WO2017012283A2 - 一种含钴硅的铜合金 - Google Patents

一种含钴硅的铜合金 Download PDF

Info

Publication number
WO2017012283A2
WO2017012283A2 PCT/CN2016/000301 CN2016000301W WO2017012283A2 WO 2017012283 A2 WO2017012283 A2 WO 2017012283A2 CN 2016000301 W CN2016000301 W CN 2016000301W WO 2017012283 A2 WO2017012283 A2 WO 2017012283A2
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
weight
copper
phase
heat treatment
Prior art date
Application number
PCT/CN2016/000301
Other languages
English (en)
French (fr)
Other versions
WO2017012283A3 (zh
Inventor
李建刚
马骏
赵红彬
孟祥鹏
徐睿达
Original Assignee
宁波博威合金材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波博威合金材料股份有限公司 filed Critical 宁波博威合金材料股份有限公司
Priority to US15/558,477 priority Critical patent/US20180066339A1/en
Priority to EP16826980.1A priority patent/EP3363922B1/en
Publication of WO2017012283A2 publication Critical patent/WO2017012283A2/zh
Publication of WO2017012283A3 publication Critical patent/WO2017012283A3/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • the invention relates to the technical field of an alloy, in particular to a copper alloy containing cobalt silicon.
  • Brass is a copper alloy with copper and zinc as the main body. It can be made into complex brass by adding other alloying elements to meet different needs. Brass alloy has good process performance, mechanical properties and corrosion resistance, and is one of the most widely used alloy materials in non-ferrous metals. Zinc is rich in reserves and raw material prices are much lower than copper, so the cost of brass raw materials is generally lower than that of bronze. Through the corresponding scheme to improve some of the properties of brass, it can meet the needs of more application fields, instead of using bronze to meet the material, from the resource stock, corporate profits, is a big trend.
  • This index is determined by the basic properties of the material.
  • the modulus is about 110 GPa, and the brass substitute material further reduces the elastic modulus due to the increase of the solid solution strengthening ratio.
  • the demand for miniaturization and weight reduction of the elastic material application field cannot be satisfied.
  • it is required to have a higher strength and a balance between strength and elongation. It is well known that strength and plasticity are contradictory.
  • the material is hardened by cold deformation to increase the strength, which leads to a decrease in elongation, which reduces the plastic working ability of the material and limits its use.
  • the current brass substitute tin phosphor bronze material national standard HSn70-1, American standard C44300, its composition is Cu: 70% -73%, Sn: 0.9% -1.2%, the balance is Zn, can be made by work hardening
  • the mechanical properties meet the requirements of the above-mentioned materials, but the 1000h anti-stress relaxation rate under the initial stress of 100% yield strength of 100 °C is less than 80%, which is difficult to meet the durability requirement.
  • a tin-phosphor bronze replacement material which reduces the cost by reducing the Sn content is disclosed in Chinese Patent Application Publication No. CN103088229A. Its main components are Sn: 0.01%-2.5%, P: 0.01-0.3%, Fe: 0.01-0.5, Ni: 0.01-0.5%, Mn: 0.01-0.1%, and the balance is Cu; its conductivity is only 10 %-16% IACS, the application area is limited. In addition, the cost reduction is not large, and the content of Sn is reduced while the Cu content is increased to over 97%, and the overall cost is reduced by only 5%-10%.
  • the technical problem to be solved by the present invention is to provide a cobalt-containing and silicon-containing silicon which can significantly reduce the alloy cost and has a lower stress relaxation rate, a higher creep resistance, a higher yield ratio, a higher modulus of elasticity and a better conductivity. Copper alloy.
  • the copper alloy containing cobalt silicon which is characterized by comprising the following weight composition:
  • the sum of the two elements of copper and zinc is more than 95% by weight, and the unavoidable impurity content is less than 0.2%.
  • the copper alloy contains a matrix phase of a copper-zinc alpha solid solution and a Co x Si y precipitate phase; the Co x Si y precipitated phase is dispersedly distributed on the matrix phase; the area percentage of the matrix phase is ⁇ 95% The area ratio of the Co x Si y precipitated phase is from 0.01% to 5%.
  • the content of the Co x Si y precipitated phase having a particle diameter of 10 to 200 nm is ⁇ 90%, and the particle diameter is ⁇ 10% or more of 200 nm or more.
  • the atomic ratio of copper to zinc may be 2.3-15.8, and the mass fraction of copper and zinc satisfies 0.65 ⁇ ([Cu] / 3 + 1) / ([Zn] + 5) ⁇ 3.5.
  • the yield strength/tensile strength of the above copper alloy is ⁇ 85%; the stress relaxation rate under the initial stress condition of 100 ° C, 1000 H, and 50% proof stress is ⁇ 15%.
  • the copper alloy may further contain at least one of 0.01 to 3.5 wt% of Sn element, 0.01% to 4.0 wt% of Al, and 0.01% to 3 wt% of Ni.
  • the copper alloy in each of the above aspects may further contain 0.01% to 0.35 wt% of P.
  • the copper alloy further contains a Co m P n precipitation phase, and the area ratio of the Co m P n precipitation phase is 0.01% to 5%.
  • the copper alloy may further include A in a total content of 0.0001% to 2%, the A being selected from 0.01 wt% to 1.5 wt% of Mn, 0.01 wt% to 1.5 wt% of Fe, and 0.001 wt%. - 0.3 wt% of Cr, 0.001 wt% - 0.2 wt% of Zr, 0.001 wt% - 0.5 wt% of Mg, 0.001 wt% - 0.8 wt% of Ti, 0.0005 wt% - 0.3 wt% of B, and 0.0001 wt% At least one of -0.1 wt% of Re.
  • the role and ratio of copper and zinc is dissolved in Cu to form a single-phase ⁇ solid solution, which acts as a solid solution strengthening and constitutes a matrix of the alloy structure.
  • Zn content is less than 38%, an ⁇ solid solution can be formed, but a certain relationship needs to be satisfied between copper and zinc.
  • the ratio of copper to zinc is ⁇ 2.3, the mass ratio of copper to zinc ([Cu]/3+1)/([Zn]+5
  • ⁇ 0.68 since the amount of zinc dissolved in the solid solution is too large, the conductivity and the elastic modulus of the substrate are low, and the high-temperature durability is drastically lowered, which cannot satisfy the current transmission, signal transmission, temperature increase per unit time, Requirements such as clamping force and durability.
  • the lattice distortion caused by solid solution is small, resulting in the solid solution of cobalt-silicon compound in the crystal.
  • the solid solution formed by the lattice has a poor stabilizing effect, and requires a relatively high temperature to rapidly cool to form a saturated solid solution of the cobalt silicon compound, and the oxidative dezincification of the brass at a high temperature is severe and cannot meet the production demand.
  • the cobalt silicon compound still has a high solid solubility at 600 ° C.
  • the on-line water-cooling solid solution can be directly formed to form a saturated solid solution, which satisfies the condition of further aging precipitation and expands.
  • CN104232987A requires rapid cooling with liquid nitrogen after hot rolling, which greatly reduces resource consumption and production cost.
  • the copper-zinc atomic ratio is 2.4-15 for Cu/Zn, and the mass ratio is 0.69 ⁇ ([Cu]/3+1)/([Zn]+5) ⁇ 2.76.
  • the mass fraction of Cu is preferably 81%-92 from the mass fraction. %.
  • the action and ratio of cobalt and silicon When Co is added alone, it is solid-solubilized in the matrix, and the strength of the material is enhanced by the action of solid solution strengthening.
  • the zinc equivalent coefficient of Si is 10, and adding one unit of Si is equivalent to adding 10 units of zinc, narrowing the ⁇ phase region, expanding the ⁇ phase region, and improving the material strength by solid solution strengthening and promoting the formation of a hard ⁇ phase.
  • the addition of both will reduce the electrical conductivity and elastic modulus of the material, and will not improve the elastic durability of the material.
  • Co and Si are simultaneously added to form a cobalt-silicon intermetallic compound.
  • the solution is precipitated and dispersed on the substrate by a solid solution aging process, and Co and Si which are solid-dissolved into the matrix phase to lower the conductivity are excluded from the matrix. Improve the conductivity of the material.
  • a fine precipitated phase dispersed in the matrix phase can inhibit the slippage of the lattice and the movement of dislocations when plastic deformation occurs below the recrystallization temperature, forming more dislocations and dislocations, ie forming a ke
  • the gas mass of the gas gives the material a higher strength and a ratio of flexural strength to tensile strength than when it is solid solution alone.
  • the fine precipitated phase dispersed on the substrate due to its hindrance to lattice distortion and pinning of dislocations, requires the material to undergo greater stress when elastic deformation occurs, that is, the elastic modulus of the material is increased.
  • the same principle improves the difficulty of plastic deformation in the elastic deformation range of the material and the relatively high temperature, that is, the resistance to stress relaxation of the material is improved.
  • the hot workability of the Co element exceeding 3 wt% of the material deteriorates, below 0.01 wt%, and a sufficient amount of precipitated phase cannot be formed to improve material properties. More than 0.5% of the Si element produces hot brittleness and severely reduces electrical conductivity, and less than 0.01% by weight does not form sufficient precipitated phase to improve material properties.
  • the microstructure of the copper alloy is characterized in that the ⁇ phase composed of copper-zinc solid solution is a matrix phase, and its area ratio is ⁇ 95%, and the Co x Si y intermetallic compound formed by cobalt and silicon is dispersed on the substrate, and the area thereof The proportion is 0.01%-5%. Since the particle size of the cobalt-silicon intermetallic compound is on the nanometer scale, it is necessary to take a picture of the microstructure by scanning electron microscopy or transmission electron microscopy, and then calculate the proportion of the area. The type of Co x Si y intermetallic compound is confirmed by EDS spectroscopy analysis by scanning electron microscopy or transmission electron microscopy.
  • the type is described by x/y value, x/y is between 0.2-3; when the x/y value is greater than 3 or When it is less than 0.2, its precipitation has a limited effect on the improvement of material properties, and a preferred compound has an x/y of between 0.5 and 2.
  • the proportion of precipitated phase area is less than 0.01%, the effect on the improvement of various properties of the material is insufficient, the proportion of precipitated phase area is more than 5%, the performance is deteriorated, and the precipitated phase has a tendency to aggregate and grow, and the effect of improving metal properties is weakened.
  • the precipitation ratio is 0.05%-4%, the ⁇ ratio is ⁇ 96%, the precipitation ratio is 0.1%-3.5%, and the ⁇ ratio is ⁇ 96.5%.
  • the proportion of the Co x Si y precipitated phase particle diameter between 10 and 200 nm is more than 90%, and the rest is that the particle diameter is 200 nm or more.
  • the greater the stress that causes the material to elastically deform the higher the modulus of elasticity and the better the high temperature durability.
  • the smaller the particle size of the precipitated phase the smaller the hindrance to electron transport, and the higher the conductivity of the material.
  • the precipitated phase particle diameter is greater than 92% between 10 nm and 200 nm, and more preferably the precipitated phase particle diameter is greater than 95% between 10 nm and 200 nm.
  • Elasticity is primarily related to the yield strength/tensile strength ratio and modulus of elasticity of the material.
  • the yield strength of the material must be lower than the tensile strength. When the applied stress exceeds the yield strength, the plastic deformation occurs. The higher the tensile strength, the greater the plastic deformation that the material can withstand before the fracture fails. The higher the yield strength, the greater the maximum tensile strength.
  • the copper alloy containing cobalt and silicon provided by the invention is dispersed on the copper-zinc matrix phase due to the dispersion of the precipitated phase of the fine Co x Si y intermetallic compound, first strengthening the matrix and improving the tensile strength and yield strength of the material. Secondly, in the plastic deformation process of the material, the lattice slip and the dislocation expansion can be hindered, and more dislocations and dislocation plugs are generated. These dislocations and dislocations accumulate, which makes the material obtain higher. The yield strength, that is, a higher yield strength/tensile strength ratio is obtained.
  • the copper alloy containing cobalt and silicon of the present invention has a yield strength/tensile strength ratio of >85%, preferably a yield strength/tensile strength ratio of >88%, more preferably a yield strength/tensile strength ratio of >92%.
  • Elastic durability is the ability of a material to maintain sufficient holding force when subjected to sustained applied stresses, especially at higher temperatures (>80 ° C).
  • Stress relaxation rates are used in materials science to describe its elastic durability. To describe this characteristic, three conditions need to be clarified, the initial applied stress value, the percentage of the commonly used yield strength, the test temperature, and the test. Try the duration.
  • the stress relaxation property of the material is essentially the integral of the creep deformation below the yield strength. Under the above three specific conditions, the yield reduction rate is the stress relaxation rate, and the lower the stress relaxation rate, the elastic durability of the material. The better.
  • the copper alloy containing cobalt and silicon provided by the invention is dispersed and dispersed on the substrate due to the precipitation phase of the fine Co x Si y intermetallic compound, and the grain boundary and the lattice are hindered and retarded while the material is continuously elastically deformed.
  • the creep deformation and the dislocation, the diffusion of the dislocation plug, and the dislocation of the dislocations disappear, which reduces the stress relaxation rate of the material and improves the elastic durability of the material.
  • the alloy was subjected to a durability test at 100 ° C, 1000 H, 50% proof stress initial stress, and the stress relaxation rate was ⁇ 15%, and the stress relaxation rate was preferably ⁇ 12% in the preferred embodiment, and more preferably the stress relaxation rate was ⁇ 10%.
  • the copper alloy may further contain a Sn element in a mass percentage of 0.01% to 3.5%.
  • Sn can further stabilize the solid solution state of the cobalt-silicon intermetallic compound, and suppress the rapid precipitation of the precipitated phase at a high temperature, thereby reducing the proportion of the precipitated phase of 200 nm or more.
  • Sn can also increase the strength and hardness of the material by solid solution strengthening.
  • Tin can also inhibit dezincification and improve the corrosion resistance of materials. Tin also improves the hot dip coating and plating properties of the material as well as the brazing properties. If Sn is less than 0.01%, the above effect is not achieved.
  • the Sn element content is from 0.05% by weight to 3.0% by weight, and more preferably the Sn element content is from 0.1% by weight to 2.5% by weight.
  • the action and ratio of aluminum and nickel may further contain at least one of Al and Ni elements, wherein the mass percentage of Al is 0.01% to 4.0%, and the mass percentage of Ni is 0.01% by weight to 3% by weight.
  • Ni and Al can improve the heat resistance and hot workability of the material, and at the same time act as a solid solution strengthening agent to improve the corrosion resistance of the material.
  • Ni and Al can inhibit the growth of the cobalt-silicon intermetallic compound during the aging process, and increase the ratio of the cobalt-silicon intermetallic compound having a particle diameter of 10 nm to 150 nm.
  • Ni can form a nickel-silicon precipitate phase with Si, further strengthen the matrix, improve electrical conductivity, increase elastic modulus, and improve elastic durability and clamping force of the material.
  • Ni and Al content less than 0.01% can not play the above role, Ni is more than 3%, and Al is more than 4%, which seriously reduces the electrical conductivity and lowers the elastic modulus.
  • the mass percentage of Ni is 0.01% to 2.5%
  • the mass percentage of Al is 0.05 to 3.5%
  • more preferably the mass percentage of Ni is 0.02% to 2.0%
  • the mass percentage of Al is 0.1% to 3.0%.
  • the copper alloy may further contain a P element in a mass percentage of 0.01% to 0.35%.
  • P may also form an intermetallic compound Co m P n which can be precipitated with Co.
  • the microstructure is characterized by: copper-zinc ⁇ phase constitutes matrix, Co x Si y precipitated phase and Co m P n precipitated phase coexist, dispersed in the matrix phase, wherein the area percentage of ⁇ phase is ⁇ 90%, Co x Si The area ratio of the y precipitated phase is 0.01% to 5%, and the area ratio of the precipitated phase of the Co m P n is 0.01% to 5%.
  • the cobalt-phosphorus intermetallic compound is distributed on the matrix, which can effectively slow down the growth rate of the cobalt-silicon intermetallic compound during aging, make the particles finer, improve the uniformity of dispersion of the cobalt-silicon intermetallic compound on the substrate, and enhance the improvement material.
  • a material with a P content higher than 0.35% will cause hot brittleness, which will aggravate the oxidation of the matrix and seriously reduce the conductivity of the material. Below 0.01 wt%, sufficient precipitation phase cannot be formed to improve the material properties.
  • the P content is from 0.01% to 0.30%, more preferably the P content is from 0.01% to 0.25%.
  • the copper alloy may further contain at least one of the elements A selected from the group consisting of: Mn: 0.01 wt% to 1.5 wt%, Fe: 0.01 wt% to 1.5 wt%; Cr: 0.001 wt% to 0.3 wt%, Zr: 0.001% by weight to 0.2% by weight, Mg: 0.001% by weight to 0.5% by weight, Ti: 0.001% by weight to 0.8% by weight, B: 0.0005% by weight to 0.3% by weight, and RE: 0.0005% by weight to 0.1% by weight.
  • elements A selected from the group consisting of: Mn: 0.01 wt% to 1.5 wt%, Fe: 0.01 wt% to 1.5 wt%; Cr: 0.001 wt% to 0.3 wt%, Zr: 0.001% by weight to 0.2% by weight, Mg: 0.001% by weight to 0.5% by weight, Ti: 0.001% by weight to 0.8% by weight, B: 0.0005% by weight to 0.3% by weight, and RE:
  • Mn and Fe can effectively improve the distribution of Co x Si y precipitates, make the distribution more uniform, and have better dispersion, thus enhancing the role of precipitated phase.
  • Mn can also deoxidize during the smelting process, improve the purity of the metal, and improve the hot workability of the material.
  • Both Mn and Fe have solid solution strengthening effect, which can improve the basic mechanical properties of the material and reduce the elastic modulus of the material.
  • Mn and Fe content less than 0.01% can not play the above role, Mn is more than 1.5%, Fe is more than 1.5%, which will seriously reduce the electrical conductivity, reduce the elastic modulus, and can not meet the use requirements of such materials, and the Fe content is greater than 1.5%.
  • the Mn content is from 0.05% to 1.3%
  • the Fe content is from 0.02% to 1.2%, more preferably the Mn content is from 0.08% to 1.0%, and the Fe content is from 0.05% to 1.0%.
  • the ratio and effect of chromium, zirconium and titanium The copper alloy in the above scheme forms a small amount of cobalt-silicon compound precipitated in the hot working and solid solution processes, and such a strip-like compound phase deteriorates the properties of the metal.
  • the addition of Cr, Zr, and Ti inhibits the formation of such a morphological compound.
  • both Cr and Zr can increase the softening temperature and high temperature strength of the material, improve the high temperature stability of the material, and reduce the stress relaxation rate.
  • Cr and Zr are added at the same time, a Cr 2 Zr compound can be formed, and the improvement effect is stronger than when the two are separately added, and at the same time, the adhesion resistance and the welding property of the material can be improved.
  • Ti also improves the corrosion resistance of materials.
  • the Cr content is less than 0.001%, the Zr content is less than 0.001%, and the Ti content is less than 0.001% by weight, which does not play a corresponding role.
  • the Ti content exceeds 0.8%, the electrical conductivity of the material is greatly reduced, and Ti is higher than 0.8%, Cr
  • the content is higher than 0.3% and the Zr content is higher than 0.2%, the production cost of the material and the raw material cost are greatly increased.
  • Cr 0.005 wt% to 0.25 wt%
  • Zr 0.005 wt% to 0.15 wt%
  • Ti 0.005 wt% to 0.6 wt%.
  • Cr 0.008% by weight to 0.20% by weight
  • Zr 0.008% by weight to 0.10% by weight
  • Ti 0.008% by weight to 0.5% by weight.
  • B, Mg and Re can inhibit the grain boundary reaction, reduce the amount of Co x Si y precipitated phase distributed on the grain boundary, reduce the hardness of the copper alloy after solution treatment, and improve After the cold processing performance.
  • B can also improve the resistance of brass to dezincification and improve corrosion resistance.
  • B, Mg can also improve the stress relaxation resistance of the material and improve the hot and cold processing properties of the material.
  • Re can also remove impurities during smelting, remove oxygen, improve the purity of metal, high melting point of rare earth, can be used as the core of crystallization during smelting, reduce the columnar crystal content in the ingot, increase the content of equiaxed crystal, improve the material Hot workability.
  • B 0.001 wt% - 0.2 wt%, Mg: 0.005 wt% - 0.3 wt%, RE: 0.0008 wt% - 0.08 wt%; more preferably B: 0.002 wt% - 0.15 wt%, Mg: 0.01 wt% - 0.2 Wt%, RE: 0.001 wt% - 0.05 wt%.
  • the processing of the above copper alloy can be processed into strips, bars and wires according to different application requirements.
  • the preparation method for processing into a plate and a strip comprises the following steps in sequence:
  • Method 1 batching ⁇ melting ⁇ vertical semi-continuous casting ingot ⁇ heating rolling ⁇ solution treatment ⁇ milling surface ⁇ primary cold rolling ⁇ first-order aging heat treatment ⁇ cleaning ⁇ secondary cold rolling ⁇ secondary aging heat treatment ⁇ cleaning ⁇ pre-formation Cold rolling ⁇ finished product stress relief Aging heat treatment ⁇ cleaning ⁇ slitting ⁇ packaging:
  • the smelting temperature is 1080 ° C - 1280 ° C
  • the vertical semi-continuous casting temperature is 1060 ° C - 1260 ° C
  • starting the heating rolling and rolling temperature is 700 ° C - 900 ° C
  • the finishing rolling temperature is not lower than 600 ° C
  • hot rolling The processing rate is 60%-95%.
  • the solution treatment is performed after the hot rolling is completed, and the cooling medium is air or water, and the cooling rate is 10 ° C / min - 150 ° C / S.
  • Method 2 batching ⁇ melting ⁇ horizontal continuous casting ⁇ solution treatment ⁇ milling surface ⁇ primary cold rolling ⁇ first-order aging heat treatment ⁇ cleaning ⁇ secondary cold rolling ⁇ secondary aging heat treatment ⁇ cleaning ⁇ pre-cold rolling ⁇ finished product Stress aging heat treatment ⁇ cleaning ⁇ striping ⁇ packaging;
  • the horizontal continuous casting smelting temperature is 1080 ° C - 1280 ° C, and the horizontal continuous casting temperature is 1050 ° C - 1250 ° C.
  • the solution treatment is on-line cooling after casting, the cooling medium is air or water, and the cooling rate is 10 ° C. /min-150°C/S.
  • the first, second and pre-cold cold rolling processing rates in the strip production method in the method 1 and the method 2 are 5% to 95%, the first-order aging heat treatment temperature is 350 ° C to 650 ° C, and the holding time is 10 min to 10 h.
  • the heating rate is 2-50 ° C / min
  • the cooling rate is 5-50 ° C / min
  • the secondary aging heat treatment temperature is 300 ° C -600 ° C
  • the holding time is 10 min -10 h
  • the heating speed is 2-50 ° C /min
  • cooling rate is 5-50 ° C / min
  • the finished product de-stressing aging heat treatment temperature is 100 ° C -300 ° C
  • holding time is 10 min -10 h
  • heating rate is 2-50 ° C / min
  • cooling rate is 5 -50 ° C / min.
  • the number of combinations of the cold rolling and aging heat treatment may be increased or decreased according to product specifications and performance, but at least two times are guaranteed.
  • the aging heat treatment described in the above strip production method may be in an in-line manner, the temperature is from 200 ° C to 750 ° C, and the speed is from 20 m / min to 250 m / min.
  • Method 3 batching ⁇ melting ⁇ vertical semi-continuous casting or horizontal continuous casting ⁇ heating extrusion ⁇ solution treatment ⁇ primary drawing ⁇ first-order aging heat treatment ⁇ secondary drawing ⁇ secondary aging heat treatment ⁇ pre-stretching ⁇ finished product Stress aging heat treatment ⁇ straightening ⁇ fixed length ⁇ packaging;
  • the melting temperature is 1080 ° C - 1280 ° C
  • the vertical semi-continuous casting temperature is 1060 ° C - 1260 ° C
  • the horizontal continuous casting temperature is 1050 ° C - 1250 ° C
  • the extrusion temperature is 650 ° C - 900 ° C
  • the solid The solution treatment is on-line cooling after the extrusion is completed, and the cooling medium is air or water, and the cooling rate is 10 ° C / min - 150 ° C / S.
  • the one-time drawing, the second drawing, and the pre-drawing processing rate are 3%-80%.
  • the first-stage aging heat treatment temperature is 350 ° C - 650 ° C
  • the holding time is 10 min - 10 h
  • the heating speed is 2 - 50 ° C / min
  • the cooling rate is 5 - 50 ° C / min.
  • the secondary aging heat treatment temperature is 300 ° C - 600 ° C
  • the holding time is 10 min - 10 h
  • the heating speed is 2-50 ° C / min
  • the cooling rate is 5-50 ° C / min.
  • the finished product has a stress-relieving aging heat treatment temperature of 100 ° C - 300 ° C, a holding time of 10 min - 10 h, a heating rate of 2 - 50 ° C / min, and a cooling rate of 5 - 50 ° C / min.
  • the number of combinations of the cold drawing and the aging heat treatment may be increased or decreased depending on the product specifications and performance, but at least two times are guaranteed.
  • Method 4: batching ⁇ melting ⁇ vertical semi-continuous casting/horizontal continuous casting ⁇ heating extrusion ⁇ solution treatment ⁇ one down-draw ⁇ first-order aging heat treatment ⁇ secondary pull-up ⁇ secondary aging heat treatment ⁇ continuous drawing aging heat treatment ⁇ package.
  • the melting temperature is 1080 ° C - 1280 ° C
  • the vertical semi-continuous casting temperature is 1060 ° C - 1260 ° C
  • the horizontal continuous casting temperature is 1050 ° C - 1250 ° C
  • the extrusion temperature is 650 ° C - 900 ° C
  • the solid Dissolving treatment Cooling the cooling medium is air or water
  • the cooling rate is 10 ° C / min - 150 ° C / S.
  • Method 5 batching ⁇ melting ⁇ horizontal continuous casting/upward continuous casting ⁇ solution treatment ⁇ one down-draw ⁇ first-order aging heat treatment ⁇ secondary pull-up ⁇ secondary aging heat treatment ⁇ continuous drawing aging heat treatment ⁇ packaging.
  • the melting temperature is 1080 ° C - 1280 ° C
  • the horizontal continuous casting temperature is 1050 ° C - 1250 ° C
  • the upper continuous casting temperature is 1060 ° C - 1260 ° C
  • the solution treatment is cooling after cooling
  • cooling The medium is air or water and the cooling rate is 10 ° C / min - 150 ° C / S.
  • the one-time pull-down and the second-side pull-down processing rate are 5%-60%, and the surface defect can be removed by adding a 1%-3% one-step peeling process.
  • the first-stage aging heat treatment temperature is 350 ° C - 650 ° C
  • the holding time is 10 min - 10 h
  • the heating speed is 2 - 50 ° C / min
  • the cooling rate is 5 - 50 ° C / min
  • the secondary aging heat treatment temperature is 300°C-600°C
  • holding time is 10min-10h
  • heating rate is 2-50°C/min
  • cooling rate is 5-50°C/min
  • the continuous drawing aging heat treatment is sequentially adopted according to different aisle blank specifications.
  • the two-stage aging heat treatment process plays a key role in the material performance.
  • the primary aging temperature is from 350 ° C to 650 ° C and the secondary aging temperature is from 300 ° C to 600 ° C.
  • the precipitation ratio and particle size of the precipitated phase are controlled by a primary aging heat treatment.
  • the distribution pattern of the precipitated phase is controlled by the secondary aging heat treatment. The more precipitated phase precipitates, the smaller the particle size, the more uniform the distribution, and the better the properties of the material.
  • the aging heat treatment beyond the above temperature range does not achieve the desired effect.
  • the copper alloy provided by the present invention has higher yield strength/tensile strength value and higher modulus of elasticity, thereby having better elasticity and higher rebound clamping force; and stress relaxation.
  • the rate is low, the stress relaxation resistance is good, the elasticity durability is good, the conductivity is higher, the conductivity is good during use, the clamping force is large, the heat is less, the material formability is good, and the service life is long.
  • Figure 1 is a TEM image of the finished product of Example 74, with a multiple of 29000 times; the phase in the white wireframe in the figure is the Co x Si y precipitated phase.
  • Figure 2 is a TEM image of the finished product of Example 82, with a multiple of 43,000 times; the phase in the white wireframe is the Co x Si y precipitated phase.
  • FIG. 3 is a TEM photograph of the finished product, a multiple of 71,000 times; The white line box Co x Si y phase precipitates.
  • Example 4 is a TEM image of the finished product of Example 81, with a multiple of 43,000 times; the phase in the white wire frame is a Co x Si y precipitated phase.
  • Figure 5 is a scanning electron micrograph of the finished product of Example 52, with a multiple of 10,000 times; in the figure, a small area of white which is relatively lightly whitened is a Co x Si y precipitated phase.
  • the present scheme includes Comparative Examples 1, 2 and Examples 3 to 12
  • the raw materials include electrolytic copper, 0# zinc, metallic cobalt, copper-silicon intermediate alloy.
  • the billet after the extrusion was sampled and the composition of the furnace was tested.
  • the test instrument was an inductively coupled plasma spectrometer (ICP).
  • the ingredients of each group were respectively cast ingots in a 10Kg medium frequency furnace, turned into ⁇ 50 extruded ingots, extruded into ⁇ 15 blanks, and the extruded blanks were water-cooled on-line.
  • the extruded billet is processed in the following order: 60% processing rate cold drawing ⁇ 550°C aging heat treatment 5h ⁇ 30% processing rate cold drawing ⁇ 450°C aging heat treatment 4h ⁇ 20% processing rate cold drawing ⁇ 280°C finished heat treatment 3h ⁇ Cleaning.
  • the finished product is processed into ⁇ 7 standard tensile sample, and the sample is subjected to tensile test on a 10 ton hydraulic drawing machine to test its tensile strength, yield strength, elongation and modulus of elasticity.
  • the finished product was cut into an 80 cm long and the conductivity was measured by a bridge tester. The data are shown in Table 1 and continued Table 1.
  • Table 1 and Table 1 are mainly for explaining the mass relationship of Cu and Zn in the matrix and the influence of the atomic ratio on the respective properties of the material.
  • Comparative Case 1 and Comparative Case 2 the relationship between copper and zinc atomic ratio and mass is beyond the scope of the claims.
  • Example 1 the excessive conductivity of Zn is dissolved into the matrix, resulting in low conductivity and elastic modulus of the matrix, and improved mechanical properties. Limited, unable to meet the requirements of use.
  • the lattice distortion caused is small, and the stable effect of the solid solution of the cobalt-silicon compound dissolved in the crystal lattice is not good, and it is difficult to form a super-saturated solid solution under the conditions of on-line solid solution. Therefore, the conditions for the dispersion of the cobalt-silicon phase cannot be satisfied, resulting in a low conductivity of the material, a limited increase in the elastic modulus and mechanical properties, and the use cannot be satisfied.
  • the mass relationship and atomic ratio of Cu and Zn are within the scope of the claims. By comparison, the properties of the materials are obviously improved, and the electrical conductivity and mechanical properties are effectively increased, which is significantly higher than the comparative case.
  • Example 13 and Example 14 are comparative cases, not in the scope of the patented ingredients, to indicate that the alloying elements or their proportions exceed the required range.
  • Hazards and consequences explain the influence of the content and ratio of Co and Si on the properties of copper alloy, and formulate according to the design components.
  • the raw materials include electrolytic copper, 0# zinc, metallic cobalt, copper-silicon intermediate alloy.
  • the billet after the extrusion was sampled and the composition of the furnace was tested.
  • the test instrument was an inductively coupled plasma spectrometer (ICP).
  • the ingredients of each group were respectively cast ingots in a 10Kg medium frequency furnace, turned into ⁇ 50 extruded ingots, extruded into ⁇ 15 blanks, and the extruded blanks were water-cooled on-line.
  • the extruded billet is processed in the following order: 60% processing rate cold drawing ⁇ 550°C aging heat treatment 5h ⁇ 30% processing rate cold drawing ⁇ 450°C aging heat treatment 4h ⁇ 20% processing rate cold drawing ⁇ 280°C finished heat treatment 3h ⁇ Cleaning.
  • Finished product processed into ⁇ 7 standard resistance The sample was pulled and tested on a 10 ton hydraulic drawing machine to test its tensile strength, yield strength, elongation, and modulus of elasticity. The finished product was cut into an 80 cm long and the conductivity was measured by a bridge tester. The data are shown in Table 2.
  • Table 2 above is mainly used to explain the influence of the change of different alloying elements of Co and Si on the basic properties of the materials. It can be seen from the data described in Examples 15-22 and Comparative Case 13 and Comparative Case 14.
  • the Co content of the invention needs to be between 0.01% and 3%, and the silicon element needs to be between 0.01% and 0.5%. If any of the elements are out of the range, the overall performance of the material cannot meet the demand.
  • the raw materials include electrolytic copper, 0# zinc, metallic cobalt, copper-silicon intermediate alloy.
  • the billet after the extrusion was sampled and the composition of the furnace was tested.
  • the test instrument was an inductively coupled plasma spectrometer (ICP).
  • the ingredients of each group were respectively cast ingots in a 10Kg medium frequency furnace, turned into ⁇ 50 extruded ingots, extruded into ⁇ 15 blanks, and the extruded blanks were water-cooled on-line.
  • the extruded billet is processed in the following order: 60% processing rate cold drawing ⁇ 550°C aging heat treatment 5h ⁇ 30% processing rate cold drawing ⁇ 450°C aging heat treatment 4h ⁇ 20% processing rate cold drawing ⁇ 280°C finished heat treatment 3h ⁇ Cleaning.
  • the finished product is processed into ⁇ 7 standard tensile sample, and the sample is subjected to tensile test on a 10 ton hydraulic drawing machine to test its tensile strength, yield strength, elongation and modulus of elasticity.
  • the finished product was cut into an 80 cm long and the conductivity was measured by a bridge tester. The data are shown in Table 3 and continued Table 3.
  • the copper alloy containing cobalt silicon according to the present invention has a precipitated phase area of 0.01%-5%, and a precipitated phase area ratio of less than 0.01%, which has insufficient effect on various properties of the material, and the precipitated phase area occupies
  • the ratio is more than 5%, the properties are deteriorated, and the precipitated phase tends to grow and grow, and the effect of improving the metal properties is weakened.
  • the raw materials include electrolytic copper, 0# zinc, metallic cobalt, copper-silicon intermediate alloy.
  • the billet after the extrusion was sampled and the composition of the furnace was tested.
  • the test instrument was an inductively coupled plasma spectrometer (ICP).
  • the ingredients of each group were respectively cast ingots in a 10Kg medium frequency furnace, turned into ⁇ 50 extruded ingots, extruded into ⁇ 15 blanks, and the extruded blanks were water-cooled on-line.
  • the extruded billet is processed in the following order: 60% processing rate cold drawing ⁇ first aging heat treatment ⁇ 30% processing rate cold drawing ⁇ second aging heat treatment ⁇ 20% processing rate cold drawing ⁇ 280 ° C finished product heat treatment 3 h ⁇ cleaning .
  • the finished product is processed into ⁇ 7 standard tensile sample, and the sample is subjected to tensile test on a 10 ton hydraulic drawing machine to test its tensile strength, yield strength, elongation and modulus of elasticity.
  • the finished product was cut into an 80 cm long and the conductivity was measured by a bridge tester.
  • the particle size of the Co x Si y precipitated phase is changed by adjusting the two-stage aging heat treatment process.
  • the data are shown in Table
  • the proportion of the Co x Si y precipitates in this size range needs to be greater than 90%, preferably greater than 92%, more preferably greater than 95%.
  • the raw materials include electrolytic copper, 0# zinc, metallic cobalt, copper-silicon intermediate alloy, and metallic tin.
  • the billet after the extrusion was sampled and the composition of the furnace was tested.
  • the test instrument was an inductively coupled plasma spectrometer (ICP).
  • the ingredients of each group were respectively cast ingots in a 10Kg medium frequency furnace, turned into ⁇ 50 extruded ingots, extruded into ⁇ 15 blanks, and the extruded blanks were water-cooled on-line.
  • the extruded billet is processed in the following order: 60% processing rate cold drawing ⁇ 550°C aging heat treatment 5h ⁇ 30% processing rate cold drawing ⁇ 450°C aging heat treatment 4h ⁇ 20% processing rate cold drawing ⁇ 280°C finished heat treatment 3h ⁇ Cleaning.
  • the finished product is processed into ⁇ 7 standard tensile sample, and the sample is subjected to tensile test on a 10 ton hydraulic drawing machine to test its tensile strength, yield strength, elongation and modulus of elasticity.
  • the finished product was cut into an 80 cm long and the conductivity was measured by a bridge tester. The data are shown in Table 5.
  • Example 49 and Example 50 are comparative examples, illustrating the hazards and results of Ni and Al contents exceeding the scope of the claims.
  • the raw materials include electrolytic copper, 0# zinc, metallic cobalt, copper-silicon intermediate alloy, metallic nickel, metallic aluminum.
  • the billet after the extrusion was sampled and the composition of the furnace was tested.
  • the test instrument was an inductively coupled plasma spectrometer (ICP).
  • the ingredients of each group were respectively cast ingots in a 10Kg medium frequency furnace, turned into ⁇ 50 extruded ingots, extruded into ⁇ 15 blanks, and the extruded blanks were water-cooled on-line.
  • the extruded billet is processed in the following order: 60% processing rate cold drawing ⁇ 550°C aging heat treatment 5h ⁇ 30% processing rate cold drawing ⁇ 450°C aging heat treatment 4h ⁇ 20% processing rate cold drawing ⁇ 280°C finished heat treatment 3h ⁇ Cleaning.
  • the finished product was cut into an 80 cm long and the conductivity was measured by a bridge tester. The data are shown in Table 6.
  • This scheme is used to illustrate the effect of Mn, Fe and P on the dispersion of Co x Si y precipitates in copper alloys.
  • the dispersion is evaluated by the variance of the phase distribution.
  • the method is to divide the corresponding SEM image into 3 ⁇ .
  • the square of 3 counts the number of phases of Co x Si y in each square, and then calculates its expectation and variance.
  • This protocol includes Examples 51-61. Among them, Example 59, Example 60 and Example 61 are comparative examples, illustrating the hazards and results of the Mn, Fe, and P contents exceeding the scope of the claims.
  • the raw materials include electrolytic copper, 0# zinc, metallic cobalt, copper-silicon intermediate alloy, copper-phosphorus intermediate alloy, manganese metal, and metal aluminum.
  • the test instrument was an inductively coupled plasma spectrometer (ICP).
  • the ingredients of each group were respectively cast ingots in a 10Kg medium frequency furnace, turned into ⁇ 50 extruded ingots, extruded into ⁇ 15 blanks, and the extruded blanks were water-cooled on-line.
  • the extruded billet is processed in the following order: 60% processing rate cold drawing ⁇ 550°C aging heat treatment 5h ⁇ 30% processing rate cold drawing ⁇ 450°C aging heat treatment 4h ⁇ 20% processing rate cold drawing ⁇ 280°C finished heat treatment 3h ⁇ Cleaning.
  • the finished product is processed into ⁇ 7 standard tensile sample, and the sample is subjected to tensile test on a 10 ton hydraulic drawing machine to test its tensile strength and yield strength. Elongation, modulus of elasticity.
  • the finished product was cut into an 80 cm long and the conductivity was measured by a bridge tester. The data are shown in Table 7 and continued Table 7.
  • Table 7 and Table 7 above describe the uniformity of the distribution of cobalt-silicon phase by variance.
  • the variance value becomes smaller and the material properties are getting better and better.
  • the elements exceed the scope of the claims, The conductivity is severely weakened and cannot be used.
  • This scheme is used to illustrate the effect of the addition of Cr, Zr and Ti on the formation of strip-shaped cobalt-silicon compounds by observing the number of strip-like compounds in the corresponding SEM images.
  • This protocol includes Examples 62-68.
  • the raw materials include electrolytic copper, 0# zinc, metallic cobalt, copper-chromium intermediate alloy, copper-zirconium intermediate alloy, copper-titanium intermediate alloy.
  • the billet after the extrusion was sampled and tested for the composition of the furnace.
  • the test instrument was an inductively coupled plasma spectrometer (ICP).
  • the ingredients of each group were respectively cast ingots in a 10Kg medium frequency furnace, turned into ⁇ 50 extruded ingots, extruded into ⁇ 15 blanks, and the extruded blanks were water-cooled on-line.
  • the extruded billet is processed in the following order: 60% processing rate cold drawing ⁇ 550°C aging heat treatment 5h ⁇ 30% processing rate cold drawing ⁇ 450°C aging heat treatment 4h ⁇ 20% processing rate cold drawing ⁇ 280°C finished heat treatment 3h ⁇ Cleaning.
  • the finished product is processed into ⁇ 7 standard tensile sample, and the sample is subjected to tensile test on a 10 ton hydraulic drawing machine to test its tensile strength, yield strength, elongation and modulus of elasticity.
  • the finished product was cut into an 80 cm long and the conductivity was measured by a bridge tester. The data are shown in Table 8 and continued Table 8.
  • This scheme is used to illustrate the inhibition of precipitation of Co x Si y precipitates on the grain boundaries by B, Mg, and Re by observing the number of Co x Si y precipitates distributed on the grain boundaries in the corresponding SEM images.
  • the present scheme includes Examples 69-75, and is compounded according to design components.
  • the raw materials include electrolytic copper, 0# zinc, metallic cobalt, copper-boron intermediate alloy, copper-magnesium intermediate alloy, and mixed rare earth.
  • the billet after the extrusion was sampled and the composition of the furnace was tested.
  • the test instrument was an inductively coupled plasma spectrometer (ICP).
  • the ingredients of each group were respectively cast ingots in a 10Kg medium frequency furnace, turned into ⁇ 50 extruded ingots, extruded into ⁇ 15 blanks, and the extruded blanks were water-cooled on-line.
  • the extruded billet is processed in the following order: 60% processing rate cold drawing ⁇ 550°C aging heat treatment 5h ⁇ 30% processing rate cold drawing ⁇ 450°C aging heat treatment 4h ⁇ 20% processing rate cold drawing ⁇ 280°C finished heat treatment 3h ⁇ Cleaning.
  • the finished product is processed into ⁇ 7 standard tensile sample, and the sample is subjected to tensile test on a 10 ton hydraulic drawing machine to test its tensile strength, yield strength, elongation and modulus of elasticity.
  • the finished product was cut into an 80 cm long and the conductivity was measured by a bridge tester. The data are shown in Table 9.
  • Table 10 and Table 10 above are the finished products of the copper alloy according to the present invention, and the properties are tested. It can be seen from the comparison with the comparative case that the copper alloy of the present invention has a significant and effective improvement in properties due to the generation of the Co x Si y precipitated phase.
  • This scheme is used to compare the elastic durability of a copper alloy containing cobalt and silicon, and to compare the stress relaxation rate of the material.
  • Example 74 and Example 75, and Example 79 to Example 85 in which the Co x Si y precipitated phase the stress relaxation ratio was significantly improved as compared with Examples 77 and 78, and the improvement was greatly improved. It has the characteristics of poor durability of brass elasticity.
  • the embodiment having the Co x Si y precipitated phase has a stress relaxation rate at or below the existing material. This indicates that P, B, Mg, Cr, and Zr further improve the elastic durability of the material based on the improvement of the relative elastic durability of Co x Si y precipitation.

Abstract

本发明公开了一种含钴硅的铜合金,包括下述重量组成:铜 69wt%-92wt%;锌 6.5wt%-30.5wt%;钴 0.01wt%-3wt%;硅 0.01wt%-0.5wt%。其中铜、锌两种元素之和大于95wt%,不可避免的杂质含量小于0.2%。较好的,该铜合金含有铜锌α固溶体的基体相和CoxSiy析出相;所述CoxSiy析出相弥散分布在所述基体相上;所述基体相的面积百分比≥95%,所述CoxSiy析出相的面积比为0.01%-5%。

Description

一种含钴硅的铜合金 技术领域
本发明涉及一种合金的技术领域,具体指一种含钴硅的铜合金。
背景技术
黄铜由于其良好的导电性、耐腐蚀性、良好的冷热加工性能,广泛应用在各行各业,是当前时代必不可缺的金属材料,而铜资源是有限的,随着不断开采,资源存量不断减少。以锡磷青铜为代表的高强度、高弹性、耐疲劳、耐腐蚀铜合金广泛应用于医疗、航空、通信、汽车、电子电气等行业的连接器、端子、继电器、弹簧、开关元器件上。但其属于青铜系列合金,铜含量高,锡磷青铜中含有较高含量的、更昂贵的金属Sn,原材料价格导致该产品价格居高不下。随着市场竞争日益激烈,企业进入薄利化时代,迫切需求降低各方面成本来提高盈利水平,对于上述行业的企业,亟待一种满足使用要求的低成本弹性材料来降低成本。
黄铜是以铜、锌为主体铜合金,可以通过添加其他的合金元素构成复杂黄铜,满足不同需求。黄铜合金其具有良好的工艺性能、机械性能和耐蚀性能,是有色金属中应用最广泛的合金材料之一。锌的储量丰富,原材料价格远低于铜,因此黄铜原材料成本普遍低于青铜。通过相应的方案改善黄铜的一些性能,使其可以满足更多应用领域的需求,替代使用青铜才能满足材料,从资源存量、企业利润上,都是一个大的趋势。
当前市场上已经出现了几款复杂弹性黄铜材料用于替代锡磷青铜,但在实际应用过程中存在不少问题。虽然在抗拉强度、屈服强度等指标上达到了替代弹性材料的使用要求,但材料基本属性导致高温耐久性能、抗蠕变性能差于磷青铜,使用寿命及可靠性差于磷青铜,使用环境受到限制。此外,随着近些年上述行业所用器件的轻量化、小型化,对磷青铜替代材料,甚至磷青铜本身,提出了更高的要求和挑战。例如,对于弹性元件而言,要想小型化并保持满足使用要求的夹持力或回弹力,唯一的方式就是提高材料的弹性模量,这个指标是由材料的基本属性决定的,磷青铜弹性模量在110GPa左右,而黄铜类替代材料由于固溶强化比例的增加,使弹性模量进一步降低,在105GPa左右,无法满足弹性材料应用领域小型化、轻量化的需求。其次,为了谋求小型化、薄壁化,要求构成这种元器件材料具有更高的强度以及强度与延伸率的平衡。众所周知,强度与塑性是一对矛盾,材料通过冷变形加工硬化来提高强度会导致延伸率下降,使材料的塑性加工能力降低,使用受到限制。另外,在一些大电流并要求最高使用温度的应用领域,如电源连接器要求有更高的导电率,当前磷青铜导电率在16%IACS左右,客观上需要更高导电率的替代材料出现,而当前的替代材料如锡黄铜,出于成本和力学性能的考虑, 使更多的合金元素固溶在基体相里,这使材料导电率的提升受到重大限制,只能达到20%IACS左右。
如当前一款黄铜替代锡磷青铜材料,国标HSn70-1,美标C44300,其成分为Cu:70%-73%,Sn:0.9%-1.2%,余量为Zn,通过加工硬化可以使力学性能达到上述行业材料的使用要求,但其在100℃50%屈服强度初始应力下1000h抗应力松弛率仅为不到80%,难以满足持久性需求。
又如公开号为CN103088229A的中国专利申请所公布的一款通过降低Sn含量来降低成本的锡磷青铜替代材料。其主要成分为Sn:0.01%-2.5%,P:0.01-0.3%,Fe:0.01-0.5,Ni:0.01-0.5%,Mn:0.01-0.1%,余量为Cu;其导电率仅为10%-16%IACS,应用领域受到限制。此外,成本降幅不大,降低Sn含量的同时Cu含量提高到97%以上,综合成本降幅仅为5%-10%。
发明内容
本发明所要解决的技术问题是提供一种能显著降低合金成本且具有更低应力松弛率、更耐蠕变、更高屈强比、更高弹性模量和更好导电率的含钴、硅的铜合金。
本发明解决上述技术问题所采用的技术方案为:该含钴硅的铜合金,其特征在于包括下述重量组成:
Figure PCTCN2016000301-appb-000001
其中铜、锌两种元素之和大于95wt%,不可避免的杂质含量小于0.2%。
较好的,该铜合金含有铜锌α固溶体的基体相和CoxSiy析出相;所述CoxSiy析出相弥散分布在所述基体相上;所述基体相的面积百分比≥95%,所述CoxSiy析出相的面积比为0.01%-5%。
优选地,所述CoxSiy析出相中粒径在10-200nm之间的数量占比≥90%,粒径在200nm以上的≤10%。
所述铜和锌的原子比Cu/Zn可以为2.3-15.8,所述铜与锌的质量分数满足0.65≤([Cu]/3+1)/([Zn]+5)≤3.5。
上述铜合金的屈服强度/抗拉强度≥85%;100℃、1000H、50%屈服强度初始应力条件下的应力松弛率≤15%。
进一步地,该铜合金还可以含有0.01-3.5wt%的Sn元素、0.01%-4.0wt%的Al和0.01%-3wt%的Ni中的至少一种。
更进一步地,上述各方案中的铜合金还可以含有0.01%-0.35wt%的P。
该铜合金还含有ComPn析出相,所述ComPn析出相的面积比为0.01%-5%。
上述各方案中,该铜合金还可以包括总含量为0.0001%-2%的A,所述A选自0.01wt%-1.5wt%的Mn、0.01wt%-1.5wt%的Fe、0.001wt%-0.3wt%的Cr、0.001wt%-0.2wt%的Zr、0.001wt%-0.5wt%的Mg、0.001wt%-0.8wt%的Ti、0.0005wt%-0.3wt%的B和0.0001wt%-0.1wt%的Re中的至少一种。
铜和锌的作用及配比:Zn固溶在Cu中,形成单相α固溶体,起到固溶强化的作用,构成合金组织的基体。Zn含量低于38%都可以形成α固溶体,但铜锌之间需要满足一定关系,当铜锌原子比<2.3,铜锌质量比([Cu]/3+1)/([Zn]+5)<0.68时,由于固溶进铜的锌过多,导致基体导电率和弹性模量偏低,高温耐久性急剧下降,无法满足使用中对电流传输、信号传输、单位时间温度升高量、夹持力、耐久性等要求。当铜锌原子比Cu/Zn>15.8,质量比([Cu]/3+1)/([Zn]+5)>2.88时固溶引起的晶格畸变少,导致钴硅化合物固溶于晶格形成的固溶体的稳定效果不好,需要较高的温度快速冷却才能形成钴硅化合物的饱和固溶体,而黄铜在高温下氧化脱锌很严重,不能满足生产需求。本发明通过控制铜锌的比例和范围,使钴硅化合物在600℃时仍然还有较高固溶度,此时直接进行在线水冷固溶即可形成饱和固溶体,满足进一步时效析出的条件,扩展了工艺区间,在固溶工序时无需通过二次固溶或极速冷却,如CN104232987A中所述的在热轧后需要用液氮进行急速冷却,大大降低了资源消耗和生产成本。优选铜锌原子比Cu/Zn为2.4-15,质量比0.69≤([Cu]/3+1)/([Zn]+5)≤2.76从质量分数上优选Cu的质量分数在81%-92%。
钴和硅的作用及配比:单独添加Co元素时,其固溶于基体中,通过固溶强化的作用提高材料的强度。Si的锌当量系数为10,添加一个单位的Si相当于添加10个单位的锌,缩小α相区,扩大β相区,通过固溶强化及促进较硬的β相形成提高材料强度。但两者单独添加都会降低材料的导电率和弹性模量,不能起到改善材料弹性耐久性的作用。Co和Si同时添加,可以形成钴硅金属间化合物,通过固溶时效工艺,化合物析出,弥散分布在基体上,将本身要固溶进基体相降低导电率的Co和Si排除在基体之外,提高了材料的导电率。弥散分布在基体相上细小的析出相,在发生低于再结晶温度的塑性变形时可以阻碍晶格的滑移和位错的移动,形成更多的位错及位错塞积,即形成柯垂尔气团,使材料获得比单独固溶时更高的强度和屈强强度与抗拉强度比。弥散分布在基体上细小的析出相,由于其对晶格畸变的阻碍和对位错的钉扎作用,使材料在发生弹性变形时需要更大的应力,即提高了材料的弹性模量。同样的原理,提高了材料弹性变形范围内和相对高的温度时发生塑性变形的难度,即提高了材料的抗应力松弛能力。Co元素超过3wt%材料的热加工性能恶化,低于0.01wt%,无法形成数量足够的析出相改善材料性能。Si元素超过0.5%材料会产生热脆,且严重降低导电率,低于0.01wt%无法形成足够的析出相改善材料性能。
该铜合金的微观组织的特征有:铜锌固溶体构成的α相为基体相,其面积占比≥95%,钴和硅形成的CoxSiy金属间化合物弥散分布在基体上,其面积所占比例0.01%-5%。由于钴硅金属间化合物粒径在纳米级别,需要通过扫面电镜或透射电镜拍摄微观组织图片,再计算其面积所占的比例。CoxSiy金属间化合物的类型通过扫描电镜或透射电镜配套的EDS能谱分析确认,其类型通过x/y值描述,x/y在0.2-3之间;当x/y值大于3或小于0.2时,其析出相对材料性能的改善作用有限,优选的化合物其x/y在0.5-2之间。析出相面积比例小于0.01%,对材料各项性能改善效果不足,析出相面积占比大于5%,开始恶化各项性能,且析出相有聚集长大的趋势,其改善金属性能的作用被削弱。优选析出相比例在0.05%-4%,α相比例≥96%,更优选析出相比例在0.1%-3.5%,α相比例≥96.5%。
该铜合金组织中CoxSiy析出相粒径在10-200nm之间的占比大于90%,其余为粒径在200nm以上。粒径越小,在金属低于再结晶温度以下的塑性变形时对晶格滑移的阻碍和位错的钉扎作用越强,形成越多的位错和位错塞积,使材料获得更高的强度和屈强比。同理,在弹性变形时,使材料的发生弹性变形的应力越大,使材料获得更高的弹性模量和更好高温耐久性。同时,析出相粒径越小,对电子传输的阻碍越小,使材料获得越高的导电率。优选析出相粒径在10nm-200nm之间占比大于92%,更优选析出相粒径在10nm-200nm之间占比大于95%。
弹性材料在应用时最关注的两点是弹性和弹性的持久性。弹性主要和材料的屈服强度/抗拉强度比及弹性模量相关。材料的屈服强度一定低于抗拉强度,施加应力超过屈服强度即产生塑性变形,抗拉强度越高,材料在断裂失效前可承受的塑性变形量越大,屈服强度越高,可以承受的最大弹性形变越大,弹性模量越大,在同样的弹性位移下,可以获得的回弹力越大。因此对同一个材料,要想使材料有更好的弹性,就需要获得尽可能高的屈服强度/抗拉强度和弹性模量。
本发明所提供的含钴、硅的铜合金,由于细小的CoxSiy金属间化合物析出相弥散的分布在铜锌基体相上,首先强化了基体,提高了材料的抗拉强度和屈服强度,其次,在材料的塑性变形过程中可以阻碍晶格的滑移和位错的扩展,产生更多的位错和位错塞积,这些位错和位错塞积,使材料获得更高的屈服强度,即获得了更高的屈服强度/抗拉强度比。此外,弥散分布在基体上细小的CoxSiy金属间化合物析出相,由于其对晶格畸变的阻碍和对位错的钉扎作用,使材料在发生弹性变形时需要更大的应力,从而提高了材料的弹性模量。本发明含钴、硅的铜合金,其屈服强度/抗拉强度比>85%,优选屈服强度/抗拉强度比>88%,更优选屈服强度/抗拉强度比>92%。
弹性持久性就是材料在受到持续的外加应力时,尤其是温度较高时(>80℃),能够保持足够加持力的能力,在材料学中采用应力松弛率来描述其弹性持久性。要描述这项特性需要明确三个条件,初始施加应力值,常用屈服强度的百分比描述、测试温度、测 试持续时间。材料的应力松弛性能实质就是低于屈服强度的蠕性变形的积分,在上述三个特定条件下测试,屈服强度的降低率即为应力松弛率,应力松弛率越低,说明材料的弹性持久性越好。
本发明所提供的含钴、硅的铜合金,由于细小的CoxSiy金属间化合物析出相弥散的分布在基体上,在材料持续处于弹性形变状态下,阻碍和减缓了晶界及晶格的蠕性变形及位错、位错塞积的扩散、异向位错合并消失,从而降低了材料的应力松弛率,提高了材料的弹性持久性。合金在100℃,1000H,50%屈服强度初始应力条件下进行持久性试验,其应力松弛率≤15%,优选方案中应力松弛率≤12%,更优选方案中应力松弛率≤10%。
锡的作用及配比:该铜合金还可以进一步含有Sn元素,其质量百分比为0.01%-3.5%。Sn可以进一步稳定钴硅金属间化合物的固溶状态,抑制在高温时析出相的快速析出,从而降低200nm以上析出相的比例。此外,Sn还可以通过固溶强化作用,提高材料的强度和硬度。锡还可以抑制脱锌,提高材料耐蚀性。锡还可以改善材料的热浸镀和电镀性能以及钎焊性能。Sn低于0.01%无法起到上述作用,Sn高于3.5%,会产生Sn的偏析,使材料成分不均匀,导致性能不均匀,同时增加热加工时的开裂风险。优选Sn元素含量为0.05wt%-3.0wt%,更优选Sn元素含量为0.1wt%-2.5wt%。
铝和镍的作用及配比:该铜合金还可进一步含有Al、Ni元素中至少一种,其中Al的质量百分比为0.01%-4.0%,Ni的质量百分比为0.01wt%-3wt%。Ni和Al可以提高材料的耐热性和热加工性,同时起到固溶强化的作用,提高材料耐蚀性。此外,Ni和Al可以在时效过程中抑制钴硅金属间化合物的长大,使粒径在10nm-150nm之间钴硅金属间化合物比例提高。此外,Ni可以与Si形成镍硅析出相,进一步强化基体,提高导电率,提高弹性模量,改善材料的弹性持久性和夹持力。Ni、Al含量小于0.01%不能起到上述作用,Ni大于3%,Al大于4%会严重降低导电率,降低弹性模量。优选Ni的质量百分比为:0.01%-2.5%,Al的质量百分比为0.05-3.5%,更优选Ni的质量百分比为:0.02%-2.0%,Al的质量百分比为0.1%-3.0%。
磷的配比和作用:该铜合金可进一步含有P元素,其质量百分比为0.01%-0.35%。P也可以与Co形成可以析出的金属间化合物ComPn。此时其微观组织特征为:铜锌α相构成基体,CoxSiy析出相和ComPn析出相共存,弥散分布在基体相上,其中α相的面积百分比≥90%,CoxSiy析出相所占面积比为0.01%-5%,ComPn析出相所占面积比为0.01%-5%。钴磷金属间化合物分布在基体上,可以有效减缓钴硅金属间化合物在时效过程中长大速率,使其颗粒更加细小,改善钴硅金属间化合物在基体上分散的均匀度,增强其改善材料力学性能、导电性能、高温耐久性性能的作用。P元素高于0.35%材料会产生热脆,加剧基体的氧化,严重降低材料的导电率,低于0.01wt%无法形成足够的析出相改善材料性能。优选P含量在0.01%-0.30%,更优选P含量在0.01%-0.25%。
该铜合金可进一步含有元素A中的至少一种,A选自:Mn:0.01wt%-1.5wt%,Fe:0.01wt%-1.5wt%;Cr:0.001wt%-0.3wt%,Zr:0.001wt%-0.2wt%,Mg:0.001wt%-0.5wt%,Ti:0.001wt%-0.8wt%,B:0.0005wt%-0.3wt%和RE:0.0005wt%-0.1wt%。
锰和铁的配比和作用:Mn和Fe可以有效改善CoxSiy析出相的分布,使其分布更均匀,分散度更好,从而增强析出相的作用。Mn还可以在熔炼过程中脱氧,提高金属的纯度,还可以改善材料的热加工性能,Mn和Fe都有固溶强化作用,可以提高材料的基本力学性能,降低材料的弹性模量。Mn、Fe含量小于0.01%不能起到上述作用,Mn大于1.5%,Fe大于1.5%,会严重降低导电率,降低弹性模量,无法满足这类材料的使用需求,同时Fe含量大于1.5%会严重降低材料的耐腐蚀性能。优选Mn的含量在0.05%-1.3%,Fe的含量在0.02%-1.2%,更优选Mn的含量在0.08%-1.0%,Fe的含量在0.05%-1.0%。
铬、锆和钛的配比和作用:上述方案中的铜合金在热加工和固溶工序中会形成少量条状的钴硅化合物析出,这类条状的化合物相会恶化金属的性能。Cr、Zr、Ti的加入能够抑制这种形貌化合物的形成。此外,Cr和Zr都可以提高材料软化温度和高温强度,提升材料的高温稳定性,降低其应力松弛率。Cr和Zr同时添加,可以形成Cr2Zr化合物,改善作用强于两者单独添加时,同时还可改善材料的抗粘结性及焊接性能。Ti还可以提高材料的耐腐蚀性能。Cr含量低于0.001%,Zr含量低于0.001%、Ti含量低于0.001wt%,不能发挥相应的作用,Ti含量超过0.8%会较大降低材料的导电率,同时Ti高于0.8%,Cr含量高于0.3%,Zr含量高于0.2%会使材料的生产成本和原材料成本大幅升高。优选Cr:0.005wt%-0.25wt%,Zr:0.005wt%-0.15wt%,Ti:0.005wt%-0.6wt%。更优选:Cr:0.008wt%-0.20wt%,Zr:0.008wt%-0.10wt%,Ti:0.008wt%-0.5wt%。
硼、镁和稀土的配比和作用:其中B、Mg、Re可以抑制晶界反应,减少分布在晶界上的CoxSiy析出相的数量,降低铜合金固溶处理后的硬度,改善后道冷加工性能。B还可以提高黄铜的抗脱锌能力,提高耐蚀性。B、Mg还可以提高材料的抗应力松弛性能,改善材料的冷热加工性能。Re在熔炼时还可以除杂,除氧,提高金属的纯度,稀土的熔点高,在熔炼时可以作为结晶的核心,减少铸锭中的柱状晶含量,增加等轴晶的含量,改善材料的热加工性能。稀土低于0.0002wt%起不到上述作用。稀土含量超过0.1wt%,会形成高温氧化物夹杂,恶化金属性能。优选B:0.001wt%-0.2wt%,Mg:0.005wt%-0.3wt%,RE:0.0008wt%-0.08wt%;更优选B:0.002wt%-0.15wt%,Mg:0.01wt%-0.2wt%,RE:0.001wt%-0.05wt%。
上述铜合金的加工,可以根据不同的应用需求,加工成板带材、棒材、线材。
加工成板、带材的制备方法依次包括下述步骤:
方法1:配料→熔炼→垂直半连铸铸锭→加热轧制→固溶处理→铣面→一次冷轧→一级时效热处理→清洗→二次冷轧→二级时效热处理→清洗→成前冷轧→成品去应力 时效热处理→清洗→分条→包装:
其中,所述熔炼温度为1080℃-1280℃,垂直半连铸温度为1060℃-1260℃,开始加热轧制开轧温度为700℃-900℃,终轧温度不低于600℃,热轧加工率为60%-95%。所述的固溶处理为热轧完成后进行在线冷却,冷却介质为空气或水,冷却速度为10℃/min-150℃/S。
或者,方法2:配料→熔炼→水平连铸→固溶处理→铣面→一次冷轧→一级时效热处理→清洗→二次冷轧→二级时效热处理→清洗→成前冷轧→成品去应力时效热处理→清洗→分条→包装;
所述的水平连铸熔炼温度为1080℃-1280℃,水平连铸温度为1050℃-1250℃,所述的固溶处理为铸造后在线冷却,冷却介质为空气或水,冷却速度为10℃/min-150℃/S。
方法1和方法2中所述带材生产方法中的一次、二次及成前冷轧加工率为5%-95%,一级时效热处理温度为350℃-650℃,保温时间为10min-10h,加热速度为2-50℃/min,冷却速度为5-50℃/min,所述的二级时效热处理温度为300℃-600℃,保温时间为10min-10h,加热速度为2-50℃/min,冷却速度为5-50℃/min,所述的成品去应力时效热处理温度为100℃-300℃,保温时间为10min-10h,加热速度为2-50℃/min,冷却速度为5-50℃/min。所述冷轧与时效热处理组合工艺次数根据产品规格和性能不同,可以增加或减少,但至少保证两次以上。上述带材生产方法所述的时效热处理可以为在线方式,温度为200℃-750℃,速度为20m/min-250m/min。
方法3:配料→熔炼→垂直半连续铸造或水平连续铸造→加热挤压→固溶处理→一次拉拔→一级时效热处理→二次拉拔→二级时效热处理→成前拉拔→成品去应力时效热处理→校直→定尺→包装;
其中,所述熔炼温度为1080℃-1280℃,垂直半连铸温度为1060℃-1260℃,水平连铸温度为1050℃-1250℃,挤压温度为650℃-900℃,所述的固溶处理为挤压完成后在线冷却,冷却介质为空气或水,冷却速度为10℃/min-150℃/S。所述的一次拉拔、二次拉拔、成前拉拔加工率为3%-80%。所述的一级时效热处理温度为350℃-650℃,保温时间为10min-10h,加热速度为2-50℃/min,冷却速度为5-50℃/min。所述的二级时效热处理温度为300℃-600℃,保温时间为10min-10h,加热速度为2-50℃/min,冷却速度为5-50℃/min。所述的成品去应力时效热处理温度为100℃-300℃,保温时间为10min-10h,加热速度为2-50℃/min,冷却速度为5-50℃/min。所述冷拉拔与时效热处理组合工艺次数根据产品规格和性能不同,可以增加或减少,但至少保证两次以上。
方法:4:配料→熔炼→垂直半连续铸造/水平连续铸造→加热挤压→固溶处理→一次倒拉→一级时效热处理→二次倒拉→二级时效热处理→连续拉拔时效热处理→包装。
其中,所述熔炼温度为1080℃-1280℃,垂直半连铸温度为1060℃-1260℃,水平连铸温度为1050℃-1250℃,挤压温度为650℃-900℃,所述的固溶处理为挤压完成后进 行冷却,冷却介质为空气或水,冷却速度为10℃/min-150℃/S。
方法5:配料→熔炼→水平连续铸造/上引连续铸造→固溶处理→一次倒拉→一级时效热处理→二次倒拉→二级时效热处理→连续拉拔时效热处理→包装。
其中,所述熔炼温度为1080℃-1280℃,水平连铸温度为1050℃-1250℃,上引连续铸造温度为1060℃-1260℃,所述的固溶处理为铸造完成后进行冷却,冷却介质为空气或水,冷却速度为10℃/min-150℃/S。
方法4和方法5所述的线材生产方法中的,所述一次倒拉和二次倒拉加工率为5%-60%,可以增加一道次1%-3%的刨皮工艺去除表面缺陷。所述一级时效热处理温度为350℃-650℃,保温时间为10min-10h,加热速度为2-50℃/min,冷却速度为5-50℃/min,所述的二级时效热处理温度为300℃-600℃,保温时间为10min-10h,加热速度为2-50℃/min,冷却速度为5-50℃/min,所述的连续拉拔时效热处理根据不同过道坯规格,分别依次采用大型连续拉拔时效热处理机、中型连续拉拔时效热处理机、小型连续拉拔时效热处理机,成品生产用小型连续拉拔时效热处理机。
上述1-5的制备方法中,其双级时效热处理工艺对材料成品性能起到关键作用。所述一级时效温度为350℃-650℃,所述二级时效温度为300℃-600℃。在一次冷加工后,通过一级时效热处理控制析出相的析出比例和粒度。在二次冷加工后,通过二级时效热处理控制析出相的分布形态。而析出相析出越充分、粒度越小,分布越均匀,材料的各项性能越好。超出上述温度范围进行时效热处理,无法达到预期效果。
综上所述,本发明所提供的铜合金具有更高的屈服强度/抗拉强度值和更高的弹性模量,从而有更好的弹性和更高的回弹夹持力;并且应力松弛率低,抗应力松弛性能好,弹性持久性好;同时还具有更高的导电率,使用过程中导通性好,夹持力大,发热少,材料成形性好,使用寿命长。
附图说明
图1为实施例74成品的透射电镜图片,倍数为29000倍;图中白色线框内的相为CoxSiy析出相。
图2为实施例82成品的透射电镜图片,倍数为43000倍;图中白色线框内的相为CoxSiy析出相。
图3为实施例80成品的透射电镜图片,倍数为71000倍;图中白色线框内的相为CoxSiy析出相。
图4为实施例81成品的透射电镜图片,倍数为43000倍;图中白色线框内的相为CoxSiy析出相。
图5为实施例52成品的扫描电镜图片,倍数为10000倍;图中白色相对浅色发白的小面积块为CoxSiy析出相。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
方案1
本方案包括对比例1、2及实施例3至实施例12
本方案用于成分实验,说明Cu和Zn的含量及配比对铜合金性能的影响。按照设计成分进行配料,原材料包括电解铜、0#锌、金属钴、铜硅中间合金。在挤压完成后的坯料上取样,测试其炉后成分,测试仪器为电感耦合等离子光谱仪(ICP)。各组配料分别在10Kg中频炉中熔铸铸锭,车削成Φ50挤压铸锭,挤压成Φ15坯料,挤压坯在线水冷。对挤压坯依次进行如下加工:60%加工率冷拉拔→550℃时效热处理5h→30%加工率冷拉拔→450℃时效热处理4h→20%加工率冷拉拔→280℃成品热处理3h→清洗。成品加工成Φ7标准抗拉样,在10吨液压拉拔机上对样品进行拉力测试,测试其抗拉强度、屈服强度、延伸率、弹性模量。成品剪成80cm长用电桥测试仪测量其导电率。各项数据如表1和续表1所示。
表1
Figure PCTCN2016000301-appb-000002
续表1
Figure PCTCN2016000301-appb-000003
上述表1和续表1主要是为了说明基体中Cu、Zn的质量关系以及原子比对材料各相关性能的影响。如对比案例1和对比案例2,其铜锌原子比和质量关系超出权利要求范围,其中实施例1由于过多的Zn固溶进基体,导致基体导电率和弹性模量偏低,力学性能提高有限,无法满足使用要求。实施例2由于过少的Zn固溶进基体,引起的晶格畸变少,导致钴硅化合物固溶于晶格形成的固溶体的稳定效果不好,难以在在线固溶条件下形成过饱和固溶体,从而无法满足钴硅相弥散析出的条件,导致材料导电率偏低,弹性模量和力学性能提高有限,不能满足使用。而实施例3-12中Cu、Zn的质量关系和原子比在权利要求范围内,通过对比,材料各项性能有明显提高,导电率、力学性能有效增长,明显高于对比案例。
方案2
本方案用于成分实验,包括实施例13-23,如表2所示,其中实施例13和实施例14为对比案例,不在专利要求的成分范围,用于说明合金元素或其比例超过要求范围的危害和结果。说明Co和Si的含量及配比对铜合金性能的影响,按照设计成分进行配料,原材料包括电解铜、0#锌、金属钴、铜硅中间合金。在挤压完成后的坯料上取样,测试其炉后成分,测试仪器为电感耦合等离子光谱仪(ICP)。各组配料分别在10Kg中频炉中熔铸铸锭,车削成Φ50挤压铸锭,挤压成Φ15坯料,挤压坯在线水冷。对挤压坯依次进行如下加工:60%加工率冷拉拔→550℃时效热处理5h→30%加工率冷拉拔→450℃时效热处理4h→20%加工率冷拉拔→280℃成品热处理3h→清洗。成品加工成Φ7标准抗 拉样,在10吨液压拉拔机上对样品进行拉力测试,测试其抗拉强度、屈服强度、延伸率、弹性模量。成品剪成80cm长用电桥测试仪测量其导电率。各项数据如表2所示。
表2
Figure PCTCN2016000301-appb-000004
上述表2主要用于说明Co、Si两种合金元素不同含量的变化对材料的各基本性能的影响,从实施例15-22与对比案例13、对比案例14所述的数据可以看出,本发明所述的Co含量需在0.01%-3%之间,所述的硅元素需在0.01-0.5%之间。任一个元素不在所述范围内,材料的综合性能都不能满足需求。
方案3
本方案用于说明铜合金微观组织中的相比例对材料性能的影响,包括实施例23-32,如表3所示,其中实施例23和实施例24为对比案例,相比例不在专利要求范围内,用于说明铜合金微观组织不符合要求范围的危害和结果。按照设计成分进行配料,原材料包括电解铜、0#锌、金属钴、铜硅中间合金。在挤压完成后的坯料上取样,测试其炉后成分,测试仪器为电感耦合等离子光谱仪(ICP)。各组配料分别在10Kg中频炉中熔铸铸锭,车削成Φ50挤压铸锭,挤压成Φ15坯料,挤压坯在线水冷。对挤压坯依次进行如下加工:60%加工率冷拉拔→550℃时效热处理5h→30%加工率冷拉拔→450℃时效热处理4h→20%加工率冷拉拔→280℃成品热处理3h→清洗。成品加工成Φ7标准抗拉样,在10吨液压拉拔机上对样品进行拉力测试,测试其抗拉强度、屈服强度、延伸率、弹性模量。成品剪成80cm长用电桥测试仪测量其导电率。各项数据如表3和续表3所示。
表3
Figure PCTCN2016000301-appb-000005
续表3
Figure PCTCN2016000301-appb-000006
由于析出相直径在纳米级,因此其相比例是在SEM或TEM图片上评定的,先测量其析出相直径,在判定其比例。本发明所述的一种含钴硅的铜合金,其析出相面积在0.01%-5%,析出相面积比例小于0.01%,对材料各项性能改善效果不足,析出相面积占 比大于5%,开始恶化各项性能,且析出相有聚集长大的趋势,其改善金属性能的作用被削弱。从上述表3可以看出这个结论。
方案4
本方案用于说明铜合金微观组织中的CoxSiy析出相尺寸对材料性能的影响,包括实施例33-38,其中实施例33和实施例34为对比案例,钴硅化合物尺寸占比不在专利要求范围内,用于说明铜合金微观组织不符合要求范围的危害和结果。按照设计成分进行配料,原材料包括电解铜、0#锌、金属钴、铜硅中间合金。在挤压完成后的坯料上取样,测试其炉后成分,测试仪器为电感耦合等离子光谱仪(ICP)。各组配料分别在10Kg中频炉中熔铸铸锭,车削成Φ50挤压铸锭,挤压成Φ15坯料,挤压坯在线水冷。对挤压坯依次进行如下加工:60%加工率冷拉拔→一级时效热处理→30%加工率冷拉拔→二级时效热处理→20%加工率冷拉拔→280℃成品热处理3h→清洗。成品加工成Φ7标准抗拉样,在10吨液压拉拔机上对样品进行拉力测试,测试其抗拉强度、屈服强度、延伸率、弹性模量。成品剪成80cm长用电桥测试仪测量其导电率。上述工艺中通过调整双级时效热处理工艺,改变CoxSiy析出相的粒度。各项数据如表4所示。
表4
Figure PCTCN2016000301-appb-000007
从上表4中可以看出,直径在10nm-200nm之间CoxSiy析出相所占比例越高,材料综合性能越好。要满足需求,该尺寸范围内的CoxSiy析出相所占比例需大于90%,优选大于92%,更优选大于95%。
方案5
本方案用于说明Sn对铜合金微观组织中200nm以上化合物析出相的影响,包括实施例39-43,其中实施例43为对比案例,说明Sn含量超过权利要求范围的危害和结果。 按照设计成分进行配料,原材料包括电解铜、0#锌、金属钴、铜硅中间合金,金属锡。在挤压完成后的坯料上取样,测试其炉后成分,测试仪器为电感耦合等离子光谱仪(ICP)。各组配料分别在10Kg中频炉中熔铸铸锭,车削成Φ50挤压铸锭,挤压成Φ15坯料,挤压坯在线水冷。对挤压坯依次进行如下加工:60%加工率冷拉拔→550℃时效热处理5h→30%加工率冷拉拔→450℃时效热处理4h→20%加工率冷拉拔→280℃成品热处理3h→清洗。成品加工成Φ7标准抗拉样,在10吨液压拉拔机上对样品进行拉力测试,测试其抗拉强度、屈服强度、延伸率、弹性模量。成品剪成80cm长用电桥测试仪测量其导电率。各项数据如表5所示。
表5
Figure PCTCN2016000301-appb-000008
从上表5可以看出,Sn元素的添加有效减少了单个视场内粒度在200nm以上CoxSiy析出相的个数,并且随着Sn添加量的增加,材料力学性能得到明显提高,通过对比案例看,Sn含量过高会导致导电率严重降低,不能满足使用需求。
方案6
本方案用于说明Ni、Al对铜合金组织中10-150nm之间化合物析出相比例的影响,包括实施例44-50。其中实施例49和实施例50为对比案例,说明Ni、Al含量超过权利要求范围的危害和结果。按照设计成分进行配料,原材料包括电解铜、0#锌、金属钴、铜硅中间合金,金属镍,金属铝。在挤压完成后的坯料上取样,测试其炉后成分,测试仪器为电感耦合等离子光谱仪(ICP)。各组配料分别在10Kg中频炉中熔铸铸锭,车削成Φ50挤压铸锭,挤压成Φ15坯料,挤压坯在线水冷。对挤压坯依次进行如下加工:60%加工率冷拉拔→550℃时效热处理5h→30%加工率冷拉拔→450℃时效热处理4h→20%加工率冷拉拔→280℃成品热处理3h→清洗。成品加工成Φ7标准抗拉样,在10吨液压 拉拔机上对样品进行拉力测试,测试其抗拉强度、屈服强度、延伸率、弹性模量。成品剪成80cm长用电桥测试仪测量其导电率。各项数据如表6所示。
表6
Figure PCTCN2016000301-appb-000009
方案7
本方案用于说明Mn、Fe、P对铜合金组织中CoxSiy析出相弥散度的影响,其弥散度通过析出相分布的方差进行评定,方法是将对应的扫描电镜图片分割为3×3的方格,统计每个方格内CoxSiy析出相的个数,然后计算其期望与方差。本方案包括实施例51-61。其中实施例59、实施例60和实施例61为对比案例,说明Mn、Fe、P含量超过权利要求范围的危害和结果。按照设计成分进行配料,原材料包括电解铜、0#锌、金属钴、铜硅中间合金,铜磷中间合金,金属锰,金属铝。在挤压完成后的坯料上取样,测试其炉后成分,测试仪器为电感耦合等离子光谱仪(ICP)。各组配料分别在10Kg中频炉中熔铸铸锭,车削成Φ50挤压铸锭,挤压成Φ15坯料,挤压坯在线水冷。对挤压坯依次进行如下加工:60%加工率冷拉拔→550℃时效热处理5h→30%加工率冷拉拔→450℃时效热处理4h→20%加工率冷拉拔→280℃成品热处理3h→清洗。成品加工成Φ7标准抗拉样,在10吨液压拉拔机上对样品进行拉力测试,测试其抗拉强度、屈服强度。延伸率、弹性模量。成品剪成80cm长用电桥测试仪测量其导电率。各项数据如表7和续 表7所示。
表7
Figure PCTCN2016000301-appb-000010
续表7
Figure PCTCN2016000301-appb-000011
上表7和续表7通过方差来描述钴硅相分布的均匀程度,方差值越小,说明其分布越均匀,然后钴硅相对材料基体性能提高越多,上表中可以看出,随着所述几种元素的添加,方差值变小,材料性能越来越好。但如对比案例,所述元素若超过权利要求范围, 对导电率有严重的削弱,不能满足使用。
方案8
本方案用于说明添加Cr、Zr、Ti元素对条状钴硅化合物形成的影响,方法是观察相应扫描电镜图片中条状化合物的个数。本方案包括实施例62-68。按照设计成分进行配料,原材料包括电解铜、0#锌、金属钴、铜铬中间合金,铜锆中间合金,铜钛中间合金。在挤压完成后的坯料上取样,测试其炉后成分,测试仪器为电感耦含等离子光谱仪(ICP)。各组配料分别在10Kg中频炉中熔铸铸锭,车削成Φ50挤压铸锭,挤压成Φ15坯料,挤压坯在线水冷。对挤压坯依次进行如下加工:60%加工率冷拉拔→550℃时效热处理5h→30%加工率冷拉拔→450℃时效热处理4h→20%加工率冷拉拔→280℃成品热处理3h→清洗。成品加工成Φ7标准抗拉样,在10吨液压拉拔机上对样品进行拉力测试,测试其抗拉强度、屈服强度、延伸率、弹性模量。成品剪成80cm长用电桥测试仪测量其导电率。各项数据如表8和续表8所示。
表8
Figure PCTCN2016000301-appb-000012
续表8
Figure PCTCN2016000301-appb-000013
如上表8和续表8所示,Cr、Zr、Ti合金元素的添加,有效减少了单个视场内条状CoxSiy析出相的个数。这种条状化合物的存在会削弱析出相对材料性能提升的效果。因此要尽可能减少这种条状化合物的存在。
方案9
本方案用于说明B、Mg、Re对CoxSiy析出相在晶界上析出的抑制作用,方法是观察相应扫描电镜图片中分布在晶界上的CoxSiy析出相的个数。本方案包括实施例69-75,按照设计成分进行配料,原材料包括电解铜、0#锌、金属钴、铜硼中间合金,铜镁中间合金,混合稀土。在挤压完成后的坯料上取样,测试其炉后成分,测试仪器为电感耦合等离子光谱仪(ICP)。各组配料分别在10Kg中频炉中熔铸铸锭,车削成Φ50挤压铸锭,挤压成Φ15坯料,挤压坯在线水冷。对挤压坯依次进行如下加工:60%加工率冷拉拔→550℃时效热处理5h→30%加工率冷拉拔→450℃时效热处理4h→20%加工率冷拉拔→280℃成品热处理3h→清洗。成品加工成Φ7标准抗拉样,在10吨液压拉拔机上对样品进行拉力测试,测试其抗拉强度、屈服强度、延伸率、弹性模量。成品剪成80cm长用电桥测试仪测量其导电率。各项数据如表9所示。
表9
Figure PCTCN2016000301-appb-000014
如上表9所示,B、Mg、Re的加入,有效减少了分布在晶界上的CoxSiy析出相的个数,这种分布在晶界上的化合物对材料宏观性能没有明显影响,但在冲压加工工程中容易成为裂纹源,产生毛刺,影响使用。因此要尽量避免。
方案10
本方案用于说明不同形态材料的加工方法,包括实施例69-85,其中实施例69-70按照制备方法4和方法5产出线材,成品规格为Φ0.5mm实施例71-72按照制备方法3产出棒材,成品规格为Φ15mm,实施例73-75按照制备方法2产出带材,成品规格为0.3mm,其中实施例73为美标C51900,作为对比案例。实施例76-85按照制备方法1产出带材,成品规格为0.3mm。其中实施例76为美标C42500,实施例77为美标C26000,实施例78为美标C44300,作为对比案例。如表10和续表10所示。
表10
Figure PCTCN2016000301-appb-000015
续表10
Figure PCTCN2016000301-appb-000016
Figure PCTCN2016000301-appb-000017
如上表10和续表10为本发明所述的铜合金用批量生产工艺产出成品,并测试各项性能。通过与对比案例对比可以看出,本发明所述的铜合金,由于CoxSiy析出相的产生,各项性能得到了明显有效的提升。
方案11
本方案用于对比一种含钴硅的铜合金的弹性持久性,及比较材料的应力松弛率。选取实施例73-85制备出的带材,测试材料的抗应力松弛性能。测试按照ASTME328-2002(2008)标准进行,给相应试样构成的悬臂梁加载50%该试样屈服强度的初始应力,测量记录其压下量。然后分别在100℃保温1000h,测量其回弹量。根据测试数据,计算材料的应力松弛率,计算公式为:应力松弛率=(压下量-回弹量)/压下量×100%,结果如表11所示。
表11
Figure PCTCN2016000301-appb-000018
从表11可以看出,有CoxSiy析出相的实施例74和实施例75、实施例79至实施例85,其应力松弛率相比实施例77和78得到了明显的提升,大幅改善了其作为黄铜弹性持久性差的特点。而对比现有常规弹性材料C51900即实施例73,C42500即实施例76,有CoxSiy析出相的实施例其应力松弛率达到或低于现有材料。这说明在已有CoxSiy析出相对弹性持久性改善的基础上,P、B、Mg、Cr、Zr对材料弹性持久性进一步的提高。

Claims (12)

  1. 一种含钴硅的铜合金,其特征在于包括下述重量组成:
    Figure PCTCN2016000301-appb-100001
    其中铜、锌两种元素之和大于95wt%,不可避免的杂质含量小于0.2%。
  2. 根据权利要求1所述的铜合金,其特征在于:该铜合金含有铜锌α固溶体的基体相和CoxSiy析出相;所述CoxSiy析出相弥散分布在所述基体相上;所述基体相的面积百分比≥95%,所述CoxSiy析出相的面积比为0.01%-5%。
  3. 根据权利要求2所述的铜合金,其特征在于:所述CoxSiy析出相中粒径在10-200nm之间的数量占比≥90%,粒径在200nm以上的≤10%。
  4. 根据权利要求3所述的铜合金,其特征在于:所述铜和锌的原子比Cu/Zn为2.3-15.8,所述铜与锌的质量分数满足0.65≤([Cu]/3+1)/([Zn]+5)≤3.5。
  5. 根据权利要求4所述的铜合金,其特征在于:该铜合金的屈服强度/抗拉强度≥85%;100℃、1000H、50%屈服强度初始应力条件下的应力松弛率≤15%。
  6. 根据权利要求1至5任一权利要求所述的铜合金,其特征在于:该铜合金还含有0.01-3.5wt%的Sn元素、0.01%-4.0wt%的Al和0.01%-3wt%的Ni中的至少一种。
  7. 根据权利要求1至5任一权利要求所述的铜合金,其特征在于:该铜合金还含有0.01%-0.35wt%的P。
  8. 根据权利要求7所述的铜合金,其特征在于:该铜合金还含有ComPn析出相,所述ComPn析出相的面积比为0.01%-5%。
  9. 根据权利要求6所述的铜合金,其特征在于该铜合金还含有0.01%-0.35wt%的P。
  10. 根据权利要求9所述的铜合金,其特征在于:该铜合金还含有ComPn析出相,所述ComPn析出相的面积比为0.01%-5%。
  11. 根据权利要求6所述的铜合金,其特征在于:还包括总含量为0.0001%-2%的A,所述A选自0.01wt%-1.5wt%的Mn、0.01wt%-1.5wt%的Fe、0.001wt%-0.3wt%的Cr、0.001wt%-0.2wt%的Zr、0.001wt%-0.5wt%的Mg、0.001wt%-0.8wt%的Ti、0.0005wt%-0.3wt%的B和0.0001wt%-0.1wt%的Re中的至少一种。
  12. 根据权利要求7所述的铜合金,其特征在于:该铜合金还包括总含量为0.0001%-2%的A,所述A选自0.01wt%-1.5wt%的Mn、0.01wt%-1.5wt%的Fe、0.001wt%-0.3wt%的Cr、0.001wt%-0.2wt%的Zr、0.001wt%-0.5wt%的Mg、0.001wt%-0.8wt%的Ti、0.0005wt%-0.3wt%的B和0.0001wt%-0.1wt%的Re中的至少一种。
PCT/CN2016/000301 2015-07-23 2016-06-08 一种含钴硅的铜合金 WO2017012283A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/558,477 US20180066339A1 (en) 2015-07-23 2016-06-08 Cobalt Silicide-Containing Copper Alloy
EP16826980.1A EP3363922B1 (en) 2015-07-23 2016-06-08 Cobalt silicide-containing copper alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510439092.8 2015-07-23
CN201510439092.8A CN105018782B (zh) 2015-07-23 2015-07-23 一种含钴硅的铜合金

Publications (2)

Publication Number Publication Date
WO2017012283A2 true WO2017012283A2 (zh) 2017-01-26
WO2017012283A3 WO2017012283A3 (zh) 2017-03-23

Family

ID=54409079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/000301 WO2017012283A2 (zh) 2015-07-23 2016-06-08 一种含钴硅的铜合金

Country Status (4)

Country Link
US (1) US20180066339A1 (zh)
EP (1) EP3363922B1 (zh)
CN (1) CN105018782B (zh)
WO (1) WO2017012283A2 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105018782B (zh) * 2015-07-23 2017-09-26 宁波博威合金板带有限公司 一种含钴硅的铜合金
CN105400987A (zh) * 2015-11-10 2016-03-16 太仓捷公精密金属材料有限公司 一种铜合金材料
CN105385890A (zh) * 2015-11-27 2016-03-09 宁波博威合金材料股份有限公司 一种含镍、硅的青铜合金及其应用
CN108285988B (zh) * 2018-01-31 2019-10-18 宁波博威合金材料股份有限公司 析出强化型铜合金及其应用
CN108384986B (zh) * 2018-05-07 2020-02-21 宁波博威合金材料股份有限公司 一种铜合金材料及其应用
CN108796296B (zh) * 2018-06-12 2019-08-06 宁波博威合金材料股份有限公司 一种铜合金及其应用
CN109321780A (zh) * 2018-11-20 2019-02-12 薛中有 一种高弹性模量的黄铜合金及其制备方法
CN109536756A (zh) * 2018-12-28 2019-03-29 武汉泛洲中越合金有限公司 高强度耐磨无铅铜合金材料、制备方法及滑靴
CN110724851A (zh) * 2019-12-07 2020-01-24 和县卜集振兴标准件厂 一种开关插座用耐热耐腐蚀合金及其制备方法
JP7469072B2 (ja) * 2020-02-28 2024-04-16 株式会社神戸製鋼所 アルミニウム合金鍛造材及びその製造方法
CN111363948B (zh) * 2020-04-24 2021-11-09 浙江大学 一种高强高导铜合金的高效短流程制备方法
CN111663063B (zh) * 2020-06-23 2022-04-01 宁波金田铜业(集团)股份有限公司 一种适用于高速自动化加工的铅黄铜棒材及其制备方法
CN112048689A (zh) * 2020-09-16 2020-12-08 扬州大学 一种焊接喷嘴的热处理方法
CN113293323B (zh) * 2021-05-27 2022-04-15 宁波金田铜业(集团)股份有限公司 一种硅青铜棒材及其制备方法
CN115838881A (zh) * 2022-12-06 2023-03-24 武汉泛洲中越合金有限公司 一种冷变形铜合金及其高精度管棒材制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19548124C2 (de) * 1995-12-21 2002-08-29 Euroflamm Gmbh Reibkörper und Verfahren zum Herstellen eines solchen
JP2002349573A (ja) * 2001-05-29 2002-12-04 Mitsubishi Materials Corp 耐摩耗性に優れた銅合金製動圧軸受け用スリーブおよびスラストプレート
EP1538229A4 (en) * 2002-09-09 2005-08-03 Sambo Copper Alloy Co Ltd EXTREMELY RESISTANT COPPER ALLOY
JP5040140B2 (ja) * 2006-03-31 2012-10-03 Dowaメタルテック株式会社 Cu−Ni−Si−Zn系銅合金
JP5247010B2 (ja) * 2006-06-30 2013-07-24 Jx日鉱日石金属株式会社 高強度で曲げ加工性に優れたCu−Zn系合金
JP5224415B2 (ja) * 2008-07-31 2013-07-03 古河電気工業株式会社 電気電子部品用銅合金材料とその製造方法
CN101709405A (zh) * 2009-11-03 2010-05-19 苏州撼力铜合金材料有限公司 一种高强耐磨汽车同步环用复杂黄铜
JP4672804B1 (ja) * 2010-05-31 2011-04-20 Jx日鉱日石金属株式会社 電子材料用Cu−Co−Si系銅合金及びその製造方法
KR101260912B1 (ko) * 2011-02-01 2013-05-06 주식회사 풍산 해수용 동합금재 및 이의 제조 방법
CN105018782B (zh) * 2015-07-23 2017-09-26 宁波博威合金板带有限公司 一种含钴硅的铜合金

Also Published As

Publication number Publication date
US20180066339A1 (en) 2018-03-08
EP3363922B1 (en) 2023-04-19
CN105018782B (zh) 2017-09-26
WO2017012283A3 (zh) 2017-03-23
EP3363922A4 (en) 2019-08-21
EP3363922A2 (en) 2018-08-22
CN105018782A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2017012283A2 (zh) 一种含钴硅的铜合金
TWI387657B (zh) Cu-Ni-Si-Co based copper alloy for electronic materials and method of manufacturing the same
JP5028657B2 (ja) 異方性の少ない高強度銅合金板材およびその製造法
JP4934759B2 (ja) 銅合金板材及びこれを用いたコネクタ並びに銅合金板材の製造方法
JP5479798B2 (ja) 銅合金板材、銅合金板材の製造方法、および電気電子部品
JP4809935B2 (ja) 低ヤング率を有する銅合金板材およびその製造法
JP5367999B2 (ja) 電子材料用Cu−Ni−Si系合金
JP4937815B2 (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
JP5578827B2 (ja) 高強度銅合金板材およびその製造方法
KR101377316B1 (ko) 전자 재료용 Cu-Co-Si계 구리 합금 및 그 제조 방법
JP4418028B2 (ja) 電子材料用Cu−Ni−Si系合金
JP3962751B2 (ja) 曲げ加工性を備えた電気電子部品用銅合金板
JP5654571B2 (ja) 電子材料用Cu−Ni−Si系合金
JP2009242890A (ja) 電子材料用Cu−Ni−Si−Co系銅合金及びその製造方法
WO2021203629A1 (zh) 一种综合性能优异的铜合金带材及其制备方法
KR101338710B1 (ko) Ni-Si-Co 계 구리 합금 및 그 제조 방법
JP4157899B2 (ja) 曲げ加工性に優れた高強度銅合金板
JP5309271B1 (ja) 銅合金板及び銅合金板の製造方法
JP2017179568A (ja) 銅合金板材および銅合金板材の製造方法
KR20130109209A (ko) 전자 재료용 Cu-Si-Co 계 구리 합금 및 그 제조 방법
JP2021523977A (ja) 曲げ加工性に優れたCu−Co−Si−Fe−P系銅合金及びその製造方法
JP4876225B2 (ja) 曲げ加工性に優れた高強度銅合金板材およびその製造法
JP2007107062A (ja) 電子材料用Cu−Ni−Si系銅合金
CN112048637B (zh) 一种铜合金材料及其制造方法
JP5595961B2 (ja) 電子材料用Cu−Ni−Si系銅合金及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16826980

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15558477

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016826980

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE