRC configuration information and the second RRC configuration information may be the same or different, but both include parameters for calculating the PH of the UE in the first cell.
  • the base station receives, by the receiver, the second RRC configuration information that is sent by the UE, where the second RRC configuration information includes a parameter for calculating a PH of the UE in the first cell, and the processor is configured according to the second RRC configuration information.
  • the base station provided by the embodiment of the present invention can be applied to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the transmit power of the UE can be effectively controlled, and the uplink is improved. Power control compatibility.
  • the second RRC configuration information further includes subframe ratio information
  • the processor 21 is further configured to use the sub-frame according to the sub-frame ratio information.
  • the frame ratio information indicates that the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information may include the foregoing Embodiment 2 " e ( , ⁇ _ ⁇ , ⁇ ⁇ 0 ⁇ , parameter Ks and , also includes subframe ratio information.
  • the subframe matching information may also be configured by the first base station to the UE.
  • the UE The first base station supports the TDD mode
  • the second base station supports the FDD mode.
  • the TDD and FDD cells serve one UE, also called TDD+FDD carrier aggregation, or TDD-FDD. Joint operation. If TDD eNB (first base The RRC of the station and the RRC of the FDD eNodeB (second base station) are independent of each other.
  • the first base station sends the first RRC configuration information to the UE, and the UE may calculate, according to the first RRC configuration information and the preset physical layer information, the PH when the UE performs uplink transmission in the first cell, and the PH and the PH and The second RRC configuration information is sent to the second base station; the receiver 20 receives the second RRC configuration information and the PH of the UE in the first cell, and the processor 21 can learn, according to the second RRC configuration information, that the PH in the first cell is calculated.
  • the specific parameter may also be used to learn, according to the subframe ratio information in the second RRC configuration information, which subframes in the TDD cell (first cell) are used for uplink, and which subframes are used for downlink.
  • the processor 21 learns that the transmission of the next moment of the UE is in the downlink subframe according to the foregoing subframe ratio information, the UE will not be scheduled for uplink transmission in the downlink subframe of the TDD cell (first cell). Then, the transmit power of the UE may be all used by the scheduling of the FDD cell (the second cell), without considering the power usage of the UE in the TDD cell, that is, the second base station may schedule more RBs, as long as the UE is transmitted in the second cell. The power does not exceed the maximum transmit power allowed by the UE. If the processor 21 learns that the next time the transmission of the UE is in the uplink subframe, the processor 21 may refer to the technical solution of the first embodiment to control the UE's transmit power in the second cell. This will not be repeated here.
  • the second cell is not a FDD cell, and may be a TDD cell.
  • the UE may report the subframe matching information of any one of the TDD cells to another cell.
  • the base station receives the second RRC configuration information sent by the UE by using the receiver, and the processor learns, according to the subframe ratio information in the second RRC configuration information, whether the transmission subframe of the next moment of the UE is uplink or downlink.
  • the processor can be further configured according to the second RRC configuration information, the physical layer information preset in the second base station, and the PH in the first cell, where the UE controls the next time in the second cell controlled by the second base station. Transmit power at the time of uplink transmission.
  • the base station provided by the embodiment of the present invention can be applied to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the transmit power of the UE can be effectively controlled, and the uplink is improved. Power control compatibility.
  • the second RRC configuration information includes semi-persistent scheduling configuration information
  • the processor 21 is further configured to use the semi-persistent scheduling configuration information. The location of the subframe in which the UE is semi-statically scheduled by the first base station is known.
  • the UE sends the second RRC configuration information and the PH of the UE in the first cell to the second base station, where the RRC configuration information includes not only the ⁇ in the first embodiment.
  • the receiver 20 receives the second RRC configuration information and the UE
  • the processor 21 may be configured to calculate a specific parameter of the PH in the first cell according to the second RRC configuration information, and may also learn the first base station according to the semi-persistent scheduling configuration information in the second RRC configuration information.
  • the location of the subframe in which the UE is semi-persistently scheduled, the physical layer information configured by the first base station to the UE is fixed, for example, in the semi-persistently scheduled subframe, the first
  • the number of RBs that the base station schedules for the uplink transmission of the UE in the first cell is constant (the RB scheduling in the first embodiment is dynamic scheduling, and the number of RBs scheduled by the first base station in each uplink transmission of the UE) May be different)
  • the processor 21 may use the physical layer information on the semi-persistent scheduling subframe preset by the previous UE. Obtaining, by the UE, the RB scheduling situation in the first cell controlled by the first base station at the next moment (the number of scheduled RBs of the first base station on each semi-persistent scheduling subframe is fixed), so that the processor 21 can be accurate. The RB scheduling situation in the second cell controlled by the second base station at the next moment of the UE is estimated, and then the transmission power of the UE in the second cell at the next moment is controlled.
  • the processor 21 learns that the next time transmission of the UE is on the non-semi-persistent scheduling subframe according to the semi-persistent scheduling configuration information, that is, the UE is dynamically scheduled by the first base station in the subframe, the second base station refers to The technical solution of the first embodiment controls the transmit power of the UE in the second cell at the next moment, and details are not described herein again.
  • the duplex mode of the first cell and the second cell is not limited. Moreover, when both the first base station and the second base station configure the semi-persistent scheduling configuration information for the UE, the UE may report the semi-persistent scheduling configuration information of any one cell to another cell.
  • the base station provided by the embodiment of the present invention receives the second RRC configuration information sent by the UE by using the receiver, and the processor learns, according to the semi-static scheduling configuration information in the second RRC configuration information, that the transmission subframe of the next moment of the UE is a semi-static scheduler.
  • the frame is still a non-semi-static scheduling subframe, so that the processor can better control the UE according to the second RRC configuration information, the physical layer information preset in the second base station, and the UE in the first cell.
  • Uplink transmission in the second cell controlled by the second base station The transmit power at the time.
  • FIG. 4 is a schematic structural diagram of Embodiment 2 of a base station according to the present invention.
  • the base station is a first base station.
  • the base station includes: a processor 30 and a transmitter 31.
  • the processor 30 is configured to configure first RRC configuration information for the UE.
  • the first RRC configuration information includes The parameter is used to calculate the PH of the UE in the first cell controlled by the first base station, and the transmitter 31 is configured to send the first RRC configuration information to the UE, so that the UE sends the second RRC configuration to the second base station.
  • the embodiment of the present invention is applicable to a dual-connection scenario, and two base stations in the dual-connection scenario adopt independent RRC, that is, the RRC of each base station separately configures the UE under the base station.
  • the processor 30 configures first RRC configuration information for the UE, where the first RRC configuration information is high layer configuration information, where the UE and the second base station calculate the PH of the UE in the first cell covered by the first base station.
  • the first RRC configuration information may include: ⁇ . _ ⁇ ⁇ 5; ⁇ ⁇ , a c (j) , Po_ mC cu ⁇ UF'
  • ( j ) the power offset of the lower PUSCH; “ ⁇ ⁇ is used to calculate the path loss compensation coefficient under different scheduling modes (j ); ⁇ . _ ⁇ : ⁇ is used to set the power offset of the PUCCH; is used to set the parameters related to the PUCCH format; the parameter Ks is used to calculate the transmission format compensation value ⁇ ( ).
  • the transmitter 31 sends the first RRC configuration information to the UE, and the UE can calculate, according to the parameters in the first RRC configuration information, the physical layer information preset in the UE, that the UE is in the first cell controlled by the first base station.
  • the number of RBs ie, the number of uplink resources scheduled by the first base station when the UE performs uplink transmission in the first cell is obtained by the UE.
  • the UE determines, according to the first RRC configuration information and the preset physical layer information, the PH when the UE performs the uplink transmission in the first cell, as described in the foregoing Embodiment 1, and details are not described herein again.
  • the UE may calculate according to the parameters included in the first RRC configuration information and the content included in the preset physical layer information in the UE.
  • the PH of the UE in the first cell controlled by the first base station, and sends the PH to the second base station.
  • the PH may be sent to the second base station in the form of a PHR; and the UE also sends the PH to the second base station.
  • Second RRC configuration information The second RRC configuration information also includes parameters for calculating a PH of the UE within the first cell.
  • the UE may send the PH in the first cell to the second base station, when the first base station reconfigures the parameters of the PH of the UE in the first cell for the UE, the second base station
  • the new PH can be calculated directly by using these parameters and the physical layer information preset in the second base station, and the UE calculation is no longer needed.
  • the physical layer information preset in the second base station is the same as the physical layer information preset in the UE, and may be forwarded by the UE, or may be directly sent by the first base station to the second base station when the ideal backhaul is performed, that is, here.
  • the preset physical layer information in the second base station may be configured by the first base station (of course, another physical layer information in the second base station is configured by the second base station itself).
  • the second base station according to the second RRC configuration information, the physical layer information preset in the second base station, and
  • the first base station When the UE performs uplink transmission in the first cell before the PH in the first cell learns the UE, the first base station is configured with the physical layer information such as the number of RBs scheduled by the UE, the scheduling authorization mode, and the transmission format information, and calculates the first base station with the UE. Corresponding PH related parameters, so that the power usage of the UE before uplink transmission in the first cell can be known. It should be noted that the PH in the first cell refers to the remaining power of the UE in the first cell, and the parameter included in the second RRC configuration information in the first cell is also configured by the first base station.
  • the second base station further learns, according to the second RRC configuration information that the second base station configures for the UE, the physical layer information that the second base station configures for the UE, and the PHR of the second base station, the second cell that the UE last controlled at the second base station.
  • the second base station is the number of RBs scheduled by the UE and the remaining power; that is, the second base station can learn the power usage of the UE when performing uplink transmission in the second cell.
  • the second base station uses the power usage of the previous UE in the first cell and the second cell as a reference, and controls the UE's next transmit power when the second cell performs uplink transmission, so that the total transmit power of the UE (the total UE)
  • the transmit power is equal to the sum of the transmit powers of the UEs in each cell) does not exceed the maximum transmit power allowed by the UE.
  • the first RRC configuration information and the second RRC configuration information may be the same or different, but both include parameters for calculating a PH of the UE in the first cell.
  • the base station configureds the first RRC configuration information for the UE by using the processor, and sends the first RRC configuration information to the UE by using the transmitter, so that the UE can preset according to the first RRC configuration information and the UE.
  • the physical layer information acquires the PH of the first cell controlled by the UE in the first base station, and causes the UE to send the second RRC configuration information to the second base station, so that the second base station can control the UE next according to the second RRC configuration information.
  • the base station provided by the embodiment of the present invention can be applied to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the transmit power of the UE can be effectively controlled, and the uplink is improved. Power control compatibility.
  • the second RRC configuration information is used by the second base station to control the transmit power of the UE in the second cell controlled by the second base station.
  • the second RRC configuration information further includes subframe ratio information, where the subframe ratio information is used by the second base station to learn that the UE is next time by the first base station.
  • the scheduled subframe is uplink or downlink.
  • the second RRC configuration information may include the foregoing Embodiment 2 " e ( , ⁇ _ ⁇ , ⁇ ⁇ 0 ⁇ , parameters Ks and ⁇ , also includes subframe matching information.
  • the subframe matching information may also be configured by the first base station to the UE.
  • the UE is respectively connected to the first base station and the second base station for serving, wherein the first base station supports the TDD mode, and the second base station supports the FDD mode.
  • the TDD and FDD cells serve one UE, also called
  • TDD+FDD carrier aggregation or TDD-FDD joint operation. If the RRC of the TDD eNB (first base station) and the RRC of the FDD eNodeB (second base station) are independent of each other.
  • the transmitter 31 sends the first RRC configuration information to the UE, and the UE calculates the PH when the UE performs uplink transmission in the first cell according to the first RRC configuration information and the physical layer information preset in the UE, and the UE sends the PH.
  • the second base station can learn the specific parameters of the PH in the first cell according to the second RRC configuration information, and can also learn the information in the TDD cell (the first cell) according to the subframe ratio information in the second RRC configuration information. Which subframes are used for uplink and which subframes are used for downlink.
  • the second base station learns that the next time transmission of the UE is in the downlink subframe according to the subframe ratio information, the UE will not be scheduled for uplink transmission in the downlink subframe of the TDD cell (first cell). Then, the transmit power of the UE may be all used by the scheduling of the FDD cell (the second cell), without considering the power usage of the UE in the TDD cell, that is, the second base station may schedule more RBs, as long as the UE is transmitted in the second cell. The power does not exceed the maximum transmit power allowed by the UE. If the second base station learns that the next time the transmission of the UE is in the uplink subframe, the second base station may refer to the technical solution of the first embodiment to control the transmit power of the UE in the second cell. This will not be repeated here.
  • the second cell is not a FDD cell, and may be a TDD cell.
  • the UE may report the subframe matching information of any one of the TDD cells to another cell.
  • the base station configureds the first RRC configuration information for the UE by using the processor, and sends the first RRC configuration information to the UE by using the transmitter, so that the UE can be preset according to the first RRC configuration information and the UE.
  • the physical layer information acquires the PH of the first cell controlled by the UE in the first base station, and causes the UE to send the second RRC configuration information to the second base station, so that the second base station can perform the subframe ratio according to the second RRC configuration information.
  • the information is learned whether the transmission subframe of the UE at the next moment is uplink or downlink, so as to more accurately control the transmission power when the UE performs uplink transmission in the second cell controlled by the second base station at the next moment.
  • the base station provided by the embodiment of the present invention can be applied to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the transmit power of the UE can be effectively controlled, and the uplink is improved. Power control compatibility.
  • the second RRC configuration information includes semi-persistent scheduling configuration information, where the subframe matching information is used by the second base station to learn that the UE is semi-statically scheduled by the first base station. The position of the sub-frame.
  • the second RRC configuration information includes not only the ⁇ in the second embodiment. _ ⁇ 5;(: ⁇ ( , a c ⁇ j) , P 0 PUCCH , A TxD (F ') ⁇
  • the parameters Ks and ⁇ also include semi-persistent scheduling configuration information.
  • the specific parameter of the PH in the first cell may be learned according to the second RRC configuration information, and the location of the subframe in which the first base station performs semi-persistent scheduling on the UE may be learned according to the semi-persistent scheduling configuration information in the second RRC configuration information.
  • the physical layer information configured by the processor 30 of the first base station to the UE is fixed.
  • the first base station is the UE in the first cell.
  • the number of RBs in the uplink transmission scheduling is constant.
  • the RB scheduling in the first embodiment is dynamic scheduling, and the number of RBs scheduled by the first base station may be different each time the UE transmits the uplink.
  • the second base station may use the physical layer information on the semi-persistent scheduling subframe preset by the previous UE.
  • the RB scheduling situation in the first cell controlled by the first base station at the next moment the number of scheduled RBs of the first base station on each semi-persistent scheduling subframe is fixed, so that the second base station can be accurate
  • the RB scheduling situation in the second cell controlled by the second base station at the next moment of the UE is estimated, and then the transmission power of the UE in the second cell at the next moment is controlled.
  • the second base station learns that the next time transmission of the UE is on the non-semi-persistent scheduling subframe according to the semi-persistent scheduling configuration information, that is, the UE is dynamically scheduled by the first base station in the subframe, the second base station refers to The technical solution of the first embodiment controls the transmit power of the UE in the second cell at the next moment, and details are not described herein again.
  • the duplex mode of the first cell and the second cell is not limited. Moreover, when both the first base station and the second base station configure the semi-persistent scheduling configuration information for the UE, the UE may report the semi-persistent scheduling configuration information of any one cell to another cell.
  • the base station configureds the first RRC configuration information for the UE by using the processor, and sends the first RRC configuration information to the UE by using the transmitter, so that the UE can be preset according to the first RRC configuration information and the UE.
  • the second RRC configuration information includes calculating a parameter of the PH of the UE in the first cell, and The semi-persistent scheduling configuration information configured by the base station for the UE, so that the second base station learns, according to the semi-persistent scheduling configuration information in the second RRC configuration information, whether the transmission subframe of the next moment of the UE is a semi-persistent scheduling subframe or a non-semi-static scheduling subframe.
  • the frame further enables the second base station to better control the transmit power when the UE performs uplink transmission in the second cell controlled by the second base station at the next moment according to the second RRC configuration information.
  • the base station provided by the embodiment of the present invention may be applicable to a scenario in which the RRC functions of two cells are controlled by the RRC of one base station, and when two When the base station adopts independent RRC, it can also effectively control the transmit power of the UE and improve the compatibility of the uplink power control.
  • FIG. 5 is a schematic structural diagram of Embodiment 2 of a user equipment according to the present invention. As shown in FIG. 5: The user equipment includes: a receiving module 40 and a sending module 41.
  • the receiving module 40 is configured to receive first RRC configuration information that is sent by the first base station, where the first RRC configuration information is used to calculate a PH of the UE in a first cell controlled by the first base station.
  • the sending module 41 is configured to send the second RRC configuration information to the second base station, where the second RRC configuration information includes a parameter used to calculate a PH of the UE in the first cell.
  • the embodiment of the present invention is applicable to a dual-connection scenario, and two base stations in the dual-connection scenario adopt independent RRC, that is, the RRC of each base station separately configures the UE under the base station.
  • the first base station configures RRC configuration information for the UE, where the first RRC configuration information is high layer configuration information, where the UE and the second base station calculate the PH of the UE in the first cell controlled by the first base station.
  • the first RRC configuration information may include: ⁇ . _ ⁇ ⁇ 5; ⁇ ⁇ , a c (j) , P 0 _ PUCCH , A TxD (F ') , the parameter Ks and ,.
  • _ ⁇ 5; ⁇ ' ⁇ ) is used to set the power offset of the PUSCH under different scheduling modes (j); ⁇ ⁇ is used to calculate the path loss compensation coefficient under different scheduling modes (j); _ ⁇ : ⁇ is used to set the power offset of the PUCCH; is used to set the parameters related to the PUCCH format; the parameter Ks is used to calculate the transmission format compensation value ⁇ ( ).
  • the first base station sends the first RRC configuration information to the UE, and the receiving module 40 receives the first RRC configuration information, and the UE can calculate the UE according to the parameters in the first RRC configuration information and the physical layer information preset by the UE.
  • the PH in the first cell controlled by the first base station, and the UE may further learn, according to the preset physical layer information, the number of RBs (ie, the number of uplink resources) that the first base station schedules when the UE performs uplink transmission in the first cell.
  • the preset physical layer information in the UE may be configured for the first base station to the UE, where the physical layer information may include the number of RBs used by the first base station to schedule uplink transmission by the UE, the scheduling authorization mode, and the transmission format information. Wait.
  • the process of determining, by the UE, the PH of the UE in the uplink transmission in the first cell according to the first RRC configuration information and the preset physical layer information is specifically introduced:
  • the terminal sends data on the PUSCH and/or the PUCCH, where the data includes user data and/or signaling, and the PH determined by the UE in the first cell can be divided into two types of PHs, respectively 1 and type 2.
  • the PH of type 1 (Typel)
  • the uplink transmission of the UE can be divided into three cases.
  • the UE calculates the PH by three formulas:
  • the first type The UE sends a PUSCH on the subframe i of the serving cell (cell, abbreviated as c), and does not send the PUCCH.
  • cell abbreviated as c
  • the corresponding formula is:
  • the serving cell c here may be the first cell covered by the first base station.
  • the transmitting PUSCH mentioned in this embodiment and all the following embodiments actually refers to transmitting data on the PUSCH
  • transmitting the PUCCH refers to transmitting data on the PUCCH, but in the communication field, simply for sending PUSCH or send PUCCH.
  • the UE sends PUSCH and PUCCH on the subframe i of the serving cell c, and the corresponding formula is:
  • ⁇ ' ⁇ (0 is the subframe in the serving cell c i, when there is a PUSCH channel transmission, but the UE assumes that only the maximum transmission power of the UE is transmitted when the PUCCH is transmitted.
  • the serving cell c may be the first cell covered by the first base station.
  • the third type When the UE does not send the PUSCH on the subframe i of the serving cell c, the UE sends a virtual type 1 PHR to the serving cell c, and the first type of virtual PHR uses the reference format of the PUSCH ( Reference format) ;
  • ⁇ TM ⁇ ⁇ , ⁇ ' is the virtual maximum transmit power of the UE employed when the PUSCH is not transmitted on the subframe i of the serving cell c .
  • the serving cell c here may be the first cell covered by the first base station.
  • Equation 1 Equation 2, and Equation 3 above are: M PUSEH ,. (0 is the number of RBs allocated by the first base station to the UE for transmitting the PUSCH on the subframe i. ⁇ _ ⁇ ⁇ ; ⁇ ⁇ is the open loop power control adjustment value, and the upper layer configuration of the serving cell c is under different values of j P ° - p w ( '1 ⁇ 2 value, where the variable j is related to the scheduling grant mode of the PUSCH.
  • PL C is the path loss of the serving cell c measured by the UE.
  • the BPRE is calculated by the number of bits carried by the user data and the number of resource elements (Resource Element, hereinafter referred to as RE) allocated for the user data.
  • the specific calculation formula is as follows: When the PUSCH only carries the control information, then ⁇ / 3 ⁇ : ⁇ / ⁇ , where ⁇ is the number of CQI or PMI bits, 0 CQI also includes the CRC bits of CQI or PMI, and N RE is the number of REs; When no control information is carried on the PUSCH, Where C is the number of coded blocks of user data of the uplink PUSCH, and the coded block size of the rth block is Kr. And, when the PUSCH only carries control information, ⁇ ⁇ ⁇ . Configure parameters for high levels; otherwise, ⁇ ⁇ .
  • the value of the closed loop power control adjustment is determined by the power control command sent by the first base station.
  • the uplink transmission of the UE can be divided into four cases.
  • the UE calculates the PH also has four formulas:
  • the first type the UE sends simultaneously on the subframe i of the primary cell (ie, the first cell is the primary cell)
  • the second type The UE sends only the PUSCH on the subframe i of the primary cell (that is, the primary cell is the primary cell), and does not send the PUCCH.
  • the corresponding PH calculation formula can be:
  • the third type The UE sends only the PUCCH in the subframe i of the primary cell (that is, the first cell is the primary cell), and does not send the PUSCH.
  • the corresponding PH calculation formula can be: ( -10 log, [dB] (Formula 6 ) ;
  • the PUSCH is not transmitted on the subframe i of the cell as the primary cell)
  • the PUCCH the UE sends a second type of virtual (virtual type 2) PHR to the primary cell, and the second type of virtual PHR uses a reference format of the PUSCH and the PUCCH; the corresponding PH calculation formula may be:
  • h(n CQI , n Q , n SR can be calculated according to the corresponding values of ⁇ , 3 ⁇ 4 ⁇ , 3 ⁇ 4 in different PUCCH formats;
  • is open loop power control
  • the adjustment value is determined by the RRC configuration parameter of the first base station; the parameter related to the number of the antenna port and the PUCCH format for transmitting the PUCCH; wherein, when the PUCCH is transmitted by using two antenna ports, the parameters related to the PUCCH format are used by the upper layer.
  • the UE may calculate that the UE is based on the parameters included in the first RRC configuration information and the content included in the preset physical layer information.
  • the first base station covers the PH in the first cell that is controlled, and sends the PH to the second base station by using the sending module 41.
  • the PH may be sent to the second base station in the form of a PHR; and, the sending module 41 further And transmitting second RRC configuration information to the second base station, where the second RRC configuration information also includes a parameter for calculating a PH of the UE in the first cell.
  • the UE may send the PH in the first cell to the second base station, when the first base station reconfigures the parameters of the PH of the UE in the first cell for the UE, the second base station
  • the new PH can be calculated directly by using these parameters and the physical layer information preset in the second base station, and the UE calculation is no longer needed.
  • the physical layer information preset in the second base station is the same as the physical layer information preset in the UE, and may be forwarded by the UE, or may be directly sent by the first base station to the second base station when the ideal backhaul is performed, that is, here.
  • the preset physical layer information in the second base station may be configured by the first base station (of course, the second base station also There is another physical layer information that is configured by the second base station itself).
  • the second base station is configured to perform uplink transmission in the first cell before the UE performs uplink transmission according to the second RRC configuration information, the physical layer information preset in the second base station, and the PH of the UE in the first cell sent by the UE, where the first base station is Physical layer information such as the number of RBs scheduled by the UE, the scheduling authorization mode, and the transport format information, and the parameters related to the PH that the UE calculates for the first base station, so that the power usage of the UE before uplink transmission in the first cell can be known.
  • the PH in the first cell refers to the remaining power of the UE in the first cell
  • the parameter included in the second RRC configuration information in the first cell is also configured by the first base station.
  • the second base station further performs, according to the RRC configuration information configured by the second base station for the UE, the physical layer information configured by the second base station for the UE, and the PHR of the second base station, that the UE performs the second time in the second cell controlled by the second base station.
  • the second base station is the number of RBs scheduled by the UE and the remaining power; that is, the second base station can learn the power usage of the UE when performing uplink transmission in the second cell.
  • the second base station uses the power usage of the previous UE in the first cell and the second cell as a reference, and controls the UE's next transmit power when the second cell performs uplink transmission, so that the total transmit power of the UE (the total UE)
  • the transmit power is equal to the sum of the transmit powers of the UEs in each cell) does not exceed the maximum transmit power allowed by the UE.
  • the UE after receiving the first RRC configuration information sent by the first base station, the UE sends the second RRC configuration information to the second base station by using the sending module 41, and the second RRC configuration information also includes the calculation in the first
  • the parameter of the PH in the cell may not only enable the second base station to learn the specific calculation process of the PH for the uplink transmission of the UE in the first cell, but also enable the first base station to reconfigure the parameters in the first RRC configuration information for the UE. And transmitting, by the UE, the new parameter to the second RRC configuration information, and sending the second RRC configuration information to the second base station, to prevent the second base station from using the original parameter, if the parameter in the first RRC configuration information of the first base station has changed.
  • the first RRC configuration information and the second RRC configuration information may be the same or different, but both include parameters for calculating the PH of the UE in the first cell.
  • the user equipment provided by the embodiment of the present invention receives the first RRC configuration information sent by the first base station by using the receiving module, and sends the second RRC configuration information, the first RRC configuration information, and the second RRC configuration information to the second base station by using the sending module.
  • the middle includes calculating the PH of the UE in the first cell. The number is such that the second base station can control, according to the second RRC configuration information, the transmit power when the UE performs uplink transmission in the second cell controlled by the second base station at the next moment.
  • the user equipment provided by the embodiment of the present invention may be applicable to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the UE may also effectively control the transmit power of the UE.
  • Upstream power control compatibility Based on the foregoing embodiment shown in FIG. 5, the second RRC configuration information is used by the second base station to control the transmit power of the UE in the second cell controlled by the second base station. If the first base station supports the TDD mode, the second RRC configuration information further includes subframe ratio information, where the subframe ratio information is used by the second base station to learn the subframe scheduled by the first base station at the next moment of the UE. It is up or down.
  • the second RRC configuration information may include the foregoing Embodiment 1 UF'), parameters KS and, also include subframe matching information.
  • the subframe matching information may also be configured by the first base station to the UE.
  • the UE is connected to the first base station and the second base station for serving, wherein the first base station supports the TDD mode, and the second base station supports the FDD mode.
  • the TDD and FDD cells serve one UE, also called TDD+FDD carrier aggregation, or TDD-FDD joint operation. If the RRC of the TDD eNB (first base station) and the RRC of the FDD eNodeB (second base station) are independent of each other.
  • the first eNB sends the first RRC configuration information to the UE, and the UE calculates the PH when the UE performs uplink transmission in the first cell according to the first RRC configuration information and the preset physical layer information, and the sending module 41
  • the PH is sent to the second base station
  • the second RRC configuration information is sent to the second base station.
  • the second base station can learn the specific parameter of the PH in the first cell according to the second RRC configuration information, and can also be configured according to the second RRC configuration information.
  • the subframe matching information learns which subframes in the TDD cell (first cell) are used for uplink and which subframes are used for downlink.
  • the second base station learns that the next time transmission of the UE is in the downlink subframe according to the subframe ratio information, the UE will not be scheduled for uplink transmission in the downlink subframe of the TDD cell (first cell). Then, the transmit power of the UE may be all used by the scheduling of the FDD cell (the second cell), without considering the power usage of the UE in the TDD cell, that is, the second base station may schedule more RBs, as long as the UE is transmitted in the second cell. The power does not exceed the maximum transmit power allowed by the UE. If the second base station learns the next moment of the UE according to the subframe ratio information The transmission is in the uplink subframe, and the second base station can be controlled by referring to the technical solution in the foregoing Embodiment 1.
  • the transmit power of the UE in the second cell is not described here.
  • the second cell is not a FDD cell, and may be a TDD cell.
  • the UE may report the subframe matching information of any one of the TDD cells to another cell.
  • the user equipment receives the first RRC configuration information sent by the first base station by using the receiving module, and sends the second RRC configuration information to the second base station by using the sending module, where the second RRC configuration information includes: The parameter of the PH in the cell and the subframe matching information configured by the first base station for the UE, so that the second base station learns, according to the subframe ratio information in the second RRC configuration information, whether the transmission subframe of the next time of the UE is uplink or downlink. Therefore, the second base station can further control, according to the second RRC configuration information, the transmit power when the UE performs uplink transmission in the second cell controlled by the second base station at the next moment.
  • the user equipment provided by the embodiment of the present invention may be applicable to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the UE may also effectively control the transmit power of the UE. Upstream power control compatibility.
  • the second RRC configuration information includes semi-persistent scheduling configuration information, where the semi-persistent scheduling configuration information is used by the second base station to learn that the UE is semi-statically scheduled by the first base station. The position of the sub-frame.
  • the second RRC configuration information includes not only the first embodiment but also the first embodiment. _ ⁇ 5; (: ⁇ ⁇ ( ⁇ ), a c ⁇ j) , P. _ pueeH , A TxD (F 'parameters Ks and A, further including semi-persistent scheduling configuration information.
  • the second base station can learn the specific parameters of the PH in the first cell according to the second RRC configuration information, and can also be configured according to the second RRC.
  • the semi-persistent scheduling configuration information in the information is used to obtain the location of the subframe in which the first base station performs semi-persistent scheduling on the UE.
  • the physical layer information configured by the first base station to the UE is fixed, for example:
  • the number of RBs scheduled by the first base station for the uplink transmission of the UE in the first cell is constant (the RB scheduling in the first embodiment is dynamic scheduling, and the first base station is in the The number of RBs scheduled by the UE for each uplink transmission may be different)
  • the second base station may use the physical layer information on the semi-persistent scheduling subframe preset by the previous UE. Obtaining that the next moment of the UE is in the first cell controlled by the first base station RB scheduling situation (the number of scheduled RBs of the first base station on each semi-persistent scheduling subframe is fixed), so that the second base station can accurately estimate the next time that the UE is in the second cell controlled by the second base station.
  • the RB scheduling situation controls the UE's transmit power in the second cell at the next moment.
  • the second base station learns that the next time transmission of the UE is on the non-semi-persistent scheduling subframe according to the semi-persistent scheduling configuration information, that is, the UE is dynamically scheduled by the first base station in the subframe, the second base station refers to The technical solution of the first embodiment controls the transmit power of the UE in the second cell at the next moment, and details are not described herein again.
  • the duplex mode of the first cell and the second cell is not limited. Moreover, when both the first base station and the second base station configure the semi-persistent scheduling configuration information for the UE, the UE may report the semi-persistent scheduling configuration information of any one cell to another cell.
  • the user equipment provided by the embodiment of the present invention receives the first RRC configuration information sent by the first base station by using the receiving module, and sends the second RRC configuration information to the second base station by using the sending module, where the second RRC configuration information includes: The parameter of the PH in the cell and the semi-persistent scheduling configuration information configured by the first base station for the UE, so that the second base station learns, according to the semi-persistent scheduling configuration information in the second RRC configuration information, that the transmission subframe of the next moment of the UE is semi-persistent scheduling.
  • the subframe is also a non-semi-static scheduling subframe, so that the second base station can better control the transmission power when the UE performs uplink transmission in the second cell controlled by the second base station according to the second RRC configuration information.
  • the user equipment provided by the embodiment of the present invention may be applicable to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the UE may also effectively control the transmit power of the UE. Upstream power control compatibility.
  • FIG. 6 is a schematic structural diagram of Embodiment 3 of a base station according to the present invention. As shown in FIG. 6, the base station is a second base station, and the base station includes: a receiving module 50 and a control module 51.
  • the receiving module 50 receives the second RRC configuration information sent by the UE.
  • the second RRC configuration information is The UE sends the first RRC configuration message sent by the first base station, and the first RRC configuration information and the second RRC configuration information respectively include parameters for calculating the PH of the UE in the first cell controlled by the first base station.
  • the control module 51 is configured to control, according to the second RRC configuration information, a transmit power of the UE in the second cell controlled by the second base station.
  • the embodiment of the present invention is applicable to a dual-connection scenario, and two base stations in the dual-connection scenario adopt independent RRC, that is, the RRC of each base station separately configures the UE under the base station. Specifically, the first base station configures first RRC configuration information for the UE,
  • High-level configuration information which includes calculating UEs for the UE and the second base station
  • the parameter of the PH within a cell may include: P ( 0_PUSCH, c (J'), a c (f),
  • the PH of the UE in the first cell controlled by the first base station may be calculated according to the parameters in the first RRC configuration information and the physical layer information preset in the UE, and the UE may further learn the information according to the preset physical layer information.
  • the first base station is the number of RBs (ie, the number of uplink resources) scheduled when the UE performs uplink transmission in the first cell.
  • the preset physical layer information in the UE may be sent to the UE by the first base station, where the physical layer information may include the number of RBs used by the first base station to schedule uplink transmission by the UE, the scheduling authorization mode, and the transmission format information. Wait.
  • the process of the UE determining the PH of the UE in the uplink in the first cell according to the first RRC configuration information and the preset physical layer information refer to the description in the first embodiment, and details are not described herein again.
  • the UE may calculate that the UE is based on the parameters included in the first RRC configuration information and the content included in the preset physical layer information.
  • a PH in the first cell controlled by the first base station, and sending the PH to the second base station.
  • the PH may be sent to the second base station in the form of a PHR; and the UE further sends the second base station to the second base station.
  • RRC configuration information, the second RRC configuration information also includes parameters for calculating a PH of the UE in the first cell.
  • the UE may send the PH in the first cell to the second base station, when the first base station reconfigures the parameters of the PH of the UE in the first cell for the UE, the second base station
  • the new PH can be calculated directly by using these parameters and the physical layer information preset in the second base station, and the UE calculation is no longer needed.
  • the physical layer information preset in the second base station is the same as the physical layer information preset in the UE, and may be forwarded by the UE, or may be directly sent by the first base station to the second base station when the ideal backhaul is performed, that is, here.
  • the preset physical layer information in the second base station may be configured by the first base station (of course, another physical layer information in the second base station is configured by the second base station itself).
  • the receiving module 50 receives the second RRC configuration information sent by the UE, and the control module 51 may be first according to the second RRC configuration information, the physical layer information preset in the second base station, and the UE knowing the UE in the PH in the first cell.
  • the first base station is configured with the physical layer information such as the number of RBs scheduled by the UE, the scheduling authorization mode, and the transmission format information, and the parameters related to the PH corresponding to the UE by the UE, so that the UE is known before Power usage when performing uplink transmission in a cell.
  • the PH in the first cell refers to the remaining power in the first cell before the UE
  • the parameter included in the second RRC configuration information in the first cell is also configured by the first base station.
  • the control module 51 further performs, according to the RRC configuration information configured by the second base station for the UE, the physical layer information configured by the second base station for the UE, and the PHR of the second base station, that the UE performs the second time in the second cell controlled by the second base station.
  • the second base station is the number of RBs scheduled by the UE and the remaining power; that is, the control module 51 can learn the power usage of the UE when performing uplink transmission in the second cell.
  • control module 51 uses the power usage of the UE in the first cell and the second cell as a reference to control the transmit power of the next time the UE performs uplink transmission in the second cell, so that the total transmit power of the UE (the total UE)
  • the transmit power is equal to the sum of the transmit powers of the UEs in each cell) does not exceed the maximum transmit power allowed by the UE.
  • the UE after receiving the first RRC configuration information sent by the first base station, the UE sends the second RRC configuration information to the second base station, and the second RRC configuration information also includes calculating the PH in the first cell.
  • the parameter may not only enable the second base station to learn the specific calculation process of the PH for the uplink transmission of the UE in the first cell, but also enable the first base station to reconfigure the parameters in the first RRC configuration information for the UE.
  • the new parameter is carried in the second RRC configuration information and sent to the second base station, to prevent the control module 51 of the second base station from using the original parameters to learn that the parameters in the first RRC configuration information of the first base station have changed.
  • the first RRC configuration information and the second RRC configuration information may be the same or different, but both include parameters for calculating the PH of the UE in the first cell.
  • the base station receives the second RRC configuration information that is sent by the UE by using the receiving module, where the second RRC configuration information includes a parameter for calculating a PH of the UE in the first cell, and the control module is configured according to the second RRC configuration information.
  • the physical layer information preset in the second base station and the UE in the first The PH of a cell controls the transmit power of the UE in the uplink transmission in the second cell controlled by the second base station at the next moment.
  • the base station provided by the embodiment of the present invention can be applied to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the transmit power of the UE can be effectively controlled, and the uplink is improved. Power control compatibility.
  • the second RRC configuration information further includes subframe ratio information
  • the control module 51 is further configured to use the sub-frame according to the sub-frame ratio information.
  • the frame ratio information indicates that the subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information may include the foregoing Embodiment 2 UF'), parameters KS and, also include subframe matching information.
  • the subframe matching information may also be configured by the first base station to the UE.
  • the UE is connected to the first base station and the second base station for serving, wherein the first base station supports the TDD mode, and the second base station supports the FDD mode.
  • the TDD and FDD cells serve one UE, also called TDD+FDD carrier aggregation, or TDD-FDD joint operation. If the RRC of the TDD eNB (first base station) and the RRC of the FDD eNodeB (second base station) are independent of each other.
  • the first base station sends the first RRC configuration information to the UE, and the UE may calculate, according to the first RRC configuration information and the preset physical layer information, the PH when the UE performs uplink transmission in the first cell, and the PH and the PH and The second RRC configuration information is sent to the second base station; the receiving module 50 receives the second RRC configuration information and the PH of the UE in the first cell, and the control module 51 can learn, according to the second RRC configuration information, that the PH in the first cell is calculated.
  • the specific parameter may also be used to learn, according to the subframe ratio information in the second RRC configuration information, which subframes in the TDD cell (first cell) are used for uplink, and which subframes are used for downlink.
  • the control module 51 learns that the next time transmission of the UE is in the downlink subframe according to the subframe ratio information, the UE will not be scheduled for uplink transmission in the downlink subframe of the TDD cell (first cell). Then, the transmit power of the UE may be all used by the scheduling of the FDD cell (the second cell), without considering the power usage of the UE in the TDD cell, that is, the second base station may schedule more RBs, as long as the UE is transmitted in the second cell. The power does not exceed the maximum transmit power allowed by the UE. If the control module 51 learns that the transmission of the next time of the UE is in the uplink subframe, the control module 51 may refer to the technical side of the first embodiment. The case is to control the transmit power of the UE in the second cell, and details are not described herein again.
  • the second cell is not a FDD cell, and may be a TDD cell.
  • the UE may report the subframe matching information of any one of the TDD cells to another cell.
  • the base station receives the second RRC configuration information sent by the UE by using the receiving module, and the control module learns, according to the subframe ratio information in the second RRC configuration information, whether the transmission subframe of the next time is uplink or downlink.
  • the control module can further perform the second RRC configuration information, the physical layer information preset in the second base station, and the PH control UE in the first cell to control the next time in the second cell controlled by the second base station. Transmit power at the time of uplink transmission.
  • the base station provided by the embodiment of the present invention can be applied to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the transmit power of the UE can be effectively controlled, and the uplink is improved. Power control compatibility.
  • the second RRC configuration information includes semi-persistent scheduling configuration information
  • the control module 51 is further configured to learn, according to the semi-persistent scheduling configuration information, that the UE is used by the first base station. The position of the statically scheduled subframe.
  • the UE sends the second RRC configuration information and the PH of the UE in the first cell to the second base station, where the RRC configuration information includes not only the ⁇ in the first embodiment.
  • _ ⁇ ⁇ 5; (: ⁇ ⁇ ( ⁇ ), a c ⁇ j) , 0 _ PUCCH , A TxD (F ') , the parameters Ks and also include semi-persistent scheduling configuration information.
  • the receiving module 50 receives the second RRC configuration information and the PH of the UE in the first cell, and the control module 51 may learn, according to the second RRC configuration information, a specific parameter for calculating the PH in the first cell, and may also be configured according to the second RRC.
  • the semi-persistent scheduling configuration information in the information is used to obtain the location of the subframe in which the first base station performs semi-persistent scheduling on the UE.
  • the physical layer information configured by the first base station to the UE is fixed, for example:
  • the number of RBs scheduled by the first base station for the uplink transmission of the UE in the first cell is constant (the RB scheduling in the first embodiment is dynamic scheduling, and the first base station is in the The number of RBs scheduled by the UE for each uplink transmission may be different)
  • the control module 51 may use the physical layer information on the semi-persistent scheduling subframe preset by the previous UE. Obtaining the first cell controlled by the first base station at the next moment of the UE.
  • the RB scheduling situation (the number of scheduled RBs of the first base station on each semi-persistent scheduling subframe is fixed), so that the control module 51 can accurately estimate the second time that the UE controls the second base station at the next moment.
  • the RB scheduling situation in the cell further controls the UE's transmit power in the second cell at the next moment.
  • the control module 51 learns that the next time transmission of the UE is on the non-semi-static scheduling subframe according to the semi-persistent scheduling configuration information, that is, the UE is dynamically scheduled by the first base station in the subframe, the second base station refers to The technical solution of the first embodiment controls the transmit power of the UE in the second cell at the next moment, and details are not described herein again.
  • the duplex mode of the first cell and the second cell is not limited. Moreover, when both the first base station and the second base station configure the semi-persistent scheduling configuration information for the UE, the UE may report the semi-persistent scheduling configuration information of any one cell to another cell.
  • the base station receives the second RRC configuration information sent by the UE by using the receiving module, and the control module learns, according to the semi-persistent scheduling configuration information in the second RRC configuration information, that the transmission subframe of the next moment of the UE is a semi-static scheduler.
  • the frame is still a non-semi-static scheduling subframe, so that the control module can better control the UE according to the second RRC configuration information, the physical layer information preset in the second base station, and the UE in the first cell. Transmit power when performing uplink transmission in the second cell controlled by the second base station.
  • FIG. 7 is a schematic structural diagram of Embodiment 4 of a base station according to the present invention.
  • the base station is a first base station.
  • the base station includes: a configuration module 60 and a sending module 61.
  • the configuration module 60 is configured to configure first RRC configuration information for the UE.
  • the first RRC configuration information includes The parameter is used to calculate the PH of the UE in the first cell controlled by the first base station, and the sending module 61 is configured to send the first RRC configuration information to the UE, so that the UE sends the second RRC configuration to the second base station.
  • the embodiment of the present invention is applicable to a dual-connection scenario, and two base stations in the dual-connection scenario adopt independent RRC, that is, the RRC of each base station separately configures the UE under the base station.
  • the configuration module 60 configures the first RRC configuration information for the UE, where the first RRC configuration information is high layer configuration information, where the UE and the second base station calculate that the UE is covered by the first base station.
  • the first RRC configuration information may include: ⁇ . _ ⁇ 5; ⁇ ), a c ⁇ j) , nc: H , A TxD (F ', parameter Ks and where ⁇ ._ ⁇ ⁇ ( ⁇ ) is used to set the power offset of the PUSCH under different scheduling modes ( j ) The amount is used to calculate the path loss compensation coefficient under different scheduling modes (j); ⁇ . ⁇ ⁇ is used to set the power offset of PUCCH; used to set parameters related to PUCCH format; parameter Ks and Calculate the transmission format compensation value
  • the sending module 61 sends the first RRC configuration information to the UE, and the UE can calculate, according to the parameters in the first RRC configuration information, the physical layer information preset in the UE, that the UE is in the first cell controlled by the first base station.
  • the number of RBs (ie, the number of uplink resources) scheduled by the first base station when the UE performs uplink transmission in the first cell is obtained by the UE.
  • the UE determines, according to the first RRC configuration information and the preset physical layer information, the PH when the UE performs the uplink transmission in the first cell, as described in the foregoing Embodiment 1, and details are not described herein.
  • the UE may calculate according to the parameters included in the first RRC configuration information and the content included in the preset physical layer information in the UE.
  • the PH of the UE in the first cell controlled by the first base station, and sends the PH to the second base station.
  • the PH may be sent to the second base station in the form of a PHR; and the UE also sends the PH to the second base station.
  • the second RRC configuration information, the second RRC configuration information also includes a parameter for calculating a PH of the UE in the first cell.
  • the UE may send the PH in the first cell to the second base station, when the first base station reconfigures the parameters of the PH of the UE in the first cell for the UE, the second base station
  • the new PH can be calculated directly by using these parameters and the physical layer information preset in the second base station, and the UE calculation is no longer needed.
  • the physical layer information preset in the second base station is the same as the physical layer information preset in the UE, and may be forwarded by the UE, or may be directly sent by the first base station to the second base station when the ideal backhaul is performed, that is, here.
  • the preset physical layer information in the second base station may be configured by the first base station (of course, another physical layer information in the second base station is configured by the second base station itself).
  • the second base station is configured as the RB scheduled by the UE when the second base station performs the uplink transmission in the first cell before the UE performs the uplink transmission in the first cell according to the second RRC configuration information, the physical layer information preset in the second base station, and the PH in the first cell.
  • Physical layer information such as number, scheduling authorization mode, and transport format information, and parameters related to the PH corresponding to the UE calculating the first base station, so that the UE can be known before Power usage when performing uplink transmission in the first cell.
  • the PH in the first cell refers to the remaining power in the first cell before the UE
  • the parameter included in the second RRC configuration information in the first cell is also configured by the first base station.
  • the second base station further learns, according to the second RRC configuration information that the second base station configures for the UE, the physical layer information that the second base station configures for the UE, and the PHR of the second base station, the second cell that the UE last controlled at the second base station.
  • the second base station is the number of RBs scheduled by the UE and the remaining power; that is, the second base station can learn the power usage of the UE when performing uplink transmission in the second cell.
  • the second base station uses the power usage of the previous UE in the first cell and the second cell as a reference, and controls the UE's next transmit power when the second cell performs uplink transmission, so that the total transmit power of the UE (the total UE)
  • the transmit power is equal to the sum of the transmit powers of the UEs in each cell) does not exceed the maximum transmit power allowed by the UE.
  • the UE after receiving the first RRC configuration information sent by the first base station, the UE sends the second RRC configuration information to the second base station, and the second RRC configuration information also includes calculating the PH in the first cell.
  • the parameter may not only enable the second base station to learn the specific calculation process of the PH for the uplink transmission of the UE in the first cell, but also enable the first base station to reconfigure the parameters in the first RRC configuration information for the UE.
  • the new parameter is carried in the second RRC configuration information and sent to the second base station, to prevent the second base station from using the original parameter to learn that the UE is in the first case, if the parameter in the first RRC configuration information of the first base station has changed.
  • the specific calculation process of the PH in a cell because the PH of the first cell may have changed at this time.
  • the first RRC configuration information and the second RRC configuration information may be the same or different, but both of the parameters include calculating a PH of the UE in the first cell.
  • the base station configureds the first RRC configuration information for the UE by using the configuration module, and sends the first RRC configuration information to the UE by using the sending module, so that the UE can preset according to the first RRC configuration information and the UE.
  • the physical layer information acquires the PH of the first cell controlled by the UE in the first base station, and causes the UE to send the second RRC configuration information to the second base station, so that the second base station can control the UE next according to the second RRC configuration information.
  • the base station provided by the embodiment of the present invention can be applied to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the transmit power of the UE can be effectively controlled, and the uplink is improved. Power control compatibility.
  • the second RRC configuration information is used by the second base station to control the transmit power of the UE in the second cell controlled by the second base station.
  • the second RRC configuration information further includes subframe ratio information, where the subframe ratio information is used by the second base station to learn that the UE is next time by the first base station.
  • the scheduled subframe is uplink or downlink.
  • the second RRC configuration information may include the foregoing Embodiment 2 UF'), parameters KS and, also include subframe matching information.
  • the subframe matching information may also be configured by the first base station to the UE.
  • the UE is connected to the first base station and the second base station for serving, wherein the first base station supports the TDD mode, and the second base station supports the FDD mode.
  • the TDD and FDD cells serve one UE, also called TDD+FDD carrier aggregation, or TDD-FDD joint operation. If the RRC of the TDD eNB (first base station) and the RRC of the FDD eNodeB (second base station) are independent of each other.
  • the sending module 61 sends the first RRC configuration information to the UE, and the UE calculates the PH when the UE performs uplink transmission in the first cell according to the first RRC configuration information and the physical layer information preset in the UE, and the UE sends the PH. And sending, by the second base station, the second RRC configuration information to the second base station; the second base station, according to the second RRC configuration information, may be configured to calculate a specific parameter of the PH in the first cell, and may further be configured according to the second RRC configuration information.
  • the frame ratio information knows which subframes in the TDD cell (first cell) are used for uplink and which subframes are used for downlink.
  • the second base station learns that the next time transmission of the UE is in the downlink subframe according to the subframe ratio information, the UE will not be scheduled for uplink transmission in the downlink subframe of the TDD cell (first cell). Then, the transmit power of the UE may be all used by the scheduling of the FDD cell (the second cell), without considering the power usage of the UE in the TDD cell, that is, the second base station may schedule more RBs, as long as the UE is transmitted in the second cell. The power does not exceed the maximum transmit power allowed by the UE. If the second base station learns that the next time the transmission of the UE is in the uplink subframe, the second base station may refer to the technical solution of the first embodiment to control the transmit power of the UE in the second cell. This will not be repeated here.
  • the second cell is not an FDD cell, and may be a TDD cell.
  • the UE may use a subframe matching signal of any one of the TDD cells. Information is reported to another community.
  • the base station configureds the first RRC configuration information for the UE by using the configuration module, and sends the first RRC configuration information to the UE by using the sending module, so that the UE can be preset according to the first RRC configuration information and the UE.
  • the physical layer information acquires the PH of the first cell controlled by the UE in the first base station, and causes the UE to send the second RRC configuration information to the second base station, so that the second base station can perform the subframe ratio according to the second RRC configuration information.
  • the information is learned whether the transmission subframe of the UE at the next moment is uplink or downlink, so as to more accurately control the transmission power when the UE performs uplink transmission in the second cell controlled by the second base station at the next moment.
  • the base station provided by the embodiment of the present invention can be applied to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the transmit power of the UE can be effectively controlled, and the uplink is improved. Power control compatibility.
  • the second RRC configuration information includes semi-persistent scheduling configuration information, where the subframe matching information is used by the second base station to learn that the UE is semi-statically scheduled by the first base station. The position of the sub-frame.
  • the second RRC configuration information includes not only the ⁇ in the second embodiment.
  • the second base station can know according to the second RRC configuration information Calculating the specific parameters of the PH in the first cell, and determining, according to the semi-persistent scheduling configuration information in the second RRC configuration information, the location of the subframe in which the first base station performs semi-persistent scheduling on the UE, where the semi-persistently scheduled subframe
  • the physical layer information configured by the configuration module 60 of the first base station to the UE is fixed.
  • the first base station is the RB of the uplink transmission scheduled by the UE in the first cell.
  • the number is constant (the RB scheduling in the first embodiment is dynamic scheduling, and the number of RBs scheduled by the first base station in each uplink transmission of the UE may be different)
  • the second base station may use the physical layer information on the semi-persistent scheduling subframe preset by the previous UE. Obtaining, by the UE, the RB scheduling situation in the first cell controlled by the first base station at the next moment (the number of scheduled RBs of the first base station on each semi-persistent scheduling subframe is fixed), so that the second base station can be accurate Estimating the RB scheduling situation in the second cell controlled by the second base station at the next moment of the UE, and controlling the UE to transmit in the second cell at the next moment. Power.
  • the second base station learns that the next time transmission of the UE is on the non-semi-persistent scheduling subframe according to the semi-persistent scheduling configuration information, that is, the UE is dynamically scheduled by the first base station in the subframe, the second base station refers to The technical solution of the first embodiment controls the transmit power of the UE in the second cell at the next moment, and details are not described herein again.
  • the duplex mode of the first cell and the second cell is not limited. Moreover, when both the first base station and the second base station configure the semi-persistent scheduling configuration information for the UE, the UE may report the semi-persistent scheduling configuration information of any one cell to another cell.
  • the base station provided by the embodiment of the present invention configures the first RRC configuration information for the UE by using the configuration module, and sends the first RRC configuration information to the UE by using the sending module, so that the UE can be preset according to the first RRC configuration information and the UE.
  • the second RRC configuration information includes calculating a parameter of the PH of the UE in the first cell, and The semi-persistent scheduling configuration information configured by the base station for the UE, so that the second base station learns, according to the semi-persistent scheduling configuration information in the second RRC configuration information, whether the transmission subframe of the next moment of the UE is a semi-persistent scheduling subframe or a non-semi-static scheduling subframe.
  • the frame further enables the second base station to better control the transmit power when the UE performs uplink transmission in the second cell controlled by the second base station at the next moment according to the second RRC configuration information.
  • the base station provided by the embodiment of the present invention can be applied to a scenario in which the RRC functions of the two cells are controlled by the RRC of one base station, and when the two base stations adopt independent RRC, the transmit power of the UE can be effectively controlled, and the uplink is improved. Power control compatibility.
  • FIG. 8 is a schematic flowchart diagram of Embodiment 1 of an uplink power control method according to the present invention.
  • the executor of the method may be the user equipment in the above embodiment.
  • the method includes: S101: A UE receives first RRC configuration information that is sent by a first base station, where the first RRC configuration information is used to calculate that the UE is controlled by the first base station. The parameter of the PH in the first cell.
  • the UE sends the second RRC configuration information to the second base station, where the second RRC configuration information includes a parameter used to calculate a PH of the UE in the first cell.
  • the second RRC configuration information is used by the second base station to control a transmit power of the UE in a second cell controlled by the second base station.
  • the second RRC configuration information may further include subframe ratio information, where the subframe ratio information is used by the second base station to learn the The subframe scheduled by the first base station at the next moment of the UE is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, where the semi-persistent scheduling configuration information is used by the second base station to learn that the UE is semi-statically scheduled by the first base station. The position of the frame.
  • FIG. 9 is a schematic flowchart diagram of Embodiment 2 of an uplink power control method according to the present invention.
  • the executor of the method may be the second base station in the above embodiment. As shown in Figure 9, the method includes:
  • the second eNB configures the second RRC configuration information that is sent by the UE, where the second RRC configuration information is sent by the UE after receiving the first RRC configuration message sent by the first base station;
  • the configuration information and the second RRC configuration information each include a parameter including a PH for calculating the UE in the first cell controlled by the first base station.
  • the second base station controls, according to the second RRC configuration information, a transmit power of the UE in a second cell controlled by the second base station.
  • the second RRC configuration information further includes subframe ratio information, where the subframe ratio information is used by the second base station to learn the UE.
  • the subframe scheduled by the first base station at the next moment is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, so that the second base station learns, according to the semi-persistent scheduling configuration information, a subframe that the UE is semi-statically scheduled by the first base station. s position.
  • FIG. 10 is a schematic flowchart diagram of Embodiment 3 of an uplink power control method according to the present invention.
  • the execution body of the method is the first base station in the above embodiment.
  • the method includes: S301: The first base station configures first RRC configuration information for the UE, where the first RRC configuration information includes a first used to calculate that the UE is controlled by the first base station. The parameters of the PH in the small area.
  • S302 The first eNB sends the first RRC configuration information to the UE, so that the UE sends the second RRC configuration information to the second eNB, where the second RRC configuration information is used for calculation. a parameter of the PH of the UE in the first cell.
  • the second RRC configuration information is used by the second base station to control a transmit power of the UE in a second cell controlled by the second base station.
  • the second RRC configuration information further includes subframe ratio information, where the subframe ratio information is used by the second base station to learn the UE.
  • the subframe scheduled by the first base station at the next moment is uplink or downlink.
  • the second RRC configuration information further includes semi-persistent scheduling configuration information, where the semi-persistent scheduling configuration information is used by the second base station to learn that the UE is semi-statically scheduled by the first base station. The position of the frame.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供的一种上行功率控制方法、用户设备和基站。该用户设备包括:接收器,用于接收第一基站发送的第一无线资源控制协议RRC配置信息;其中,所述第一RRC配置信息包括用于计算所述UE在所述第一基站控制的第一小区内的功率余量PH的参数;发送器,用于发送第二RRC配置信息给第二基站,所述第二RRC配置信息包括用于计算所述UE在所述第一小区内的PH 的参数。本发明实施例提供的用户设备,可以适用于两个小区的RRC功能均由一个基站的RRC控制的场景,并且当两个基站采用独立的RRC时,也可以有效控制UE的发射功率,提高了上行功控的兼容性。

Description

上行功率控制方法、 用户设备和基站
技术领域
本发明涉及通信技术, 尤其涉及一种上行功率控制方法、 用户设备和基 站。 背景技术
在长期演进高级系统(Long Term Evolution Advanced, 以下简称 LTE-A) 中引入了载波聚合(Carrier Aggregation, 以下简称 CA)技术, 2个或 2个以 上的成员载波 (Component Carr iers , 以下简称 CC ) 可以聚合在一起以支 持更大的带宽。在 LTE-A的 R 12版本之前, CA技术只支持相同双工模式载 波的载波聚合, 但是在 R12版本中, 将允许不同双工模式的载波聚合。 这 里定义的 CA是建立在理想回程 (backhaul ) 的假设下的, 即控制各个 CC 的不同网络设备之间, 或者同一网络设备的不同单元之间的 backhaul 具 有很低的时延, 可以做到快速的信息交互。 例如: 对于属于同一个演进型 基站 (Evolved Node B, 以下简称 eNodeB ) 下不同载波的小区的 CA, 由于 这些小区属于同一个 eNodeB ,它们之间的 backhaul是理想的,可以做到快速 的信息交互。
在 LTE R12标准中, 引入双连接 (Dual Connectivity, 以下简称 DC ) 技 术, 用户设备 (User Equipment, 以下简称 UE) 可以同时连接两个小区为其 服务, 两个小区分别属于不同的 eNodeB , 而且 eNodeB 间是通过非理想 backhaul连接的。一种双连接的示意图如图 1所示,其中,宏小区(Macro cell) 和小小区(Small cell)分别使用载波 CC1和 CC2, 其中, CC1的双工模式为 频分双工 (Frequency Division Duplexing, 以下简称 FDD ) , CC2的双工模 式为时分双工 ( Time Division Duplexing, 以下简称 TDD ) 。 Macro cell由主 基站 ( Master eNodeB , 以下简称 MeNodeB ) 控制, Small cell 由辅基站 ( Secondary eNodeB , 以下简称 SeNodeB )控制。 MeNodeB和 SeNodeB之间 是通过非理想 backhaul连接的, eNodeB之间交互的时延较大。
当双连接的两个小区分别调度 UE的上行传输时, 由于非理想 backhaul 的原因, 一个小区的配置信息不能及时的通知另一个小区, 因此两个小区对
UE 的上行调度是相对独立的。 例如, 由不同 eNodeB 控制的小区不能获取 UE上报的其它小区的功率余量 (Power Headroom, 以下简称 PH ) , 从而可 能会出现两个小区调度 UE在各小区上发送所需要的总的发射功率超出允许 的最大的发射功率, 导致 UE进行功率压缩, 造成传输的错误概率升高; 或 者, 可能会出现 UE在各载波上发射功率都很小, 导致功率资源浪费的情况。 针对此问题, 以图 1所示的场景为例, 两个小区的无线资源控制协议(Radio Resource Control, 以下简称 RRC )功能均由 MeNodeB的 RRC控制, 现有技 术提出了将 UE在 Small cell的 PH相关的物理层信息发送给 Macro cell,使得 MeNodeB根据 Small cell的 PH相关的物理层信道配置信息和已知的 SeNodeB 的 RRC配置信息获知 UE在 Small cell的功率使用情况,进而控制 UE在 Macro cell中的发射功率, 避免 UE在两个小区的总发射功率超出最大发射功率。
但是, 当 MeNodeB和 SeNodeB采用独立的 RRC , 现有技术无法准确控 制 UE在 Macro cell中的发射功率。 发明内容
本发明提供一种上行功率控制方法、 用户设备和基站, 用以解决当 MeNodeB和 SeNodeB采用独立的 RRC ,现有技术无法准确控制 UE在 Macro cell中的发射功率的技术问题。
第一方面, 本发明提供一种用户设备, 包括:
接收器,用于接收第一基站发送的第一无线资源控制协议 RRC配置信息; 其中,所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站控制的第 一小区内的功率余量 PH的参数;
发送器, 用于发送第二 RRC配置信息给第二基站, 所述第二 RRC配置信 息包括用于计算所述 UE在所述第一小区内的 PH的参数。
结合第一方面, 在第一方面的第一种可能的实施方式中, 所述第二 RRC 配置信息用于所述第二基站控制所述 UE在所述第二基站控制的第二小区内 的发射功率。
结合第一方面, 在第一方面的第二种可能的实施方式中, 若所述第一基 站支持时分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中,所述子帧配比信息用于所述第二基站获知所述 UE下一时刻被所述第一 基站调度的子帧是上行或者下行。
结合第一方面, 在第一方面的第三种可能的实施方式中, 所述第二 RRC 配置信息还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于 所述第二基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
第二方面, 本发明提供一种基站, 包括:
接收器,用于接收用户设备 UE发送的第二无线资源控制协议 RRC配置信 息; 其中, 所述第二 RRC配置信息为所述 UE在接收到第一基站发送的第一 RRC配置消息后发送的; 所述第一 RRC配置信息和所述第二 RRC配置信息均 包括用于计算所述 UE在所述第一基站控制的第一小区内的功率余量 PH的参 数;
处理器,用于根据所述第二 RRC配置信息控制所述 UE在所述第二基站控 制的第二小区内的发射功率。
结合第二方面, 在第二方面的第一种可能的实施方式中, 若所述第一基 站支持时分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 则所述处理器还用于根据所述子帧配比信息获知所述 UE 下一时刻被所述第 一基站调度的子帧是上行或者下行。
结合第二方面, 在第二方面的第二种可能的实施方式中, 所述第二 RRC 配置信息还包括半静态调度配置信息; 则所述处理器还用于根据所述半静态 调度配置信息获知所述 UE被所述第一基站半静态调度的子帧的位置。
第三方面, 本发明提供一种基站, 包括:
处理器, 用于为用户设备 UE配置第一无线资源控制协议 RRC配置信息; 其中,所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站控制的第 一小区内的功率余量 PH的参数;
发送器, 用于将所述第一 RRC配置信息发送给所述 UE, 以使所述 UE向 第二基站发送第二 RRC配置信息; 其中, 所述第二 RRC配置信息包括用于计 算所述 UE在所述第一小区内的 PH的参数。
结合第三方面, 在第三方面的第一种可能的方式中, 所述第二 RRC配置 信息用于所述第二基站控制所述 UE 在所述第二基站控制的第二小区内的发 射功率。 结合第三方面, 在第三方面的第二种可能的方式中, 若所述第一基站支 持时分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中, 所述子帧配比信息用于所述第二基站获知所述 UE 下一时刻被所述第一基站 调度的子帧是上行或者下行。
结合第三方面, 在第三方面的第三种可能的方式中, 所述第二 RRC配置 信息还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于所述 第二基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
第四方面, 本发明提供一种用户设备, 包括:
接收模块, 用于接收第一基站发送的第一无线资源控制协议 RRC配置信 息; 其中, 所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站控制 的第一小区内的功率余量 PH的参数;
发送模块, 用于发送第二 RRC配置信息给第二基站, 所述第二 RRC配置 信息包括用于计算所述 UE在所述第一小区内的 PH的参数。
结合第四方面, 在第四方面的第一种可能的实施方式中, 所述第二 RRC 配置信息用于所述第二基站控制所述 UE在所述第二基站控制的第二小区内 的发射功率。
结合第四方面, 在第四方面的第二种可能的实施方式中, 若所述第一基 站支持时分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中,所述子帧配比信息用于所述第二基站获知所述 UE下一时刻被所述第一 基站调度的子帧是上行或者下行。
结合第四方面, 在第四方面的第三种可能的实施方式中, 所述第二 RRC 配置信息还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于 所述第二基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
第五方面, 本发明提供一种基站, 包括:
接收模块,用于接收用户设备 UE发送的第二无线资源控制协议 RRC配置 信息; 其中, 所述第二 RRC配置信息为所述 UE在接收到第一基站发送的第一 RRC配置消息后发送的; 所述第一 RRC配置信息和所述第二 RRC配置信息均 包括用于计算所述 UE在所述第一基站控制的第一小区内的功率余量 PH的参 数;
控制模块,用于根据所述第二 RRC配置信息控制所述 UE在所述第二基站 控制的第二小区内的发射功率。
结合第五方面, 在第五方面的第一种可能的实施方式中, 若所述第一 基站支持时分双工 TDD模式,则所述第二 RRC配置信息还包括子帧配比信息; 则所述控制模块,还用于根据所述子帧配比信息获知所述 UE下一时刻被所述 第一基站调度的子帧是上行或者下行。
结合第五方面,在第五方面的第二种可能的实施方式中,所述第二 RRC 配置信息还包括半静态调度配置信息; 则所述控制模块, 还用于根据所述半 静态调度配置信息获知所述 UE被所述第一基站半静态调度的子帧的位置。
第六方面, 本发明提供一种基站, 包括:
配置模块,用于为用户设备 UE配置第一无线资源控制协议 RRC配置信息; 其中,所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站覆盖的第 一小区内的功率余量 PH的参数;
发送模块, 用于将第一所述 RRC配置信息发送给所述 UE, 以使所述 UE 向第二基站发送第二 RRC配置信息; 其中, 所述第二 RRC配置信息包括用于 计算所述 UE在所述第一小区内的 PH的参数。
结合第六方面, 在第六方面的第一种可能的实施方式中, 所述第二 RRC 配置信息用于所述第二基站控制所述 UE在所述第二基站控制的第二小区内 的发射功率。
结合第六方面, 在第六方面的第二种可能的实施方式中, 若所述第一基 站支持时分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中,所述子帧配比信息用于所述第二基站获知所述 UE下一时刻被所述第一 基站调度的子帧是上行或者下行。
结合第六方面, 在第六方面的第三种可能的实施方式中, 所述第二 RRC 配置信息还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于 所述第二基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
第七方面, 本发明提供一种上行功率控制方法, 包括:
用户设备 UE接收第一基站发送的无线资源控制协议第一 RRC配置信息; 其中,所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站控制的第 一小区内的功率余量 PH的参数;
所述 UE发送第二 RRC配置信息给第二基站,所述第二 RRC配置信息包括 用于计算所述 UE在所述第一小区内的 PH的参数。
结合第七方面, 在第七方面的第一种可能的实施方式中, 所述第二 RRC 配置信息用于所述第二基站控制所述 UE在所述第二基站控制的第二小区内 的发射功率。
结合第七方面, 在第七方面的第二种可能的实施方式中, 若所述第一基 站支持时分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中,所述子帧配比信息用于所述第二基站获知所述 UE下一时刻被所述第一 基站调度的子帧是上行或者下行。
结合第七方面, 在第七方面的第三种可能的实施方式中, 所述第二 RRC 配置信息还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于 所述第二基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
第八方面, 本发明提供一种上行功率控制方法, 包括:
第二基站接收用户设备 UE发送的第二无线资源控制协议 RRC配置信息; 其中,所述第二 RRC配置信息为所述 UE在接收到第一基站发送的第一 RRC配 置消息后发送的; 所述第一 RRC配置信息和所述第二 RRC配置信息均包括包 括用于计算所述 UE在所述第一基站控制的第一小区内的功率余量 PH的参数。
所述第二基站根据所述第二 RRC配置信息控制所述 UE在所述第二基站控 制的第二小区内的发射功率。
结合第八方面, 在第八方面的第一种可能的实施方式中, 若所述第一基 站支持时分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中,所述子帧配比信息用于所述第二基站获知所述 UE下一时刻被所述第一 基站调度的子帧是上行或者下行。
结合第八方面, 在第八方面的第二种可能的实施方式中, 所述第二 RRC 配置信息还包括半静态调度配置信息, 以使所述第二基站根据所述半静态调 度配置信息获知所述 UE被所述第一基站半静态调度的子帧的位置。
第九方面, 本发明提供一种上行功率控制方法, 包括:
第一基站为用户设备 UE配置第一无线资源控制协议 RRC配置信息;其中, 所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站控制的第一小区 内的功率余量 PH的参数;
所述第一基站将所述第一 RRC配置信息发送给所述 UE, 以使所述 UE向 所述第二基站发送第二 RRC配置信息; 其中, 所述第二 RRC配置信息包括用 于计算所述 UE在所述第一小区内的 PH的参数。
结合第九方面, 在第九方面的第一种可能的实施方式中, 所述第二 RRC 配置信息用于所述第二基站控制所述 UE在所述第二基站控制的第二小区内 的发射功率。
结合第九方面, 在第九方面的第二种可能的实施方式中, 若所述第一基 站支持时分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中,所述子帧配比信息用于所述第二基站获知所述 UE下一时刻被所述第一 基站调度的子帧是上行或者下行。
结合第九方面, 在第九方面的第三种可能的实施方式中, 所述第二 RRC 配置信息还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于 所述第二基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
本发明实施例提供的上行功率控制方法、用户设备和基站,通过接收器 接收第一基站发送的第一 RRC配置信息,并通过发送器向第二基站发送第二 RRC配置信息, 第一 RRC配置信息和第二 RRC配置信息中均包括计算 UE在第 一小区中的 PH的参数, 使得第二基站可以根据第二 RRC配置信息控制 UE下 一时刻在第二基站控制的第二小区内进行上行传输时的发射功率。 本发明实 施例提供的用户设备, 可以适用于两个小区的 RRC功能均由一个基站的 RRC 控制的场景, 并且当两个基站采用独立的 RRC时, 也可以有效控制 UE的发射 功率, 提高了上行功控的兼容性。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对 实施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见 地, 下面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附 图。
图 1为本发明提供的双连接的示意图;
图 2为本发明提供的用户设备实施例一的结构示意图;
图 3为本发明提供的基站实施例一的结构示意图; 图 4为本发明提供的基站实施例二的结构示意图;
图 5为本发明提供的用户设备实施例二的结构示意图;
图 6为本发明提供的基站实施例三的结构示意图;
图 7为本发明提供的基站实施例四的结构示意图;
图 8为本发明提供的上行功率控制方法实施例一的流程示意图; 图 9为本发明提供的上行功率控制方法实施例二的流程示意图; 图 10为本发明提供的上行功率控制方法实施例三的流程示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然,所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
本申请中涉及的用户设备, 即终端, 可以是无线终端也可以是有线终 端, 无线终端可以是指向用户提供语音和 /或数据连通性的设备, 具有无 线连接功能的手持式设备、 或连接到无线调制解调器的其他处理设备。 无 线终端可以经无线接入网 (例如, RAN, Radio Access Network) 与一个 或多个核心网进行通信, 无线终端可以是移动终端, 如移动电话 (或称为 "蜂窝" 电话)和具有移动终端的计算机, 例如, 可以是便携式、袖珍式、 手持式、 计算机内置的或者车载的移动装置, 它们与无线接入网交换语言 禾口 /或数据。例如,个人通信业务(PCS, Personal Communication Service) 电话、无绳电话、会话发起协议(SIP)话机、无线本地环路(WLL, Wireless Local Loop) 站、 个人数字助理 (PDA, Personal Digital Assistant) 等设备。 无线终端也可以称为系统、 订户单元 (Subscriber Unit) 、 订 户站(Subscriber Station) ,移动站(Mobile Station)、移动台(Mobile)、 远程站 (Remote Station) 、 接入点 (Access Point) 、 远程终端 (Remote Terminal )、接入终端 (Access Terminal)、用户终端 (User Terminal ) 、 用户代理 (User Agent) 、 用户设备 (User Device) 、 或用户装备 (User Equipment ) 。 本申请中涉及的基站 (例如, 接入点) 可以是指接入网中在空中接口 上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中 帧与 IP分组进行相互转换, 作为无线终端与接入网的其余部分之间的路 由器, 其中接入网的其余部分可包括网际协议 (IP ) 网络。 基站还可协调 对空中接口的属性管理。 例如, 基站可以是 GSM或 CDMA中的基站 (BTS , Base Transceiver Station ) , 也可以是 WCDMA中的基站 (NodeB ) , 还 可以是 LTE中的演进型基站(NodeB或 eNB或 e-NodeB, evolutional Node B ) , 本申请并不限定。
图 2为本发明提供的用户设备实施例一的结构示意图。 如图 2所示, 该用户设备包括: 接收器 10和发送器 11。 其中, 所述接收器 10, 用于接 收第一基站发送的第一 RRC配置信息; 其中, 所述第一 RRC配置信息包括用 于计算所述 UE在第一基站控制的第一小区内的 PH的参数; 发送器 11, 用于 发送第二 RRC配置信息给第二基站, 所述第二 RRC配置信息包括用于计算所 述 UE在所述第一小区内的 PH的参数。
本发明实施例适用于双连接的场景, 且该双连接场景中的两个基站采用 独立的 RRC, 即每个基站的 RRC分别对该基站下的 UE进行配置。
具体的, 第一基站为 UE第一配置 RRC配置信息, 该第一 RRC配置信 息即高层配置信息,其包括用于 UE和第二基站计算 UE在第一基站控制的第 一小区内的 PH的参数。 该第一 RRC配置信息可以包括: Ρ。_ρυ5; ε ( 、 a人 f)、 0_PUCCH , ATxD(F ^ 参数 1(8; ^ ; 其中, P。_PUSeH^)用于设置不同调度方式 ( j )下上行共享信道(Physical Uplink Shared Channel, 以下简称 PUSCH) 的功率偏移量; ( 为用于计算不同调度方式 (j ) 下的路径损耗补偿系数; P。_PU«:H用于设置物理上行共享信道(Physical Uplink Control Channel, 以下 简称 PUCCH)的功率偏移量; 为用于设置与 PUCCH格式相关的参数; 参数 Ks和;^ 用于计算传输格式补偿值 F )。 第一基站将上述第一 RRC配置信息发送给 UE,接收器 10接收该第一 RRC 配置信息, UE根据该第一 RRC配置信息中的这些参数和 UE预设的物理层 信息结合可以计算得到 UE在第一基站控制的第一小区内的 PH, 并且 UE 还可以根据预设的物理层信息获知之前第一基站为 UE在第一小区进行上行 传输时所调度的资源块 (Resource Block, 以下简称 RB) 数目 (即上行资源 数目) 。 可选的, UE中预设的物理层信息可以为第一基站配置给 UE的, 该 物理层信息可以包括第一基站调度 UE进行上行传输时所用到的 RB数目、 调 度授权方式、传输格式信息等。这里对 UE根据第一 RRC配置信息和预设的物 理层信息确定 UE之前在第一小区内进行上行传输时的 PH的过程进行具体介 绍:
一般的, 终端会在 PUSCH和 /或 PUCCH上发送数据, 该数据包括用 户数据和 /或信令, UE所确定的 UE在第一小区内的 PH可以分为两种类 型的 PH, 分别为类型 1和类型 2。
对于类型 1 ( Typel ) 的 PH, UE的上行传输可以分为三种情况, 相 应的, UE计算 PH就有三种公式:
第一种: UE在服务小区 (cell, 简称 c ) 的子帧 i上发送 PUSCH, 不 发送 PUCCH, 其对应的公式为:
PHtw^(i) = Pc^(i) - { i0\ogl0(Mmsc^(i))+ Po_m (公式 1 )。其中, PeMA¾(0为在服务小区 c的子帧 i上, 当有 PUSCH信道发射时, UE配置的最大发射功率。 这里的服务小区 c可以为第一基站覆盖的第一 小区。需要说明的是,本实施例以及下述所有实施例中提到的发送 PUSCH 实际上是指在 PUSCH上发送数据,发送 PUCCH指的是在 PUCCH上发送 数据, 只是在通信领域中, 简称为发送 PUSCH或发送 PUCCH。
第二种: UE在服务小区 c的子帧 i上发送 PUSCH和 PUCCH, 其对 应的公式为:
H M 0- { 101og0( pusc¾( ))+PO PUSCH, -) + ac( ) - P + Fed) +fc(i) }[dE (公 式 2 ) , 其中, MA¾(0为在服务小区 c的子帧 i上, 当有 PUSCH信道发 射时, 但是 UE假设只有 PUCCH传输时 UE的最大发射功率。 这里的服 务小区 c可以为第一基站覆盖的第一小区。
第三种: 当 UE在服务小区 c的子帧 i上不发送 PUSCH时, UE会给 该服务小区 c发送第一类型虚拟(virtual typel )PHR,该第一类型虚拟 PHR 使用 PUSCH的参考格式 (reference format) ; 其对应的公式为:
(0 = PCMAX, (0- { ^PUSCH. (1) + ac (1) . PLC + fc (0 }[dB] (公式 3 ) 其中, ρ™ΑΧ^')为在服务小区 c的子帧 i上, 当不发送 PUSCH时采用 的 UE的虚拟的最大发射功率。 这里的服务小区 c可以为第一基站覆盖的 第一小区。
上述公式 1、 公式 2和公式 3中其他的变量分别为: MPUSeH,。(0为第一 基站在子帧 i上为 UE发送 PUSCH分配的 RB个数。 Ρ PUSeH,。( )为开环功 控调整值,服务小区 c的高层配置在不同的 j的取值下的 P。-pw( '½ 取值, 其中, 变量 j与 PUSCH的调度授权方式有关, 当 UE的 PUSCH传输是通 过半静态调度授权, 则 j=0; 当 UE的 PUSCH传输是通过动态调度授权, 则 j=l ; 当 UE的 PUSCH传输是通过随机接入应答授权, 则 j=2 cx )为 部分路损补偿值, 由高层配置参数和变量 j共同决定, 其中, 当 j=0或 1 时, 由服务小区 c的高层配置参数决定; 当 j=2 ^ =ι PLC为 υΕ 测量得到的服务小区 c的路损。 Δ^(0为传输格式补偿值, 由 UE发送的 码字流的每资源单元承载比特数 (Bits Per Resource Element, 以下简称 BPRE) 、 参数 Ks以及;^ 通过 ^^皿^^^ ^ -^^ 计算得到 的; 其中, Ks是高层配置的参数, 其取值可以为 1.25或者 0; BPRE由用 户数据承载的比特数量以及为该用户数据分配的资源单元 (Resource Element, 以下简称 RE) 数计算得到的, 具体计算公式如下: 当 PUSCH 只承载控制信息时,则 β/^ = 0^ / Λ^,其中, 0^ CQI为信道质量指示(Channel
Quality Indicator, 以下简称 CQI) : ¾预编码矩阵指示 ( Preceding Matrix Indicator, 以下简称 PMI ) 比特数, ^^也包括了 CQI或 PMI的循环冗余 校验码 ( Cyclic Redundancy Check, 以下简称 CRC )比特, NRE为 RE个数; 当 PUSCH上没有承载控制信息时, BPRE ^ Kr / NRE , 其中, C为上行 PUSCH的用户数据的编码块数量, 第 r个 块的编码块大小为 Kr。 并 且, 当 PUSCH只承载控制信息时, β=Η fill fill为高层配置参数; 否则, =1 / )为闭环功控调整值, 由第一基站发送的功控命令决
对于类型 2 ( Type2 ) 的 PH UE的上行传输可以分为四种情况, 相 应的, UE计算 PH也有四种公式:
第一种: UE在主小区 (即第一小区为主小区) 的子帧 i上同时发送
PUSCH和 PUCCH, 其对应的 PH计算公式可以为: (公式 4 )
Figure imgf000013_0001
第二种: UE 在主小区 (即第一小区为主小区) 的子帧 i 上只发送 PUSCH, 不发送 PUCCH, 其对应的 PH计算公式可以为: (公式
Figure imgf000014_0001
第三种: UE 在主小区 (即第一小区为主小区) 的子帧 i 上只发送 PUCCH, 不发送 PUSCH, 其对应的 PH计算公式可以为: (公式 6 ) ;
Figure imgf000014_0002
第四种: UE在主小区(即第一小区为主小区)的子帧 i上不发送 PUSCH 和 PUCCH, UE会给主小区发送第二类型虚拟 (virtual type 2 ) PHR, 该 第二类型虚拟 PHR使用 PUSCH和 PUCCH的参考格式(reference format) ; 其对应的 PH计算公式可以为:
[dB] (公式 7 )
Figure imgf000014_0003
在上述公式 4至公式 7中, AF_ eCT (F)为与 PUCCH格式相关的参数, 由高层配置参数决定; /^^,^^,^)为与 PUCCH格式相关的变量,其中, 为 CQI的比特数; 如果配置子帧 i可以传输调度请求 (Scheduling Request, 以下简称 SR) , 则¾ =1, 否则 ¾ =0; ¾Αββ与 UE配置的服务小 区数、 PUCCH传输的 PUCCH格式以及混合自动重传请求-确认应答 ( Hybrid Automatic Repeat Request- Acknowledgement, 以下简禾尔
HARQ-ACK)比特数有关,其中,在不同的 PUCCH格式下, h(nc , nHARQ , nsR 可以根据相应的 η^、 ¾Αββ、 ¾的取值计算得到; ^^^为开环功控调整 值, 由第一基站的 RRC配置参数决定; 为与发送 PUCCH的天线 端口数和 PUCCH格式相关的参数; 其中, 当 PUCCH采用两天线端口发 送, 为与 PUCCH格式相关的参数,由高层通过专用信令配置给 UE; 否则, A¾D (F ') = 0 ; g(0为闭环功控调整值, 由第一基站发送的功控命令决 定。
结合 UE发送 PUSCH或 PUCCH的不同情况,选择上述公式 1至公式 7中相应的公式, UE根据第一 RRC配置信息中所包含的参数以及预设的 物理层信息所包含的内容可以计算得到 UE在第一基站覆盖控制的第一小 区内的 PH, 并将该 PH通过发送器 11发送给第二基站, 可选的, 该 PH 可以以 PHR的形式发送给第二基站; 并且, 发送器 11还向第二基站发送 第二 RRC配置信息, 该第二 RRC配置信息也包括用于计算 UE在第一小 区内的 PH的参数。 这里需要说明的是, 虽然 UE可以将其在第一小区内 的 PH发送给第二基站, 但是, 当第一基站为 UE重新配置计算 UE在第 一小区内的 PH的参数时, 第二基站可以直接利用这些参数和第二基站中 预设的物理层信息计算新的 PH, 而不再需要 UE计算。 并且, 第二基站中 预设的物理层信息和 UE中预设的物理层信息相同,其可以是 UE转发的, 也可以是第一基站在理想回程时直接发送给第二基站的, 即这里的第二基 站中预设的物理层信息可以为第一基站配置的 (当然, 第二基站中还有另 —物理层信息是第二基站自己配置的) 。
第二基站根据第二 RRC配置信息、 第二基站中预设的物理层信息和 UE发送的 UE在第一小区内的 PH可以获知 UE之前在第一小区内进行上 行传输时, 第一基站为 UE调度的 RB数目、 调度授权方式、 传输格式信息 等物理层信息, 以及与 UE计算第一基站对应的 PH相关的参数, 从而可 以获知 UE之前在第一小区中进行上行传输时的功率使用情况。 需要说明 的是, 第一小区内的 PH指的是 UE之前在第一小区内的剩余功率, 第二 RRC 配置信息中包括的计算 UE 在第一小区内的参数也是第一基站配置 的。 同时, 第二基站还会根据第二基站为 UE配置的 RRC配置信息、 第二 基站为 UE配置的物理层信息以及第二基站的 PHR获知 UE上一次在第二 基站控制的第二小区内进行上行传输时, 第二基站为 UE调度的 RB数目 和剩余功率; 也就是说, 第二基站可以获知 UE之前在第二小区中进行上 行传输时的功率使用情况。 最后, 第二基站将之前 UE在第一小区和在第 二小区内的功率使用情况作为参考, 控制 UE下一次在第二小区进行上行 传输时的发射功率, 使得 UE总的发射功率(UE总的发射功率等于 UE在 各个小区中的发射功率之和) 不超过 UE所能允许的最大发射功率。 需要说明的是, UE在接收到第一基站发送的第一 RRC配置信息后, 通过发送器 11 向第二基站发送第二 RRC配置信息, 且该第二 RRC配置 信息中也包括计算在第一小区内的 PH的参数, 不仅可以使第二基站获知 UE之前在第一小区进行上行传输的 PH的具体计算过程,还可以使得当第 一基站为 UE重新配置第一 RRC配置信息中的参数时,通过 UE将新的参 数携带在第二 RRC配置信息发送给第二基站, 避免第二基站在第一基站 的第一 RRC配置信息中的参数已经发生变化的情况下, 仍然使用原始的 参数获知 UE在第一小区中的 PH的具体计算过程, 因为此时第一小区的 PH有可能已经发生变化了。 可选的, 第一 RRC配置信息和第二 RRC配 置信息可以相同, 也可以不同, 但是二者均包括计算 UE之前在第一小区 中的 PH的参数。
本发明实施例提供的用户设备, 通过接收器接收第一基站发送的第一 RRC配置信息, 并通过发送器向第二基站发送第二 RRC配置信息, 第一 RRC 配置信息和第二 RRC配置信息中均包括计算 UE在第一小区中的 PH的参数, 使得第二基站可以根据第二 RRC配置信息控制 UE下一时刻在第二基站控制的 第二小区内进行上行传输时的发射功率。 本发明实施例提供的用户设备, 可 以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两个 基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行功控的 兼容性。 在上述图 2所示实施例的基础上, 上述第二 RRC配置信息用于第二基 站控制 UE在所述第二基站控制的第二小区内的发射功率。若上述第一基站支 持 TDD模式, 则上述第二 RRC配置信息还包括子帧配比信息, 该子帧配比信 息用于第二基站获知 UE 下一时刻被所述第一基站调度的子帧是上行或者下 行。
具体的, 本实施例中, 第二 RRC配置信息可以包括上述实施例一的
Figure imgf000016_0001
"e ( 、 Ρ。_Ρυ∞Η、 Δ β0Π、参数 Ks和 , 还包括子帧配比信息。 该子帧配比信息也可以第一基站配置给 UE的。 在双连接场景下, UE分 别连接第一基站和第二基站为其服务, 其中第一基站支持 TDD模式, 第 二基站支持 FDD模式。 TDD和 FDD的小区为一个 UE服务, 也叫做 TDD+FDD载波聚合, 或者 TDD-FDD联合操作。 如果 TDD eNB (第一基 站) 的 RRC和 FDD eNodeB (第二基站) 的 RRC是相互独立的。
第一基站将第一 RRC配置信息发送给 UE, UE根据该第一 RRC配置 信息和预设的物理层信息计算得到 UE之前在第一小区内进行上行传输时 的 PH, 通过发送器 11将该 PH发送给第二基站, 并向第二基站发送第二 RRC配置信息; 第二基站根据第二 RRC配置信息可以获知计算第一小区 内的 PH的具体参数,还可以根据第二 RRC配置信息中的子帧配比信息获 知 TDD小区 (第一小区) 中的哪些子帧用于上行, 哪些子帧用于下行。
例如, 若第二基站根据上述子帧配比信息获知 UE下一时刻的传输是 在下行子帧, 那么在 TDD小区 (第一小区) 的下行子帧, UE—定不会被 调度上行传输, 那么 UE的发射功率可以全部被 FDD小区(第二小区) 的 调度使用, 而不必考虑 UE在 TDD小区的功率使用, 即第二基站可以调 度比较多的 RB ,只要使得 UE在第二小区的发射功率不超过 UE允许的最 大发射功率即可。 若第二基站根据上述子帧配比信息获知 UE下一时刻的 传输是在上行子帧, 则第二基站可以参照上述实施例一的技术方案来控制 UE在第二小区内的发射功率, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第二小区是 FDD小区, 它 也可以是 TDD小区, 此时, UE可以将任意一个 TDD小区的子帧配比信 息报告给另一个小区。
本发明实施例提供的用户设备, 通过接收器接收第一基站发送的第一
RRC配置信息, 并通过发送器向第二基站发送第二 RRC配置信息, 第二 RRC 配置信息包括计算 UE在第一小区中的 PH的参数和第一基站为 UE配置的子帧 配比信息,使得第二基站根据第二 RRC配置信息中的子帧配比信息获知 UE下 一时刻的传输子帧是上行还是下行, 进而使得第二基站可以更好的根据第二 RRC配置信息控制 UE下一时刻在第二基站控制的第二小区内进行上行传输时 的发射功率。 本发明实施例提供的用户设备, 可以适用于两个小区的 RRC功 能均由一个基站的 RRC控制的场景, 并且当两个基站采用独立的 RRC时, 也 可以有效控制 UE的发射功率, 提高了上行功控的兼容性。
在解决当两个基站采用独立的 RRC时, 现有技术无法准确控制 UE的发 射功率的技术问题时, 可选的, 还可以有另外一种实施方式, 具体为: 若第一基站支持 TDD模式, 且第一基站下一时刻调度 UE是在下行子帧, 则第一基站向 UE发送的第二 RRC配置信息中可以只包括子帧配比信息,即不 包括上述用于计算 UE在第一小区的 PH的参数。 这种情况下, 该子帧配比信 息用于第二基站获知 UE下一时刻被所述第一基站调度的子帧是下行子帧,则 在 TDD小区 (第一小区) 的下行子帧, UE—定不会被调度上行传输, 那 么 UE的发射功率可以全部被 FDD小区(第二小区)的调度使用, 而不必 考虑 UE在 TDD小区的功率使用, 即第二基站可以调度比较多的 RB , 只 要使得 UE在第二小区的发射功率不超过 UE允许的最大发射功率即可。
也就是说,上述第二 RRC配置信息中所包括的用于计算 UE在第一小 区中的 PH的参数与子帧配比信息可以是 "和 /或" 的关系, 即第二 RRC 配置信息可以仅包括用于计算 UE在第一小区中的 PH的参数 (参见实施 例一种的技术方案) , 也可以仅包括子帧配比信息 (即 UE在下一时刻被 第一基站调度的是下行子帧的场景) , 还可以同时包括用于计算 UE在第 一小区中的 PH的参数和子帧配比信息 (即 UE在下一时刻被第一基站调 度的是上行子帧的场景) 。
本发明实施例提供的用户设备, 通过接收器接收第一基站发送的第一 RRC配置信息, 并通过发送器向第二基站发送第二 RRC配置信息, 第二 RRC 配置信息包括第一基站为 UE 配置的子帧配比信息, 使得第二基站根据第二 C配置信息中的子帧配比信息获知 UE下一时刻的传输子帧是下行, 进而使 得第二基站可以更好的根据第二 RRC配置信息控制 UE下一时刻在第二基站控 制的第二小区内进行上行传输时的发射功率。本发明实施例提供的用户设备, 可以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两 个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行功控 的兼容性。 在上述图 2所示实施例的基础上, 进一歩地, 上述第二 RRC配置信 息包括半静态调度配置信息, 该半静态调度配置信息用于第二基站获知 UE 被第一基站半静态调度的子帧的位置。
具体的, 第二 RRC配置信息中不仅包括实施例一中的 Ρ。_ρυ5;(:Ηε ( 、 ac{j) , P0 PUCCH , AH 参数 Ks和 Α , 还包括半静态调度配置信息。 第二基站 根据第二 RRC配置信息可以获知计算第一小区内的 PH的具体参数,还可 以根据第二 RRC配置信息中的半静态调度配置信息获知第一基站对 UE 进行半静态调度的子帧的位置, 在该半静态调度的子帧上, 第一基站配置 给 UE的物理层信息是固定的, 例如: 在该半静态调度的子帧上, 第一基 站为 UE在第一小区内的上行传输调度的 RB的个数是恒定不变的 (实施 例一中的 RB调度是动态调度, 第一基站在 UE每次的上行传输时调度的 RB个数可能不同)
若第二基站根据上述半静态调度配置信息获知 UE下一时刻的传输是 在半静态调度子帧上, 则第二基站就可以根据之前 UE预设的在半静态调 度子帧上的物理层信息获知 UE下一时刻在第一基站控制的第一小区内的 RB调度情况 (第一基站在每个半静态调度子帧上的调度的 RB个数是固 定的) , 从而第二基站可以准确的估算出 UE下一时刻在第二基站控制的 第二小区内的 RB调度情况, 进而控制 UE下一时刻在第二小区内的发射 功率。 若第二基站根据上述半静态调度配置信息获知 UE下一时刻的传输 是在非半静态调度子帧上(即在该子帧上 UE是被第一基站动态调度的), 则第二基站参照上述实施例一的技术方案对 UE下一时刻在第二小区内的 发射功率进行控制, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第一小区和第二小区的双工 模式。 并且, 当第一基站和第二基站都为 UE配置了半静态调度配置信息 时, UE可以将任意一个小区的半静态调度配置信息报告给另一个小区。
本发明实施例提供的用户设备, 通过接收器接收第一基站发送的第一 RRC配置信息, 并通过发送器向第二基站发送第二 RRC配置信息, 第二 RRC 配置信息包括计算 UE在第一小区中的 PH的参数和第一基站为 UE配置的半静 态调度配置信息, 使得第二基站根据第二 RRC配置信息中的半静态调度配置 信息获知 UE下一时刻的传输子帧是半静态调度子帧还是非半静态调度子帧, 进而使得第二基站可以更好的根据第二 RRC配置信息控制 UE下一时刻在第二 基站控制的第二小区内进行上行传输时的发射功率。 本发明实施例提供的用 户设备, 可以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了 上行功控的兼容性。 在解决当两个基站采用独立的 RRC时, 现有技术无法准确控制 UE的发 射功率的技术问题时, 可选的, 还可以有另外一种实施方式, 具体为: 第一基站向 UE第一 RRC配置信息, 以使 UE向第二基站发送第二 RRC配置信息。 若第一基站下一时刻调度 UE是在半静态调度子帧上, 则这 个第二 RRC配置信息可以包括仅包括半静态调度配置信息,即不包括上述 用于计算 UE在第一小区的 PH的参数。 这种情况下, 该半静态调度配置信息 用于第二基站获知 UE下一时刻被所述第一基站调度的子帧是半静态调度子 帧, 并获知该半静态调度的子帧的位置, 在该半静态调度的子帧上, 第一基 站配置给 UE的物理层信息是固定的, 例如: 在该半静态调度的子帧上, 第一基站为 UE在第一小区内的上行传输调度的 RB的个数是恒定不变的 (实施例一中的 RB调度是动态调度, 第一基站在 UE每次的上行传输时 调度的 RB个数可能不同)
第二基站根据上述半静态调度配置信息获知 UE下一时刻的传输是在 半静态调度子帧上, 则第二基站就可以根据之前 UE预设的在半静态调度 子帧上的物理层信息获知 UE下一时刻在第一基站控制的第一小区内的 RB调度情况 (第一基站在每个半静态调度子帧上的调度的 RB个数是固 定的) , 从而第二基站可以准确的估算出 UE下一时刻在第二基站控制的 第二小区内的 RB调度情况, 进而控制 UE下一时刻在第二小区内的发射 功率。
也就是说,上述第二 RRC配置信息中所包括的用于计算 UE在第一小 区中的 PH的参数与半静态调度子帧配置信息可以是 "和 /或"的关系, 即 第二 RRC配置信息可以仅包括用于计算 UE在第一小区中的 PH的参数(参 见实施例一种的技术方案) , 也可以仅包括半静态调度配置信息 (即 UE 在下一时刻被第一基站调度的是半静态调度子帧的场景) , 还可以同时包 括用于计算 UE在第一小区中的 PH的参数和子帧配比信息 (即 UE在下 一时刻被第一基站调度的是非半静态调度子帧的场景) 。
本发明实施例提供的用户设备, 通过接收器接收第一基站发送的第一 RRC配置信息, 并通过发送器向第二基站发送第二 RRC配置信息, 第二 RRC 配置信息包括第一基站为 UE配置的半静态调度子帧配置信息,使得第二基站 根据第二 RRC配置信息中半静态调度配置信息获知 UE下一时刻的传输子帧是 半静态调度子帧, 进而使得第二基站可以更好的根据第二 RRC配置信息控制 UE下一时刻在第二基站控制的第二小区内进行上行传输时的发射功率。 本发 明实施例提供的用户设备, 可以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两个基站采用独立的 RRC时, 也可以有效控制 UE的 发射功率, 提高了上行功控的兼容性。 图 3为本发明提供的基站实施例一的结构示意图。 如图 3所示, 该基 站为第二基站, 该基站包括: 接收器 20和处理器 21 ; 其中, 接收器 20, 接收 UE发送的第二 RRC配置信息; 其中, 该第二 RRC配置信息为 UE在接收 到第一基站发送的第一 RRC配置消息后发送的; 该第一 RRC配置信息和第二 RRC配置信息均包括用于计算 UE在第一基站控制的第一小区内的 PH的参数; 处理器 21, 用于根据第二 RRC配置信息控制 UE在第二基站控制的第二小区 内的发射功率。
本发明实施例适用于双连接的场景, 且该双连接场景中的两个基站采用 独立的 RRC, 即每个基站的 RRC分别对该基站下的 UE进行配置。
具体的, 第一基站为 UE配置第一 RRC配置信息, 该第一 RRC配置信 息即高层配置信息,其包括用于 UE和第二基站计算 UE在第一基站覆盖的第 一小区内的 PH的参数。 该第一 RRC配置信息可以包括: Ρ。_ρυ5; εω、 ac(j) , Po_mCcu ^ UF' 参数 Ks和 其中, Ρ。_ρυ5αι^)用于设置不同调度方式 ( j ) 下 PUSCH的功率偏移量; 《εω为用于计算不同调度方式 (j ) 下的路 径损耗补偿系数; Ρ。_ΡΙΧ :Η用于设置 PUCCH的功率偏移量; 为用于设 置与 PUCCH格式相关的参数;参数 Ks和 用于计算传输格式补偿值 Δ^( )。 第一基站将上述第一 RRC配置信息发送给 UE, UE根据第一 RRC配置信 息中的这些参数和 UE中预设的物理层信息结合可以计算得到 UE在第一 基站控制的第一小区内的 PH,并且 UE还可以根据预设的物理层信息获知之 前第一基站为 UE在第一小区进行上行传输时所调度的 RB数目 (即上行资源 数目) 。 可选的, UE中预设的物理层信息可以为第一基站发送给 UE的, 该 物理层信息可以包括第一基站调度 UE进行上行传输时所用到的 RB数目、 调 度授权方式、 传输格式信息等。 UE根据第一 RRC配置信息和预设的物理层信 息确定 UE之前在第一小区内进行上行传输时的 PH的过程可以参见实施例一 中的描述, 在此不再赘述。
结合 UE发送 PUSCH或 PUCCH的不同情况,选择上述公式 1至公式 7中相应的公式, UE根据第一 RRC配置信息中所包含的参数以及预设的 物理层信息所包含的内容可以计算得到 UE在第一基站控制的第一小区内 的 PH, 并将该 PH发送给第二基站, 可选的, 该 PH可以以 PHR的形式 发送给第二基站; 并且, UE还向第二基站发送第二 RRC配置信息, 该第 二 RRC配置信息也包括用于计算 UE在第一小区内的 PH的参数。这里需 要说明的是, 虽然 UE可以将其在第一小区内的 PH发送给第二基站, 但 是, 当第一基站为 UE重新配置计算 UE在第一小区内的 PH的参数时, 第二基站可以直接利用这些参数和第二基站中预设的物理层信息计算新 的 PH, 而不再需要 UE计算。 并且, 第二基站中预设的物理层信息和 UE 中预设的物理层信息相同, 其可以是 UE转发的, 也可以是第一基站在理 想回程时直接发送给第二基站的, 即这里的第二基站中预设的物理层信息 可以为第一基站配置的 (当然, 第二基站中还有另一物理层信息是第二基 站自己配置的) 。
接收器 20接收 UE发送的第二 RRC配置信息,处理器 21可以根据该 第二 RRC配置信息、第二基站中预设的物理层信息和 UE在第一小区内的 PH获知 UE之前在第一小区内进行上行传输时, 第一基站为 UE调度的 RB数目、 调度授权方式、 传输格式信息等物理层信息, 以及与 UE计算第 一基站对应的 PH相关的参数, 从而可以获知 UE之前在第一小区中进行 上行传输时的功率使用情况。需要说明的是,第一小区内的 PH指的是 UE 之前在第一小区内的剩余功率,第二 RRC配置信息中包括的计算 UE在第 一小区内的参数也是第一基站配置的。 同时, 处理器 21 还会根据第二基 站为 UE配置的 RRC配置信息、第二基站为 UE配置的物理层信息以及第 二基站的 PHR获知 UE上一次在第二基站控制的第二小区内进行上行传输 时, 第二基站为 UE调度的 RB数目和剩余功率; 也就是说, 处理器 21可 以获知 UE之前在第二小区中进行上行传输时的功率使用情况。 最后, 处 理器 21将 UE之前在第一小区和在第二小区内的功率使用情况作为参考, 控制 UE下一次在第二小区进行上行传输时的发射功率, 使得 UE总的发 射功率 (UE总的发射功率等于 UE在各个小区中的发射功率之和) 不超 过 UE所能允许的最大发射功率。
需要说明的是, UE在接收到第一基站发送的第一 RRC配置信息后, 向第二基站发送第二 RRC配置信息, 且该第二 RRC配置信息中也包括计 算在第一小区内的 PH的参数, 不仅可以使第二基站获知 UE之前在第一 小区进行上行传输的 PH 的具体计算过程, 还可以使得当第一基站为 UE 重新配置第一 RRC配置信息中的参数时,通过 UE将新的参数携带在第二 RRC配置信息发送给第二基站, 避免第二基站的处理器 21在第一基站的 第一 RRC配置信息中的参数已经发生变化的情况下, 仍然使用原始的参 数获知 UE在第一小区中的 PH的具体计算过程, 因为此时第一小区的 PH 有可能已经发生变化了。 可选的, 第一 RRC配置信息和第二 RRC配置信 息可以相同, 也可以不同, 但是二者均包括计算 UE之前在第一小区中的 PH的参数。
本发明实施例提供的基站, 通过接收器接收 UE发送的第二 RRC配置 信息, 该第二 RRC配置信息中包括计算 UE在第一小区中的 PH的参数, 处理 器根据该第二 RRC配置信息、第二基站中预设的物理层信息以及 UE在第一小 区的 PH控制 UE下一时刻在第二基站控制的第二小区内进行上行传输时的发 射功率。 本发明实施例提供的基站, 可以适用于两个小区的 RRC功能均由一 个基站的 RRC控制的场景, 并且当两个基站采用独立的 RRC时, 也可以有效 控制 UE的发射功率, 提高了上行功控的兼容性。 在上述图 3所示实施例的基础上,进一歩地,若上述第一基站支持 TDD 模式, 则上述第二 RRC配置信息还包括子帧配比信息, 则处理器 21还用于根 据该子帧配比信息获知 UE 下一时刻被所述第一基站调度的子帧是上行或者 下行。
具体的, 本实施例中, 第二 RRC配置信息可以包括上述实施例二的
Figure imgf000023_0001
"e ( 、 Ρ。_Ρυ∞Η、 Δ β0Π、参数 Ks和 , 还包括子帧配比信息。 该子帧配比信息也可以第一基站配置给 UE的。 在双连接场景下, UE分 别连接第一基站和第二基站为其服务, 其中第一基站支持 TDD模式, 第 二基站支持 FDD模式。 TDD和 FDD的小区为一个 UE服务, 也叫做 TDD+FDD载波聚合, 或者 TDD-FDD联合操作。 如果 TDD eNB (第一基 站) 的 RRC和 FDD eNodeB (第二基站) 的 RRC是相互独立的。
第一基站将第一 RRC配置信息发送给 UE, UE可以根据该第一 RRC 配置信息和预设的物理层信息计算得到 UE之前在第一小区内进行上行传 输时的 PH, 并将该 PH以及第二 RRC配置信息发送给第二基站; 接收器 20接收该第二 RRC配置信息和 UE在第一小区内的 PH, 处理器 21根据 第二 RRC配置信息可以获知计算第一小区内的 PH的具体参数,还可以根 据第二 RRC配置信息中的子帧配比信息获知 TDD小区 (第一小区) 中的 哪些子帧用于上行, 哪些子帧用于下行。
例如,若处理器 21根据上述子帧配比信息获知 UE下一时刻的传输是 在下行子帧, 那么在 TDD小区 (第一小区) 的下行子帧, UE—定不会被 调度上行传输, 那么 UE的发射功率可以全部被 FDD小区(第二小区) 的 调度使用, 而不必考虑 UE在 TDD小区的功率使用, 即第二基站可以调 度比较多的 RB ,只要使得 UE在第二小区的发射功率不超过 UE允许的最 大发射功率即可。若处理器 21根据上述子帧配比信息获知 UE下一时刻的 传输是在上行子帧, 则处理器 21可以参照上述实施例一的技术方案来控 制 UE在第二小区内的发射功率, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第二小区是 FDD小区, 它 也可以是 TDD小区, 此时, UE可以将任意一个 TDD小区的子帧配比信 息报告给另一个小区。
本发明实施例提供的基站, 通过接收器接收 UE发送的第二 RRC配置 信息,处理器根据第二 RRC配置信息中的子帧配比信息获知 UE下一时刻的传 输子帧是上行还是下行,进而使得处理器可以更好的根据第二 RRC配置信息、 第二基站中预设的物理层信息以及 UE在第一小区内的 PH控制 UE下一时刻在 第二基站控制的第二小区内进行上行传输时的发射功率。 本发明实施例提供 的基站, 可以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了 上行功控的兼容性。 在上述图 3所示实施例的基础上, 进一歩地, 上述第二 RRC配置信 息包括半静态调度配置信息,则处理器 21还用于根据该半静态调度配置信息 获知 UE被第一基站半静态调度的子帧的位置。
具体的, UE将第二 RRC配置信息以及 UE在第一小区内的 PH发送给第二 基站, 该 RRC配置信息中不仅包括实施例一中的 Ρ。_ρυ5;(:Ηε ( 、 ac {j) , P0_PUCCH , ATxD (F ') , 参数 Ks和 , 还包括半静态调度配置信息。 接收器 20接收该 第二 RRC配置信息以及 UE在第一小区内的 PH,处理器 21根据该第二 RRC 配置信息可以获知计算第一小区内的 PH的具体参数, 还可以根据第二 RRC配置信息中的半静态调度配置信息获知第一基站对 UE进行半静态调 度的子帧的位置, 在该半静态调度的子帧上, 第一基站配置给 UE的物理 层信息是固定的, 例如: 在该半静态调度的子帧上, 第一基站为 UE在第 一小区内的上行传输调度的 RB的个数是恒定不变的 (实施例一中的 RB 调度是动态调度, 第一基站在 UE每次的上行传输时调度的 RB个数可能 不同)
若处理器 21根据上述半静态调度配置信息获知 UE下一时刻的传输是 在半静态调度子帧上,则处理器 21就可以根据之前 UE预设的在半静态调 度子帧上的物理层信息获知 UE下一时刻在第一基站控制的第一小区内的 RB调度情况 (第一基站在每个半静态调度子帧上的调度的 RB个数是固 定的),从而处理器 21可以准确的估算出 UE下一时刻在第二基站控制的 第二小区内的 RB调度情况, 进而控制 UE下一时刻在第二小区内的发射 功率。若处理器 21根据上述半静态调度配置信息获知 UE下一时刻的传输 是在非半静态调度子帧上(即在该子帧上 UE是被第一基站动态调度的), 则第二基站参照上述实施例一的技术方案对 UE下一时刻在第二小区内的 发射功率进行控制, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第一小区和第二小区的双工 模式。 并且, 当第一基站和第二基站都为 UE配置了半静态调度配置信息 时, UE可以将任意一个小区的半静态调度配置信息报告给另一个小区。
本发明实施例提供的基站, 通过接收器接收 UE发送的第二 RRC配置 信息,处理器根据第二 RRC配置信息中的半静态调度配置信息获知 UE下一时 刻的传输子帧是半静态调度子帧还是非半静态调度子帧, 进而使得处理器可 以更好的根据第二 RRC配置信息、第二基站中预设的物理层信息以及 UE在第 一小区内的 PH控制 UE下一时刻在第二基站控制的第二小区内进行上行传输 时的发射功率。 本发明实施例提供的基站, 可以适用于两个小区的 RRC功能 均由一个基站的 RRC控制的场景, 并且当两个基站采用独立的 RRC时, 也可 以有效控制 UE的发射功率, 提高了上行功控的兼容性。 图 4为本发明提供的基站实施例二的结构示意图。该基站为第一基站, 如图 4所示, 该基站包括: 处理器 30和发送器 31 ; 其中处理器 30, 用于 为 UE配置第一 RRC配置信息; 其中, 第一 RRC配置信息包括用于计算 UE在 所述第一基站控制的第一小区内的 PH的参数; 发送器 31, 用于将第一 RRC 配置信息发送给 UE, 以使所述 UE向第二基站发送第二 RRC配置信息; 其中, 第二 RRC配置信息包括用于计算所述 UE在所述第一小区内的 PH的参数。
本发明实施例适用于双连接的场景, 且该双连接场景中的两个基站采用 独立的 RRC, 即每个基站的 RRC分别对该基站下的 UE进行配置。
具体的, 处理器 30为 UE配置第一 RRC配置信息, 该第一 RRC配置信 息即高层配置信息,其包括用于 UE和第二基站计算 UE在第一基站覆盖的第 一小区内的 PH的参数。 该第一 RRC配置信息可以包括: Ρ。_ρυ5; εω、 ac(j) , Po_mCcu ^ UF' 参数 Ks和 其中, Ρ。_ρυ5αι^)用于设置不同调度方式
( j ) 下 PUSCH的功率偏移量; 《εω为用于计算不同调度方式 (j ) 下的路 径损耗补偿系数; Ρ。_ΡΙΧ :Η用于设置 PUCCH的功率偏移量; 为用于设 置与 PUCCH格式相关的参数;参数 Ks和 用于计算传输格式补偿值 Δ^( )。
发送器 31将上述第一 RRC配置信息发送给 UE, UE根据该第一 RRC配 置信息中的这些参数和 UE中预设的物理层信息结合可以计算得到 UE在 第一基站控制的第一小区内的 PH,并且 UE还可以预设的物理层信息获知之 前第一基站为 UE在第一小区进行上行传输时所调度的 RB数目 (即上行资源 数目) 。 UE根据第一 RRC配置信息和预设的物理层信息确定 UE之前在第一 小区内进行上行传输时的 PH可以参见上述实施例一的描述, 在此不再赘述。
结合 UE发送 PUSCH或 PUCCH的不同情况,选择上述公式 1至公式 7中相应的公式, UE根据第一 RRC配置信息中所包含的参数以及 UE中 预设的物理层信息所包含的内容可以计算得到 UE在第一基站控制的第一 小区内的 PH, 并将该 PH发送给第二基站, 可选的, 该 PH可以以 PHR 的形式发送给第二基站;并且, UE还向第二基站发送第二 RRC配置信息, 该第二 RRC配置信息也包括用于计算 UE在第一小区内的 PH的参数。这 里需要说明的是, 虽然 UE可以将其在第一小区内的 PH发送给第二基站, 但是, 当第一基站为 UE重新配置计算 UE在第一小区内的 PH的参数时, 第二基站可以直接利用这些参数和第二基站中预设的物理层信息计算新 的 PH, 而不再需要 UE计算。 并且, 第二基站中预设的物理层信息和 UE 中预设的物理层信息相同, 其可以是 UE转发的, 也可以是第一基站在理 想回程时直接发送给第二基站的, 即这里的第二基站中预设的物理层信息 可以为第一基站配置的 (当然, 第二基站中还有另一物理层信息是第二基 站自己配置的) 。
第二基站根据第二 RRC配置信息、 第二基站中预设的物理层信息和
UE在第一小区内的 PH获知 UE之前在第一小区内进行上行传输时,第一 基站为 UE调度的 RB数目、 调度授权方式、 传输格式信息等物理层信息, 以及与 UE计算第一基站对应的 PH相关的参数, 从而可以获知 UE之前 在第一小区中进行上行传输时的功率使用情况。 需要说明的是, 第一小区 内的 PH指的是 UE之前在第一小区内的剩余功率, 第二 RRC配置信息中 包括的计算 UE在第一小区内的参数也是第一基站配置的。 同时, 第二基 站还会根据第二基站为 UE配置的第二 RRC配置信息、第二基站为 UE配 置的物理层信息以及第二基站的 PHR获知 UE上一次在第二基站控制的第 二小区内进行上行传输时, 第二基站为 UE调度的 RB数目和剩余功率; 也就是说, 第二基站可以获知 UE之前在第二小区中进行上行传输时的功 率使用情况。 最后, 第二基站将之前 UE在第一小区和在第二小区内的功 率使用情况作为参考, 控制 UE下一次在第二小区进行上行传输时的发射 功率, 使得 UE总的发射功率(UE总的发射功率等于 UE在各个小区中的 发射功率之和) 不超过 UE所能允许的最大发射功率。
需要说明的是, UE在接收到第一基站发送的第一 RRC配置信息后, 向第二基站发送第二 RRC配置信息, 且该第二 RRC配置信息中也包括计 算在第一小区内的 PH的参数, 不仅可以使第二基站获知 UE之前在第一 小区进行上行传输的 PH 的具体计算过程, 还可以使得当第一基站为 UE 重新配置第一 RRC配置信息中的参数时,通过 UE将新的参数携带在第二 RRC配置信息中发送给第二基站, 避免第二基站在第一基站的第一 RRC 配置信息中的参数已经发生变化的情况下, 仍然使用原始的参数获知 UE 在第一小区中的 PH的具体计算过程, 因为此时第一小区的 PH有可能已 经发生变化了。 可选的, 第一 RRC配置信息和第二 RRC配置信息可以相 同, 也可以不同, 但是二者均包括计算 UE之前在第一小区中的 PH的参 数。
本发明实施例提供的基站,通过处理器为 UE配置第一 RRC配置信息, 并通过发送器将该第一 RRC配置信息发送给 UE, 使得 UE可以根据该第 一 RRC配置信息和 UE中预设的物理层信息获取 UE在第一基站控制的第 一小区的 PH; 并使得 UE将第二 RRC配置信息发送给第二基站, 进而使 得第二基站可以根据该第二 RRC配置信息控制 UE下一时刻在第二基站控 制的第二小区内进行上行传输时的发射功率。 本发明实施例提供的基站, 可 以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两个 基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行功控的 兼容性。 在上述图 4所示实施例的基础上, 上述第二 RRC配置信息用于第二基 站控制 UE在所述第二基站控制的第二小区内的发射功率。 进一歩地, 若上 述第一基站支持 TDD模式, 则上述第二 RRC配置信息还包括子帧配比信息, 该子帧配比信息用于第二基站获知 UE 下一时刻被所述第一基站调度的子帧 是上行或者下行。
具体的, 本实施例中, 第二 RRC配置信息可以包括上述实施例二的
Figure imgf000028_0001
"e ( 、 Ρ。_Ρυ∞Η、 Δ β0Π、参数 Ks和 Α , 还包括子帧配比信息。 该子帧配比信息也可以第一基站配置给 UE的。 在双连接场景下, UE分 别连接第一基站和第二基站为其服务, 其中第一基站支持 TDD模式, 第 二基站支持 FDD模式。 TDD和 FDD的小区为一个 UE服务, 也叫做
TDD+FDD载波聚合, 或者 TDD-FDD联合操作。 如果 TDD eNB (第一基 站) 的 RRC和 FDD eNodeB (第二基站) 的 RRC是相互独立的。
发送器 31将第一 RRC配置信息发送给 UE, UE根据该第一 RRC配 置信息和 UE中预设的物理层信息计算得到 UE之前在第一小区内进行上 行传输时的 PH, UE将 PH发送给第二基站, 并向第二基站发送第二 RRC 配置信息; 第二基站根据第二 RRC配置信息可以获知计算第一小区内的 PH的具体参数, 还可以根据第二 RRC配置信息中的子帧配比信息获知 TDD小区 (第一小区) 中的哪些子帧用于上行, 哪些子帧用于下行。
例如, 若第二基站根据上述子帧配比信息获知 UE下一时刻的传输是 在下行子帧, 那么在 TDD小区 (第一小区) 的下行子帧, UE—定不会被 调度上行传输, 那么 UE的发射功率可以全部被 FDD小区(第二小区) 的 调度使用, 而不必考虑 UE在 TDD小区的功率使用, 即第二基站可以调 度比较多的 RB ,只要使得 UE在第二小区的发射功率不超过 UE允许的最 大发射功率即可。 若第二基站根据上述子帧配比信息获知 UE下一时刻的 传输是在上行子帧, 则第二基站可以参照上述实施例一的技术方案来控制 UE在第二小区内的发射功率, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第二小区是 FDD小区, 它 也可以是 TDD小区, 此时, UE可以将任意一个 TDD小区的子帧配比信 息报告给另一个小区。
本发明实施例提供的基站,通过处理器为 UE配置第一 RRC配置信息, 并通过发送器将该第一 RRC配置信息发送给 UE, 使得 UE可以根据该第 一 RRC配置信息和 UE预设的物理层信息获取 UE在第一基站控制的第一 小区的 PH; 并使得 UE向第二基站发送第二 RRC配置信息, 进而使得第 二基站可以根据第二 RRC配置信息息中的子帧配比信息获知 UE下一时刻的 传输子帧是上行还是下行,从而更准确的控制 UE下一时刻在第二基站控制的 第二小区内进行上行传输时的发射功率。 本发明实施例提供的基站, 可以适 用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两个基站 采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行功控的兼容 性。 在上述图 4所示实施例的基础上, 进一歩地, 上述第二 RRC配置信 息包括半静态调度配置信息,该子帧配比信息用于第二基站获知 UE被第一基 站半静态调度的子帧的位置。
具体的, 第二 RRC配置信息中不仅包括实施例二中的 Ρ。_ρυ5;(:Ηε ( 、 ac {j) , P0 PUCCH , ATxD (F ') ^ 参数 Ks和 Α , 还包括半静态调度配置信息。 第二基站 根据该第二 RRC配置信息可以获知计算第一小区内的 PH的具体参数,还 可以根据第二 RRC配置信息中的半静态调度配置信息获知第一基站对 UE 进行半静态调度的子帧的位置, 在该半静态调度的子帧上, 第一基站的处 理器 30配置给 UE的物理层信息是固定的,例如:在该半静态调度的子帧 上, 第一基站为 UE在第一小区内的上行传输调度的 RB的个数是恒定不 变的 (实施例一中的 RB调度是动态调度, 第一基站在 UE每次的上行传 输时调度的 RB个数可能不同)
若第二基站根据上述半静态调度配置信息获知 UE下一时刻的传输是 在半静态调度子帧上, 则第二基站就可以根据之前 UE预设的在半静态调 度子帧上的物理层信息获知 UE下一时刻在第一基站控制的第一小区内的 RB调度情况 (第一基站在每个半静态调度子帧上的调度的 RB个数是固 定的) , 从而第二基站可以准确的估算出 UE下一时刻在第二基站控制的 第二小区内的 RB调度情况, 进而控制 UE下一时刻在第二小区内的发射 功率。 若第二基站根据上述半静态调度配置信息获知 UE下一时刻的传输 是在非半静态调度子帧上(即在该子帧上 UE是被第一基站动态调度的), 则第二基站参照上述实施例一的技术方案对 UE下一时刻在第二小区内的 发射功率进行控制, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第一小区和第二小区的双工 模式。 并且, 当第一基站和第二基站都为 UE配置了半静态调度配置信息 时, UE可以将任意一个小区的半静态调度配置信息报告给另一个小区。
本发明实施例提供的基站,通过处理器为 UE配置第一 RRC配置信息, 并通过发送器将该第一 RRC配置信息发送给 UE, 使得 UE可以根据该第 一 RRC配置信息和 UE预设的物理层信息获取 UE在第一基站控制的第一 小区的 PH; 并使得 UE向第二基站发送第二 RRC配置信息, 第二 RRC配 置信息包括计算 UE在第一小区中的 PH的参数和第一基站为 UE配置的半静态 调度配置信息, 使得第二基站根据第二 RRC配置信息中的半静态调度配置信 息获知 UE下一时刻的传输子帧是半静态调度子帧还是非半静态调度子帧,进 而使得第二基站可以更好的根据第二 RRC配置信息控制 UE下一时刻在第二基 站控制的第二小区内进行上行传输时的发射功率。本发明实施例提供的基站, 可以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两 个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行功控 的兼容性。 图 5为本发明提供的用户设备实施例二的结构示意图。 如图 5所 7: 该用户设备包括: 接收模块 40和发送模块 41。 其中, 所述接收模块 40, 用于接收第一基站发送的第一 RRC配置信息; 其中, 所述第一 RRC配置信息 包括用于计算所述 UE在第一基站控制的第一小区内的 PH的参数; 发送模块 41, 用于发送第二 RRC配置信息给第二基站, 所述第二 RRC配置信息包括用 于计算所述 UE在所述第一小区内的 PH的参数。
本发明实施例适用于双连接的场景, 且该双连接场景中的两个基站采用 独立的 RRC, 即每个基站的 RRC分别对该基站下的 UE进行配置。
具体的, 第一基站为 UE第一配置 RRC配置信息, 该第一 RRC配置信 息即高层配置信息,其包括用于 UE和第二基站计算 UE在第一基站控制的第 一小区内的 PH的参数。 该第一 RRC配置信息可以包括: Ρ。_ρυ5; εω、 ac (j) , P0_PUCCH , ATxD (F ') , 参数 Ks和 其中, Ρ。_ρυ5;αι'^·)用于设置不同调度方式 ( j ) 下 PUSCH的功率偏移量; 《εω为用于计算不同调度方式 (j ) 下的路 径损耗补偿系数; Ρ。_ΡΙΧ :Η用于设置 PUCCH的功率偏移量; 为用于设 置与 PUCCH格式相关的参数;参数 Ks和 用于计算传输格式补偿值 Δ^( )。 第一基站将上述第一 RRC配置信息发送给 UE, 接收模块 40接收该第一 RRC配置信息, UE根据该第一 RRC配置信息中的这些参数和 UE预设的物 理层信息结合可以计算得到 UE在第一基站控制的第一小区内的 PH,并且 UE还可以根据预设的物理层信息获知之前第一基站为 UE在第一小区进行上 行传输时所调度的 RB数目 (即上行资源数目) 。 可选的, UE中预设的物理 层信息可以为第一基站配置给 UE的, 该物理层信息可以包括第一基站调度 UE进行上行传输时所用到的 RB数目、 调度授权方式、 传输格式信息等。 这 里对 UE根据第一 RRC配置信息和预设的物理层信息确定 UE之前在第一小区 内进行上行传输时的 PH的过程进行具体介绍:
一般的, 终端会在 PUSCH和 /或 PUCCH上发送数据, 该数据包括用 户数据和 /或信令, UE所确定的 UE在第一小区内的 PH可以分为两种类 型的 PH , 分别为类型 1和类型 2。 对于类型 1 ( Typel ) 的 PH, UE的上行传输可以分为三种情况, 相 应的, UE计算 PH就有三种公式:
第一种: UE在服务小区 (cell, 简称 c ) 的子帧 i上发送 PUSCH, 不 发送 PUCCH, 其对应的公式为:
PHtw^(i) = Pc^(i) - { i0\ogl0(Mmsc^(i))+ Po ^^^ (公式
1 )。其中, ΜΑ¾(0为在服务小区 c的子帧 i上, 当有 PUSCH信道发射时,
UE配置的最大发射功率。 这里的服务小区 c可以为第一基站覆盖的第一 小区。需要说明的是,本实施例以及下述所有实施例中提到的发送 PUSCH 实际上是指在 PUSCH上发送数据,发送 PUCCH指的是在 PUCCH上发送 数据, 只是在通信领域中, 简称为发送 PUSCH或发送 PUCCH。 第二种: UE在服务小区 c的子帧 i上发送 PUSCH和 PUCCH, 其对 应的公式为:
H - { 101oSO( PUSC¾( )) +PO PUSCH -) + - PI, + ) +/C( ) }[dE (公 式 2) , 其中, ΜΑΧ'ε(0为在服务小区 c的子帧 i上, 当有 PUSCH信道发 射时, 但是 UE假设只有 PUCCH传输时 UE的最大发射功率。 这里的服 务小区 c可以为第一基站覆盖的第一小区。
第三种: 当 UE在服务小区 c的子帧 i上不发送 PUSCH时, UE会给 该服务小区 c发送第一类型虚拟(virtual typel )PHR,该第一类型虚拟 PHR 使用 PUSCH的参考格式 (reference format) ; 其对应的公式为: PHtypel,c (0 = PCMAX,C (0- { ^PUSCH. (1) + ac (1) . PLc + fc (0 }[dB] (公式 3 )
其中, ρΑχ,^')为在服务小区 c的子帧 i上, 当不发送 PUSCH时采用 的 UE的虚拟的最大发射功率。 这里的服务小区 c可以为第一基站覆盖的 第一小区。
上述公式 1、 公式 2和公式 3中其他的变量分别为: MPUSEH,。(0为第一 基站在子帧 i上为 UE发送 PUSCH分配的 RB个数。 Ρ。_Ρυί;^ω为开环功 控调整值,服务小区 c的高层配置在不同的 j的取值下的 P°-pw( '½ 取值, 其中, 变量 j与 PUSCH的调度授权方式有关, 当 UE的 PUSCH传输是通 过半静态调度授权, 则 j=0; 当 UE的 PUSCH传输是通过动态调度授权, 则 j=l ; 当 UE的 PUSCH传输是通过随机接入应答授权, 则 j=2。 cx )为 部分路损补偿值, 由高层配置参数和变量 j共同决定, 其中, 当 j=0或 1 时, 由服务小区 c的高层配置参数决定; 当 j=2, 《ε =1。 PLC为 UE 测量得到的服务小区 c的路损。 Δ^ε(0为传输格式补偿值, 由 UE发送的 码字流的 BPRE、参数 Ks以及 通过 A^0') = 101og1Qft2sn'—\、.β 、计 算得到的;其中, Ks是高层配置的参数,其取值可以为 1.25或者 0; BPRE 由用户数据承载的比特数量以及为该用户数据分配的资源单元 (Resource Element, 以下简称 RE) 数计算得到的, 具体计算公式如下: 当 PUSCH 只承载控制信息时, 则^/3^^:^^/^, 其中, ^^为 CQI或 PMI比特数, 0CQI也包括了 CQI或 PMI的 CRC比特, NRE为 RE个数; 当 PUSCH上没 有承载控制信息时,
Figure imgf000033_0001
其中, C为上行 PUSCH的用户数 据的编码块数量, 第 r个编 ί°块的编码块大小为 Kr。 并且, 当 PUSCH只 承载控制信息时, βρπ ,。 为高层配置参数;否则, β Η
为闭环功控调整值, 由第一基站发送的功控命令决定。 对于类型 2 (Type2) 的 PH, UE的上行传输可以分为四种情况, 相 应的, UE计算 PH也有四种公式:
第一种: UE在主小区 (即第一小区为主小区) 的子帧 i上同时发送
PUSCH和 PUCCH, 其对应的 PH计算公式可以为: υ')-ιοι。 [dB] (公式 4) ; 。(
+ 10' 第二种: UE 在主小区 (即第一小区为主小区) 的子帧 i 上只发送 PUSCH, 不发送 PUCCH, 其对应的 PH计算公式可以为:
U d
'
(公式
Figure imgf000033_0002
第三种: UE 在主小区 (即第一小区为主小区) 的子帧 i 上只发送 PUCCH, 不发送 PUSCH, 其对应的 PH计算公式可以为: ( -10 log, [dB] (公式 6) ;
Figure imgf000033_0003
小区为主小区)的子帧 i上不发送 PUSCH 和 PUCCH, UE会给主小区发送第二类型虚拟 (virtual type 2 ) PHR, 该 第二类型虚拟 PHR使用 PUSCH和 PUCCH的参考格式(reference format) ; 其对应的 PH计算公式可以为:
[dB] (公式 7 )
Figure imgf000034_0001
在上述公式 4至公式 7中, AF_ eCT (F)为与 PUCCH格式相关的参数, 由高层配置参数决定; /^^,^^,^)为与 PUCCH格式相关的变量,其中, 为 CQI的比特数; 如果配置子帧 i可以传输 SR, 则¾ =1, 否则 ¾ =0; ¾^与 UE配置的服务小区数、 PUCCH传输的 PUCCH格式以及
HARQ-ACK比特数有关, 其中, 在不同的 PUCCH格式下, h(nCQI , n Q , nSR 可以根据相应的 η^、 ¾Αββ、 ¾的取值计算得到; ^^^为开环功控调整 值, 由第一基站的 RRC配置参数决定; 为与发送 PUCCH的天线 端口数和 PUCCH格式相关的参数; 其中, 当 PUCCH采用两天线端口发 送, 为与 PUCCH格式相关的参数,由高层通过专用信令配置给 UE; 否则, A¾D (F ') = 0 ; g(0为闭环功控调整值, 由第一基站发送的功控命令决 定。
结合 UE发送 PUSCH或 PUCCH的不同情况,选择上述公式 1至公式 7中相应的公式, UE根据第一 RRC配置信息中所包含的参数以及预设的 物理层信息所包含的内容可以计算得到 UE在第一基站覆盖控制的第一小 区内的 PH, 并将该 PH通过发送模块 41发送给第二基站, 可选的, 该 PH 可以以 PHR的形式发送给第二基站; 并且, 发送模块 41还向第二基站发 送第二 RRC配置信息, 该第二 RRC配置信息也包括用于计算 UE在第一 小区内的 PH的参数。 这里需要说明的是, 虽然 UE可以将其在第一小区 内的 PH发送给第二基站, 但是, 当第一基站为 UE重新配置计算 UE在 第一小区内的 PH的参数时, 第二基站可以直接利用这些参数和第二基站 中预设的物理层信息计算新的 PH, 而不再需要 UE计算。 并且, 第二基站 中预设的物理层信息和 UE中预设的物理层信息相同, 其可以是 UE转发 的, 也可以是第一基站在理想回程时直接发送给第二基站的, 即这里的第 二基站中预设的物理层信息可以为第一基站配置的 (当然, 第二基站中还 有另一物理层信息是第二基站自己配置的) 。
第二基站根据第二 RRC配置信息、 第二基站中预设的物理层信息和 UE发送的 UE在第一小区内的 PH可以获知 UE之前在第一小区内进行上 行传输时, 第一基站为 UE调度的 RB数目、 调度授权方式、 传输格式信息 等物理层信息, 以及与 UE计算第一基站对应的 PH相关的参数, 从而可 以获知 UE之前在第一小区中进行上行传输时的功率使用情况。 需要说明 的是, 第一小区内的 PH指的是 UE之前在第一小区内的剩余功率, 第二 RRC 配置信息中包括的计算 UE 在第一小区内的参数也是第一基站配置 的。 同时, 第二基站还会根据第二基站为 UE配置的 RRC配置信息、 第二 基站为 UE配置的物理层信息以及第二基站的 PHR获知 UE上一次在第二 基站控制的第二小区内进行上行传输时, 第二基站为 UE调度的 RB数目 和剩余功率; 也就是说, 第二基站可以获知 UE之前在第二小区中进行上 行传输时的功率使用情况。 最后, 第二基站将之前 UE在第一小区和在第 二小区内的功率使用情况作为参考, 控制 UE下一次在第二小区进行上行 传输时的发射功率, 使得 UE总的发射功率(UE总的发射功率等于 UE在 各个小区中的发射功率之和) 不超过 UE所能允许的最大发射功率。
需要说明的是, UE在接收到第一基站发送的第一 RRC配置信息后, 通过发送模块 41 向第二基站发送第二 RRC配置信息, 且该第二 RRC配 置信息中也包括计算在第一小区内的 PH的参数, 不仅可以使第二基站获 知 UE之前在第一小区进行上行传输的 PH的具体计算过程, 还可以使得 当第一基站为 UE重新配置第一 RRC配置信息中的参数时,通过 UE将新 的参数携带在第二 RRC配置信息发送给第二基站, 避免第二基站在第一 基站的第一 RRC配置信息中的参数已经发生变化的情况下, 仍然使用原 始的参数获知 UE在第一小区中的 PH的具体计算过程, 因为此时第一小 区的 PH有可能已经发生变化了。可选的,第一 RRC配置信息和第二 RRC 配置信息可以相同, 也可以不同, 但是二者均包括计算 UE之前在第一小 区中的 PH的参数。
本发明实施例提供的用户设备, 通过接收模块接收第一基站发送的第 一 RRC配置信息, 并通过发送模块向第二基站发送第二 RRC配置信息, 第一 RRC配置信息和第二 RRC配置信息中均包括计算 UE在第一小区中的 PH的参 数,使得第二基站可以根据第二 RRC配置信息控制 UE下一时刻在第二基站控 制的第二小区内进行上行传输时的发射功率。本发明实施例提供的用户设备, 可以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两 个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行功控 的兼容性。 在上述图 5所示实施例的基础上, 上述第二 RRC配置信息用于第二基 站控制 UE在所述第二基站控制的第二小区内的发射功率。若上述第一基站支 持 TDD模式, 则上述第二 RRC配置信息还包括子帧配比信息, 该子帧配比信 息用于第二基站获知 UE 下一时刻被所述第一基站调度的子帧是上行或者下 行。
具体的, 本实施例中, 第二 RRC配置信息可以包括上述实施例一的
Figure imgf000036_0001
UF')、参数 KS和 , 还包括子帧配比信息。 该子帧配比信息也可以第一基站配置给 UE的。 在双连接场景下, UE分 别连接第一基站和第二基站为其服务, 其中第一基站支持 TDD模式, 第 二基站支持 FDD模式。 TDD和 FDD的小区为一个 UE服务, 也叫做 TDD+FDD载波聚合, 或者 TDD-FDD联合操作。 如果 TDD eNB (第一基 站) 的 RRC和 FDD eNodeB (第二基站) 的 RRC是相互独立的。
第一基站将第一 RRC配置信息发送给 UE, UE根据该第一 RRC配置 信息和预设的物理层信息计算得到 UE之前在第一小区内进行上行传输时 的 PH, 通过发送模块 41将该 PH发送给第二基站, 并向第二基站发送第 二 RRC配置信息; 第二基站根据第二 RRC配置信息可以获知计算第一小 区内的 PH的具体参数,还可以根据第二 RRC配置信息中的子帧配比信息 获知 TDD小区 (第一小区) 中的哪些子帧用于上行, 哪些子帧用于下行。
例如, 若第二基站根据上述子帧配比信息获知 UE下一时刻的传输是 在下行子帧, 那么在 TDD小区 (第一小区) 的下行子帧, UE—定不会被 调度上行传输, 那么 UE的发射功率可以全部被 FDD小区(第二小区) 的 调度使用, 而不必考虑 UE在 TDD小区的功率使用, 即第二基站可以调 度比较多的 RB ,只要使得 UE在第二小区的发射功率不超过 UE允许的最 大发射功率即可。 若第二基站根据上述子帧配比信息获知 UE下一时刻的 传输是在上行子帧, 则第二基站可以参照上述实施例一的技术方案来控制
UE在第二小区内的发射功率, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第二小区是 FDD小区, 它 也可以是 TDD小区, 此时, UE可以将任意一个 TDD小区的子帧配比信 息报告给另一个小区。
本发明实施例提供的用户设备, 通过接收模块接收第一基站发送的第 一 RRC配置信息, 并通过发送模块向第二基站发送第二 RRC配置信息, 第二 RRC配置信息包括计算 UE在第一小区中的 PH的参数和第一基站为 UE配置的 子帧配比信息, 使得第二基站根据第二 RRC配置信息中的子帧配比信息获知 UE下一时刻的传输子帧是上行还是下行, 进而使得第二基站可以更好的根据 第二 RRC配置信息控制 UE下一时刻在第二基站控制的第二小区内进行上行传 输时的发射功率。本发明实施例提供的用户设备,可以适用于两个小区的 RRC 功能均由一个基站的 RRC控制的场景, 并且当两个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行功控的兼容性。 在上述图 5所示实施例的基础上, 进一歩地, 上述第二 RRC配置信 息包括半静态调度配置信息, 该半静态调度配置信息用于第二基站获知 UE 被第一基站半静态调度的子帧的位置。
具体的, 第二 RRC配置信息中不仅包括实施例一中的 Ρ。_ρυ5;(:Η ε ( ·)、 ac{j) , P。_pueeH、 ATxD (F ' 参数 Ks和 A , 还包括半静态调度配置信息。 第二基站 根据第二 RRC配置信息可以获知计算第一小区内的 PH的具体参数,还可 以根据第二 RRC配置信息中的半静态调度配置信息获知第一基站对 UE 进行半静态调度的子帧的位置, 在该半静态调度的子帧上, 第一基站配置 给 UE的物理层信息是固定的, 例如: 在该半静态调度的子帧上, 第一基 站为 UE在第一小区内的上行传输调度的 RB的个数是恒定不变的 (实施 例一中的 RB调度是动态调度, 第一基站在 UE每次的上行传输时调度的 RB个数可能不同)
若第二基站根据上述半静态调度配置信息获知 UE下一时刻的传输是 在半静态调度子帧上, 则第二基站就可以根据之前 UE预设的在半静态调 度子帧上的物理层信息获知 UE下一时刻在第一基站控制的第一小区内的 RB调度情况 (第一基站在每个半静态调度子帧上的调度的 RB个数是固 定的) , 从而第二基站可以准确的估算出 UE下一时刻在第二基站控制的 第二小区内的 RB调度情况, 进而控制 UE下一时刻在第二小区内的发射 功率。 若第二基站根据上述半静态调度配置信息获知 UE下一时刻的传输 是在非半静态调度子帧上(即在该子帧上 UE是被第一基站动态调度的), 则第二基站参照上述实施例一的技术方案对 UE下一时刻在第二小区内的 发射功率进行控制, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第一小区和第二小区的双工 模式。 并且, 当第一基站和第二基站都为 UE配置了半静态调度配置信息 时, UE可以将任意一个小区的半静态调度配置信息报告给另一个小区。
本发明实施例提供的用户设备, 通过接收模块接收第一基站发送的第 一 RRC配置信息, 并通过发送模块向第二基站发送第二 RRC配置信息, 第二 RRC配置信息包括计算 UE在第一小区中的 PH的参数和第一基站为 UE配置的 半静态调度配置信息, 使得第二基站根据第二 RRC配置信息中的半静态调度 配置信息获知 UE 下一时刻的传输子帧是半静态调度子帧还是非半静态调度 子帧,进而使得第二基站可以更好的根据第二 RRC配置信息控制 UE下一时刻 在第二基站控制的第二小区内进行上行传输时的发射功率。 本发明实施例提 供的用户设备, 可以适用于两个小区的 RRC功能均由一个基站的 RRC控制的 场景, 并且当两个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行功控的兼容性。 图 6为本发明提供的基站实施例三的结构示意图。 如图 6所示, 该基 站为第二基站, 该基站包括: 接收模块 50和控制模块 51 ; 其中, 接收模 块 50, 接收 UE发送的第二 RRC配置信息; 其中, 该第二 RRC配置信息为 UE 在接收到第一基站发送的第一 RRC配置消息后发送的; 该第一 RRC配置信息 和第二 RRC配置信息均包括用于计算 UE在第一基站控制的第一小区内的 PH 的参数; 控制模块 51, 用于根据第二 RRC配置信息控制 UE在第二基站控制 的第二小区内的发射功率。
本发明实施例适用于双连接的场景, 且该双连接场景中的两个基站采用 独立的 RRC, 即每个基站的 RRC分别对该基站下的 UE进行配置。 具体的, 第一基站为 UE配置第一 RRC配置信息,
息即高层配置信息,其包括用于 UE和第二基站计算 UE
一小区内的 PH的参数。 该第一 RRC配置信息可以包括: P( 0_PUSCH,c (J')、 ac (f)、
Pr O—PUCCH ATxD (F ')、 参数 Ks和 C ; 其中, Ρ。ρυ^ (;·)用于设置不同调度方式 ( j ) 下 PUSCH的功率偏移量; 为用于计算不同调度方式 (j ) 下的路 径损耗补偿系数; Ρ。_Ρυ∞Η用于设置 PUCCH的功率偏移量; 为用于设 置与 PUCCH格式相关的参数;参数 Ks和 用于计算传输格式补偿值 第一基站将上述第一 RRC配置信息发送给 UE, UE根据第一 RRC配置信 息中的这些参数和 UE中预设的物理层信息结合可以计算得到 UE在第一 基站控制的第一小区内的 PH,并且 UE还可以根据预设的物理层信息获知之 前第一基站为 UE在第一小区进行上行传输时所调度的 RB数目 (即上行资源 数目) 。 可选的, UE中预设的物理层信息可以为第一基站发送给 UE的, 该 物理层信息可以包括第一基站调度 UE进行上行传输时所用到的 RB数目、 调 度授权方式、 传输格式信息等。 UE根据第一 RRC配置信息和预设的物理层信 息确定 UE之前在第一小区内进行上行传输时的 PH的过程可以参见实施例一 中的描述, 在此不再赘述。
结合 UE发送 PUSCH或 PUCCH的不同情况,选择上述公式 1至公式 7中相应的公式, UE根据第一 RRC配置信息中所包含的参数以及预设的 物理层信息所包含的内容可以计算得到 UE在第一基站控制的第一小区内 的 PH, 并将该 PH发送给第二基站, 可选的, 该 PH可以以 PHR的形式 发送给第二基站; 并且, UE还向第二基站发送第二 RRC配置信息, 该第 二 RRC配置信息也包括用于计算 UE在第一小区内的 PH的参数。这里需 要说明的是, 虽然 UE可以将其在第一小区内的 PH发送给第二基站, 但 是, 当第一基站为 UE重新配置计算 UE在第一小区内的 PH的参数时, 第二基站可以直接利用这些参数和第二基站中预设的物理层信息计算新 的 PH, 而不再需要 UE计算。 并且, 第二基站中预设的物理层信息和 UE 中预设的物理层信息相同, 其可以是 UE转发的, 也可以是第一基站在理 想回程时直接发送给第二基站的, 即这里的第二基站中预设的物理层信息 可以为第一基站配置的 (当然, 第二基站中还有另一物理层信息是第二基 站自己配置的) 。 接收模块 50接收 UE发送的第二 RRC配置信息,控制模块 51可以根 据该第二 RRC配置信息、第二基站中预设的物理层信息和 UE在第一小区 内的 PH获知 UE之前在第一小区内进行上行传输时, 第一基站为 UE调 度的 RB数目、 调度授权方式、 传输格式信息等物理层信息, 以及与 UE计 算第一基站对应的 PH相关的参数, 从而可以获知 UE之前在第一小区中 进行上行传输时的功率使用情况。 需要说明的是, 第一小区内的 PH指的 是 UE之前在第一小区内的剩余功率, 第二 RRC配置信息中包括的计算 UE在第一小区内的参数也是第一基站配置的。 同时, 控制模块 51还会根 据第二基站为 UE配置的 RRC配置信息、第二基站为 UE配置的物理层信 息以及第二基站的 PHR获知 UE上一次在第二基站控制的第二小区内进行 上行传输时, 第二基站为 UE调度的 RB数目和剩余功率; 也就是说, 控 制模块 51 可以获知 UE之前在第二小区中进行上行传输时的功率使用情 况。最后,控制模块 51将 UE之前在第一小区和在第二小区内的功率使用 情况作为参考, 控制 UE下一次在第二小区进行上行传输时的发射功率, 使得 UE总的发射功率(UE总的发射功率等于 UE在各个小区中的发射功 率之和) 不超过 UE所能允许的最大发射功率。
需要说明的是, UE在接收到第一基站发送的第一 RRC配置信息后, 向第二基站发送第二 RRC配置信息, 且该第二 RRC配置信息中也包括计 算在第一小区内的 PH的参数, 不仅可以使第二基站获知 UE之前在第一 小区进行上行传输的 PH 的具体计算过程, 还可以使得当第一基站为 UE 重新配置第一 RRC配置信息中的参数时,通过 UE将新的参数携带在第二 RRC配置信息发送给第二基站, 避免第二基站的控制模块 51在第一基站 的第一 RRC配置信息中的参数已经发生变化的情况下, 仍然使用原始的 参数获知 UE在第一小区中的 PH的具体计算过程, 因为此时第一小区的 PH有可能已经发生变化了。 可选的, 第一 RRC配置信息和第二 RRC配 置信息可以相同, 也可以不同, 但是二者均包括计算 UE之前在第一小区 中的 PH的参数。
本发明实施例提供的基站, 通过接收模块接收 UE发送的第二 RRC配 置信息, 该第二 RRC配置信息中包括计算 UE在第一小区中的 PH的参数, 控 制模块根据该第二 RRC配置信息、第二基站中预设的物理层信息以及 UE在第 一小区的 PH控制 UE下一时刻在第二基站控制的第二小区内进行上行传输时 的发射功率。 本发明实施例提供的基站, 可以适用于两个小区的 RRC功能均 由一个基站的 RRC控制的场景, 并且当两个基站采用独立的 RRC时, 也可以 有效控制 UE的发射功率, 提高了上行功控的兼容性。 在上述图 6所示实施例的基础上,进一歩地,若上述第一基站支持 TDD 模式, 则上述第二 RRC配置信息还包括子帧配比信息, 则控制模块 51还用于 根据该子帧配比信息获知 UE 下一时刻被所述第一基站调度的子帧是上行或 者下行。
具体的, 本实施例中, 第二 RRC配置信息可以包括上述实施例二的
Figure imgf000041_0001
UF')、参数 KS和 , 还包括子帧配比信息。 该子帧配比信息也可以第一基站配置给 UE的。 在双连接场景下, UE分 别连接第一基站和第二基站为其服务, 其中第一基站支持 TDD模式, 第 二基站支持 FDD模式。 TDD和 FDD的小区为一个 UE服务, 也叫做 TDD+FDD载波聚合, 或者 TDD-FDD联合操作。 如果 TDD eNB (第一基 站) 的 RRC和 FDD eNodeB (第二基站) 的 RRC是相互独立的。
第一基站将第一 RRC配置信息发送给 UE, UE可以根据该第一 RRC 配置信息和预设的物理层信息计算得到 UE之前在第一小区内进行上行传 输时的 PH, 并将该 PH以及第二 RRC配置信息发送给第二基站; 接收模 块 50接收该第二 RRC配置信息和 UE在第一小区内的 PH, 控制模块 51 根据第二 RRC配置信息可以获知计算第一小区内的 PH的具体参数,还可 以根据第二 RRC配置信息中的子帧配比信息获知 TDD小区 (第一小区) 中的哪些子帧用于上行, 哪些子帧用于下行。
例如,若控制模块 51根据上述子帧配比信息获知 UE下一时刻的传输 是在下行子帧, 那么在 TDD小区 (第一小区) 的下行子帧, UE—定不会 被调度上行传输, 那么 UE的发射功率可以全部被 FDD小区 (第二小区) 的调度使用, 而不必考虑 UE在 TDD小区的功率使用, 即第二基站可以 调度比较多的 RB ,只要使得 UE在第二小区的发射功率不超过 UE允许的 最大发射功率即可。若控制模块 51根据上述子帧配比信息获知 UE下一时 刻的传输是在上行子帧, 则控制模块 51可以参照上述实施例一的技术方 案来控制 UE在第二小区内的发射功率, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第二小区是 FDD小区, 它 也可以是 TDD小区, 此时, UE可以将任意一个 TDD小区的子帧配比信 息报告给另一个小区。
本发明实施例提供的基站, 通过接收模块接收 UE发送的第二 RRC配 置信息,控制模块根据第二 RRC配置信息中的子帧配比信息获知 UE下一时刻 的传输子帧是上行还是下行, 进而使得控制模块可以更好的根据第二 RRC配 置信息、第二基站中预设的物理层信息以及 UE在第一小区内的 PH控制 UE下 一时刻在第二基站控制的第二小区内进行上行传输时的发射功率。 本发明实 施例提供的基站, 可以适用于两个小区的 RRC功能均由一个基站的 RRC控制 的场景,并且当两个基站采用独立的 RRC时,也可以有效控制 UE的发射功率, 提高了上行功控的兼容性。 在上述图 6所示实施例的基础上, 进一歩地, 上述第二 RRC配置信 息包括半静态调度配置信息,则控制模块 51还用于根据该半静态调度配置信 息获知 UE被第一基站半静态调度的子帧的位置。
具体的, UE将第二 RRC配置信息以及 UE在第一小区内的 PH发送给第二 基站, 该 RRC配置信息中不仅包括实施例一中的 Ρ。_ρυ5;(:Η ε ( ·)、 ac {j) , 0_PUCCH , ATxD (F ') , 参数 Ks和 , 还包括半静态调度配置信息。 接收模块 50接收 该第二 RRC配置信息以及 UE在第一小区内的 PH, 控制模块 51根据该第二 RRC配置信息可以获知计算第一小区内的 PH的具体参数, 还可以根据第 二 RRC配置信息中的半静态调度配置信息获知第一基站对 UE进行半静态 调度的子帧的位置, 在该半静态调度的子帧上, 第一基站配置给 UE的物 理层信息是固定的, 例如: 在该半静态调度的子帧上, 第一基站为 UE在 第一小区内的上行传输调度的 RB的个数是恒定不变的(实施例一中的 RB 调度是动态调度, 第一基站在 UE每次的上行传输时调度的 RB个数可能 不同)
若控制模块 51根据上述半静态调度配置信息获知 UE下一时刻的传输 是在半静态调度子帧上,则控制模块 51就可以根据之前 UE预设的在半静 态调度子帧上的物理层信息获知 UE下一时刻在第一基站控制的第一小区 内的 RB调度情况 (第一基站在每个半静态调度子帧上的调度的 RB个数 是固定的), 从而控制模块 51可以准确的估算出 UE下一时刻在第二基站 控制的第二小区内的 RB调度情况, 进而控制 UE下一时刻在第二小区内 的发射功率。若控制模块 51根据上述半静态调度配置信息获知 UE下一时 刻的传输是在非半静态调度子帧上 (即在该子帧上 UE是被第一基站动态 调度的) , 则第二基站参照上述实施例一的技术方案对 UE下一时刻在第 二小区内的发射功率进行控制, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第一小区和第二小区的双工 模式。 并且, 当第一基站和第二基站都为 UE配置了半静态调度配置信息 时, UE可以将任意一个小区的半静态调度配置信息报告给另一个小区。
本发明实施例提供的基站, 通过接收模块接收 UE发送的第二 RRC配 置信息,控制模块根据第二 RRC配置信息中的半静态调度配置信息获知 UE下 一时刻的传输子帧是半静态调度子帧还是非半静态调度子帧, 进而使得控制 模块可以更好的根据第二 RRC配置信息、 第二基站中预设的物理层信息以及 UE在第一小区内的 PH控制 UE下一时刻在第二基站控制的第二小区内进行上 行传输时的发射功率。本发明实施例提供的基站,可以适用于两个小区的 RRC 功能均由一个基站的 RRC控制的场景, 并且当两个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行功控的兼容性。 图 7为本发明提供的基站实施例四的结构示意图。该基站为第一基站, 如图 7所示, 该基站包括: 配置模块 60和发送模块 61 ; 其中配置模块 60, 用于为 UE配置第一 RRC配置信息; 其中, 第一 RRC配置信息包括用于计算 UE在所述第一基站控制的第一小区内的 PH的参数; 发送模块 61, 用于将第 一 RRC配置信息发送给 UE, 以使所述 UE向第二基站发送第二 RRC配置信息; 其中, 第二 RRC配置信息包括用于计算所述 UE在所述第一小区内的 PH的参 数。
本发明实施例适用于双连接的场景, 且该双连接场景中的两个基站采用 独立的 RRC, 即每个基站的 RRC分别对该基站下的 UE进行配置。
具体的, 配置模块 60为 UE配置第一 RRC配置信息, 该第一 RRC配置 信息即高层配置信息,其包括用于 UE和第二基站计算 UE在第一基站覆盖的 ;一小区内的 PH的参数。 该第一 RRC配置信息可以包括: Ρ。_ρυ5; ε )、 ac {j) , nc:H、 ATxD (F '、 参数 Ks和 其中, Ρ。_ρυ^( ·)用于设置不同调度方式 ( j ) 下 PUSCH的功率偏移量; 为用于计算不同调度方式 (j ) 下的路 径损耗补偿系数; Ρ。_Ρυ∞Η用于设置 PUCCH的功率偏移量; 为用于设 置与 PUCCH格式相关的参数;参数 Ks和 用于计算传输格式补偿值
发送模块 61将上述第一 RRC配置信息发送给 UE, UE根据该第一 RRC 配置信息中的这些参数和 UE中预设的物理层信息结合可以计算得到 UE 在第一基站控制的第一小区内的 PH, 并且 UE还可以预设的物理层信息获 知之前第一基站为 UE在第一小区进行上行传输时所调度的 RB数目 (即上行 资源数目) 。 UE根据第一 RRC配置信息和预设的物理层信息确定 UE之前在 第一小区内进行上行传输时的 PH可以参见上述实施例一的描述,在此不再赘 述。
结合 UE发送 PUSCH或 PUCCH的不同情况,选择上述公式 1至公式 7中相应的公式, UE根据第一 RRC配置信息中所包含的参数以及 UE中 预设的物理层信息所包含的内容可以计算得到 UE在第一基站控制的第一 小区内的 PH, 并将该 PH发送给第二基站, 可选的, 该 PH可以以 PHR 的形式发送给第二基站;并且, UE还向第二基站发送第二 RRC配置信息, 该第二 RRC配置信息也包括用于计算 UE在第一小区内的 PH的参数。这 里需要说明的是, 虽然 UE可以将其在第一小区内的 PH发送给第二基站, 但是, 当第一基站为 UE重新配置计算 UE在第一小区内的 PH的参数时, 第二基站可以直接利用这些参数和第二基站中预设的物理层信息计算新 的 PH, 而不再需要 UE计算。 并且, 第二基站中预设的物理层信息和 UE 中预设的物理层信息相同, 其可以是 UE转发的, 也可以是第一基站在理 想回程时直接发送给第二基站的, 即这里的第二基站中预设的物理层信息 可以为第一基站配置的 (当然, 第二基站中还有另一物理层信息是第二基 站自己配置的) 。
第二基站根据第二 RRC配置信息、 第二基站中预设的物理层信息和 UE在第一小区内的 PH获知 UE之前在第一小区内进行上行传输时,第一 基站为 UE调度的 RB数目、 调度授权方式、 传输格式信息等物理层信息, 以及与 UE计算第一基站对应的 PH相关的参数, 从而可以获知 UE之前 在第一小区中进行上行传输时的功率使用情况。 需要说明的是, 第一小区 内的 PH指的是 UE之前在第一小区内的剩余功率, 第二 RRC配置信息中 包括的计算 UE在第一小区内的参数也是第一基站配置的。 同时, 第二基 站还会根据第二基站为 UE配置的第二 RRC配置信息、第二基站为 UE配 置的物理层信息以及第二基站的 PHR获知 UE上一次在第二基站控制的第 二小区内进行上行传输时, 第二基站为 UE调度的 RB数目和剩余功率; 也就是说, 第二基站可以获知 UE之前在第二小区中进行上行传输时的功 率使用情况。 最后, 第二基站将之前 UE在第一小区和在第二小区内的功 率使用情况作为参考, 控制 UE下一次在第二小区进行上行传输时的发射 功率, 使得 UE总的发射功率(UE总的发射功率等于 UE在各个小区中的 发射功率之和) 不超过 UE所能允许的最大发射功率。
需要说明的是, UE在接收到第一基站发送的第一 RRC配置信息后, 向第二基站发送第二 RRC配置信息, 且该第二 RRC配置信息中也包括计 算在第一小区内的 PH的参数, 不仅可以使第二基站获知 UE之前在第一 小区进行上行传输的 PH 的具体计算过程, 还可以使得当第一基站为 UE 重新配置第一 RRC配置信息中的参数时,通过 UE将新的参数携带在第二 RRC配置信息中发送给第二基站, 避免第二基站在第一基站的第一 RRC 配置信息中的参数已经发生变化的情况下, 仍然使用原始的参数获知 UE 在第一小区中的 PH的具体计算过程, 因为此时第一小区的 PH有可能已 经发生变化了。 可选的, 第一 RRC配置信息和第二 RRC配置信息可以相 同, 也可以不同, 但是二者均包括计算 UE之前在第一小区中的 PH的参 数。
本发明实施例提供的基站,通过配置模块为 UE配置第一 RRC配置信 息, 并通过发送模块将该第一 RRC配置信息发送给 UE, 使得 UE可以根 据该第一 RRC配置信息和 UE中预设的物理层信息获取 UE在第一基站控 制的第一小区的 PH; 并使得 UE将第二 RRC配置信息发送给第二基站, 进而使得第二基站可以根据该第二 RRC配置信息控制 UE下一时刻在第二 基站控制的第二小区内进行上行传输时的发射功率。 本发明实施例提供的基 站, 可以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且 当两个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行 功控的兼容性。 在上述图 7所示实施例的基础上, 上述第二 RRC配置信息用于第二基 站控制 UE在所述第二基站控制的第二小区内的发射功率。 进一歩地, 若上 述第一基站支持 TDD模式, 则上述第二 RRC配置信息还包括子帧配比信息, 该子帧配比信息用于第二基站获知 UE 下一时刻被所述第一基站调度的子帧 是上行或者下行。
具体的, 本实施例中, 第二 RRC配置信息可以包括上述实施例二的
Figure imgf000046_0001
UF')、参数 KS和 , 还包括子帧配比信息。 该子帧配比信息也可以第一基站配置给 UE的。 在双连接场景下, UE分 别连接第一基站和第二基站为其服务, 其中第一基站支持 TDD模式, 第 二基站支持 FDD模式。 TDD和 FDD的小区为一个 UE服务, 也叫做 TDD+FDD载波聚合, 或者 TDD-FDD联合操作。 如果 TDD eNB (第一基 站) 的 RRC和 FDD eNodeB (第二基站) 的 RRC是相互独立的。
发送模块 61将第一 RRC配置信息发送给 UE, UE根据该第一 RRC 配置信息和 UE中预设的物理层信息计算得到 UE之前在第一小区内进行 上行传输时的 PH,UE将 PH发送给第二基站,并向第二基站发送第二 RRC 配置信息; 第二基站根据第二 RRC配置信息可以获知计算第一小区内的 PH的具体参数, 还可以根据第二 RRC配置信息中的子帧配比信息获知 TDD小区 (第一小区) 中的哪些子帧用于上行, 哪些子帧用于下行。
例如, 若第二基站根据上述子帧配比信息获知 UE下一时刻的传输是 在下行子帧, 那么在 TDD小区 (第一小区) 的下行子帧, UE—定不会被 调度上行传输, 那么 UE的发射功率可以全部被 FDD小区(第二小区) 的 调度使用, 而不必考虑 UE在 TDD小区的功率使用, 即第二基站可以调 度比较多的 RB ,只要使得 UE在第二小区的发射功率不超过 UE允许的最 大发射功率即可。 若第二基站根据上述子帧配比信息获知 UE下一时刻的 传输是在上行子帧, 则第二基站可以参照上述实施例一的技术方案来控制 UE在第二小区内的发射功率, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第二小区是 FDD小区, 它 也可以是 TDD小区, 此时, UE可以将任意一个 TDD小区的子帧配比信 息报告给另一个小区。
本发明实施例提供的基站,通过配置模块为 UE配置第一 RRC配置信 息, 并通过发送模块将该第一 RRC配置信息发送给 UE, 使得 UE可以根 据该第一 RRC配置信息和 UE预设的物理层信息获取 UE在第一基站控制 的第一小区的 PH; 并使得 UE向第二基站发送第二 RRC配置信息, 进而 使得第二基站可以根据第二 RRC配置信息息中的子帧配比信息获知 UE下 一时刻的传输子帧是上行还是下行,从而更准确的控制 UE下一时刻在第二基 站控制的第二小区内进行上行传输时的发射功率。本发明实施例提供的基站, 可以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两 个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了上行功控 的兼容性。 在上述图 7所示实施例的基础上, 进一歩地, 上述第二 RRC配置信 息包括半静态调度配置信息,该子帧配比信息用于第二基站获知 UE被第一基 站半静态调度的子帧的位置。
具体的, 第二 RRC配置信息中不仅包括实施例二中的 Ρ。_ρυ5;(:Η ε ( ·)、 ac{j) , 0_PUCCH . ATxD (F ' 参数 Ks和 A , 还包括半静态调度配置信息。 第二基站 根据该第二 RRC配置信息可以获知计算第一小区内的 PH的具体参数,还 可以根据第二 RRC配置信息中的半静态调度配置信息获知第一基站对 UE 进行半静态调度的子帧的位置, 在该半静态调度的子帧上, 第一基站的配 置模块 60配置给 UE的物理层信息是固定的,例如:在该半静态调度的子 帧上, 第一基站为 UE在第一小区内的上行传输调度的 RB的个数是恒定 不变的 (实施例一中的 RB调度是动态调度, 第一基站在 UE每次的上行 传输时调度的 RB个数可能不同)
若第二基站根据上述半静态调度配置信息获知 UE下一时刻的传输是 在半静态调度子帧上, 则第二基站就可以根据之前 UE预设的在半静态调 度子帧上的物理层信息获知 UE下一时刻在第一基站控制的第一小区内的 RB调度情况 (第一基站在每个半静态调度子帧上的调度的 RB个数是固 定的) , 从而第二基站可以准确的估算出 UE下一时刻在第二基站控制的 第二小区内的 RB调度情况, 进而控制 UE下一时刻在第二小区内的发射 功率。 若第二基站根据上述半静态调度配置信息获知 UE下一时刻的传输 是在非半静态调度子帧上(即在该子帧上 UE是被第一基站动态调度的), 则第二基站参照上述实施例一的技术方案对 UE下一时刻在第二小区内的 发射功率进行控制, 在此不再赘述。
需要说明的是, 在本实施例中, 并不限定第一小区和第二小区的双工 模式。 并且, 当第一基站和第二基站都为 UE配置了半静态调度配置信息 时, UE可以将任意一个小区的半静态调度配置信息报告给另一个小区。
本发明实施例提供的基站,通过配置模块为 UE配置第一 RRC配置信 息, 并通过发送模块将该第一 RRC配置信息发送给 UE, 使得 UE可以根 据该第一 RRC配置信息和 UE预设的物理层信息获取 UE在第一基站控制 的第一小区的 PH; 并使得 UE向第二基站发送第二 RRC配置信息, 第二 RRC配置信息包括计算 UE在第一小区中的 PH的参数和第一基站为 UE配置的 半静态调度配置信息, 使得第二基站根据第二 RRC配置信息中的半静态调度 配置信息获知 UE 下一时刻的传输子帧是半静态调度子帧还是非半静态调度 子帧,进而使得第二基站可以更好的根据第二 RRC配置信息控制 UE下一时刻 在第二基站控制的第二小区内进行上行传输时的发射功率。 本发明实施例提 供的基站,可以适用于两个小区的 RRC功能均由一个基站的 RRC控制的场景, 并且当两个基站采用独立的 RRC时, 也可以有效控制 UE的发射功率, 提高了 上行功控的兼容性。
图 8为本发明提供的上行功率控制方法实施例一的流程示意图。 该方 法的执行主体可以为上述实施例中的用户设备。如图 8所示,该方法包括: S 101 : UE接收第一基站发送的第一 RRC配置信息; 其中, 所述第一 RRC 配置信息包括用于计算所述 UE在所述第一基站控制的第一小区内的 PH的参 数。
S 102 : UE发送第二 RRC配置信息给第二基站, 所述第二 RRC配置信息包 括用于计算所述 UE在所述第一小区内的 PH的参数。
本发明实施例提供的上行功率控制方法的执行过程, 可以参见上述用户 设备的实施例, 其实现原理和技术方案类似, 在此不再赘述。
进一歩地, 上述第二 RRC配置信息用于所述第二基站控制所述 UE在所 述第二基站控制的第二小区内的发射功率。 可选的, 若所述第一基站支持 TDD模式, 则所述第二 RRC配置信息还可 以包括子帧配比信息; 其中, 所述子帧配比信息用于所述第二基站获知所述 UE下一时刻被所述第一基站调度的子帧是上行或者下行。
可选的, 所述第二 RRC配置信息还包括半静态调度配置信息; 其中, 所 述半静态调度配置信息用于所述第二基站获知所述 UE 被所述第一基站半静 态调度的子帧的位置。
本发明实施例提供的上行功率控制方法的执行过程, 可以参见上述用户 设备的实施例, 其实现原理和技术方案类似, 在此不再赘述。
图 9为本发明提供的上行功率控制方法实施例二的流程示意图。 该方 法的执行主体可以是上述实施例中的第二基站。如图 9所示,该方法包括:
S201 : 第二基站接收 UE发送的第二 RRC配置信息; 其中, 所述第二 RRC 配置信息为所述 UE在接收到第一基站发送的第一 RRC配置消息后发送的;所 述第一 RRC配置信息和所述第二 RRC配置信息均包括包括用于计算所述 UE在 所述第一基站控制的第一小区内的 PH的参数。
S202 : 第二基站根据所述第二 RRC配置信息控制所述 UE在所述第二基 站控制的第二小区内的发射功率。
本发明实施例提供的上行功率控制方法的执行过程, 可以参见上述第二 基站的实施例, 其实现原理和技术方案类似, 在此不再赘述。
可选的, 若所述第一基站支持 TDD模式, 则所述第二 RRC配置信息还包 括子帧配比信息; 其中, 所述子帧配比信息用于所述第二基站获知所述 UE下 一时刻被所述第一基站调度的子帧是上行或者下行。
可选的, 所述第二 RRC配置信息还包括半静态调度配置信息, 以使所述 第二基站根据所述半静态调度配置信息获知所述 UE 被所述第一基站半静态 调度的子帧的位置。
本发明实施例提供的上行功率控制方法的执行过程, 可以参见上述第二 基站的实施例, 其实现原理和技术方案类似, 在此不再赘述。
图 10 为本发明提供的上行功率控制方法实施例三的流程示意图。 该 方法的执行主体为上述实施例中的第一基站。 如图 10所示, 该方法包括: S301 : 第一基站为 UE配置第一 RRC配置信息; 其中, 所述第一 RRC配 置信息包括用于计算所述 UE在所述第一基站控制的第一小区内的 PH的参数。 S302 : 第一基站将所述第一 RRC配置信息发送给所述 UE, 以使所述 UE 向所述第二基站发送第二 RRC配置信息; 其中, 所述第二 RRC配置信息包括 用于计算所述 UE在所述第一小区内的 PH的参数。
本发明实施例提供的上行功率控制方法的执行过程, 可以参见上述第一 基站的实施例, 其实现原理和技术方案类似, 在此不再赘述。
进一歩地,所述第二 RRC配置信息用于所述第二基站控制所述 UE在所述 第二基站控制的第二小区内的发射功率。
可选的, 若所述第一基站支持 TDD模式, 则所述第二 RRC配置信息还包 括子帧配比信息; 其中, 所述子帧配比信息用于所述第二基站获知所述 UE下 一时刻被所述第一基站调度的子帧是上行或者下行。
可选的, 所述第二 RRC配置信息还包括半静态调度配置信息; 其中, 所 述半静态调度配置信息用于所述第二基站获知所述 UE 被所述第一基站半静 态调度的子帧的位置。
本发明实施例提供的上行功率控制方法的执行过程, 可以参见上述第一 基站的实施例, 其实现原理和技术方案类似, 在此不再赘述。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分歩骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的歩骤; 而前述 的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种用户设备, 其特征在于, 包括:
接收器,用于接收第一基站发送的第一无线资源控制协议 RRC配置信息; 其中,所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站控制的第 一小区内的功率余量 PH的参数;
发送器, 用于发送第二 RRC配置信息给第二基站, 所述第二 RRC配置信 息包括用于计算所述 UE在所述第一小区内的 PH的参数。
2、 根据权利要求 1所述的用户设备, 其特征在于, 所述第二 RRC配置信 息用于所述第二基站控制所述 UE 在所述第二基站控制的第二小区内的发射 功率。
3、 根据权利要求 1所述的用户设备, 其特征在于, 若所述第一基站支持 时分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中, 所述子帧配比信息用于所述第二基站获知所述 UE 下一时刻被所述第一基站 调度的子帧是上行或者下行。
4、根据权利要求 1所述的用户设备, 其特征在于, 所述第二 RRC配置信 息还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于所述第 二基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
5、 一种基站, 其特征在于, 包括:
接收器,用于接收用户设备 UE发送的第二无线资源控制协议 RRC配置信 息; 其中, 所述第二 RRC配置信息为所述 UE在接收到第一基站发送的第一 RRC配置消息后发送的; 所述第一 RRC配置信息和所述第二 RRC配置信息均 包括用于计算所述 UE在所述第一基站控制的第一小区内的功率余量 PH的参 数;
处理器,用于根据所述第二 RRC配置信息控制所述 UE在所述第二基站控 制的第二小区内的发射功率。
6、 根据权利要求 5所述的基站, 其特征在于, 若所述第一基站支持时分 双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 则所述处理 器还用于根据所述子帧配比信息获知所述 UE 下一时刻被所述第一基站调度 的子帧是上行或者下行。
7、根据权利要求 5所述的基站, 其特征在于, 所述第二 RRC配置信息还 包括半静态调度配置信息; 则所述处理器还用于根据所述半静态调度配置信 息获知所述 UE被所述第一基站半静态调度的子帧的位置。
8、 一种基站, 其特征在于, 包括:
处理器, 用于为用户设备 UE配置第一无线资源控制协议 RRC配置信息; 其中,所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站控制的第 一小区内的功率余量 PH的参数;
发送器, 用于将所述第一 RRC配置信息发送给所述 UE, 以使所述 UE向 第二基站发送第二 RRC配置信息; 其中, 所述第二 RRC配置信息包括用于计 算所述 UE在所述第一小区内的 PH的参数。
9、 根据权利要求 8所述的基站, 其特征在于, 所述第二 RRC配置信息用 于所述第二基站控制所述 UE在所述第二基站控制的第二小区内的发射功率。
10、 根据权利要求 8所述的基站, 其特征在于, 若所述第一基站支持时 分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中, 所 述子帧配比信息用于所述第二基站获知所述 UE 下一时刻被所述第一基站调 度的子帧是上行或者下行。
11、 根据权利要求 8所述的基站, 其特征在于, 所述第二 RRC配置信息 还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于所述第二 基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
12、 一种用户设备, 其特征在于, 包括:
接收模块, 用于接收第一基站发送的第一无线资源控制协议 RRC配置信 息; 其中, 所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站控制 的第一小区内的功率余量 PH的参数;
发送模块, 用于发送第二 RRC配置信息给第二基站, 所述第二 RRC配置 信息包括用于计算所述 UE在所述第一小区内的 PH的参数。
13、 根据权利要求 12所述的用户设备, 其特征在于, 所述第二 RRC配置 信息用于所述第二基站控制所述 UE 在所述第二基站控制的第二小区内的发 射功率。
14、 根据权利要求 12所述的用户设备, 其特征在于, 若所述第一基站支 持时分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中, 所述子帧配比信息用于所述第二基站获知所述 UE 下一时刻被所述第一基站 调度的子帧是上行或者下行。
15、 根据权利要求 12所述的用户设备, 其特征在于, 所述第二 RRC配置 信息还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于所述 第二基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
16、 一种基站, 其特征在于, 包括:
接收模块,用于接收用户设备 UE发送的第二无线资源控制协议 RRC配置 信息; 其中, 所述第二 RRC配置信息为所述 UE在接收到第一基站发送的第一 RRC配置消息后发送的; 所述第一 RRC配置信息和所述第二 RRC配置信息均 包括用于计算所述 UE在所述第一基站控制的第一小区内的功率余量 PH的参 数;
控制模块,用于根据所述第二 RRC配置信息控制所述 UE在所述第二基站 控制的第二小区内的发射功率。
17、 根据权利要求 16所述的基站, 其特征在于, 若所述第一基站支持时 分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 则所述控 制模块,还用于根据所述子帧配比信息获知所述 UE下一时刻被所述第一基站 调度的子帧是上行或者下行。
18、 根据权利要求 16所述的基站, 其特征在于, 所述第二 RRC配置信息 还包括半静态调度配置信息; 则所述控制模块, 还用于根据所述半静态调度 配置信息获知所述 UE被所述第一基站半静态调度的子帧的位置。
19、 一种基站, 其特征在于, 包括:
配置模块,用于为用户设备 UE配置第一无线资源控制协议 RRC配置信息; 其中,所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站覆盖的第 一小区内的功率余量 PH的参数;
发送模块, 用于将第一所述 RRC配置信息发送给所述 UE, 以使所述 UE 向第二基站发送第二 RRC配置信息; 其中, 所述第二 RRC配置信息包括用于 计算所述 UE在所述第一小区内的 PH的参数。
20、 根据权利要求 19所述的基站, 其特征在于, 所述第二 RRC配置信息 用于所述第二基站控制所述 UE在所述第二基站控制的第二小区内的发射功 率。
21、 根据权利要求 19所述的基站, 其特征在于, 若所述第一基站支持时 分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中, 所 述子帧配比信息用于所述第二基站获知所述 UE 下一时刻被所述第一基站调 度的子帧是上行或者下行。
22、 根据权利要求 19所述的基站, 其特征在于, 所述第二 RRC配置信息 还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于所述第二 基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
23、 一种上行功率控制方法, 其特征在于, 包括:
用户设备 UE接收第一基站发送的无线资源控制协议第一 RRC配置信息; 其中,所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站控制的第 一小区内的功率余量 PH的参数;
所述 UE发送第二 RRC配置信息给第二基站,所述第二 RRC配置信息包括 用于计算所述 UE在所述第一小区内的 PH的参数。
24、 根据权利要求 23所述的方法, 其特征在于, 所述第二 RRC配置信息 用于所述第二基站控制所述 UE在所述第二基站控制的第二小区内的发射功 率。
25、 根据权利要求 23所述的方法, 其特征在于, 若所述第一基站支持时 分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中, 所 述子帧配比信息用于所述第二基站获知所述 UE 下一时刻被所述第一基站调 度的子帧是上行或者下行。
26、 根据权利要求 23所述的方法, 其特征在于, 所述第二 RRC配置信息 还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于所述第二 基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
27、 一种上行功率控制方法, 其特征在于, 包括:
第二基站接收用户设备 UE发送的第二无线资源控制协议 RRC配置信息; 其中,所述第二 RRC配置信息为所述 UE在接收到第一基站发送的第一 RRC配 置消息后发送的; 所述第一 RRC配置信息和所述第二 RRC配置信息均包括包 括用于计算所述 UE在所述第一基站控制的第一小区内的功率余量 PH的参数。
所述第二基站根据所述第二 RRC配置信息控制所述 UE在所述第二基站控 制的第二小区内的发射功率。
28、 根据权利要求 27所述的方法, 其特征在于, 若所述第一基站支持时 分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中, 所 述子帧配比信息用于所述第二基站获知所述 UE 下一时刻被所述第一基站调 度的子帧是上行或者下行。
29、 根据权利要求 27所述的方法, 其特征在于, 所述第二 RRC配置信息 还包括半静态调度配置信息, 以使所述第二基站根据所述半静态调度配置信 息获知所述 UE被所述第一基站半静态调度的子帧的位置。
30、 一种上行功率控制方法, 其特征在于, 包括:
第一基站为用户设备 UE配置第一无线资源控制协议 RRC配置信息;其中, 所述第一 RRC配置信息包括用于计算所述 UE在所述第一基站控制的第一小区 内的功率余量 PH的参数;
所述第一基站将所述第一 RRC配置信息发送给所述 UE, 以使所述 UE向 所述第二基站发送第二 RRC配置信息; 其中, 所述第二 RRC配置信息包括用 于计算所述 UE在所述第一小区内的 PH的参数。
31、 根据权利要求 30所述的方法, 其特征在于, 所述第二 RRC配置信息 用于所述第二基站控制所述 UE在所述第二基站控制的第二小区内的发射功 率。
32、 根据权利要求 30所述的方法, 其特征在于, 若所述第一基站支持时 分双工 TDD模式, 则所述第二 RRC配置信息还包括子帧配比信息; 其中, 所 述子帧配比信息用于所述第二基站获知所述 UE 下一时刻被所述第一基站调 度的子帧是上行或者下行。
33、 根据权利要求 30所述的方法, 其特征在于, 所述第二 RRC配置信息 还包括半静态调度配置信息; 其中, 所述半静态调度配置信息用于所述第二 基站获知所述 UE被所述第一基站半静态调度的子帧的位置。
PCT/CN2014/073941 2014-03-24 2014-03-24 上行功率控制方法、用户设备和基站 WO2015143600A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201480001736.9A CN105122901B (zh) 2014-03-24 2014-03-24 上行功率控制方法、用户设备和基站
EP14886731.0A EP3113552B1 (en) 2014-03-24 2014-03-24 Method for controlling uplink power, user equipment, and base stations
BR112016022035-8A BR112016022035B1 (pt) 2014-03-24 2014-03-24 Equipamentos de usuário e estações-base para controlar potência de enlace ascendente
PCT/CN2014/073941 WO2015143600A1 (zh) 2014-03-24 2014-03-24 上行功率控制方法、用户设备和基站
US15/274,554 US10117189B2 (en) 2014-03-24 2016-09-23 Uplink power control method, user equipment, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/073941 WO2015143600A1 (zh) 2014-03-24 2014-03-24 上行功率控制方法、用户设备和基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/274,554 Continuation US10117189B2 (en) 2014-03-24 2016-09-23 Uplink power control method, user equipment, and base station

Publications (1)

Publication Number Publication Date
WO2015143600A1 true WO2015143600A1 (zh) 2015-10-01

Family

ID=54193844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/073941 WO2015143600A1 (zh) 2014-03-24 2014-03-24 上行功率控制方法、用户设备和基站

Country Status (5)

Country Link
US (1) US10117189B2 (zh)
EP (1) EP3113552B1 (zh)
CN (1) CN105122901B (zh)
BR (1) BR112016022035B1 (zh)
WO (1) WO2015143600A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788538A (zh) * 2017-11-14 2019-05-21 华为技术有限公司 通信方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152502A1 (ko) * 2014-03-31 2015-10-08 인텔렉추얼디스커버리 주식회사 무선 통신 시스템 및 방법
GB2566990B (en) * 2017-09-29 2020-08-05 Tcl Communication Ltd Improvements in or relating to transmission without grant in New Radio

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439895A (zh) * 2009-04-27 2012-05-02 摩托罗拉移动公司 多载波无线通信系统中的上行链路调度支持
WO2012138089A1 (en) * 2011-04-02 2012-10-11 Pantech Co., Ltd. Apparatus and method for performing power headroom report

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2771081C (en) * 2009-08-14 2016-09-27 Research In Motion Limited Method and apparatus for power sharing carrier set for carrier aggregation
JP4812887B1 (ja) * 2010-04-30 2011-11-09 株式会社エヌ・ティ・ティ・ドコモ 移動通信方法及び移動局
KR101276853B1 (ko) * 2010-08-17 2013-06-18 엘지전자 주식회사 멀티캐리어를 지원하는 통신 시스템에서 파워 헤드룸 리포트를 전송하는 방법 및 장치
KR20120033419A (ko) * 2010-09-30 2012-04-09 주식회사 팬택 다중 요소 반송파 시스템에서 잉여전력에 관한 정보의 전송장치 및 방법
CN103733697B (zh) * 2011-08-12 2018-01-12 交互数字专利控股公司 用于功率控制和定时提前的方法和装置
EP2888918B1 (en) * 2012-08-23 2020-11-18 Interdigital Patent Holdings, Inc. Providing physical layer resources to different serving sites

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102439895A (zh) * 2009-04-27 2012-05-02 摩托罗拉移动公司 多载波无线通信系统中的上行链路调度支持
WO2012138089A1 (en) * 2011-04-02 2012-10-11 Pantech Co., Ltd. Apparatus and method for performing power headroom report

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Power control on dual connectivity", 3GPP TSG RAN WG 1 MEETING #76 R1-140762, 31 January 2014 (2014-01-31), XP050736264 *
NSN, NOKIA: "UL power control aspects ot dual connectivity", 3GPP TSG-RAN WG1 MEETING #76 RL-140561, 1 February 2014 (2014-02-01), XP050736087 *
See also references of EP3113552A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109788538A (zh) * 2017-11-14 2019-05-21 华为技术有限公司 通信方法和装置

Also Published As

Publication number Publication date
EP3113552B1 (en) 2018-05-23
CN105122901B (zh) 2019-08-20
EP3113552A4 (en) 2017-03-08
US10117189B2 (en) 2018-10-30
BR112016022035A2 (zh) 2017-08-15
US20170013566A1 (en) 2017-01-12
EP3113552A1 (en) 2017-01-04
BR112016022035B1 (pt) 2022-12-13
CN105122901A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
US11956730B2 (en) Power control for ACK/NACK formats with carrier aggregation
TWI630831B (zh) 用於在雙重連接無線通訊中使用載波聚合的技術
CN107211446B (zh) 用于在载波聚合系统中发送下行链路控制信道信息的方法和装置
EP3723443A1 (en) Medium access control signalling for direct device to device communications
WO2019062998A1 (zh) 功率控制方法及装置
WO2012157356A1 (ja) 無線通信システム、基地局装置、移動局装置、無線通信方法および集積回路
CN108632965B (zh) 一种上行发射功率控制的方法和设备
WO2017173920A1 (zh) 一种功率控制方法及设备
TW201637507A (zh) 執形多無線電存取技術載波聚合方法、裝置及系統
WO2019047828A1 (zh) 一种数据传输的方法、装置及系统
WO2014094175A1 (en) User-equipment-managed direct device to device communications
JP2017507587A (ja) 方法、装置、および、コンピュータ・プログラム
JP2018514151A (ja) 複数キャリアについてのpusch上のharqの実装
CN113287360A (zh) 用于nr用户设备的选择性跨时隙调度
WO2015158004A1 (zh) 一种功率配置方法、用户设备及基站
WO2021030980A1 (zh) 一种通信方法、通信装置和系统
WO2015139278A1 (zh) 发送信号的方法、用户设备和基站
WO2015085517A1 (zh) 功率使用状态信息的传输方法及装置
CN110999147A (zh) 相等大小码块的传输块大小确定
WO2019029287A1 (zh) Pucch传输方法、用户设备和装置
WO2017175476A1 (ja) 端末装置、基地局装置、通信方法、および、集積回路
WO2019024927A1 (zh) 一种上行控制信息传输方法和装置
US10117189B2 (en) Uplink power control method, user equipment, and base station
WO2015027469A1 (zh) 下行信道聚合级别的确定方法、设备和系统
WO2015168917A1 (zh) 一种通信方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014886731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014886731

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IDP00201607166

Country of ref document: ID

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016022035

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112016022035

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160923