WO2017010425A1 - フッ素樹脂及び成形体 - Google Patents

フッ素樹脂及び成形体 Download PDF

Info

Publication number
WO2017010425A1
WO2017010425A1 PCT/JP2016/070288 JP2016070288W WO2017010425A1 WO 2017010425 A1 WO2017010425 A1 WO 2017010425A1 JP 2016070288 W JP2016070288 W JP 2016070288W WO 2017010425 A1 WO2017010425 A1 WO 2017010425A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluororesin
mol
temperature
vinylidene fluoride
group
Prior art date
Application number
PCT/JP2016/070288
Other languages
English (en)
French (fr)
Inventor
一輝 細田
市川 賢治
一暢 内田
裕子 岩松
祐己 桑嶋
早登 津田
利昭 増井
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201680041126.0A priority Critical patent/CN107835824B/zh
Priority to BR112017027404-3A priority patent/BR112017027404B1/pt
Priority to JP2017528658A priority patent/JP6717303B2/ja
Priority to US15/742,943 priority patent/US20180223089A1/en
Priority to AU2016292579A priority patent/AU2016292579A1/en
Priority to EP16824405.1A priority patent/EP3323839B1/en
Publication of WO2017010425A1 publication Critical patent/WO2017010425A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • C08F8/32Introducing nitrogen atoms or nitrogen-containing groups by reaction with amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • E21B17/01Risers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/50Chemical modification of a polymer wherein the polymer is a copolymer and the modification is taking place only on one or more of the monomers present in minority
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material

Definitions

  • the present invention relates to a fluororesin and a molded body.
  • Pipes used in submarine oil fields include risers (crude oil pumping), umbilicals (pipe control and pumps for reducing the viscosity of crude oil, and power cables combined into a single pipe), flow line (Pipe for transporting pumped crude oil to the sea floor).
  • risers crude oil pumping
  • umbilicals pipe control and pumps for reducing the viscosity of crude oil, and power cables combined into a single pipe
  • risers crude oil pumping
  • umbilicals pipe control and pumps for reducing the viscosity of crude oil, and power cables combined into a single pipe
  • flow line Pipe for transporting pumped crude oil to the sea floor.
  • metal-only pipes and metal / resin hybrid pipes are known, but metal
  • Patent Document 1 discloses copolymer units of tetrafluoroethylene, vinylidene fluoride, and ethylenically unsaturated monomers (excluding tetrafluoroethylene and vinylidene fluoride). A fluororesin having a specific storage elastic modulus is described.
  • Oilfield pumping pipes and hydrogen tank resins used in high-temperature and high-pressure environments not only have low permeability, but the gas dissolved in the resin expands when the pressure is reduced rapidly from a high-pressure state. It is desired not to cause swelling or cracking.
  • An object of the present invention is to provide a fluororesin in which blisters and cracks are unlikely to occur even when rapidly depressurized from a high temperature and high pressure state.
  • the present invention relates to a fluororesin containing a vinylidene fluoride unit, wherein the vinylidene fluoride unit is 10.0 to 100 mol% of all monomer units constituting the fluororesin, and is heated at 300 ° C. for 2 hours. It is a fluororesin characterized by a weight reduction rate of 0.1% or less.
  • the fluororesin further contains a tetrafluoroethylene unit, the vinylidene fluoride unit is 10.0 to 70.0 mol% of the total monomer units constituting the fluororesin, and the tetrafluoroethylene unit constitutes the fluororesin
  • the content is preferably 30.0 to 85.0 mol% of all monomer units.
  • the fluororesin further includes a tetrafluoroethylene unit and at least one ethylenically unsaturated monomer unit selected from the group consisting of ethylenically unsaturated monomers represented by the formulas (1) and (2).
  • the vinylidene fluoride unit is 10.0 to 49.9 mol% of the total monomer units constituting the fluororesin
  • the tetrafluoroethylene unit is 50.0 to 85.0 of the total monomer units constituting the fluororesin.
  • the ethylenically unsaturated monomer unit is 0.1 to 5.0 mol% of all monomer units constituting the fluororesin.
  • CX 11 X 12 CX 13 (CX 14 X 15 ) n11 X 16 (Wherein X 11 to X 16 are the same or different and each represents H, F or Cl, and n 11 represents an integer of 0 to 8, except for tetrafluoroethylene and vinylidene fluoride)
  • CX 21 X 22 CX 23 -O (CX 24 X 25 ) n21 X 26 (Wherein X 21 to X 26 are the same or different and represent H, F or Cl, and n 21 represents an integer of 0 to 8)
  • This invention is also a molded object characterized by consisting of the above-mentioned fluororesin.
  • the fluororesin of the present invention Since the fluororesin of the present invention has the above-described configuration, it is difficult for blisters and cracks to occur even when the pressure is rapidly reduced from a high temperature and high pressure state.
  • the molded article of the present invention has the above-described configuration, blisters and cracks are hardly generated even when the pressure is rapidly reduced from a high temperature and high pressure state.
  • the fluororesin of the present invention has a weight reduction rate of 0.1% or less when heated at 300 ° C. for 2 hours.
  • the preferable upper limit of the weight reduction rate is 0.04%, and the lower limit is not particularly limited, but may be 0.001%. Since the fluororesin of the present invention has a small weight reduction rate, it is difficult for blisters and cracks to occur even when rapidly depressurized from a high temperature and high pressure state.
  • the weight reduction rate is determined by the following method.
  • An aluminum cup container (diameter 4 cm, height 3 cm) was heated in an electric furnace heated at 290 ° C. for 5 hours or more and cooled in a desiccator for 30 minutes or more, and then the mass (W0) of this aluminum cup was 0.1 mg. Weigh accurately to the next digit. Thereafter, 5.0000 ⁇ 0.0100 g of fluororesin pellets are put in an aluminum cup, and the total mass (W) is precisely weighed to the order of 0.1 mg. Subsequently, an aluminum cup containing a fluororesin is placed in an electric furnace with a turntable heated to 300 ° C.
  • the fluororesin of the present invention preferably has a weight reduction rate of 10.0% to 0.001% by differential thermal / thermogravimetry (TG-DTA).
  • the preferable upper limit of the weight reduction rate by differential heat / thermogravimetry (TG-DTA) is 8.0%, and the preferable lower limit is 0.1%.
  • the weight reduction rate by differential heat / thermogravimetry can be determined by the following method. Using TG-DTA6200 (manufactured by Hitachi High-Tech Science Co., Ltd.), using fluororesin powder and 10 mg of pellets for measurement, after reaching a predetermined temperature in an air atmosphere, hold for 60 minutes, and after each time (for example, after heating for 30 minutes or The weight loss rate after heating for 60 minutes is determined.
  • the fluororesin of the present invention contains a vinylidene fluoride unit, and the vinylidene fluoride unit is 10.0 to 100 mol% of all monomer units constituting the fluororesin.
  • the vinylidene fluoride unit is preferably 10.0 to 70.0 mol% of all monomer units constituting the fluororesin.
  • the fluororesin preferably further contains a tetrafluoroethylene unit.
  • the vinylidene fluoride unit is 10.0 to 70.0 mol% of all monomer units constituting the fluororesin, and the tetrafluoroethylene unit is 30.0 to 85% of all monomer units constituting the fluororesin. It is preferably 0.0 mol%. More preferably, the vinylidene fluoride unit is 15.0 to 60.0 mol% of all monomer units constituting the fluororesin, and the tetrafluoroethylene unit is 40.0% to all monomer units constituting the fluororesin. 85.0 mol%.
  • the fluororesin further contains a tetrafluoroethylene unit and at least one ethylenically unsaturated monomer unit selected from the group consisting of ethylenically unsaturated monomers represented by formulas (1) and (2). It is preferable.
  • CX 11 X 12 CX 13 (CX 14 X 15 ) n11 X 16 (Wherein X 11 to X 16 are the same or different and each represents H, F or Cl, and n 11 represents an integer of 0 to 8, except for tetrafluoroethylene and vinylidene fluoride)
  • the vinylidene fluoride unit is 10.0 to 49.9 mol% of the total monomer units constituting the fluororesin, and the tetrafluoroethylene
  • the unit is 50.0 to 85.0 mol% of all monomer units constituting the fluororesin, and the ethylenically unsaturated monomer unit is 0.1 to 5.0 mol% of all monomer units constituting the fluororesin.
  • the vinylidene fluoride unit is 25.0 to 49.9 mol% of the total monomer units constituting the fluororesin, and the tetrafluoroethylene unit is 50.0% to the total monomer units of the fluororesin. 70.0 mol%, and the ethylenically unsaturated monomer unit is 0.1 to 5.0 mol% of all monomer units constituting the fluororesin.
  • the fluororesin of the present invention is 55.0-90.0 mol% tetrafluoroethylene, 5.0-44.9 mol% vinylidene fluoride, and 0.1 to 10.0 mol% of an ethylenically unsaturated monomer represented by the formula (1), It is preferable that it is a copolymer containing these copolymer units.
  • the low permeability of the fluororesin is particularly excellent, so that the ethylenically unsaturated monomer represented by the formula (1) is CH 2 ⁇ CH— It is preferably at least one monomer selected from the group consisting of C 4 F 9 , CH 2 ⁇ CH—C 6 F 13 and CH 2 ⁇ CF—C 3 F 6 H. More preferably, the ethylenically unsaturated monomer represented by formula (1) is CH 2 ⁇ CH—C 4 F 9 , CH 2 ⁇ CH—C 6 F 13 and CH 2 ⁇ CF—C 3 F 6 H.
  • the fluororesin of the present invention contains 58.0 to 85.0 mol% tetrafluoroethylene, 10.0-41.9 mol% vinylidene fluoride, and 0.1 to 5.0 mol% of an ethylenically unsaturated monomer represented by the formula (1), A copolymer containing the copolymer unit may be used.
  • the fluororesin of the present invention is 55.0-90.0 mol% tetrafluoroethylene, 9.2-44.2 mol% vinylidene fluoride, and A copolymer containing 0.1 to 0.8 mol% of an ethylenically unsaturated monomer represented by the formula (2) and a copolymer unit is also preferred.
  • the fluororesin of the present invention is 55.0-90.0 mol% tetrafluoroethylene, 5.0-44.8 mol% vinylidene fluoride, 0.1 to 10.0 mol% of an ethylenically unsaturated monomer represented by the formula (1), and 0.1 to 0.8 mol% of an ethylenically unsaturated monomer represented by the formula (2), It is also preferable that it is a copolymer containing these copolymer units.
  • the fluororesin of the present invention is 58.0-85.0 mol% tetrafluoroethylene, 9.5-39.8 mol% vinylidene fluoride, 0.1 to 5.0 mol% of an ethylenically unsaturated monomer represented by the formula (1), and 0.1 to 0.5 mol% of an ethylenically unsaturated monomer represented by the formula (2), A copolymer containing the copolymer unit may be used.
  • the fluororesin of the present invention has high crystallinity compared to a conventionally known copolymer comprising tetrafluoroethylene, vinylidene fluoride and a third component, and Since the storage elastic modulus is high even at 170 ° C., it is excellent in mechanical strength, chemical resistance and low permeability at high temperatures.
  • the low permeability at a high temperature is, for example, low permeability to methane, hydrogen sulfide, CO 2 , methanol, hydrochloric acid and the like.
  • the content of each monomer in the copolymer can be calculated by appropriately combining NMR and elemental analysis depending on the type of monomer.
  • the fluororesin of the present invention preferably has a melt flow rate (MFR) of 0.1 to 100 g / 10 min, more preferably 0.1 to 50 g / 10 min, and 0.1 to 10 g / 10 min. More preferably.
  • MFR melt flow rate
  • the above MFR conforms to ASTM D3307-01 and uses a melt indexer (manufactured by Toyo Seiki Co., Ltd.) at 297 ° C. under a load of 5 kg and the mass of the polymer flowing out from a nozzle having an inner diameter of 2 mm and a length of 8 mm per 10 minutes. (G / 10 minutes).
  • the melting point of the fluororesin of the present invention is preferably 180 ° C. or higher, and the upper limit may be 290 ° C. A more preferred lower limit is 200 ° C and an upper limit is 270 ° C.
  • the melting point is measured by using a differential scanning calorimeter RDC220 (manufactured by Seiko Instruments) according to ASTM D-4591 at a heating rate of 10 ° C./min, and the temperature corresponding to the peak of the endothermic curve obtained is measured. The melting point.
  • the fluororesin of the present invention preferably has a thermal decomposition start temperature (1% mass loss temperature) of 360 ° C. or higher. A more preferred lower limit is 370 ° C. If the said thermal decomposition start temperature is in the said range, an upper limit can be 410 degreeC, for example.
  • the thermal decomposition starting temperature is a temperature at which 1% by mass of the fluororesin used in the heating test decomposes, and the mass of the fluororesin used in the heating test using a differential thermal / thermogravimetric measuring device [TG-DTA] This is a value obtained by measuring the temperature when the mass decreases by 1% by mass.
  • the fluororesin of the present invention preferably has a storage elastic modulus (E ′) at 170 ° C. measured by dynamic viscoelasticity of 60 to 400 MPa. If the storage elastic modulus at a high temperature is too low, the mechanical strength is rapidly reduced and deformation is likely to occur. If it is too high, the resin may be too hard and molding may be difficult.
  • E ′ storage elastic modulus
  • the storage elastic modulus is a value measured at 170 ° C. by dynamic viscoelasticity measurement. More specifically, the storage elastic modulus is 30 mm in length, 5 mm in width, and 0. This is a value obtained by measuring a 25 mm sample under the conditions of a tensile mode, a grip width of 20 mm, a measurement temperature of 25 ° C. to 250 ° C., a temperature increase rate of 2 ° C./min, and a frequency of 1 Hz.
  • a preferable storage elastic modulus (E ′) at 170 ° C. is 80 to 350 MPa, and a more preferable storage elastic modulus (E ′) is 100 to 350 MPa.
  • the measurement sample is prepared by, for example, setting a molding temperature to a temperature 50 to 100 ° C. higher than the melting point of the fluororesin and cutting a film molded to a thickness of 0.25 mm at a pressure of 3 MPa into a length of 30 mm and a width of 5 mm. Can be created.
  • the permeability coefficient P (CO 2 ) of CO 2 (carbon dioxide) at 150 ° C. is 20 ⁇ 10 ⁇ 9 cm 3 ⁇ cm / It is preferable that it is below cm ⁇ 2 > * s * cmHg.
  • the permeability coefficient P (CO 2 ) is more preferably 15 ⁇ 10 ⁇ 9 cm 3 ⁇ cm / cm 2 ⁇ s ⁇ cmHg or less, and further 13 ⁇ 10 ⁇ 9 cm 3 ⁇ cm / cm 2 ⁇ s ⁇ cmHg or less. preferable.
  • the permeability coefficient P (CH 4 ) of CH 4 (methane) at 150 ° C. is 10 ⁇ 10 ⁇ 9 cm 3 ⁇ cm / cm. It is preferable that it is 2 * s * cmHg or less.
  • the transmission coefficient P (CH 4 ) is more preferably 5 ⁇ 10 ⁇ 9 cm 3 ⁇ cm / cm 2 ⁇ s ⁇ cmHg or less, and further preferably 3 ⁇ 10 ⁇ 9 cm 3 ⁇ cm / cm 2 ⁇ s ⁇ cmHg or less. preferable.
  • the ratio D (CO 2 ) / S (CO 2 ) is preferably 3 ⁇ 10 ⁇ 5 Pa ⁇ m 2 / s or more, more preferably 5 ⁇ 10 ⁇ 5 Pa ⁇ m 2 / s or more, and 10 ⁇ 10. It is more preferably ⁇ 5 Pa ⁇ m 2 / s or more.
  • the ratio D (CH 4 ) / S (CH 4 ) is preferably 40 ⁇ 10 ⁇ 5 Pa ⁇ m 2 / s or more, more preferably 45 ⁇ 10 ⁇ 5 Pa ⁇ m 2 / s or more, and 50 ⁇ 10 It is more preferably ⁇ 5 Pa ⁇ m 2 / s or more.
  • the transmission coefficients P (CO 2 ) and P (CH 4 ), the diffusion coefficients D (CO 2 ) and D (CH 4 ), the solubility coefficients S (CO 2 ) and S (CH 4 ) are photoacoustic detection methods. Can be measured. More specifically, measurement can be performed by a photoacoustic detection method using a WaSul-Perm system (manufactured by Hilase) by flowing an N 2 flow on the detection side and a corresponding test gas on the test gas side.
  • the fluororesin of the present invention preferably has a —CONH 2 group at the end of the main chain.
  • -CONH 2 group When -CONH 2 group is present in the main chain terminal, the fluororesin obtained by infrared absorption spectrum analysis in the infrared spectrum, absorption wavelength 3400 ⁇ 3460cm -1 ( ⁇ N- H) to -CONH 2 groups N- A peak derived from H appears. By confirming the presence of this peak, it can be confirmed that a —CONH 2 group is present at the end of the main chain.
  • the —CONH 2 group is a thermally stable end group.
  • the fluororesin preferably has 20 or more —CONH 2 groups per 10 6 main chain carbon atoms at the end of the main chain.
  • the number of —CONH 2 groups is more preferably 30 or more.
  • An upper limit is not specifically limited, 500 or less may be sufficient and it may be 250 or less.
  • the absorbance of a peak appearing at 2900 to 3100 cm ⁇ 1 due to CH 2 groups of the main chain in the obtained infrared absorption spectrum was determined by performing an infrared spectrum analysis on a film having a thickness of 200 ⁇ m.
  • the absorbance A of the peak due to the NH bond of the terminal NH 2 group appearing in the vicinity of 3400 to 3470 cm ⁇ 1 of the spectrum is obtained by calculating to the following formula.
  • Number of —CONH 2 groups per 10 6 main chain carbon atoms 4258 ⁇ A
  • the fluororesin preferably has an amide group (—CONH 2 group) index of 0.005 to 0.050. More preferably, it has an amide group index of 0.010 to 0.045. More preferably, it has an amide group index of 0.015 to 0.040.
  • the amide group (—CONH 2 group) index of the fluororesin can be determined by the following method. Cut pieces of each fluororesin powder (or pellet) are compression-molded at room temperature to form a film having a thickness of 200 ⁇ m ( ⁇ 5 ⁇ m). Infrared spectral analysis of these films is performed. Scan with 128 times using Perkin-Elmer Spectrum Ver3.0, analyze the obtained IR spectrum, and measure the absorbance of the peak. The film thickness is measured with a micrometer. In the obtained infrared absorption spectrum, the absorbance of the peak appearing at 2900 to 3100 cm ⁇ 1 due to the CH 2 group of the main chain is normalized to 1.0. The height of the peak due to the NH bond of the amide group (—CONH 2 ) appearing in the vicinity of 3400 to 3470 cm ⁇ 1 in the spectrum after normalization is taken as the index of the amide group.
  • the fluororesin preferably has a carbonate group index (ROCOO group index) of 0.000 to 0.050. More preferably, it has a carbonate group index of 0.000 to 0.030. More preferably, it has a carbonate group index of 0.000 to 0.020.
  • ROCOO group index carbonate group index
  • the carbonate group (ROCOO group index) of the fluororesin can be determined by the following method. Cut pieces of each fluororesin powder (or pellet) are compression-molded at room temperature to form a film having a thickness of 200 ⁇ m ( ⁇ 5 ⁇ m). Infrared spectral analysis of these films is performed. Scan with 128 times using Perkin-Elmer Spectrum Ver3.0, analyze the obtained IR spectrum, and measure the absorbance of the peak. The film thickness is measured with a micrometer. In the obtained infrared absorption spectrum, the absorbance of the peak appearing at 2900 to 3100 cm ⁇ 1 due to the CH 2 group of the main chain is normalized to 1.0. The height of the peak due to the CO bond of the carbonate group (ROCOO group) appearing in the vicinity of 1780-1830 cm ⁇ 1 of the spectrum after normalization is taken as the index of the carbonate group.
  • the fluororesin preferably has 0 to 40 unstable terminal groups per 10 6 main chain carbon atoms at the end of the main chain.
  • the number of unstable terminal groups is more preferably 0 to 20, and still more preferably 0.
  • the unstable terminal group may be at least one selected from the group consisting of —COF group, —COOH group, —COOCH 3 group, —CF ⁇ CF 2 group, —OH group and ROCOO— group.
  • R in the ROCOO- group is preferably a linear or branched alkyl group, and the alkyl group may have 1 to 15 carbon atoms.
  • the number of the unstable terminal groups was determined by performing infrared spectrum analysis on a film having a thickness of 200 ⁇ m, and measuring the absorbance of a peak appearing at 2900-3100 cm ⁇ 1 due to the CH 2 group of the main chain in the obtained infrared absorption spectrum as 1 0.0, and the absorbance A of the peak due to the unstable terminal group appearing in the spectrum is obtained and calculated by the following formula.
  • the coefficient K is as shown in Table 1.
  • the number of backbone unstable terminal group of 10 6 per carbon K ⁇ A
  • Examples of the method for producing the fluororesin of the present invention include the following methods (1) to (3).
  • the fluororesin is a step of obtaining a polymer by polymerizing vinylidene fluoride in the presence of a polymerization initiator, a step of amidating the polymer obtained by polymerization, a step of washing and drying the amidated polymer, It can be produced by a production method (method (1)) comprising a step of melt-extruding the dried polymer to obtain pellets and a step of heating and degassing the obtained pellets.
  • the amidation treatment can be performed by bringing the polymer obtained by polymerization into contact with aqueous ammonia, ammonia gas, or a nitrogen compound capable of producing ammonia.
  • a —CONH 2 group is generated at the end of the polymer main chain.
  • the polymer By adding ammonia water to the polymer obtained by polymerization, the polymer can be brought into contact with ammonia water.
  • ammonia water one having an ammonia concentration of 0.01 to 28% by mass can be used, and the contact time can be 1 minute to 24 hours.
  • the number of —CONH 2 groups can be adjusted by adjusting the concentration of ammonia water and the contact time.
  • Examples of the method of bringing the polymer into contact with ammonia gas include a method in which the polymer is placed in a reaction vessel and ammonia gas is supplied into the reaction vessel.
  • the supply of ammonia gas into the reaction vessel may be performed after mixing with a gas inert to amidation to form a mixed gas.
  • the gas inert to the amidation is not particularly limited, and examples thereof include nitrogen gas, argon gas, and helium gas.
  • the ammonia gas is preferably 1% by mass or more of the mixed gas, more preferably 10% by mass or more, and may be 80% by mass or less as long as it is within the above range.
  • the amidation treatment is preferably performed at 0 ° C. or more and 100 ° C. or less, more preferably 5 ° C. or more, further preferably 10 ° C. or more, more preferably 90 ° C. or less, and further preferably 80 ° C. or less. It is. If the temperature is too high, the polymer or the like may be decomposed or fused, and if it is too low, the treatment may take a long time, which is not preferable in terms of productivity.
  • the duration of the amidation treatment is usually about 1 minute to 24 hours, although it depends on the amount of polymer.
  • the polymerization of the vinylidene fluoride may be solution polymerization, bulk polymerization, emulsion polymerization, suspension polymerization, etc., but emulsion polymerization or suspension polymerization is preferable from the viewpoint of easy industrial implementation, and suspension polymerization. Is more preferable.
  • an oil-soluble radical polymerization initiator or a water-soluble radical initiator can be used as said polymerization initiator.
  • the oil-soluble radical polymerization initiator may be a known oil-soluble peroxide such as dialkyl peroxydicarbonate, di-n-propylperoxydicarbonate, disec-butylperoxydicarbonate, etc.
  • Peroxycarbonates, peroxyesters such as t-butylperoxyisobutyrate and t-butylperoxypivalate, dialkyl peroxides such as di-t-butylperoxide, and the like are also used as di ( ⁇ -hydro -Dodecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-tetradecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-hexadecafluorononanoyl) peroxide, di (perfluorobutyryl) peroxide, di (Perful Valeryl) Par Xide, di (perfluorohexanoyl) peroxide, di (perfluoroh
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, potassium salts, sodium salts. , T-butyl permalate, t-butyl hydroperoxide and the like.
  • a reducing agent such as sulfites and sulfites may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times that of the peroxide.
  • dialkyl peroxycarbonate is preferable, and at least one selected from the group consisting of diisopropyl peroxydicarbonate, di-n-propyl peroxydicarbonate and disec-butyl peroxydicarbonate. Species are more preferred.
  • a surfactant a chain transfer agent, and a solvent
  • conventionally known ones can be used.
  • a known surfactant can be used.
  • a nonionic surfactant, an anionic surfactant, a cationic surfactant, or the like can be used.
  • fluorine-containing anionic surfactants are preferred, and may contain ether-bonded oxygen (that is, oxygen atoms may be inserted between carbon atoms), or are linear or branched having 4 to 20 carbon atoms.
  • a fluorine-containing anionic surfactant is more preferable.
  • the addition amount (with respect to polymerization water) is preferably 50 to 5000 ppm.
  • Examples of the chain transfer agent include hydrocarbons such as ethane, isopentane, n-hexane, and cyclohexane; aromatics such as toluene and xylene; ketones such as acetone; acetates such as ethyl acetate and butyl acetate; Examples include alcohols such as methanol and ethanol; mercaptans such as methyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, chloroform, methylene chloride, and methyl chloride.
  • the addition amount may vary depending on the size of the chain transfer constant of the compound used, but is usually used in the range of 0.01 to 20% by mass with respect to the polymerization solvent.
  • Examples of the solvent include water, a mixed solvent of water and alcohol, and the like.
  • a fluorine-based solvent may be used in addition to water.
  • the fluorine-based solvent include hydrochlorofluoroalkanes such as CH 3 CClF 2 , CH 3 CCl 2 F, CF 3 CF 2 CCl 2 H, CF 2 ClCF 2 CFHCl; CF 2 ClCFClCF 2 CF 3 , CF 3 CFClCFClCF 3, etc.
  • Perfluoroalkanes such as perfluorocyclobutane, CF 3 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , CF 3 CF 2 CF 2 CF 2 CF 3 , etc. Among them, perfluoroalkanes are preferable.
  • the amount of the fluorine-based solvent used is preferably 10 to 100% by mass with respect to the aqueous medium from the viewpoint of suspendability and economy.
  • the water used for the polymerization solvent is preferably ion-exchanged water, and the electrical conductivity is preferably 10 ⁇ S / cm or less and lower. If the ion content is large, the reaction rate may not be stable. Even in a fluorinated solvent, it is preferable to have a high purity with few components such as an acid and a compound containing a chlorine group contained in the production process. A compound containing an acid content, chlorine, or the like may have chain transfer properties, which is preferable in stabilizing the polymerization rate and molecular weight.
  • a material having a purity of 100% which does not have any chain transfer component in the other raw materials used in the polymerization (monomers such as vinylidene fluoride and tetrafluoroethylene, initiators, chain transfer agents, etc.).
  • monomers such as vinylidene fluoride and tetrafluoroethylene, initiators, chain transfer agents, etc.
  • the reaction rate and adjust the molecular weight by confirming that the oxygen concentration has decreased to a low level and then starting the reaction by reducing the pressure again and adding raw materials such as a fluorinated solvent and monomer.
  • the residual monomer may be polymerized at the stage of recovering the residual monomer after completion of the reaction to generate a low molecular weight product.
  • production of a low molecular weight body becomes a factor which worsens the generation
  • As a suppression method it is desirable to reduce the recovery temperature as much as possible for the purpose of reducing the activity of the remaining initiator. Alternatively, it is effective to add hydroquinone or cyclohexane in order to stop the reaction of the remaining monomer.
  • the polymerization temperature is not particularly limited, and may be 0 to 100 ° C.
  • the polymerization pressure is appropriately determined according to other polymerization conditions such as the type, amount and vapor pressure of the solvent to be used, and the polymerization temperature, but it may usually be 0 to 9.8 MPaG.
  • the washing and drying can be performed by a known method.
  • the temperature during the pelletization step by melt extrusion can be suitably performed in the range of 200 ° C to 350 ° C.
  • a preferable range of the heat deaeration temperature is 160 ° C. or more and 250 ° C. or less.
  • a more preferable range is 170 ° C. or higher and 220 ° C. or lower.
  • a more preferable range is 170 ° C. or higher and 200 ° C. or lower.
  • a preferable heat degassing time is 3 hours or more and 50 hours or less.
  • a more preferable heating deaeration time is 5 hours or more and 20 hours or less.
  • a more preferable range is 8 hours to 15 hours.
  • volatile components attached to the surface of the pellet and contained therein can be removed.
  • Volatile components include initiator residues and HF and polymer degradation products generated during melt extrusion during the pelletization process.
  • decomposed products include oligomers represented by H (CF 2 ) n13 (n 13 is an integer of 4 to 30).
  • Such components may cause problems in long-term stability such as mechanical strength when used in pipes, sheets, packings, etc. that are used for a long time under harsh usage environments such as high temperature and high pressure. Therefore, it is important to remove by heating deaeration.
  • the equipment for heating and degassing is not particularly limited, but an example is given below.
  • a method in which pellets are placed in a SUS bat, placed in a hot-air electric furnace, a method using a perforated mesh with a size that prevents pellets from slipping through the bottom of the bat, and a SUS mesh lid on the bat And a system in which pellets are placed in a cylindrical heat-resistant container such as SUS and hot air whose temperature is controlled vertically are passed to maintain the internal temperature. It is also possible to increase the removal efficiency by changing the temperature once heated once. There is also a method in which what is once pelletized and heated is melted again to repeat the pelletizing step and the heating step.
  • the fluororesin of the present invention comprises a step of obtaining a polymer by polymerizing vinylidene fluoride in the presence of a water-soluble radical polymerization initiator, a step of washing and drying the obtained polymer, a melt-extruding the dried polymer to form pellets It can manufacture also by the manufacturing method (method (2)) including the process of obtaining, and the process of carrying out the heating deaeration of the obtained pellet.
  • the water-soluble radical polymerization initiator may be a known water-soluble peroxide, for example, ammonium salts such as persulfuric acid, perboric acid, perchloric acid, perphosphoric acid, percarbonate, potassium salts, sodium salts , T-butyl permalate, t-butyl hydroperoxide and the like.
  • a reducing agent such as sulfites and sulfites may be used in combination with the peroxide, and the amount used may be 0.1 to 20 times that of the peroxide.
  • Method (1) As a method for polymerizing vinylidene fluoride, the method described in Method (1) can be used in Method (2), except that a water-soluble radical polymerization initiator is used as a polymerization initiator.
  • the method described in the method (1) can also be used in the method (2) for washing, drying, melt extrusion, and heat deaeration of the pellets in the method (2).
  • the fluororesin of the present invention includes a step of obtaining a polymer by polymerizing vinylidene fluoride in the presence of an alkyl peroxy ester or di (fluoroacyl) peroxide, a step of washing and drying the obtained polymer, and a dried polymer. It can also be produced by a production method (method (3)) comprising a step of obtaining a pellet by melt extrusion and a step of heating and degassing the obtained pellet.
  • the alkyl peroxyester is Formula (5): R 1 —O—O—C ( ⁇ O) —R 2 (In the formula, R 1 and R 2 are the same or different and are alkyl groups.) It is preferable that it is represented by these.
  • R 1 and R 2 are preferably alkyl groups having 1 to 15 carbon atoms.
  • alkyl peroxyester t-butyl peroxyisobutyrate or t-butyl peroxypivalate is preferable, and t-butyl peroxypivalate is more preferable.
  • the di (fluoroacyl) peroxide is Formula (6): [HR 3 -COO] 2 (In the formula, R 3 represents a fluoroalkylene group.) It is preferable that it is represented by these.
  • R 3 is preferably a fluoroalkylene group having 1 to 15 carbon atoms.
  • di (fluoroacyl) peroxide examples include di ( ⁇ -hydro-dodecafluoroheptanoyl) peroxide, di ( ⁇ -hydro-tetradecafluoroheptanoyl) peroxide, and di ( ⁇ -hydro-hexadecafluorononano).
  • di (fluoroacyl) peroxide di ( ⁇ -hydro-dodecafluoroheptanoyl) peroxide (also known as di (7H-dodecafluoroheptanoyl) peroxide) is preferable.
  • the method described in the method (1) can be used in the method (3) except that an alkyl peroxy ester or di (fluoroacyl) peroxide is used as a polymerization initiator.
  • the method described in the method (1) can also be used in the method (3) for washing, drying, melt extrusion, and heat deaeration of the pellets in the method (3).
  • the fluororesin of the present invention may be in any form, and may be an aqueous dispersion, powder, pellet or the like, but is preferably a pellet.
  • the fluororesin of the present invention can be molded into various molded products, and the resulting molded products are excellent in mechanical strength and chemical resistance at high temperatures, low permeability at high temperatures, and the like.
  • the molded body is less likely to generate blisters and cracks even when rapidly depressurized from a high temperature and high pressure state.
  • seat, a seal, a gasket, packing, a film, a tank, a roller, a bottle, a container etc. may be sufficient.
  • the molded body made of the fluororesin of the present invention is particularly preferably a pipe. The above-mentioned pipes are less likely to generate blisters and cracks even when rapidly depressurized from a high temperature and high pressure state.
  • the molding method of the fluororesin is not particularly limited, and examples thereof include compression molding, extrusion molding, transfer molding, injection molding, lottery molding, lotining molding, and electrostatic coating.
  • extrusion molding is preferred.
  • a preferable molding temperature is 200 to 350 ° C.
  • a filler In the fluororesin of the present invention, a filler, a plasticizer, a processing aid, a release agent, a pigment, a flame retardant, a lubricant, a light stabilizer, a weather stabilizer, a conductive agent, an antistatic agent, an ultraviolet absorber, and an antioxidant , Foaming agent, fragrance, oil, softening agent, dehydrofluorinating agent and the like may be mixed and then molded.
  • the filler include polytetrafluoroethylene, mica, silica, talc, celite, clay, titanium oxide, and barium sulfate.
  • the conductive agent include carbon black.
  • plasticizer examples include dioctyl phthalic acid and pentaerythritol.
  • processing aids include carnauba wax, sulfone compounds, low molecular weight polyethylene, and fluorine-based aids.
  • dehydrofluorinating agent examples include organic oniums and amidines.
  • the fluororesin of the present invention can be suitably used for pipes for transporting goods from the sea floor to the sea surface in seabed oil fields or gas fields.
  • Pipes used in submarine oil fields include risers (crude oil pumping), umbilicals (pipe control and pumps for reducing the viscosity of crude oil, and power cables combined into a single pipe), flow line (Pipe for transporting pumped crude oil over the sea floor), etc., and their structures are also known as metal-only pipes, metal / resin hybrid pipes, etc. it can.
  • Examples of materials that flow inside the pipe include fluids such as crude oil, petroleum gas, and natural gas.
  • a coating material or lining material for the innermost surface and outermost surface of a fluid transfer metal pipe for crude oil or natural gas, regardless of whether it is underground, on the ground, or on the seabed.
  • the purpose of coating and lining the innermost surface is that crude oil and natural gas contain carbon dioxide and hydrogen sulfide, which cause corrosion of metal pipes. This is to reduce the fluid friction of crude oil of viscosity.
  • the outermost surface is also for suppressing corrosion caused by seawater or acidic water.
  • glass fiber, carbon fiber, aramid resin, mica, silica, talc, celite, clay, titanium oxide Etc. may be filled.
  • Fluid transport members for food production equipment such as food packaging films, lining materials for fluid transfer lines used in food manufacturing processes, packing, sealing materials, sheets; Chemical liquid transfer members such as medicine stoppers, packaging films, lining materials for fluid transfer lines used in chemical manufacturing processes, packing, seal materials, sheets; Internal lining material for chemical tanks and piping in chemical plants and semiconductor factories; Fuel transfer members such as O (square) rings, tubes, packings, valve cores, hoses, seals, etc. used in automobile fuel systems and peripheral devices, hoses, seals, etc. used in automobile AT devices; Car parts such as carburetor flange gaskets, shaft seals, valve stem seals, sealing materials, hoses, etc.
  • Paint and ink components such as paint rolls, hoses, tubes, and ink containers for painting equipment; Tubes for food and drink or tubes for food and drink, hoses, belts, packings, food and drink transfer members such as joints, food packaging materials, glass cooking equipment; Waste liquid transport components such as waste liquid transport tubes and hoses; High temperature liquid transport members such as tubes and hoses for high temperature liquid transport; Steam piping members such as tubes and hoses for steam piping; Anticorrosion tape for piping such as tape wrapped around piping of ship decks; Various coating materials such as an electric wire coating material, an optical fiber coating material, a transparent surface coating material and a back surface agent provided on the light incident side surface of the photovoltaic element of the solar cell; Sliding members such as diaphragm pump diaphragms and various packings; Agricultural film, weatherproof covers such as various roof materials and side walls; Interior materials used in the construction field, glass covering materials such as non-flammable fire safety glass; Lining materials such as laminated steel sheets
  • Examples of the fuel transfer member used in the fuel system of the automobile further include a fuel hose, a filler hose, and an evaporation hose.
  • the fuel transfer member can also be used as a fuel transfer member for fuel containing gasoline additives such as for sour gasoline resistant, alcohol resistant fuel, methyl tertiary butyl ether / amine resistant, etc.
  • the above-mentioned drug stopper / packaging film has excellent chemical resistance against acids and the like.
  • medical solution transfer member can also mention the anticorrosion tape wound around chemical plant piping.
  • Examples of the molded body include a radiator tank, a chemical tank, a bellows, a spacer, a roller, a gasoline tank, a waste liquid transport container, a high temperature liquid transport container, and a fishery / fish farm tank.
  • molded products there are also automobile bumpers, door trims, instrument panels, food processing equipment, cooking equipment, water and oil repellent glass, lighting related equipment, display boards / housings for office automation equipment, electric signs, displays, liquid crystals Examples include members used for displays, mobile phones, printed boards, electrical / electronic components, sundries, trash cans, bathtubs, unit baths, ventilation fans, lighting frames, and the like.
  • a powder coating material made of the above-mentioned fluororesin is also a useful embodiment.
  • the powder coating material may have an average particle size of 10 to 500 ⁇ m.
  • the average particle size can be measured using a laser diffraction particle size distribution analyzer.
  • the weight reduction rate aluminum cup container (diameter 4 cm, height 3 cm) was heated in an electric furnace heated at 290 ° C. for 5 hours or more and cooled in a desiccator for 30 minutes or more. Weighed precisely to the nearest 0.1 mg. Thereafter, 5.0000 ⁇ 0.0100 g of fluororesin pellets were put in an aluminum cup, and the total mass (W) was precisely weighed to the order of 0.1 mg. Subsequently, an aluminum cup containing a fluororesin is placed in an electric furnace with a turntable heated to 300 ° C.
  • Melt flow rate [MFR] MFR is based on ASTM D3307-01 and uses a melt indexer (manufactured by Toyo Seiki Co., Ltd.) at 297 ° C. under a 5 kg load, the mass of the polymer flowing out from a nozzle having an inner diameter of 2 mm and a length of 8 mm per 10 minutes ( g / 10 min) was defined as MFR.
  • Thermal decomposition start temperature (1% mass loss temperature)
  • a fluororesin powder and 10 mg of pellets were used for measurement using a differential thermal / thermogravimetric measuring device TG-DTA 6200 (manufactured by Hitachi High-Tech Science Co., Ltd.). The temperature was raised at 10 ° C./min in an air atmosphere, and the temperature at which the mass of the fluororesin subjected to the heating test decreased by 1 mass% was defined as the thermal decomposition start temperature.
  • the absorbance of the peak due to the NH bond of the amide group (—CONH 2 ) appearing in the vicinity of 3400 to 3470 cm ⁇ 1 of the spectrum is determined.
  • the baseline is automatically determined, and the peak height A is obtained as the peak absorbance.
  • amide group (-CONH 2 group index) of fluororesin A cut piece of each powder (or pellet) of fluororesin was compression molded at room temperature to prepare a film having a thickness of 200 ⁇ m ( ⁇ 5 ⁇ m). Infrared spectral analysis of these films was performed. The obtained IR spectrum was analyzed by scanning 128 times using Perkin-Elmer Spectrum Ver3.0, and the absorbance of the peak was measured. The film thickness was measured with a micrometer. In the obtained infrared absorption spectrum, the absorbance of the peak appearing at 2900 to 3100 cm ⁇ 1 due to the CH 2 group of the main chain was normalized to 1.0. The height of the peak due to the NH bond of the amide group (—CONH 2 ) appearing in the vicinity of 3400 to 3470 cm ⁇ 1 of the spectrum after normalization was taken as the index of the amide group.
  • TG-DTA Weight reduction rate by differential thermal / thermogravimetry
  • TG-DTA 6200 manufactured by Hitachi High-Tech Science Co., Ltd.
  • 10 mg of fluororesin powder and pellets were used for the measurement.
  • the temperature was maintained for 60 minutes, and the weight loss rate at each time was determined.
  • Example preparation method for RGD test Extrusion molding was performed using the obtained pellets as raw materials to produce a pipe sample having an outer diameter of 90 mm and a thickness of 6 mm, and cutting to 2.5 cm ⁇ 5 cm to obtain an RGD test sample.
  • Example 1 Distilled water 900 L was charged into a 3000 L autoclave and sufficiently purged with nitrogen. Then, 674 kg of perfluorocyclobutane was charged, and the temperature in the system was maintained at 35 ° C. and a stirring speed of 200 rpm. Subsequently, 207 g of CH 2 ⁇ CHCF 2 CF 2 CF 2 CF 2 CF 2 CF 3, 62.0 kg of tetrafluoroethylene (TFE) and 18.1 kg of vinylidene fluoride (VDF) were sequentially charged, and then the polymerization initiator di-n Polymerization was initiated by adding 2.24 kg of a 50 mass% methanol solution of propylperoxydicarbonate [NPP].
  • TFE tetrafluoroethylene
  • VDF vinylidene fluoride
  • melt extrusion was performed at a cylinder temperature of 290 ° C. using a ⁇ 50 mm single screw extruder to obtain pellets. Subsequently, the obtained pellet was heated and deaerated at 170 ° C. for 10 hours.
  • the obtained pellets had the following composition and physical properties.
  • Number of amide groups per 10 6 carbon atoms 97 Index of amide groups: 0.023 Carbonate group index: 0.008 Weight reduction rate when heated at 300 ° C. for 2 hours: 0.033% Weight reduction rate by TG-DTA measurement when heated at 330 ° C for 30 minutes: 0.7% Weight reduction by TG-DTA measurement when heated at 330 ° C for 60 minutes: 5.5%
  • Example 2 In the step of contacting with aqueous ammonia in Example 1, it was brought into contact with 0.8% by mass of aqueous ammonia at 80 ° C. for 5 hours and treated in the same manner as in Example 1 below.
  • the obtained pellets had the following composition and physical properties.
  • NPP di-n-propyl peroxydicarbonate
  • TFE / VDF mixed gas monomer (TFE / VDF: 57.6.0 / 42.4 (mol%)) is charged and added to 100 parts of the mixed gas.
  • CH 2 CFCF 2 CF 2 CF 2 H was simultaneously charged so as to be 0.5 part, and the system internal pressure was kept at 0.8 MPa.
  • the polymerization was stopped when the added amount of the mixed gas monomer finally reached 25.0 kg, and the obtained TFE / VDF / CH 2 ⁇ CFCF 2 CF 2 CF 2 H copolymer was 0.8% by mass. After contacting with aqueous ammonia at 80 ° C. for 5 hours, it was washed with water and dried to obtain 24.2 kg of powder.
  • melt extrusion was performed at a cylinder temperature of 290 ° C. using a ⁇ 50 mm single screw extruder to obtain pellets. Subsequently, the obtained pellet was heated and deaerated at 170 ° C. for 10 hours.
  • Comparative Example 1 The copolymer obtained by the polymerization in Example 1 was not treated with ammonia, and the heating and degassing conditions were changed to 150 ° C. for 12 hours.
  • Example 5 In the step of contacting with ammonia water in Example 1, 0.4% by mass of ammonia water was brought into contact at 80 ° C. for 5 hours and treated in the same manner as in Example 1 below.
  • the obtained pellets had the following composition and physical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

高温高圧状態から急速に減圧してもブリスター及びクラックが発生しにくいフッ素樹脂を提供する。ビニリデンフルオライド単位を含むフッ素樹脂であって、ビニリデンフルオライド単位が上記フッ素樹脂を構成する全モノマー単位の10.0~100モル%であり、300℃で2時間加熱した際の重量減少率が0.1%以下であることを特徴とするフッ素樹脂である。

Description

フッ素樹脂及び成形体
本発明は、フッ素樹脂及び成形体に関する。
海底油田で使用されるパイプには、ライザー(原油汲み上げ)、ウンビリカル(汲み上げのコントロール用で原油粘度低下用の薬液の仕込み用の配管やパワーケーブル等を一つのパイプにまとめたもの)、フローライン(汲み上げた原油を海底に這わせて移送する配管)等がある。いずれも構造は一様でなく、金属のみの配管、金属/樹脂ハイブリッドの配管等が知られているが、軽量化のために金属のみの配管は減少の傾向にあり、金属/樹脂ハイブリッドが主流になってきている。更に大深度化により汲み上げ原油温度が上昇しているため、使用される樹脂には高温下での機械的強度及び耐薬品性(高温の原油に対する耐性、原油に含まれる硫化水素等の酸性ガスに対する高温での耐性、原油粘度を低下させるためにインジェクションされるメタノールやCO、塩化水素等の薬液に対する高温での耐性)、高温下での低透過性が求められるようになった。従って、現在パイプに使用されているポリアミド(使用可能温度90℃まで)、ポリビニリデンフルオライド(使用可能温度130℃まで)にかわる材料が求められている。
ライザー配管に好適な材料として、特許文献1には、テトラフルオロエチレン、ビニリデンフルオライド、及び、エチレン性不飽和単量体(但し、テトラフルオロエチレン及びビニリデンフルオライドを除く。)の共重合単位を含む共重合体であり、特定の貯蔵弾性率を有するフッ素樹脂が記載されている。
国際公開第2010/110129号
高温高圧環境下において使用される油田汲み上げ用配管や水素タンク用樹脂には、低透過性だけでなく、高圧状態から急速に圧力を低下させた場合に、樹脂中に溶解したガスが膨張して、膨れや割れ等を起こさないことが望まれている。
本発明は、上記現状に鑑み、高温高圧状態から急速に減圧してもブリスター及びクラックが発生しにくいフッ素樹脂を提供することを目的とする。
本発明は、ビニリデンフルオライド単位を含むフッ素樹脂であって、ビニリデンフルオライド単位が上記フッ素樹脂を構成する全モノマー単位の10.0~100モル%であり、300℃で2時間加熱した際の重量減少率が0.1%以下であることを特徴とするフッ素樹脂である。
上記フッ素樹脂は、更にテトラフルオロエチレン単位を含み、ビニリデンフルオライド単位が上記フッ素樹脂を構成する全モノマー単位の10.0~70.0モル%であり、テトラフルオロエチレン単位が上記フッ素樹脂を構成する全モノマー単位の30.0~85.0モル%であることが好ましい。
上記フッ素樹脂は、更にテトラフルオロエチレン単位、並びに、式(1)及び式(2)で表されるエチレン性不飽和モノマーからなる群より選択される少なくとも1種のエチレン性不飽和モノマー単位を含み、ビニリデンフルオライド単位が上記フッ素樹脂を構成する全モノマー単位の10.0~49.9モル%であり、テトラフルオロエチレン単位が上記フッ素樹脂を構成する全モノマー単位の50.0~85.0モル%であり、エチレン性不飽和モノマー単位が上記フッ素樹脂を構成する全モノマー単位の0.1~5.0モル%であることが好ましい。
式(1): CX1112=CX13(CX1415n1116
(式中、X11~X16は同一または異なってH、F又はClを表し、n11は0~8の整数を表す。但し、テトラフルオロエチレン及びビニリデンフルオライドを除く。)
式(2): CX2122=CX23-O(CX2425n2126
(式中、X21~X26は同一または異なってH、F又はClを表し、n21は0~8の整数を表す。)
本発明は、上述のフッ素樹脂からなることを特徴とする成形体でもある。
本発明のフッ素樹脂は、上記構成を有することから、高温高圧状態から急速に減圧してもブリスター及びクラックが発生しにくい。
本発明の成形体は、上記構成を有することから、高温高圧状態から急速に減圧してもブリスター及びクラックが発生しにくい。
以下、本発明を具体的に説明する。
本発明のフッ素樹脂は、300℃で2時間加熱した際の重量減少率が0.1%以下である。上記重量減少率の好ましい上限は0.04%であり、下限は特に限定されないが、0.001%であってよい。本発明のフッ素樹脂は、重量減少率が小さいことから、高温高圧状態から急速に減圧してもブリスター及びクラックが発生しにくい。
上記重量減少率は、次の方法により求める。
アルミカップ容器(直径4cm、高さ3cm)を290℃で昇温した電気炉で5時間以上加熱し、30分以上デシケータ内で冷却させた後、このアルミカップの質量(W0)を0.1mgの桁まで精秤する。その後フッ素樹脂ペレット5.0000±0.0100gをアルミカップに入れ、合計の質量(W)を0.1mgの桁まで精秤する。続いて300℃に昇温したターンテーブル付電気炉(高温度送風定温乾燥器FV450特型ターンテーブル付(東洋製作所社製))にフッ素樹脂入りアルミカップを入れて、15rpmで回転させながら300℃で2時間加熱した。加熱後のフッ素樹脂入りアルミカップをデシケータ内で1時間放置後、フッ素樹脂とアルミカップの合計質量(W1)を0.1mgの桁まで精秤して、次式から重量減少率を算出する。
重量減少率(%):(W-W1)/(W-W0)×100
また、本発明のフッ素樹脂は、示差熱・熱重量測定(TG-DTA)による重量減少率が10.0%~0.001%であることが好ましい。示差熱・熱重量測定(TG-DTA)による重量減少率の好ましい上限は8.0%であり、好ましい下限は0.1%である。
示差熱・熱重量測定(TG-DTA)による重量減少率は、以下の方法により求めることができる。TG-DTA6200(日立ハイテクサイエンス社製)を用い、フッ素樹脂粉末およびペレット10mgを測定に用いて、空気雰囲気化で、所定温度に到達後、60分間保持し、各時間(例えば30分加熱後又は60分加熱後)での重量減少率を求める。
本発明のフッ素樹脂は、ビニリデンフルオライド単位を含み、ビニリデンフルオライド単位が上記フッ素樹脂を構成する全モノマー単位の10.0~100モル%である。ビニリデンフルオライド単位は、上記フッ素樹脂を構成する全モノマー単位の10.0~70.0モル%であることが好ましい。
上記フッ素樹脂は、更にテトラフルオロエチレン単位を含むことが好ましい。この場合、ビニリデンフルオライド単位が上記フッ素樹脂を構成する全モノマー単位の10.0~70.0モル%であり、テトラフルオロエチレン単位が上記フッ素樹脂を構成する全モノマー単位の30.0~85.0モル%であることが好ましい。より好ましくは、ビニリデンフルオライド単位が上記フッ素樹脂を構成する全モノマー単位の15.0~60.0モル%であり、テトラフルオロエチレン単位が上記フッ素樹脂を構成する全モノマー単位の40.0~85.0モル%である。
上記フッ素樹脂は、更にテトラフルオロエチレン単位、並びに、式(1)及び式(2)で表されるエチレン性不飽和モノマーからなる群より選択される少なくとも1種のエチレン性不飽和モノマー単位を含むことが好ましい。
式(1): CX1112=CX13(CX1415n1116
(式中、X11~X16は同一または異なってH、F又はClを表し、n11は0~8の整数を表す。但し、テトラフルオロエチレン及びビニリデンフルオライドを除く。)
式(2): CX2122=CX23-O(CX2425n2126
(式中、X21~X26は同一または異なってH、F又はClを表し、n21は0~8の整数を表す。)
式(1)で表されるエチレン性不飽和単量体としては、CF=CFCl、CF=CFCF、下記式(3):
CH=CF-(CFn1116   (3)
(式中、X16及びn11は上記と同じ。)、及び、下記式(4):
CH=CH-(CFn1116   (4)
(式中、X16及びn11は上記と同じ。)
からなる群より選択される少なくとも1種であることが好ましく、CF=CFCl、CH=CFCF、CH=CH-C、CH=CH-C13、CH=CF-CH及びCF=CFCFからなる群より選択される少なくとも1種であることがより好ましく、CF=CFCl、CH=CH-C13、CH=CF-CH及びCH=CFCFから選択される少なくとも1種であることが更に好ましい。
式(2)で表されるエチレン性不飽和単量体としては、CF=CF-OCF、CF=CF-OCFCF及びCF=CF-OCFCFCFからなる群より選択される少なくとも1種であることが好ましい。
上記フッ素樹脂が更にテトラフルオロエチレン単位及び上記エチレン性不飽和モノマーを有する場合、ビニリデンフルオライド単位が上記フッ素樹脂を構成する全モノマー単位の10.0~49.9モル%であり、テトラフルオロエチレン単位が上記フッ素樹脂を構成する全モノマー単位の50.0~85.0モル%であり、エチレン性不飽和モノマー単位が上記フッ素樹脂を構成する全モノマー単位の0.1~5.0モル%であることが好ましい。より好ましくは、ビニリデンフルオライド単位が上記フッ素樹脂を構成する全モノマー単位の25.0~49.9モル%であり、テトラフルオロエチレン単位が上記フッ素樹脂を構成する全モノマー単位の50.0~70.0モル%であり、エチレン性不飽和モノマー単位が上記フッ素樹脂を構成する全モノマー単位の0.1~5.0モル%である。
本発明のフッ素樹脂は、
55.0~90.0モル%のテトラフルオロエチレン、
5.0~44.9モル%のビニリデンフルオライド、及び、
0.1~10.0モル%の式(1)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であることが好ましい。
より好ましくは、
55.0~85.0モル%のテトラフルオロエチレン、
10.0~44.9モル%のビニリデンフルオライド、及び、
0.1~5.0モル%の式(1)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体である。
さらに好ましくは、
55.0~85.0モル%のテトラフルオロエチレン、
13.0~44.9モル%のビニリデンフルオライド、及び、
0.1~2.0モル%の式(1)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体である。
フッ素樹脂の高温での機械的強度を向上させる観点に加えて、フッ素樹脂の低透過性が特に優れることから、式(1)で表されるエチレン性不飽和単量体がCH=CH-C、CH=CH-C13及びCH=CF-CHからなる群より選択される少なくとも1種の単量体であることが好ましい。より好ましくは、式(1)で表されるエチレン性不飽和単量体がCH=CH-C、CH=CH-C13及びCH=CF-CHからなる群より選択される少なくとも1種の単量体であり、かつ、フッ素樹脂が、
55.0~80.0モル%のテトラフルオロエチレン、
19.5~44.9モル%のビニリデンフルオライド、及び、
0.1~0.6モル%の式(1)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であることである。
本発明のフッ素樹脂は、58.0~85.0モル%のテトラフルオロエチレン、
10.0~41.9モル%のビニリデンフルオライド、及び、
0.1~5.0モル%の式(1)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であってもよい。
本発明のフッ素樹脂は、
55.0~90.0モル%のテトラフルオロエチレン、
9.2~44.2モル%のビニリデンフルオライド、及び、
0.1~0.8モル%の式(2)で表されるエチレン性不飽和単量体、の共重合単位を含む共重合体であることも好ましい。
より好ましくは、
58.0~85.0モル%のテトラフルオロエチレン、
14.5~39.9モル%のビニリデンフルオライド、及び、
0.1~0.5モル%の式(2)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体である。
本発明のフッ素樹脂は、
55.0~90.0モル%のテトラフルオロエチレン、
5.0~44.8モル%のビニリデンフルオライド、
0.1~10.0モル%の式(1)で表されるエチレン性不飽和単量体、及び、
0.1~0.8モル%の式(2)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であることも好ましい。
より好ましくは、
55.0~85.0モル%のテトラフルオロエチレン、
9.5~44.8モル%のビニリデンフルオライド、
0.1~5.0モル%の式(1)で表されるエチレン性不飽和単量体、及び、
0.1~0.5モル%の式(2)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体である。
さらに好ましくは
55.0~80.0モル%のテトラフルオロエチレン、
19.8~44.8モル%のビニリデンフルオライド、
0.1~2.0モル%の式(1)で表されるエチレン性不飽和単量体、及び、
0.1~0.3モル%の式(2)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体である。本発明のフッ素樹脂がこの組成を有する場合、低透過性に特に優れる。
本発明のフッ素樹脂は、
58.0~85.0モル%のテトラフルオロエチレン、
9.5~39.8モル%のビニリデンフルオライド、
0.1~5.0モル%の式(1)で表されるエチレン性不飽和単量体、及び、
0.1~0.5モル%の式(2)で表されるエチレン性不飽和単量体、
の共重合単位を含む共重合体であってもよい。
本発明のフッ素樹脂は、各単量体の含有量が上述の範囲内にあると、テトラフルオロエチレン、ビニリデンフルオライド及び第3成分からなる従来公知の共重合体と比べて結晶性が高くかつ170℃でも貯蔵弾性率が高いので、高温での機械的強度、耐薬品性及び低透過性に優れる。高温での低透過性とは、例えばメタン、硫化水素、CO、メタノール、塩酸等に対する低透過性である。
共重合体の各単量体の含有量は、NMR、元素分析を単量体の種類によって適宜組み合わせることで単量体単位の含有量を算出できる。
本発明のフッ素樹脂は、メルトフローレート(MFR)が0.1~100g/10minであることが好ましく、0.1~50g/10minであることがより好ましく、0.1~10g/10minであることが更に好ましい。
上記MFRは、ASTM D3307-01に準拠し、メルトインデクサー(東洋精機社製)を用いて、297℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)である。
本発明のフッ素樹脂は、融点が180℃以上であることが好ましく、上限は290℃であってよい。より好ましい下限は200℃であり、上限は270℃である。
上記融点は、示差走査熱量計RDC220(Seiko Instruments社製)を用い、ASTM D-4591に準拠して、昇温速度10℃/分にて熱測定を行い、得られる吸熱曲線のピークにあたる温度を融点とする。
本発明のフッ素樹脂は、熱分解開始温度(1%質量減温度)が360℃以上であるものが好ましい。より好ましい下限は370℃である。上記熱分解開始温度は、上記範囲内であれば、上限を例えば410℃とすることができる。
上記熱分解開始温度は、加熱試験に供したフッ素樹脂の1質量%が分解する温度であり、示差熱・熱重量測定装置〔TG-DTA〕を用いて加熱試験に供したフッ素樹脂の質量が1質量%減少する時の温度を測定することにより得られる値である。
本発明のフッ素樹脂は、動的粘弾性測定による170℃における貯蔵弾性率(E’)が60~400MPaであることが好ましい。高温での貯蔵弾性率が低すぎると機械的強度が急激に小さくなり変形しやすくなる。高すぎると樹脂が硬すぎて成形が困難になるおそれがある。
上記貯蔵弾性率は、動的粘弾性測定により170℃で測定する値であり、より具体的には、アイティ-計測制御社製動的粘弾性装置DVA220で長さ30mm、巾5mm、厚み0.25mmのサンプルを引張モード、つかみ巾20mm、測定温度25℃から250℃、昇温速度2℃/min、周波数1Hzの条件で測定する値である。170℃における好ましい貯蔵弾性率(E’)は80~350MPaであり、より好ましい貯蔵弾性率(E’)は100~350MPaである。
測定サンプルは、例えば、成形温度をフッ素樹脂の融点より50~100℃高い温度に設定し、3MPaの圧力で厚さ0.25mmに成形したフィルムを、長さ30mm、巾5mmにカットすることで作成することができる。
本発明のフッ素樹脂は、高温環境下でのCOのバリア性に優れることから、150℃におけるCO(二酸化炭素)の透過係数P(CO)が20×10-9cm・cm/cm・s・cmHg以下であることが好ましい。上記透過係数P(CO)は、15×10-9cm・cm/cm・s・cmHg以下がより好ましく、13×10-9cm・cm/cm・s・cmHg以下が更に好ましい。
本発明のフッ素樹脂は、高温環境下でのCHのバリア性に優れることから、150℃におけるCH(メタン)の透過係数P(CH)が10×10-9cm・cm/cm・s・cmHg以下であることが好ましい。上記透過係数P(CH)は、5×10-9cm・cm/cm・s・cmHg以下がより好ましく、3×10-9cm・cm/cm・s・cmHg以下が更に好ましい。
本発明のフッ素樹脂は、肉厚であっても、高温・高圧環境下での耐ブリスター性に優れることから、150℃におけるCOの拡散係数D(CO)と溶解係数S(CO)との比D(CO)/S(CO)は、3×10-5Pa・m/s以上が好ましく、5×10-5Pa・m/s以上がより好ましく、10×10-5Pa・m/s以上が更に好ましい。
本発明のフッ素樹脂は、肉厚であっても、高温・高圧環境下での耐ブリスター性に優れることから、150℃におけるCHの拡散係数D(CH)と溶解係数S(CH)との比D(CH)/S(CH)は、40×10-5Pa・m/s以上が好ましく、45×10-5Pa・m/s以上がより好ましく、50×10-5Pa・m/s以上が更に好ましい。
上記透過係数P(CO)及びP(CH)、上記拡散係数D(CO)及びD(CH)、上記溶解係数S(CO)及びS(CH)は、光音響検出法により測定することができる。より詳細には、WaSul-Perm system(Hilase社製)を用いて、検出側はNフロー、テストガス側は該当するテストガスをフローすることにより光音響検出法により測定することができる。
本発明のフッ素樹脂は、主鎖末端に-CONH基を有していることが好ましい。主鎖末端に-CONH基が存在すると、赤外吸収スペクトル分析により得られる上記フッ素樹脂の赤外スペクトルにおいて、吸収波長3400~3460cm-1(νN-H)に-CONH基のN-H由来のピークが現れる。このピークの存在を確認することにより、主鎖末端に-CONH基が存在することを確認できる。-CONH基は、熱的に安定な末端基である。
上記フッ素樹脂は、主鎖末端に、主鎖炭素数10個あたり20個以上の-CONH基を有していることが好ましい。-CONH基の個数は、30個以上であることがより好ましい。上限は特に限定されず、500個以下であってよく、250個以下であってよい。
-CONH基の個数は、厚さ200μmのフィルムについて赤外スペクトル分析を行い、得られた赤外線吸収スペクトルにおける主鎖のCH基に起因する2900~3100cm-1に現れるピークの吸光度を1.0に規格化し、そのスペクトルの3400~3470cm-1付近に現れる末端NH基のNH結合に起因するピークの吸光度Aを求め、次式により算出する。
主鎖炭素数10個当たりの-CONH基の個数=4258×A
また、上記フッ素樹脂は、0.005~0.050のアミド基(-CONH基)指数を有していることが好ましい。より好ましくは0.010~0.045のアミド基指数を有していることが好ましい。さらに好ましくは0.015~0.040のアミド基指数を有していることが好ましい。
上記フッ素樹脂のアミド基(-CONH基)指数は、以下の方法により求めることができる。フッ素樹脂の各粉末(またはペレット)の切断片を室温で圧縮成形し、厚さ200μm(±5μm)のフィルムを作成する。これらのフィルムの赤外スペクトル分析を行う。Perkin-Elmer SpectrumVer3.0を用いて128回スキャンして、得られたIRスペクトルを解析し、ピークの吸光度を測定する。また、フィルムの厚さはマイクロメーターにて測定する。得られた赤外線吸収スペクトルにおける主鎖のCH基に起因する2900~3100cm-1に現れるピークの吸光度を1.0に規格化する。規格化後のスペクトルの3400~3470cm-1付近に現れるアミド基(-CONH)のNH結合に起因するピークの高さをアミド基の指数とする。
上記フッ素樹脂は、0.000~0.050のカーボネート基指数(ROCOO基指数)を有していることが好ましい。より好ましくは0.000~0.030のカーボネート基指数を有していることが好ましい。さらに好ましくは0.000~0.020のカーボネート基指数を有していることが好ましい。
フッ素樹脂のカーボネート基(ROCOO基指数)は、以下の方法により求めることができる。フッ素樹脂の各粉末(またはペレット)の切断片を室温で圧縮成形し、厚さ200μm(±5μm)のフィルムを作成する。これらのフィルムの赤外スペクトル分析を行う。Perkin-Elmer SpectrumVer3.0を用いて128回スキャンして、得られたIRスペクトルを解析し、ピークの吸光度を測定する。また、フィルムの厚さはマイクロメーターにて測定する。得られた赤外線吸収スペクトルにおける主鎖のCH基に起因する2900~3100cm-1に現れるピークの吸光度を1.0に規格化する。規格化後のスペクトルの1780-1830cm-1付近に現れるカーボネート基(ROCOO基)のCO結合に起因するピークの高さをカーボネート基の指数とする。
上記フッ素樹脂は、主鎖末端に、主鎖炭素数10個あたり0~40個の不安定末端基を有していることが好ましい。上記不安定末端基の個数は、0~20個であることがより好ましく、0個であることが更に好ましい。
上記不安定末端基は、-COF基、-COOH基、-COOCH基、-CF=CF基、-OH基及びROCOO-基からなる群より選択される少なくとも1種であってよい。ROCOO-基のRは、直鎖又は分岐のアルキル基であることが好ましく、上記アルキル基は炭素数が1~15であってよい。
上記不安定末端基の個数は、厚さ200μmのフィルムについて赤外スペクトル分析を行い、得られた赤外線吸収スペクトルにおける主鎖のCH基に起因する2900~3100cm-1に現れるピークの吸光度を1.0に規格化し、そのスペクトルに現れる不安定末端基に起因するピークの吸光度Aを求め、次式により算出する。係数Kは表1に示すとおりである。
主鎖炭素数10個当たりの不安定末端基の個数=K×A
Figure JPOXMLDOC01-appb-T000001
本発明のフッ素樹脂の製造方法として、次の方法(1)~(3)が例示できる。
上記フッ素樹脂は、重合開始剤の存在下にビニリデンフルオライドを重合することによりポリマーを得る工程、重合により得られたポリマーをアミド化処理する工程、アミド化処理したポリマーを洗浄及び乾燥する工程、乾燥したポリマーを溶融押出してペレットを得る工程、並びに、得られたペレットを加熱脱気する工程を含む製造方法(方法(1))により製造できる。
上記アミド化処理は、重合により得られたポリマーを、アンモニア水、アンモニアガス又はアンモニアを生成しうる窒素化合物と接触させることにより行うことができる。上記アミド化処理により、ポリマー主鎖末端に-CONH基が生成する。
重合により得られたポリマーにアンモニア水を添加することにより、ポリマーをアンモニア水と接触させることができる。上記アンモニア水としては、アンモニアの濃度が0.01~28質量%であるものを使用することができ、接触時間は1分~24時間であってよい。アンモニア水の濃度及び接触時間を調整することにより、-CONH基の個数を調整することができる。
ポリマーをアンモニアガスと接触させる方法としては、反応容器内にポリマーを設置し、アンモニアガスを反応容器内に供給する方法が挙げられる。反応容器内へのアンモニアガスの供給は、アミド化に不活性な気体と混合して混合ガスとしてから行ってもよい。
上記アミド化に不活性な気体としては特に限定されず、例えば、窒素ガス、アルゴンガス、ヘリウムガス等が挙げられる。上記アンモニアガスは、混合ガスの1質量%以上であることが好ましく、10質量%以上であることがより好ましく、上記範囲内であれば、80質量%以下であってもよい。
上記アミド化処理は、0℃以上、100℃以下で行うことが好ましく、より好ましくは5℃以上、更に好ましくは10℃以上であり、また、より好ましくは90℃以下、更に好ましくは80℃以下である。温度が高すぎるとポリマー等が分解したり、融着したりするおそれがあり、低すぎると処理に長時間を要する場合があり、生産性の点で好ましくない。
上記アミド化処理の時間は、ポリマーの量にもよるが、通常、1分~24時間程度である。
上記ビニリデンフルオライドの重合は、溶液重合、塊状重合、乳化重合、懸濁重合等であってよいが、工業的に実施が容易である点で、乳化重合又は懸濁重合が好ましく、懸濁重合がより好ましい。
上記重合開始剤としては、油溶性ラジカル重合開始剤、または水溶性ラジカル開始剤を使用できる。
油溶性ラジカル重合開始剤としては、公知の油溶性の過酸化物であってよく、たとえばジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート、ジsec-ブチルパーオキシジカーボネートなどのジアルキルパーオキシカーボネート類、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシピバレートなどのパーオキシエステル類、ジt-ブチルパーオキサイドなどのジアルキルパーオキサイド類などが、また、ジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルバレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロドトリアコンタフルオロドコサノイル)パーオキサイドのジ[パーフロロ(またはフルオロクロロ)アシル]パーオキサイド類などが代表的なものとして挙げられる。
水溶性ラジカル重合開始剤としては、公知の水溶性過酸化物であってよく、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトリウム塩、t-ブチルパーマレート、t-ブチルハイドロパーオキサイドなどがあげられる。サルファイト類、亜硫酸塩類のような還元剤を過酸化物に組み合わせて使用してもよく、その使用量は過酸化物に対して0.1~20倍であってよい。
上記重合開始剤としては、なかでも、ジアルキルパーオキシカーボネートが好ましく、ジイソプロピルパーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネート及びジsec-ブチルパーオキシジカーボネートからなる群より選択される少なくとも1種がより好ましい。
上記の重合においては、界面活性剤、連鎖移動剤、及び、溶媒を使用することができ、それぞれ従来公知のものを使用することができる。
上記界面活性剤としては、公知の界面活性剤が使用でき、例えば、非イオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤などが使用できる。なかでも、含フッ素アニオン性界面活性剤が好ましく、エーテル結合性酸素を含んでもよい(すなわち、炭素原子間に酸素原子が挿入されていてもよい)、炭素数4~20の直鎖又は分岐した含フッ素アニオン性界面活性剤がより好ましい。添加量(対重合水)は、好ましくは50~5000ppmである。
上記連鎖移動剤としては、例えば、エタン、イソペンタン、n-ヘキサン、シクロヘキサンなどの炭化水素類;トルエン、キシレンなどの芳香族類;アセトンなどのケトン類;酢酸エチル、酢酸ブチルなどの酢酸エステル類;メタノール、エタノールなどのアルコール類;メチルメルカプタンなどのメルカプタン類;四塩化炭素、クロロホルム、塩化メチレン、塩化メチル等のハロゲン化炭化水素などがあげられる。添加量は用いる化合物の連鎖移動定数の大きさにより変わりうるが、通常重合溶媒に対して0.01~20質量%の範囲で使用される。
上記溶媒としては、水、水とアルコールとの混合溶媒等が挙げられる。
上記懸濁重合では、水に加えて、フッ素系溶媒を使用してもよい。フッ素系溶媒としては、CHCClF、CHCClF、CFCFCClH、CFClCFCFHCl等のハイドロクロロフルオロアルカン類;CFClCFClCFCF、CFCFClCFClCF等のクロロフルオロアルカン類;パーフルオロシクロブタン、CFCFCFCF、CFCFCFCFCF、CFCFCFCFCFCF等のパーフルオロアルカン類等が挙げられ、なかでも、パーフルオロアルカン類が好ましい。フッ素系溶媒の使用量は、懸濁性及び経済性の面から、水性媒体に対して10~100質量%が好ましい。
また、重合溶媒に使用される水はイオン交換水を使用することが好ましく、その電気伝導度は10μS/cm以下で低いものほど好ましい。イオン分が多いと反応速度が安定しない場合がある。フッ素系溶媒においても製造工程において含まれる酸や塩素基を含有する化合物などの成分が極力少ない高純度の方が好ましい。酸分や塩素などを含有する化合物は連鎖移動性を有する場合があるので、重合速度や分子量を安定させるうえで好ましい。更に、重合で使用するその他原料(フッ化ビニリデンやテトラフルオロエチレンなどのモノマー、開始剤、連鎖移動剤など)においても同様に連鎖移動性の成分がない純度100%の物を使用することが好ましい。反応の準備段階では、水を仕込んだ状態後、槽内を撹拌しながら気密試験を行った後、槽内を減圧、窒素微加圧、減圧を繰り返し、槽内の酸素濃度を1000ppm以下のできるだけ小さい酸素濃度まで下がったことを確認した後に、再び減圧しフッ素系溶媒、モノマー、などの原料を仕込んで反応を開始する方が、反応速度の安定化、分子量の調節には好ましい。
反応終了後の残存モノマーの回収段階で残存モノマーが重合し低分子量体の発生が起こることがある。低分子量体の発生は成形時のスモークの発生や目ヤニの発生及び成形品の耐熱性を悪化させる要因となる。抑制方法として、残存する開始剤の活性を下げる目的で、回収温度をできるだけ下げることが望ましい。あるいは残存モノマーの反応を停止させるためにハイドロキノンやシクロヘキサンなどを投入することが有効である。
重合温度としては特に限定されず、0~100℃であってよい。重合圧力は、用いる溶媒の種類、量及び蒸気圧、重合温度等の他の重合条件に応じて適宜定められるが、通常、0~9.8MPaGであってよい。
上記洗浄及び乾燥は、公知の方法により実施できる。
溶融押出によるペレット化工程時の温度は200℃~350℃の範囲で適宜行うことが可能である。
次に、溶融押出して得られたペレットを加熱脱気する。加熱脱気温度の好ましい範囲は160℃以上から250℃以下である。より好ましい範囲は170℃以上から220℃以下である。更に好ましい範囲は170℃以上から200℃以下である。好ましい加熱脱気時間は3時間以上から50時間以下である。より好ましい加熱脱気時間は5時間以上から20時間以下である。さらに好ましい範囲は8時間以上から15時間以下である。
上記ペレットを加熱脱気することにより、ペレットの表面に付着、及び内部に含有される揮発性の成分を除去することができる。揮発性の成分には、開始剤残渣やペレット化工程時の溶融押出時に発生するHFやポリマー分解物がある。分解物の中にはH(CFn13(n13は4~30の整数)で表されるオリゴマー等が挙げられる。そのような成分は、例えば高温や高圧下などの過酷な使用環境下で長期間に使用されるパイプ、シート、パッキンなどに使用した場合、機械強度などの長期安定性に問題が起こる場合があるので、加熱脱気で除去しておくことが重要である。
加熱脱気させる設備は特に限定されるものではないが、一例を以下にあげる。ペレットをSUS製バットに入れたものを、熱風式電気炉に入れて行う方式、バットの底にペレットがすり抜けてこぼれないサイズの孔のあいたメッシュを使用する方式、バットの上にSUSメッシュの蓋する方式、SUS製などの円筒型の耐熱容器の中にペレットを入れておき、上下に温度管理した熱風を通過させることで内部の温度を保持する方式などがあげられる。なお一度加熱したものを更に温度を変えて除去効率を上げることもできる。一度ペレット化と加熱したものを、再度溶融してペレット化工程と加熱工程を繰り返すような方法もある。
本発明のフッ素樹脂は、水溶性ラジカル重合開始剤の存在下にビニリデンフルオライドを重合することによりポリマーを得る工程、得られたポリマーを洗浄及び乾燥する工程、乾燥したポリマーを溶融押出してペレットを得る工程、得られたペレットを加熱脱気する工程を含む製造方法(方法(2))によっても製造できる。
上記水溶性ラジカル重合開始剤は、公知の水溶性過酸化物であってよく、たとえば、過硫酸、過ホウ酸、過塩素酸、過リン酸、過炭酸などのアンモニウム塩、カリウム塩、ナトリウム塩、t-ブチルパーマレート、t-ブチルハイドロパーオキサイドなどがあげられる。サルファイト類、亜硫酸塩類のような還元剤を過酸化物に組み合わせて使用してもよく、その使用量は過酸化物に対して0.1~20倍であってよい。
ビニリデンフルオライドを重合する方法は、重合開始剤として水溶性ラジカル重合開始剤を使用することを除き、方法(1)において説明した方法が方法(2)でも使用できる。方法(2)における洗浄、乾燥、溶融押出、及び、ペレットの加熱脱気についても、方法(1)において説明した方法が方法(2)でも使用できる。
本発明のフッ素樹脂は、アルキルパーオキシエステル又はジ(フルオロアシル)パーオキサイドの存在下にビニリデンフルオライドを重合することによりポリマーを得る工程、得られたポリマーを洗浄及び乾燥する工程、乾燥したポリマーを溶融押出してペレットを得る工程、得られたペレットを加熱脱気する工程を含む製造方法(方法(3))によっても製造できる。
上記アルキルパーオキシエステルは、
式(5):R-O-O-C(=O)-R
(式中、R及びRは、同一または異なって、アルキル基である。)
で表されるものであることが好ましい。
及びRとしては、炭素数1~15のアルキル基が好ましい。
上記アルキルパーオキシエステルとしては、t-ブチルパーオキシイソブチレート又はt-ブチルパーオキシピバレートが好ましく、t-ブチルパーオキシピバレートがより好ましい。
上記ジ(フルオロアシル)パーオキサイドは、
式(6):[H-R-COO]
(式中、Rはフルオロアルキレン基を表す。)
で表されるものであることが好ましい。
としては、炭素数1~15のフルオロアルキレン基が好ましい。
上記ジ(フルオロアシル)パーオキサイドとしては、ジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-テトラデカフルオロヘプタノイル)パーオキサイド、ジ(ω-ハイドロ-ヘキサデカフルオロノナノイル)パーオキサイド、ジ(パーフルオロブチリル)パーオキサイド、ジ(パーフルバレリル)パーオキサイド、ジ(パーフルオロヘキサノイル)パーオキサイド、ジ(パーフルオロヘプタノイル)パーオキサイド、ジ(パーフルオロオクタノイル)パーオキサイド、ジ(パーフルオロノナノイル)パーオキサイド、ジ(ω-クロロ-ヘキサフルオロブチリル)パーオキサイド、ジ(ω-クロロ-デカフルオロヘキサノイル)パーオキサイド、ジ(ω-クロロ-テトラデカフルオロオクタノイル)パーオキサイド、ω-ハイドロ-ドデカフルオロヘプタノイル-ω-ハイドロヘキサデカフルオロノナノイル-パーオキサイド、ω-クロロ-ヘキサフルオロブチリル-ω-クロ-デカフルオロヘキサノイル-パーオキサイド、ω-ハイドロドデカフルオロヘプタノイル-パーフルオロブチリル-パーオキサイド、ジ(ジクロロペンタフルオロブタノイル)パーオキサイド、ジ(トリクロロオクタフルオロヘキサノイル)パーオキサイド、ジ(テトラクロロウンデカフルオロオクタノイル)パーオキサイド、ジ(ペンタクロロテトラデカフルオロデカノイル)パーオキサイド、ジ(ウンデカクロロドトリアコンタフルオロドコサノイル)パーオキサイド等が挙げられる。
上記ジ(フルオロアシル)パーオキサイドとしては、ジ(ω-ハイドロ-ドデカフルオロヘプタノイル)パーオキサイド(別名:ジ(7H-ドデカフルオロヘプタノイル)パーオキサイド)が好ましい。
ビニリデンフルオライドを重合する方法は、重合開始剤としてアルキルパーオキシエステル又はジ(フルオロアシル)パーオキサイドを使用することを除き、方法(1)において説明した方法が方法(3)でも使用できる。方法(3)における洗浄、乾燥、溶融押出、及び、ペレットの加熱脱気についても、方法(1)において説明した方法が方法(3)でも使用できる。
本発明のフッ素樹脂は、いかなる形態であってもよく、水性分散液、粉末、ペレット等であってよいが、ペレットであることが好ましい。
本発明のフッ素樹脂は、様々な成形体に成形することができ、得られる成形体は、高温下での機械的強度および耐薬品性、高温下での低透過性等に優れる。上記成形体は、高温高圧状態から急速に減圧してもブリスター及びクラックが発生しにくい。
上記成形体の形状としては特に限定されず、例えば、ホース、パイプ、チューブ、シート、シール、ガスケット、パッキン、フィルム、タンク、ローラー、ボトル、容器等であってもよい。本発明のフッ素樹脂からなる成形体は、特にパイプであることが好適である。上記パイプは、高温高圧状態から急速に減圧してもブリスター及びクラックが発生しにくい。
フッ素樹脂の成形方法は、特に限定されず、例えば、圧縮成形、押出し成形、トランスファー成形、射出成形、ロト成形、ロトライニング成形、静電塗装等が挙げられる。本発明のフッ素樹脂をパイプに成形する場合は、押出し成形が好ましい。好ましい成形温度は200~350℃である。
本発明のフッ素樹脂に、充填剤、可塑剤、加工助剤、離型剤、顔料、難燃剤、滑剤、光安定剤、耐候安定剤、導電剤、帯電防止剤、紫外線吸収剤、酸化防止剤、発泡剤、香料、オイル、柔軟化剤、脱フッ化水素剤などを混合した後、成形してもよい。充填剤としては、ポリテトラフルオロエチレン、マイカ、シリカ、タルク、セライト、クレー、酸化チタン、硫酸バリウム等があげられる。導電剤としてはカーボンブラック等があげられる。可塑剤としては、ジオクチルフタル酸、ペンタエリスリトール等があげられる。加工助剤としては、カルナバワックス、スルホン化合物、低分子量ポリエチレン、フッ素系助剤等があげられる。脱フッ化水素剤としては有機オニウム、アミジン類等があげられる。
本発明のフッ素樹脂は、海底油田又はガス田において海底から海面上に物資を輸送するパイプに好適に使用できる。海底油田で使用されるパイプには、ライザー(原油汲み上げ)、ウンビリカル(汲み上げのコントロール用で原油粘度低下用の薬液の仕込み用の配管やパワーケーブル等を一つのパイプにまとめたもの)、フローライン(汲み上げた原油を海底に這わせて移送する配管)等があり、また、それらの構造も金属のみの配管、金属/樹脂ハイブリッドの配管等が知られているが、そのいずれにも好適に使用できる。パイプ内側を流れる物資としては、原油、石油ガス、天然ガス等の流体が挙げられる。
また、地中、地上、海底を問わず、原油や天然ガスの流体移送金属配管の最内面および最外面のコーティング材料、ライニング材料としても好適に使用できる。最内面にコーティング、ライニングする目的は原油や天然ガス中には金属配管の腐食の原因となる二酸化炭素や硫化水素が含まれており、これをバリアーし、金属配管の腐食を抑制したり、高粘度の原油の流体摩擦を低減したりするためである。最外面も同じく海水や酸性水等による腐食を抑制するためである。最内面、最外面にライニング、コーティングする際には本発明のフッ素樹脂の剛性や強度をさらに向上させるために、ガラス繊維、炭素繊維、アラミド樹脂、マイカ、シリカ、タルク、セライト、クレー、酸化チタン等を充填してもよい。また、金属と接着させるため接着剤を使用したり金属表面を荒らしたりする処理を施してもよい。
更に、以下の成形体の成形材料としても好適に利用できる。
上記成形体としては、例えば、
食品包装用フィルム、食品製造工程で使用する流体移送ラインのライニング材、パッキン、シール材、シート等の食品製造装置用流体移送部材;
薬品用の薬栓、包装フィルム、薬品製造工程で使用される流体移送ラインのライニング材、パッキン、シール材、シート等の薬液移送部材;
化学プラントや半導体工場の薬液タンクや配管の内面ライニング部材;
自動車の燃料系統並びに周辺装置に用いられるO(角)リング・チューブ・パッキン、バルブ芯材、ホース、シール材等、自動車のAT装置に用いられるホース、シール材等の燃料移送部材;
自動車のエンジン並びに周辺装置に用いられるキャブレターのフランジガスケット、シャフトシール、バルブステムシール、シール材、ホース等、自動車のブレーキホース、エアコンホース、ラジエーターホース、電線被覆材等のその他の自動車部材;
半導体製造装置のO(角)リング、チューブ、パッキン、バルブ芯材、ホース、シール材、ロール、ガスケット、ダイヤフラム、継手等の半導体装置用薬液移送部材;
塗装設備用の塗装ロール、ホース、チューブ、インク用容器等の塗装・インク用部材;
飲食物用のチューブ又は飲食物用ホース等のチューブ、ホース、ベルト、パッキン、継手等の飲食物移送部材、食品包装材、ガラス調理機器;
廃液輸送用のチューブ、ホース等の廃液輸送用部材;
高温液体輸送用のチューブ、ホース等の高温液体輸送用部材;
スチーム配管用のチューブ、ホース等のスチーム配管用部材;
船舶のデッキ等の配管に巻き付けるテープ等の配管用防食テープ;
電線被覆材、光ファイバー被覆材、太陽電池の光起電素子の光入射側表面に設ける透明な表面被覆材および裏面剤等の各種被覆材;
ダイヤフラムポンプのダイヤフラムや各種パッキン類等の摺動部材;
農業用フィルム、各種屋根材・側壁等の耐侯性カバー;
建築分野で使用される内装材、不燃性防火安全ガラス等のガラス類の被覆材;
家電分野等で使用されるラミネート鋼板等のライニング材;
等が挙げられる。
上記自動車の燃料系統に用いられる燃料移送部材としては、更に、燃料ホース、フィラーホース、エバポホース等が挙げられる。上記燃料移送部材は、耐サワーガソリン用、耐アルコール燃料用、耐メチルターシャルブチルエーテル・耐アミン等ガソリン添加剤入燃料用の燃料移送部材として使用することもできる。
上記薬品用の薬栓・包装フィルムは、酸等に対し優れた耐薬品性を有する。また、上記薬液移送部材として、化学プラント配管に巻き付ける防食テープも挙げることができる。
上記成形体としては、また、自動車のラジエータタンク、薬液タンク、ベロース、スペーサー、ローラー、ガソリンタンク、廃液輸送用容器、高温液体輸送用容器、漁業・養魚タンク等が挙げられる。
上記成形体としては、更に、自動車のバンパー、ドアトリム、計器板、食品加工装置、調理機器、撥水撥油性ガラス、照明関連機器、OA機器の表示盤・ハウジング、電照式看板、ディスプレイ、液晶ディスプレイ、携帯電話、プリント基盤、電気電子部品、雑貨、ごみ箱、浴槽、ユニットバス、換気扇、照明枠等に用いられる部材も挙げられる。
上記フッ素樹脂からなる粉体塗料も有益な態様の一つである。上記粉体塗料は、平均粒子径が10~500μmであってよい。平均粒子径はレーザー回析式粒度分布測定機を用いて測定できる。上記粉体塗料を静電塗装により基材の上に吹きつけた後、焼成することにより、高温高圧状態から急速に減圧してもブリスター及びクラックが発生しにくい塗膜を得ることができる。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
実施例の各数値は以下の方法により測定した。
フッ素樹脂の単量体組成
核磁気共鳴装置AC300(Bruker-Biospin社製)を用い、測定温度を(ポリマーの融点+20)℃として19F-NMR測定を行い、各ピークの積分値およびモノマーの種類によっては元素分析を適宜組み合わせて求めた。
重量減少率
アルミカップ容器(直径4cm、高さ3cm)を290℃で昇温した電気炉で5時間以上加熱し、30分以上デシケータ内で冷却させた後、このアルミカップの質量(W0)を0.1mgの桁まで精秤した。その後フッ素樹脂ペレット5.0000±0.0100gをアルミカップに入れ、合計の質量(W)を0.1mgの桁まで精秤した。続いて300℃に昇温したターンテーブル付電気炉(高温度送風定温乾燥器FV450特型ターンテーブル付(東洋製作所社製))にフッ素樹脂入りアルミカップを入れて、15rpmで回転させながら300℃で2時間加熱した。加熱後のフッ素樹脂入りアルミカップをデシケータ内で1時間放置後、フッ素樹脂とアルミカップの合計質量(W1)を0.1mgの桁まで精秤して、次式から重量減少率を算出した。
重量減少率(%):(W-W1)/(W-W0)×100
融点
示差走査熱量計RDC220(Seiko Instruments社製)を用い、ASTM D-4591に準拠して、昇温速度10℃/分にて熱測定を行い、得られた吸熱曲線のピークから融点を求めた。
メルトフローレート〔MFR〕
MFRは、ASTM D3307-01に準拠し、メルトインデクサー(東洋精機社製)を用いて、297℃、5kg荷重下で内径2mm、長さ8mmのノズルから10分間あたりに流出するポリマーの質量(g/10分)をMFRとした。
熱分解開始温度(1%質量減温度)
熱分解開始温度は、示差熱・熱重量測定装置TG-DTA 6200(日立ハイテクサイエンス社製)を用いてフッ素樹脂粉末およびペレット10mgを測定に用いた。空気雰囲気化で10℃/minで昇温し、加熱試験に供したフッ素樹脂の質量が1質量%減少する時の温度を熱分解開始温度とした。
フッ素樹脂の-CONH基(アミド基)の個数の求め方
フッ素樹脂の各粉末(またはペレット)の切断片を室温で圧縮成形し、厚さ200μm(±5μm)のフィルムを作成した。これらのフィルムの赤外スペクトル分析を行った。Perkin-Elmer SpectrumVer3.0を用いて128回スキャンして、得られたIRスペクトルを解析し、ピークの吸光度を測定した。
また、フィルムの厚さはマイクロメーターにて測定した。
得られた赤外線吸収スペクトルにおける主鎖のCH基に起因する2900~3100cm-1に現れるピークの吸光度を1.0に規格化した。
そのスペクトルの3400~3470cm-1付近に現れるアミド基(-CONH)のNH結合に起因するピークの吸光度を求める。自動でベースラインを判定させ、ピーク高さAをピーク吸光度として求める。アミド基(-CONH)由来のピークの吸光度Aを用いて、次式により、炭素数10個あたりのアミド基の個数(個)を求める。
炭素数10個あたりのアミド基の個数=K×A
A:アミド基(-CONH)由来のピークの吸光度
K:係数 4258
フッ素樹脂のアミド基(-CONH基指数)の求め方
フッ素樹脂の各粉末(またはペレット)の切断片を室温で圧縮成形し、厚さ200μm(±5μm)のフィルムを作成した。これらのフィルムの赤外スペクトル分析を行った。Perkin-Elmer SpectrumVer3.0を用いて128回スキャンして、得られたIRスペクトルを解析し、ピークの吸光度を測定した。また、フィルムの厚さはマイクロメーターにて測定した。得られた赤外線吸収スペクトルにおける主鎖のCH基に起因する2900~3100cm-1に現れるピークの吸光度を1.0に規格化した。規格化後のスペクトルの3400~3470cm-1付近に現れるアミド基(-CONH)のNH結合に起因するピークの高さをアミド基の指数とした。
フッ素樹脂のカーボネート基(ROCOO基指数)の求め方
フッ素樹脂の各粉末(またはペレット)の切断片を室温で圧縮成形し、厚さ200μm(±5μm)のフィルムを作成した。これらのフィルムの赤外スペクトル分析を行った。Perkin-Elmer SpectrumVer3.0を用いて128回スキャンして、得られたIRスペクトルを解析し、ピークの吸光度を測定した。また、フィルムの厚さはマイクロメーターにて測定した。得られた赤外線吸収スペクトルにおける主鎖のCH基に起因する2900~3100cm-1に現れるピークの吸光度を1.0に規格化した。規格化後のスペクトルの1780~1830cm-1付近に現れるカーボネート基(ROCOO基)のCO結合に起因するピークの高さをカーボネート基の指数とした。
示差熱・熱重量測定(TG-DTA)による重量減少率
示差熱・熱重量測定装置TG-DTA 6200(日立ハイテクサイエンス社製)を用い、フッ素樹脂粉末およびペレット10mgを測定に用いた。空気雰囲気化で、所定温度に到達後、60分間保持し、各時間での重量減少率を求めた。
(RGD試験用サンプル調製方法)
得られたペレットを原料に用いて押出成形を行い、外径90mm、厚み6mmのパイプサンプルを作製し、2.5cm×5cmに切削を行いRGD試験用サンプルを得た。
(RGD試験)
RGD試験用サンプルを耐圧容器に入れ、CO/CH=10%/90%の混合ガスで15kpsi、150℃まで昇圧昇温を行い、1週間平衡状態になるまで保持し、その後70bar/minで脱圧を行った。試験後のサンプルについてブリスター及びクラックが発生していなければ合格である。
(ヘッドスペースサンプリングGC/MS測定)
ポリマー粉末またはペレット0.5gを6mLバイアル中に密閉し、温度200℃で30分間加熱後、気相部を2mLシリンジに採取し、GC/MS(Agilent 5977A(アジレントテクノロジー社製))を測定した。
GC/MS測定条件は以下に示す測定条件で行った。
カラム:DB-624
カラム長:60m、内径:320μm、膜厚:1.8μm
注入口温度:250℃、
流量:1.4mL/min
オーブン温度:初期50℃で5分保持。その後10℃/minで250℃まで昇温し最後5分保持。
質量分析:m/z=10~600までのスキャン測定
イオン化法:EI
相対強度の計算はm/z=51のMSクロマトグラムの各ピーク高さを用いて行った。
実施例1
3000L容積のオートクレーブに蒸留水900Lを投入し、充分に窒素置換を行った後、パーフルオロシクロブタン674kgを仕込み、系内の温度を35℃、攪拌速度200rpmに保った。次いで、CH=CHCFCFCFCFCFCF207g、テトラフルオロエチレン(TFE)62.0kgおよびビニリデンフルオライド(VDF)18.1kgを順次仕込んだ後、重合開始剤ジ-n-プロピルパーオキシジカーボネート〔NPP〕の50質量%メタノール溶液を2.24kg添加して重合を開始した。重合開始と同時に酢酸エチルを2.24kg仕込んだ。重合の進行と共に系内圧力が低下するので、TFE/VDF混合ガスモノマー(TFE/VDF:60.2/39.8(モル%))を仕込み、また追加する混合ガス100部に対してCH=CHCFCFCFCFCFCFを1.21部になるように同時に仕込み、系内圧力を0.8MPaに保った。最終的に混合ガスモノマーの追加仕込み量が110kgになった時点で重合を停止し、放圧して大気圧に戻した後、得られたTFE/VDF/CH=CHCFCFCFCFCFCF共重合体を0.8質量%アンモニア水に80℃で1時間接触した後、水洗、乾燥して102kgの粉末を得た。
次いでφ50mm単軸押出し機を用いてシリンダー温度290℃で溶融押出を行い、ペレットを得た。次いで得られたペレットを170℃で10時間加熱脱気した。
得られたペレットは以下の組成及び物性を有していた。
TFE/VDF/CH=CHCFCFCFCFCFCF=60.1/39.6/0.3(モル%)
融点:218℃
MFR:1.7g/10min(297℃‐5kg)
熱分解開始温度(1%質量減温度):388℃ 
炭素数10個あたりのアミド基の個数:97個
アミド基の指数:0.023
カーボネート基の指数:0.008
300℃で2時間加熱した際の重量減少率:0.033%
330℃で30分加熱した際のTG-DTA測定による重量減少率:0.7%
330℃で60分加熱した際のTG-DTA測定による重量減少率:5.5%
RGD試験:合格
実施例2
実施例1でアンモニア水に接触させる工程において、0.8質量%アンモニア水に80℃で5時間接触させ、以下実施例1と同様に処理した。
得られたペレットは以下の組成及び物性を有していた。
TFE/VDF/CH=CHCFCFCFCFCFCF=60.1/39.6/0.3(モル%)
融点:218℃
MFR:1.7g/10min(297℃‐5kg)
熱分解開始温度(1%質量減温度):390℃ 
炭素数10個あたりのアミド基の個数:102個
加熱脱気の条件:170℃で10時間
アミド基の指数:0.024
カーボネート基の指数:0.006
300℃で2時間加熱した際の重量減少率:0.013%
330℃で30分加熱した際のTG-DTA測定による重量減少率:0.1%
330℃で60分加熱した際のTG-DTA測定による重量減少率:0.8%
RGD試験:合格
実施例3
174L容積のオートクレーブに蒸留水52.2Lを投入し、充分に窒素置換を行った後、パーフルオロシクロブタン50.1kgを仕込み、系内の温度を35℃、攪拌速度200rpmに保った。次いで、CH=CFCFCFCFH13.0g、TFE3.68kgおよびVDF1.21kgを順次仕込んだ後、重合開始剤ジ-n-プロピルパーオキシジカーボネート(NPP)の50質量%メタノール希釈溶液を160.0g添加して重合を開始した。重合開始と同時に酢酸エチル210.5gを仕込んだ。重合の進行と共に系内圧力が低下するので、TFE/VDF混合ガスモノマー(TFE/VDF:57.6.0/42.4(モル%))を仕込み、また追加する混合ガス100部に対してCH=CFCFCFCFHを0.5部になるように同時に仕込み、系内圧力を0.8MPaに保った。最終的に混合ガスモノマーの追加仕込み量が25.0kgになった時点で重合を停止し、得られたTFE/VDF/CH=CFCFCFCFH共重合体を0.8質量%アンモニア水に80℃で5時間接触した後、水洗、乾燥して24.2kgの粉末を得た。
次いでφ50mm単軸押出し機を用いてシリンダー温度290℃で溶融押出を行い、ペレットを得た。次いで得られたペレットを170℃で10時間加熱脱気した。
得られたペレットは以下の組成及び物性を有していた。
TFE/VDF/CH=CF(CFH=57.5/42.3/0.2(モル%)
融点:212℃
MFR:3.3g/10min(297℃‐5kg)
熱分解開始温度(1%質量減温度):388℃ 
アミド化条件:0.8%アンモニア水に80℃で5時間
炭素数10個あたりのアミド基の個数:125個
アミド基の指数:0.029
カーボネート基の指数:0.010
加熱脱気の条件:170℃で10時間
300℃で2時間加熱した際の重量減少率:0.025%
330℃で30分加熱した際のTG-DTA測定による重量減少率:0.2%
330℃で60分加熱した際のTG-DTA測定による重量減少率:0.9%
RGD試験:合格
比較例1
実施例1おける重合により得られた共重合体をアンモニア処理せずに、加熱脱気条件を150℃12時間に変更して実施した。
TFE/VDF/CH=CHCFCFCFCFCFCF=60.1/39.6/0.3(モル%)  
融点:218℃
MFR:1.7g/10min(297℃‐5kg)
熱分解開始温度(1%質量減温度):372℃ 
炭素数10個あたりのアミド基の個数:0個
脱気条件:150℃で12時間
アミド基の指数:0
カーボネート基の指数:0.078
300℃で2時間加熱した際の重量減少率:0.643%
330℃で30分加熱した際のTG-DTA測定による重量減少率:2.5%
330℃で60分加熱した際のTG-DTA測定による重量減少率:15.4%
RGD試験:ブリスター
実施例4
実施例2で得られたペレットのヘッドスペースサンプリングGC/MSを測定した。
5.4分~18.0分にH(CFH(n=4~18)の揮発性オリゴマー由来のピークが現れた。
実施例5
実施例1でアンモニア水に接触させる工程において、0.4質量%アンモニア水に80℃で5時間接触させ、以下実施例1と同様に処理した。
得られたペレットは以下の組成及び物性を有していた。
TFE/VDF/CH=CHCFCFCFCFCFCF=60.1/39.6/0.3(モル%)
融点:218℃
MFR:1.7g/10min(297℃‐5kg)
熱分解開始温度(1%質量減温度):385℃ 
炭素数10個あたりのアミド基の個数:89個
アミド基の指数:0.020
カーボネート基の指数:0.015
加熱脱気の条件:170℃で10時間
300℃で2時間加熱した際の重量減少率:0.035%
330℃で30分加熱した際のTG-DTA測定による重量減少率:1.1%
330℃で60分加熱した際のTG-DTA測定による重量減少率:6.7%
RGD試験:合格
 

Claims (4)

  1. ビニリデンフルオライド単位を含むフッ素樹脂であって、
    ビニリデンフルオライド単位が前記フッ素樹脂を構成する全モノマー単位の10.0~100モル%であり、
    300℃で2時間加熱した際の重量減少率が0.1%以下である
    ことを特徴とするフッ素樹脂。
  2. 更にテトラフルオロエチレン単位を含み、
    ビニリデンフルオライド単位が前記フッ素樹脂を構成する全モノマー単位の10.0~70.0モル%であり、
    テトラフルオロエチレン単位が前記フッ素樹脂を構成する全モノマー単位の30.0~85.0モル%である
    請求項1記載のフッ素樹脂。
  3. 更にテトラフルオロエチレン単位、並びに、式(1)及び式(2)で表されるエチレン性不飽和モノマーからなる群より選択される少なくとも1種のエチレン性不飽和モノマー単位を含み、
    ビニリデンフルオライド単位が前記フッ素樹脂を構成する全モノマー単位の10.0~49.9モル%であり、
    テトラフルオロエチレン単位が前記フッ素樹脂を構成する全モノマー単位の50.0~85.0モル%であり、
    エチレン性不飽和モノマー単位が前記フッ素樹脂を構成する全モノマー単位の0.1~5.0モル%である
    請求項1記載のフッ素樹脂。
    式(1): CX1112=CX13(CX1415n1116
    (式中、X11~X16は同一または異なってH、F又はClを表し、n11は0~8の整数を表す。但し、テトラフルオロエチレン及びビニリデンフルオライドを除く。)
    式(2): CX2122=CX23-O(CX2425n2126
    (式中、X21~X26は同一または異なってH、F又はClを表し、n21は0~8の整数を表す。)
  4. 請求項1、2又は3記載のフッ素樹脂からなることを特徴とする成形体。
     
PCT/JP2016/070288 2015-07-14 2016-07-08 フッ素樹脂及び成形体 WO2017010425A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201680041126.0A CN107835824B (zh) 2015-07-14 2016-07-08 氟树脂和成型体
BR112017027404-3A BR112017027404B1 (pt) 2015-07-14 2016-07-08 Fluororesina e artigo moldado
JP2017528658A JP6717303B2 (ja) 2015-07-14 2016-07-08 フッ素樹脂及び成形体
US15/742,943 US20180223089A1 (en) 2015-07-14 2016-07-08 Fluororesin and molded article
AU2016292579A AU2016292579A1 (en) 2015-07-14 2016-07-08 Fluororesin and molded article
EP16824405.1A EP3323839B1 (en) 2015-07-14 2016-07-08 Fluororesin and molded article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-140630 2015-07-14
JP2015140630 2015-07-14

Publications (1)

Publication Number Publication Date
WO2017010425A1 true WO2017010425A1 (ja) 2017-01-19

Family

ID=57757922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070288 WO2017010425A1 (ja) 2015-07-14 2016-07-08 フッ素樹脂及び成形体

Country Status (7)

Country Link
US (1) US20180223089A1 (ja)
EP (1) EP3323839B1 (ja)
JP (1) JP6717303B2 (ja)
CN (1) CN107835824B (ja)
AU (1) AU2016292579A1 (ja)
BR (1) BR112017027404B1 (ja)
WO (1) WO2017010425A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113842941B (zh) * 2021-09-23 2024-04-02 长沙松润新材料有限公司 用于氟树脂裂解的催化剂及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198709A (ja) * 1984-10-18 1986-05-17 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー 熱安定性テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)コポリマー
JPH09183812A (ja) * 1995-12-21 1997-07-15 Dyneon Gmbh 熱可塑性フルオロポリマーの後処理方法
WO2002088227A1 (fr) * 2001-04-26 2002-11-07 Daikin Industries, Ltd. Poudre de polymere contenant du fluor, procede de production associe et article revetu
JP2009523877A (ja) * 2006-01-19 2009-06-25 ソルヴェイ ソレクシス エス.ピー.エー. フルオロエラストマー
WO2010110129A1 (ja) * 2009-03-23 2010-09-30 ダイキン工業株式会社 フッ素樹脂及びライザー管
WO2011096371A1 (ja) * 2010-02-05 2011-08-11 旭硝子株式会社 フルオロポリマーおよび含フッ素硬化性樹脂組成物

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4743658A (en) * 1985-10-21 1988-05-10 E. I. Du Pont De Nemours And Company Stable tetrafluoroethylene copolymers
JP4449111B2 (ja) * 1999-08-25 2010-04-14 ダイキン工業株式会社 含フッ素共重合体の安定化方法
KR100830071B1 (ko) * 2000-02-18 2008-05-16 다이낑 고오교 가부시키가이샤 적층 수지 성형체 및 다층 성형품
US6838545B2 (en) * 2002-11-08 2005-01-04 E. I. Du Pont De Nemours And Company Reaction of fluoropolymer melts
JP5372003B2 (ja) * 2007-11-22 2013-12-18 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア 加硫可能なフルオロエラストマー組成物
CN103119671B (zh) * 2010-09-22 2016-10-12 大金工业株式会社 膜电容器用膜和膜电容器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6198709A (ja) * 1984-10-18 1986-05-17 イー・アイ・デユポン・デ・ニモアス・アンド・カンパニー 熱安定性テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)コポリマー
JPH09183812A (ja) * 1995-12-21 1997-07-15 Dyneon Gmbh 熱可塑性フルオロポリマーの後処理方法
WO2002088227A1 (fr) * 2001-04-26 2002-11-07 Daikin Industries, Ltd. Poudre de polymere contenant du fluor, procede de production associe et article revetu
JP2009523877A (ja) * 2006-01-19 2009-06-25 ソルヴェイ ソレクシス エス.ピー.エー. フルオロエラストマー
WO2010110129A1 (ja) * 2009-03-23 2010-09-30 ダイキン工業株式会社 フッ素樹脂及びライザー管
WO2011096371A1 (ja) * 2010-02-05 2011-08-11 旭硝子株式会社 フルオロポリマーおよび含フッ素硬化性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3323839A4 *

Also Published As

Publication number Publication date
BR112017027404B1 (pt) 2022-08-23
EP3323839A1 (en) 2018-05-23
BR112017027404A2 (ja) 2018-08-28
JP6717303B2 (ja) 2020-07-01
AU2016292579A1 (en) 2018-01-18
US20180223089A1 (en) 2018-08-09
JPWO2017010425A1 (ja) 2017-12-28
EP3323839B1 (en) 2020-11-11
CN107835824A (zh) 2018-03-23
CN107835824B (zh) 2021-06-18
EP3323839A4 (en) 2019-01-02

Similar Documents

Publication Publication Date Title
JP5854026B2 (ja) フッ素樹脂及びライザー管
JP2017057379A (ja) フルオロポリマーの製造方法
JP5696794B2 (ja) ポリビニリデンフルオライド水性分散液の製造方法及びポリビニリデンフルオライド水性分散液
JP6705512B2 (ja) フッ素樹脂及び成形体
JP7236012B2 (ja) 含フッ素共重合体
JP6717303B2 (ja) フッ素樹脂及び成形体
JP2017020013A (ja) フルオロポリマーの製造方法
JP2017020014A (ja) フッ素樹脂
EP4299622A1 (en) Fluorocopolymer
JP7174312B2 (ja) 含フッ素共重合体
JP7364977B1 (ja) 含フッ素共重合体
JP7473855B2 (ja) 含フッ素共重合体
JP7193765B2 (ja) 含フッ素共重合体
JP7189481B2 (ja) 含フッ素共重合体、射出成形体、電線被覆材および電線
WO2023190919A1 (ja) 含フッ素共重合体
WO2024014518A1 (ja) 含フッ素共重合体
WO2023190900A1 (ja) 含フッ素共重合体
JP2022132231A (ja) 含フッ素共重合体
WO2023190955A1 (ja) 含フッ素共重合体
US20180142051A1 (en) Initiator composition for fluorinated polymer and method for producing fluorinated polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017528658

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15742943

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016292579

Country of ref document: AU

Date of ref document: 20160708

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017027404

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017027404

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171219