WO2017010024A1 - Modified polyester fiber, opal finished woven and knitted fabric containing the fiber, and method for producing same - Google Patents

Modified polyester fiber, opal finished woven and knitted fabric containing the fiber, and method for producing same Download PDF

Info

Publication number
WO2017010024A1
WO2017010024A1 PCT/JP2015/081399 JP2015081399W WO2017010024A1 WO 2017010024 A1 WO2017010024 A1 WO 2017010024A1 JP 2015081399 W JP2015081399 W JP 2015081399W WO 2017010024 A1 WO2017010024 A1 WO 2017010024A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
modified polyester
knitted fabric
polyester fiber
woven
Prior art date
Application number
PCT/JP2015/081399
Other languages
French (fr)
Japanese (ja)
Inventor
純哉 今北
弘美 西古
和弘 堂前
Original Assignee
三菱レイヨン・テキスタイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン・テキスタイル株式会社 filed Critical 三菱レイヨン・テキスタイル株式会社
Priority to EP15898335.3A priority Critical patent/EP3323913A4/en
Priority to US15/743,429 priority patent/US20180209074A1/en
Publication of WO2017010024A1 publication Critical patent/WO2017010024A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/78Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
    • D01F6/84Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyesters
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/56Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads elastic
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04BKNITTING
    • D04B21/00Warp knitting processes for the production of fabrics or articles not dependent on the use of particular machines; Fabrics or articles defined by such processes
    • D04B21/14Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes
    • D04B21/18Fabrics characterised by the incorporation by knitting, in one or more thread, fleece, or fabric layers, of reinforcing, binding, or decorative threads; Fabrics incorporating small auxiliary elements, e.g. for decorative purposes incorporating elastic threads
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06QDECORATING TEXTILES
    • D06Q1/00Decorating textiles
    • D06Q1/02Producing patterns by locally destroying or modifying the fibres of a web by chemical actions, e.g. making translucent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/001Special chemical aspects of printing textile materials
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]

Definitions

  • the present invention relates to an alkali-dissolvable polyester fiber having high dischargeability, a discharge-processed woven or knitted fabric containing the fiber, and a method for producing the woven or knitted fabric.
  • the discharge process is to remove the embrittlement and removal of high-exhaustable fibers by imprinting the extractive paste in a pattern on a woven or knitted fabric consisting of two or more types of fibers, high-extractable fibers and difficult-extractable fibers. It is also called opal processing and is widely known as processing for forming a watermark pattern or a highly stretchable part.
  • the chemical reaction in the removal process varies depending on the type of fiber. For example, a method for removing polyester fibers is also called alkali weight loss, and is alkali hydrolysis using sodium hydroxide, potassium hydroxide, or the like.
  • acid hydrolysis, carbonization and dissolution with a hot organic solvent are used.
  • modified polyester fibers are used in combination with polyethylene terephthalate fibers with high chemical resistance in opal processing and fibers with low chemical resistance in addition to diversification on the dyed surface due to the spread of applicable dyes. There is also.
  • the removal resistance by alkali at the time of opal processing is still not fully satisfactory, and for the purpose of diversification of opal processed products, more removal removal is performed while maintaining the fiber properties as much as possible. Therefore, there is a demand for a modified polyester fiber that is easy to use.
  • Patent Document 4 in the process of removing a modified polyester fiber from a woven or knitted fabric made of a modified polyester fiber and an unmodified polyester fiber, a discharge containing guanidine carbonate is performed. Exhaust processing using a processing agent has been proposed. However, in the erosion processing with guanidine carbonate, the denatured polyester has good pitting property, but there is a problem that the unmodified polyester becomes brittle and causes strength reduction.
  • Patent Document 5 a quaternary ammonium salt is used in the discharge processing of a modified polyester fiber for a woven or knitted fabric containing an atmospheric pressure cationic dyeable polyester fiber as an essential component.
  • Patent Document 5 There has been proposed a method of printing a paste liquid containing, removing alkali by weight reduction after heat treatment, and removing modified polyester fibers.
  • the strength of the modified polyester fiber and the unmodified polyester fiber cannot be maintained because it is an alkali weight reduction process using sodium hydroxide.
  • Patent Document 6 in the process of discharging a modified polyester fiber to a woven or knitted fabric composed of a modified polyester fiber and an unmodified polyester fiber, guanidine carbonate, caustic soda, caustic potash by inkjet printing is used. It has been proposed to perform a removal process by attaching a removal agent containing at least one.
  • the discharge processing is performed by controlling the amount of the removal agent applied by inkjet printing, but in order to maintain the strength of the unmodified polyester fiber, the fineness of the unmodified polyester fiber is increased, or the core part Is a non-modified polyester fiber, a sheath yarn is a modified polyester fiber composite yarn, and the removal processing agent is attached only to the modified polyester fiber. There is a problem that cannot be prevented. *
  • the fabric to be subjected to the removal process is composed of non-elastic fibers and elastic fibers, and the non-elastic fibers may be cationically acceptable as a dischargeable fiber.
  • Dyed polyester fiber and non-exhaustable nylon fiber are used, ether-based polyurethane fiber is used for elastic fiber, and if sodium hydroxide is used as an extraction processing agent, it is not subject to extraction.
  • sodium hydroxide is used as an extraction processing agent, it is not subject to extraction.
  • the cationic dyeable polyester fiber and the polyurethane fiber are eroded and the stretchability and strength are lowered.
  • One of the objects of the present invention is to provide an easily soluble alkali-modified polyester fiber which is used as a fiber having low chemical resistance in opal processing and can be easily removed by alkali.
  • it is a copolymer component that has been known to have an effect of modifying the dyeability of polyethylene terephthalate fiber
  • the use of a specific amount of aliphatic dicarboxylic acid and metal sulfonate group-containing aromatic dicarboxylic acid improves dyeability.
  • the present inventors have found that it is possible to obtain an alkali-soluble solubility that is easy to remove and remove while maintaining the quality effect.
  • one of the other objects of the present invention includes unmodified polyester fibers that can be easily discharged even with a weak alkali, using modified polyester fibers having sufficient discharging performance. It is also an object of the present invention to provide a highly evacuated woven or knitted fabric having a high evacuation property and a method for producing the same, in which a decrease in strength of fibers other than the erosion portion is avoided.
  • a strong alkaline substance such as sodium hydroxide or potassium hydroxide is used in the removal paste to prevent embrittlement of the unmodified polyester fiber in the removal processing of the woven or knitted fabric of the modified polyester fiber and the unmodified polyester fiber.
  • an alkali weight loss accelerator is heat-treated without printing, and the alkali weight loss of the printed portion is promoted when the alkali weight is reduced after the heat treatment.
  • the present inventors have paid attention to further modification of the modified polyester fiber, and as a result of various examinations and experiments, a certain modified polyester fiber is strongly alkaline such as sodium hydroxide or potassium hydroxide. It has been found that alkali weight reduction can be carried out in a specific pH region only with a modified polyester fiber without using a substance and without affecting the strength of unmodified polyester fiber or polyurethane fiber.
  • the modified polyester fiber of the present invention is a modified polyester fiber having a weight loss rate of 5% to 15% obtained by the following measurement method.
  • Weight loss rate (%) ⁇ (100 ⁇ A) / 100 ⁇ ⁇ 100
  • the modified polyester fiber of the present invention comprises ethylene terephthalate as a main constituent unit, 12 to 25 mol% of an aliphatic dicarboxylic acid having 4 to 8 carbon atoms, and 2 to 5 mol% of a metal sulfonate group-containing aromatic dicarboxylic acid. It is preferably made of a modified polyester copolymerized in an amount of not more than mol%.
  • the aliphatic dicarboxylic acid is preferably adipic acid and the metal sulfonate group-containing aromatic dicarboxylic acid is preferably 5-sodium sulfoisophthalic acid.
  • the modified polyester fiber of the present invention preferably has a diethylene glycol content of 0.5% by mass or more and 3.0% by mass or less.
  • the modified polyester fiber of the present invention has a single fiber fineness of 0.6 dtex to 3.5 dtex, a fiber strength of 2.0 cN / dtex to 3.5 cN / dtex, and a fiber elongation of 25% to 45%. It is preferable.
  • the modified polyester fiber preferably contains lithium acetate and diethylene glycol, and the lithium acetate content is preferably 50 to 120 ppm in terms of the amount of lithium atoms.
  • the woven or knitted fabric of the present invention comprises a modified polyester fiber having a weight loss rate of 5% to 15% and a non-weight loss fiber having a weight loss rate of 0% to less than 5% obtained by the following measurement method.
  • the content of the modified polyester fiber with respect to the woven or knitted fabric is 5% by mass or more and 50% by mass or less
  • the content of the non-reduced fiber is 50% by mass or more and 95% by mass or less.
  • Weight loss rate (%) ⁇ (100 ⁇ A) / 100 ⁇ ⁇ 100
  • the woven or knitted fabric of the present invention comprises a modified polyester fiber having a weight loss rate of 5% or more and 15% or less obtained by the fiber weight loss rate measuring method and a non-weight loss fiber having a weight loss rate of 0% or more and less than 5%.
  • it is preferable that the difference between the weight loss rate of the modified polyester fiber and the weight loss rate of the non-exhaust fiber is 5% or more.
  • the burst strength of the woven or knitted fabric in the discharged portion is 250 kPa or more and 900 kPa or less.
  • the strength retention of the rupture strength of the eroded portion of the woven or knitted fabric with respect to the rupture strength of the non-extracted portion of the woven or knitted fabric is 50% or more.
  • the modified polyester fiber has ethylene terephthalate as a main constituent unit, an aliphatic dicarboxylic acid having 4 to 8 carbon atoms, and an aromatic dicarboxylic acid containing a metal sulfonate group.
  • the modified polyester is preferably copolymerized in an amount of 2 mol% or more and 5 mol% or less.
  • the non-reducing fiber preferably contains 50% by mass or more and 95% by mass or less of synthetic fiber.
  • the synthetic fiber is preferably any one or more of regular polyester fiber, polyamide fiber, elastic fiber, polyolefin fiber, and acrylic fiber.
  • the single fiber fineness of the modified polyester fiber is preferably 0.6 dtex or more and 3.5 dtex or less.
  • the elastic fiber is preferably made of any one of polyurethane fiber, polytrimethylene terephthalate fiber, and polybutylene terephthalate fiber.
  • the method for producing a woven or knitted fabric according to the present invention is a method for removing a weight loss from a fiber containing a modified polyester fiber having a weight loss rate of 5% to 15% and a non-weight loss fiber obtained by the fiber weight loss rate measuring method.
  • the strength of the modified polyester fiber other than the discharged portion does not decrease, and the woven or knitted fabric containing a fiber other than the modified polyester fiber is removed. It is possible not to cause a decrease in strength of the extracted portion, and at the same time, a good discharging effect can be obtained. According to the present invention, it is possible to obtain a discharge-processed product in which the modified polyester fiber is excellently discharged and the strength is not reduced.
  • the modified polyester fiber of the present invention is a modified polyester fiber having a weight loss rate of 5% to 15% obtained by the following measurement method.
  • Weight loss rate (%) ⁇ (100 ⁇ A) / 100 ⁇ ⁇ 100
  • the weight loss ratio of the modified polyester fiber of the present invention is 5% or more, the weight can be easily reduced with an alkali, and the deterioration of the physical properties of the non-weight loss fiber can be reduced. Moreover, if the said weight loss rate is 15% or less, there will be little intensity
  • the modified polyester fiber of the present invention comprises ethylene terephthalate as a main constituent unit, 12 to 25 mol% of an aliphatic dicarboxylic acid having 4 to 8 carbon atoms, and 2 to 5 mol% of a metal sulfonate group-containing aromatic dicarboxylic acid. It is preferably made of a modified polyester copolymerized in an amount of not more than mol%.
  • the aliphatic dicarboxylic acid is preferably adipic acid and the metal sulfonate group-containing aromatic dicarboxylic acid is preferably 5-sodium sulfoisophthalic acid.
  • the aliphatic dicarboxylic acid having 4 to 8 carbon atoms which is a copolymerization component, increases the alkali solubility of the polyester fiber by disturbing the amorphous structure of the fiber.
  • Examples of the aliphatic dicarboxylic acid having 4 to 8 carbon atoms include succinic acid, glutaric acid, adipic acid, pimelic acid and suberic acid, with adipic acid being particularly preferred.
  • the copolymerization amount of the aliphatic dicarboxylic acid having 4 to 8 carbon atoms is 16 mol% or more and 25 mol% or less, preferably 18 mol% or more and 20 mol% or less.
  • the metal sulfonate group-containing aromatic dicarboxylic acid which is the other copolymerization component, introduces a metal sulfonate group into the fiber to serve as a dyeing seat for the cationic dye, and allows the polyethylene terephthalate fiber to be dyed at atmospheric pressure with the cationic dye. It is a component.
  • the metal sulfonate group is introduced into the fiber together with the aromatic ring, so that the dyeing property for the disperse dye is improved and the dyeing temperature can be lowered. Furthermore, it contributes to the improvement of the alkali solubility of the fiber.
  • metal sulfonate group-containing aromatic dicarboxylic acid examples include 5-sodium sulfoisophthalic acid, potassium sulfoterephthalic acid, sodium sulfonaphthalenedicarboxylic acid, and the like. Particularly preferred is 5-sodium sulfoisophthalic acid.
  • the copolymerization amount of the metal sulfonate group-containing aromatic dicarboxylic acid is 2 mol% or more and 5 mol% or less, and if it is 2 mol% or more, sufficient dyeability with a cationic dye can be easily obtained, and dyeing with a disperse dye When the temperature is less than 5 mol%, yarn breakage and fluff generation during spinning are likely to be reduced.
  • the production of the modified polyester in the present invention can be obtained by a known method similar to the production of polyethylene terephthalate. That is, when terephthalic acid is used, an esterification reaction with ethylene glycol as the acid is used, or when terephthalic acid dimethyl ester is used, a method of polycondensation is performed after an ester exchange reaction with ethylene glycol.
  • the aliphatic dicarboxylic acid having 4 to 8 carbon atoms as a copolymerization component can be added at any stage before the completion of polycondensation, for example, as an ethylene glycol slurry at the start of the esterification reaction of terephthalic acid and ethylene glycol.
  • the bis ( ⁇ -hydroxylethyl) terephthalate produced by the esterification reaction of terephthalic acid and ethylene glycol is added as an ethylene glycol dispersion or solution of an aliphatic dicarboxylic acid or bishydroxydicarbonate.
  • a matting agent, an antistatic agent, a flame retardant, a pigment, and the like can be added at any stage before the completion of polycondensation.
  • the metal sulfonate group-containing aromatic dicarboxylic acid as a copolymerization component in the production of the modified polyester can be added at any stage before the completion of the polycondensation, for example, an ester of terephthalic acid and ethylene glycol.
  • the modified polyester fiber of the present invention preferably has a diethylene glycol content of 0.5% by mass or more and 3.0% by mass or less.
  • ethylene glycol is dehydrated to dimerize diethylene glycol, which remains as a by-product in the subsequent polycondensation reaction system. If the content of diethylene glycol in the modified polyester fiber of the present invention is 3.0% by mass or less, the decrease in fiber strength can be reduced. From the said viewpoint, 2.5 mass% or less is more preferable, and 2.0 mass% or less is further more preferable.
  • a weak acid salt or hydroxide of an alkali metal or alkaline earth metal to the reaction system during the esterification reaction, particularly sodium hydroxide, sodium acetate, lithium acetate, etc. Is effective in suppressing the by-production of diethylene glycol, and is preferably used when the dicarboxylic acid of the copolymer component is 10 mol% or more. In the present invention, lithium acetate is more preferably used.
  • the modified polyester fiber of the present invention preferably contains lithium acetate, and the lithium acetate content is preferably 50 to 120 ppm in terms of lithium atoms.
  • the lithium acetate content is preferably 50 to 150 ppm, more preferably 100 to 150 ppm, and still more preferably 120 to 150 ppm in terms of lithium atoms based on the polymer composition.
  • the modified polyester whose ethylene glycol content is 0.5 mass% or more and 3.0 mass% or less can be obtained.
  • the modified polyester fiber of the present invention has a single fiber fineness of 0.6 dtex or more and 3.5 dtex or less, a fiber strength of 2 cN / dtex or more and 3.5 cN / dtex or less, and a fiber elongation of 25% or more and 45% or less. Is preferred.
  • the single fiber fineness of the modified polyester fiber of the present invention is 0.6 dtex or more, it is preferable because fiber strength can be maintained and the knitting property is good, and if it is 3.5 dtex or less, the weight loss processability is good. This is preferable. From the above viewpoint, the single fiber fineness is more preferably 1 dtex or more and 3 dtex or less, and further preferably 1.3 dtex or more and 2.5 dtex or less. *
  • the fiber strength of the modified polyester fiber of the present invention is 2 cN / dtex or more and 3.5 cN / dtex or less, there is no problem in the knitting property, and 2.3 cN / dtex or more and 3 cN / dtex or less is more preferable. Further, if the elongation of the modified polyester fiber of the present invention is 25% or more and 45% or less, it is preferable because the knitting property is good, and more preferably 30% or more and 40% or less.
  • the modified polyester in the present invention is produced, for example, through the following production process.
  • a slurry of terephthalic acid and ethylene glycol is supplied to an esterification reactor in which bis ( ⁇ -hydroxylethyl) terephthalate and its oligomer are present, and the esterification is carried out at a temperature of about 250 ° C. for 3 to 8 hours to achieve an esterification rate of 95%.
  • This esterification reaction product is transferred to a polymerization can, and aliphatic dicarboxylic acid of copolymerization component, metal sulfonate group-containing aromatic dicarboxylic acid, lithium acetate, magnesium acetate, triethyl phosphate, germanium dioxide, respectively.
  • the polymerization catalyst antimony trioxide is added as an ethylene glycol dispersion, and the temperature is raised and a polycondensation reaction is performed under a reduced pressure of around 270 ° C. until polycondensation is achieved until a predetermined intrinsic viscosity is reached. After passing through the process, the polycondensate is taken out and the strand And, to a chip.
  • the modified polyester fiber of the present invention can be obtained by a known melt spinning method similar to the production of polyethylene terephthalate fiber, and includes spinning for discharging the modified polyester chip from the spinning hole of the spinneret and subsequent stretching.
  • a known method can be applied to the yarn production method.
  • the spinning temperature is 240 to 300 ° C.
  • the spinning speed is 1000 to 2000 m / min
  • the stretching temperature is 60 to 90 ° C.
  • the stretching speed is 400 to 1000 m / min
  • the draw ratio is 1.
  • Conditions of 8 to 3.5 times, a draw ratio of 0.65 to 0.80 times the maximum draw ratio, and a heat setting temperature of 110 to 160 ° C. are used.
  • the maximum draw ratio refers to the ratio when the undrawn yarn is drawn until it is cut at a drawing temperature of 80 ° C., a heat setting temperature of 145 ° C., and a drawing speed of 600 m / min.
  • the spun unstretched yarn is wound once and then stretched, the spun unstretched yarn is stretched without being wound, and the spun speed is wound as a semi-unstretched yarn by high speed spinning of 2000 m / min or more.
  • a method such as spinning at high speed and drawing without winding is used.
  • the single fiber fineness of the modified polyester fiber is a filament yarn. If it exists, it is preferable that the single yarn fineness is 0.6 dtex or more and 3.5 dtex or less which is easy for the fiber to remove and remove.
  • the cross-sectional shape of the modified polyester fiber may be any shape such as a circle, a flat shape, a triangle, a Y shape, and a multi-leaf shape.
  • the modified polyester fiber may be either a short fiber or a filament, and when the fiber is a filament, the filament yarn can be crimped or false twisted.
  • the modified polyester fiber of the present invention has an easily dyeable and easily dissolvable alkali-dissolving property while being easily dyeable at normal pressure with a disperse dye and dyeable at normal pressure with a cationic dye. It is a combination of other highly chemical-resistant fibers to make a mixed woven or knitted fabric by cross knitting or knitting, and when this mixed woven knitted fabric is opal processed, it is a discharge paste or discharge accelerator that is printed. Opal processed products with various colors and tones can be obtained by adding disperse dyes or cationic dyes to the contained paste.
  • the fiber having high chemical resistance polyethylene terephthalate fiber is particularly preferably used.
  • the modified polyester fiber of the present invention can be combined with polyethylene terephthalate fiber to obtain an opal processed product of a mixed woven or knitted fabric made only of polyester fibers.
  • the modified polyester fiber of the present invention is not only a fiber having high chemical resistance but also other low or different chemical resistance fibers as required, such as wool, silk, cotton, rayon, acetate fiber. It can also be mixed with polyamide fibers and the like, and an opal processed product with various colors, colors and textures can be obtained by adding a dye suitable for the mixed fiber to the discharge paste.
  • the modified polyester fiber of the present invention is modified without causing embrittlement of the polyurethane fiber by opalizing the polyethylene terephthalate fiber and the polyurethane fiber under mild alkali treatment conditions due to its alkali solubility. This makes it possible to obtain a stretchable opal processed product by forming a highly stretchable part from which only the high quality polyester fiber is removed.
  • the polyurethane fiber used may be either a polyether-based polyurethane fiber or a polyester-based polyurethane fiber.
  • the opal processing performed on the mixed woven or knitted fabric obtained by combining or knitting with the modified polyester fiber of the present invention combined with polyethylene terephthalate fiber or polyurethane fiber is a woven / knitted structure, mixed fiber ratio, discharge pattern, usage, etc.
  • a method consisting of a printing process of an extraction paste containing caustic soda as an extraction agent, a drying process, an extraction treatment process by wet heat or dry heat, a soaping / washing process, or an acceleration of extraction
  • a method comprising an agent-containing paste printing process, a drying / heat treatment process, a soaping / washing process, and an alkali weight reduction process (discharge process) with caustic soda is employed.
  • the alkali weight loss treatment (discharge process) in the latter method is generally applied to the woven or knitted fabric of polyester fiber.
  • Alkali weight loss processing may be performed, and the latter method is preferably employed.
  • dyes can be added appropriately to the extraction paste or extraction accelerator-containing paste, and the non-extraction fibers can be colored simultaneously with the extraction, and dyeing before or after the opal processing. Combined with this, combined with the variety of colors and fine single fiber fineness, a high-quality opal processed product can be obtained.
  • outerwear such as embroidery lace, lingerie, foundation, swimsuit, sports inner, body suit, leotard, sports tights, girdle, Inner wear is listed.
  • the woven or knitted fabric of the present invention comprises a modified polyester fiber having a weight loss rate of 5% to 15% and a non-weight loss fiber having a weight loss rate of 0% to less than 5% obtained by the following measurement method.
  • Weight loss rate (%) ⁇ (100 ⁇ A) / 100 ⁇ ⁇ 100
  • the non-weight-reducing fiber By containing the non-weight-reducing fiber whose weight loss rate is 0% or more and less than 5%, even when the modified polyester fiber of the present invention is weight-reduced with an alkali, the non-weight-reducing fiber remains and can be discharged.
  • the weight loss rate of the non-weight-reducing fiber is more preferably 4% or less, and further preferably 3% or less.
  • the content of the modified polyester fiber with respect to the woven or knitted fabric is 5% by mass or more, the effect of the discharge process is likely to occur, and if it is 50% by mass or less, the non-exhaust fibers remain sufficiently.
  • the strength of the knitted fabric can be sufficiently maintained.
  • the content of the modified polyester fiber with respect to the woven or knitted fabric is more preferably 10% by mass or more and 40% by mass or less, and further preferably 15% by mass or more and 30% by mass or less.
  • the woven or knitted fabric of the present invention contains a modified polyester fiber having a weight loss rate of 5% to 15% and a non-weight loss fiber having a weight loss rate of 0% to less than 5% obtained by the following measurement method,
  • Weight loss rate (%) ⁇ (100 ⁇ A) / 100 ⁇ ⁇ 100
  • the weight loss rate of the modified polyester fiber in the extracted portion is 50% by mass to 100% by mass with respect to the modified polyester fiber in the non-extracted portion. is there. If the weight loss rate is 50%, the effect of weight loss processing on the fabric is sufficient. That the weight loss rate is 100% means that the modified polyester fiber in the portion to be removed has disappeared, and this state is preferable. However, in view of the design effect of the woven or knitted fabric, it is preferable to leave a part of the modified polyester in the removed portion.
  • the burst strength of the woven or knitted fabric in the discharged portion is 250 kPa or more and 900 kPa or less.
  • the burst strength is 250 kPa or more, the strength is satisfactory for use as a product.
  • the burst strength is preferably 400 kPa or more, and more preferably 600 kPa or more.
  • the strength retention of the rupture strength of the eroded portion of the woven or knitted fabric with respect to the rupture strength of the non-extracted portion of the woven or knitted fabric is 50% or more. If the strength retention of the burst strength is 50% or more, it is possible to reduce the fact that the stress is excessively concentrated on the removed portion and the woven or knitted fabric breaks. From the above viewpoint, the strength retention is more preferably 70% or more, and further preferably 85% or more.
  • the modified polyester fiber has ethylene terephthalate as a main constituent unit, an aliphatic dicarboxylic acid having 4 to 8 carbon atoms, and an aromatic dicarboxylic acid containing a metal sulfonate group. It is preferable that the modified polyester fiber is copolymerized in an amount of 2 mol% or more and 5 mol% or less.
  • the modified polyester fiber can be easily reduced in the range of pH 9 to 13, and if it is 25 mol% or less, Yarn breakage during spinning of the fibers can be reduced, and productivity is improved.
  • the copolymerization amount of the aliphatic dicarboxylic acid having 4 to 8 carbon atoms is more preferably 20 mol% or less.
  • the non-reducing fiber preferably contains 50% by mass to 95% by mass of synthetic fiber.
  • the content of the synthetic fiber with respect to the woven or knitted fabric is 50% by mass or more, a decrease in the burst strength of the discharged portion can be reduced.
  • a removal fiber can be included and it can be easy to produce the effect of a removal process. From the above viewpoint, the content of the synthetic fiber is more preferably 60% by mass or more and 80% by mass or less.
  • the synthetic fiber is preferably any one or more of regular polyester fiber, polyamide fiber, elastic fiber, polyolefin fiber, and acrylic fiber.
  • regular polyester fibers are preferable in terms of strength
  • elastic fibers are preferable from the viewpoint of exerting stretch properties.
  • the single fiber fineness of the modified polyester fiber is preferably 0.6 dtex or more and 3.5 dtex or less. If the single fiber fineness is 0.6 dtex or more, the strength of the woven or knitted fabric can be increased, and if it is 3.5 dtex or less, the pitting property becomes good and the texture of the woven or knitted fabric can be made soft easily. From the viewpoint, the single fiber fineness is more preferably 0.9 dtex or more and 2.5 dtex or less.
  • the elastic fiber is any one of polyurethane fiber, polytrimethylene terephthalate fiber, and polybutylene terephthalate fiber as described above.
  • the woven or knitted fabric of the present invention is preferably composed of a modified polyester fiber, a regular polyester fiber and a polyurethane fiber. If it is the said structure, it has stretch property, is high intensity
  • the method for producing a woven or knitted fabric according to the present invention comprises printing a discharging agent on a fabric containing a modified polyester fiber and a non-reducing fiber that are reduced in weight under a pH of 8 or more and 13 or less.
  • the heating time is 5 minutes or more and 15 minutes or less.
  • overheated steam of 150 ° C. or higher and 200 ° C. or lower is applied to the portion where the removal processing agent is printed.
  • the temperature of the superheated steam is 150 ° C. or higher, the pitting property is good, and when it is 200 ° C. or lower, it is possible to reduce the texture of the polyester fiber becoming hard.
  • the heating time is preferably 5 minutes or more and 15 minutes or less. If the heating time is 5 minutes or more, the dischargeability is good, and if the heating time is 15 minutes or less, the strength reduction of the non-extraction portion can be reduced.
  • the discharge processing agent is characterized by containing a paste and a component having a discharging action in a specific pH range (pH 8 to 13) excluding guanidine carbonate.
  • a component which has a pitting action 1 type or 2 types of sodium carbonate or potassium carbonate is preferable, and 1 type of sodium carbonate is more preferable.
  • the amount of sodium carbonate or potassium carbonate may be adjusted according to the mass of the modified polyester fiber to be removed, but is generally used in the range of 5 to 15% by mass with respect to the removal processing agent. It is preferable.
  • the removal processing agent may contain a removal promotion agent as necessary.
  • the extraction accelerator is not particularly limited, and a commercially available one can be used. For example, May printer OP-2 manufactured by Meisei Chemical Industry Co., Ltd. is preferable.
  • locust bean gum, starch, dextrin, crystal gum, tragacanth gum, cellulose, carboxymethylcellulose, polyvinyl alcohol, sodium polyacrylate, natural, processed, Semi-synthetic and synthetic pastes can be used alone or in combination of two or more.
  • the ratio of the paste is not particularly limited as long as it can maintain the appropriate viscosity for printing and performing heat treatment, but for example, it is contained in an amount of 1% by mass or more and 10% by mass or less with respect to the extraction processing agent. It is preferable.
  • other compounds such as dyes can be added to the removal processing agent.
  • the above-mentioned removal processing agent is preferably applied to woven or knitted fabrics containing modified polyester fibers.
  • the fiber used in combination with the modified polyester fiber is not particularly limited as long as it is a non-weight loss fiber different from the modified polyester fiber.
  • unmodified polyester fiber made of unmodified polyethylene terephthalate, also called regular polyester fiber
  • Polyamide fiber, polytrimethylene terephthalate fiber, polybutylene terephthalate fiber, polypropylene fiber, polyethylene fiber, polyurethane fiber, and the like can be used.
  • the woven or knitted fabric composed of yarns, staple yarns, and the like in which the modified polyester fibers and these fibers are combined by any method such as blending, blending, and twisting is subjected to a discharge process.
  • the woven or knitted fabric may be a fabric dyed as necessary. As the dyeing, all or part of the fabric is performed by plain dyeing or printing by any known method.
  • the removal process can be performed generally using the above-described removal process agent according to known processes such as printing, heat treatment, and washing.
  • a discharging agent is printed on the woven or knitted fabric containing the modified polyester fiber in a shape corresponding to a desired pattern.
  • a printing method, a spray method, etc. are used for the printing of the discharge processing agent.
  • the printing method is not particularly limited, and a form printing method, a flat screen method, a rotary screen method, a roller method, and the like are used.
  • the amount of the removal processing agent attached to the woven or knitted fabric can be arbitrarily determined depending on the printing method, the woven or knitted structure of the fabric, and the desired pattern.
  • the viscosity of the removal processing agent, the hardness of the rubber squeegee, the printing of the removal processing agent is performed with a woven or knitted structure that performs printing, a mesh of a formwork that prints a desired pattern, or the like.
  • the rubber squeegee pressure and the printing speed of the squeegee are determined, and the discharging agent is uniformly applied to the fabric in a desired pattern. To check whether the fabric is evenly adhered, check that there is no blurring of the printed part visually, there is no difference in the pattern on the left and right of the rubber squeegee, and the removal processing agent penetrates uniformly into the back of the printed part.
  • the shape according to a desired pattern with the dyeing glue which does not contain a removal processing agent in parts other than the adhesion part of a removal processing agent.
  • the printing method of the dyeing paste is not particularly limited, and printing is performed in the same manner as the discharge processing agent. After the discharge processing agent and the dyeing paste are printed on the woven or knitted fabric, the fabric is appropriately dried and subsequently heat-treated.
  • Examples of the heat treatment method include a baking method, a steam method, and an HT steam method, and the HT steam method is more preferable.
  • the cleaning method is not particularly limited, and cleaning is performed by a known process.
  • the washing temperature is preferably 60 ° C. or more and 100 ° C. or less, and the washing time is preferably 5 minutes or more and 30 minutes or less. Thereafter, washing, dehydration and drying are performed.
  • surfactant used for washing examples include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants, and these can be used alone or in admixture of two or more.
  • nonionic surfactants include ether type non-alkylating agents such as higher alcohol alkylene oxide adducts, alkylphenol alkylene oxide adducts, styrenated alkylphenol alkylene oxide adducts, styrenated phenol alkylene oxide adducts, and higher alkylamine alkylene oxide adducts.
  • ether type non-alkylating agents such as higher alcohol alkylene oxide adducts, alkylphenol alkylene oxide adducts, styrenated alkylphenol alkylene oxide adducts, styrenated phenol alkylene oxide adducts, and higher alkylamine alkylene oxide adducts.
  • Ionic surfactants Ether ester type nonionic surfactants such as fatty acid alkylene oxide adducts, polyhydric alcohol fatty acid ester alkylene oxide adducts, fatty acid amide alkylene oxide adducts, and fatty acid alkylene oxide adducts; polypropylene glycol ethylene oxide Polyalkylene glycol type nonionic surfactants such as adducts; fatty acid esters of glycerol, pentaerythritol Ester-type nonionic surfactants such as fatty acid esters, fatty acid esters of sorbitol, fatty acid esters of sorbitan, fatty acid esters of sucrose; other nonionic interfaces such as alkyl ethers of polyhydric alcohols, fatty acid amides of alkanolamines Mention may be made of activators.
  • the alkylene oxide include ethylene oxide, propylene oxide, and butylene oxide.
  • Anionic surfactants include anionic surfactants of carboxylates such as fatty acid soaps; higher alcohol sulfates, higher alcohol alkylene oxide adduct sulfates, polyoxyalkylene ether sulfates, phenol alkylene oxide adducts sulfuric acid Ester salt, alkylphenol alkylene oxide adduct sulfate ester, styrenated alkylphenol alkylene oxide adduct sulfate ester, styrenated phenol alkylene oxide adduct sulfate ester, polyhydric alcohol alkylene oxide adduct sulfate ester, sulfated oil, sulfuric acid Sulfate esters such as sulfated fatty acid esters, sulfated fatty acids, sulfated olefins; alkylbenzenesulfonates, alkylnaphthalenesulfonates, naphthalene Ani
  • alkylene oxide examples include ethylene oxide, propylene oxide, and butylene oxide.
  • the addition form of the alkylene oxide may be random addition of two or more kinds or block addition.
  • the salt include alkali metal salts such as lithium, sodium and potassium; primary amines such as ammonia, methylamine, ethylamine, propylamine, butylamine and allylamine; 2 such as dimethylamine, diethylamine, dipropylamine, dibutylamine and diallylamine Examples include tertiary amines; tertiary amines such as trimethylamine, triethylamine, tripropylamine, and tributylamine; amine salts such as alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine.
  • cationic surfactants include alkyl ether quaternary ammonium salts, alkylamide quaternary ammonium salts, dialkyl ester quaternary ammonium salts, dialkylimidazoline quaternary ammonium salts, alkylamidoamines, alkyl etheramines, alkylamidoguanidines, and arginine derivatives. be able to.
  • amphoteric surfactants examples include alkyl betaine surfactants, amidopropyl betaine surfactants, and imidazolinium betaine surfactants.
  • the Tg (° C.) of the modified polyester was measured at a heating rate of 10 ° C./min using a differential thermal analyzer DSC220 manufactured by Seiko Denshi Kogyo.
  • Weight loss rate (%) was calculated from the weight loss rate of the fiber subjected to alkali weight loss from the mass of the fiber before and after the treatment according to the following formula.
  • Weight loss rate (%) ⁇ (mass of fiber before treatment ⁇ mass of fiber after treatment) / mass of fiber before treatment ⁇ ⁇ 100 It is preferable from the viewpoint of handleability that the fiber is reduced in alkali in the form of a knitted fabric.
  • Rupture strength retention rate ⁇ rupture strength of the eroded portion after the woven / knitted fabric's erosion process / burst strength of the non-exhausted portion after the woven / knitted fabric's eradicating processing ⁇ ⁇ 100 (%)
  • Example 1 A molar ratio of terephthalic acid (hereinafter abbreviated as TPA) to ethylene glycol (hereinafter abbreviated as EG) is 1/1 in an esterification reaction vessel in which bis ( ⁇ -hydroxyethyl) terephthalate and its oligomer exist. .6 slurry was continuously supplied, and the esterification reaction was performed under the conditions of a temperature of 250 ° C., a pressure of 0.1 Pa, and a residence time of 8 hours.
  • TPA terephthalic acid
  • EG ethylene glycol
  • magnesium acetate as a stabilizer was added in an amount of 120 ppm of magnesium atoms
  • triethyl phosphate was added in an amount of 140 ppm of phosphorus atoms
  • germanium dioxide was added in an amount of 30 ppm of germanium atoms
  • 5-sodium sulfo 2.6 kg of SIP EG solution in which the concentration of EG ester of isophthalic acid (hereinafter abbreviated as SIP) was adjusted to 35% by mass was added, and the mixture was stirred and mixed at a temperature of 230 ° C.
  • the pressure is gradually reduced, and after 60 minutes, the pressure is reduced to 1.2 hPa or less, stirring and mixing are performed, and then the temperature is raised to 270 ° C.
  • a polycondensation reaction is performed until a predetermined intrinsic viscosity [ ⁇ ] is obtained, and a modified polyester having an ADA copolymerization amount of 18 mol% and a SIP copolymerization amount of 2.5 mol% is obtained, and this is converted into a chip. did.
  • the polymer properties of the modified polyester are shown in Table 1.
  • the resulting modified polyester chip was spun at a spinning temperature of 255 ° C. and a spinning speed of 1800 m / min with a spinneret having a circular hole shape and a hole number of 24, and this undrawn yarn was drawn at a drawing temperature of 65 ° C. and a draw ratio. 2.28 times, the ratio of the draw ratio to the maximum draw ratio (MDR ratio) is 0.72 times, and heat-set at 150 ° C. to obtain a modified polyester fiber of 84 dtex / 24f (single yarn fineness 3.5 dtex). It was.
  • a flat knitted fabric of the modified polyester fiber was prepared, 10 g of the knitted fabric was immersed in 1 L of an aqueous solution having a caustic soda concentration of 10 g / L and a temperature of 98 ° C. for 20 minutes, and then washed with water, dehydrated and dried.
  • the weight loss rate was measured by the formula.
  • Weight loss rate (%) ⁇ (mass of flat knitted fabric before alkali weight loss processing ⁇ mass of processed knitted fabric after alkali weight loss processing) / mass of flat knitted fabric before alkali weight loss processing ⁇ ⁇ 100
  • Table 1 The physical properties of the obtained modified polyester filament yarn are shown in Table 1.
  • Example 2 Using the modified polyester chip obtained in Example 1, spinning and drawing were carried out in the same manner as in Example 1 except that the polymer discharge rate during spinning was changed to 2/5 in Example 1, and 33 dtex / A modified polyester filament yarn having 24f (single yarn fineness of 1.38 dtex) was obtained.
  • the physical properties of the obtained modified polyester filament yarn are shown in Table 1.
  • Example 3 In Example 1, 15.9 kg of the obtained esterification reaction product was transferred to a polycondensation reactor, and the addition amount of ADA EG dispersion was changed to 4.1 kg and the addition amount of SIP EG solution to 2.4 kg. Except for the above, a modified polyester obtained by copolymerizing ADA 16 mol% and SIP 2.25 mol% was obtained in the same manner as in Example 1 to obtain chips. Table 1 shows the polymer physical properties of the modified polyester.
  • Example 1 Using the resulting modified polyester chip, spinning and drawing were carried out in the same manner as in Example 1 except that the spinning speed at the time of spinning was 1200 m / min, and a modification of 84 dtex / 24f (single yarn fineness of 3.5 dtex) was made. A polyester filament yarn was obtained. The physical properties of the obtained modified polyester filament yarn are shown in Table 1.
  • Example 1 (Comparative Example 1) In Example 1, 16.4 kg of the obtained esterification reaction product was transferred to a polycondensation reactor, and the addition amount of the ADA EG dispersion was changed to 3.6 kg and the addition amount of the SIP EG solution was changed to 2.1 kg. Except that, a modified polyester obtained by copolymerizing ADA 14 mol% and SIP 2.0 mol% was obtained in the same manner as in Example 1 to obtain chips. The polymer properties of the modified polyester are shown in Table 1. Using the obtained modified polyester chip, spinning and drawing were performed under the spinning conditions and drawing conditions shown in Table 1 to obtain a modified polyester filament yarn of 84 dtex / 24f (single yarn fineness 3.5 dtex). The physical properties of the obtained modified polyester filament yarn are shown in Table 1.
  • Example 2 (Comparative Example 2) In Example 1, 16.9 kg of the obtained esterification reaction product was transferred to a polycondensation reactor, and the addition amount of ADA EG dispersion was changed to 2.6 kg and the addition amount of SIP EG solution to 2.1 kg. Except for the above, a modified polyester obtained by copolymerizing 10 mol% of ADA and 2.0 mol% of SIP was obtained in the same manner as in Example 1 to obtain chips. The polymer properties of the modified polyester are shown in Table 1. Using the obtained modified polyester chip, spinning and drawing were performed under the spinning conditions and drawing conditions shown in Table 1 to obtain a modified polyester filament yarn of 84 dtex / 24f (single yarn fineness 3.5 dtex). The physical properties of the obtained modified polyester filament yarn are shown in Table 1.
  • Example 3 (Comparative Example 3) In Example 1, 17.6 kg of the obtained esterification reaction product was transferred to a polycondensation reaction can, and the addition amount of ADA EG dispersion was changed to 1.3 kg and the addition amount of SIP EG solution was changed to 2.3 kg. Except that, a modified polyester obtained by copolymerizing ADA 5 mol% and SIP 2.25 mol% was obtained in the same manner as in Example 1 to obtain chips.
  • the polymer properties of the modified polyester are shown in Table 1. Using the obtained modified polyester chip, spinning and drawing were performed under the spinning conditions and drawing conditions shown in Table 1 to obtain a modified polyester filament yarn of 84 dtex / 24f (single yarn fineness 3.5 dtex).
  • the fiber is a copolymer component of atmospheric pressure cationic dyeable polyester fiber that is generally used in the market.
  • the physical properties of the obtained modified polyester filament yarn are shown in Table 1.
  • Example 4 A modified polyester fiber having a fineness of 84 dtex and 48 filaments, composed of a modified polyester resin in which ethylene terephthalate is the main constituent unit and 16 mol% of ADA and 2.5 mol% of SIP is copolymerized, Produced.
  • a mini-color dyeing machine manufactured by Teksam Giken Co., Ltd., a multicolor rotating pot dyeing tester
  • 100 g of the weft knitted fabric is 40 g / L in sodium carbonate concentration
  • the weight ratio was 1:20, and the aqueous solution temperature was reduced to 100 ° C. for 30 minutes by alkali reduction, washed with water, dehydrated, and dried at 80 ° C.
  • Weight loss rate (%) ⁇ (mass of weft knitted fabric before alkali weight loss processing-mass of processed knitted fabric after alkali weight loss processing) / mass of weft knitted fabric before alkali weight loss processing ⁇ ⁇ 100
  • the yarn used for the weft knitted fabric is composed of a polyester resin in which ethylene terephthalate is the main structural unit and copolymerized with 5 mol% of ADA and 2.3 mol% of SIP, and has a fineness of 84 dtex and a 48 filament cationic dyeable polyester fiber. Except for the above, a processed knitted fabric was obtained in the same manner as in Example 4. Table 2 shows the weight loss rate.
  • the yarn used for the weft knitted fabric was made of polyethylene terephthalate fiber (yarn made of unmodified polyethylene terephthalate; hereinafter also referred to as “regular polyester fiber”). This yarn made of regular polyester fiber was manufactured by Teijin Limited. A processed knitted fabric was obtained in the same manner as in Example 4 except that a yarn having a fineness of 84 dtex and 36 filament was used. Table 2 shows the weight loss rate.
  • the modified polyester fiber of Example 4 resulted in a higher weight loss rate than the general cationic dyeable polyester fiber of Comparative Example 4, and Comparative Example The regular polyester fiber No. 5 was not able to lose weight with sodium carbonate.
  • the modified polyester fiber of Example 4 resulted in a higher weight loss rate than the general cationic dyeable polyester fiber of Comparative Example 4, and the general cation of Comparative Example 4
  • the dyeable polyester fiber had a low weight loss rate of 2% with potassium carbonate.
  • the modified polyester fiber of Example 4 had a higher weight loss rate than the general cationic dyeable polyester fiber of Comparative Example 4 and the regular polyester fiber of Comparative Example 5.
  • Sorbitose C-5 (10% aqueous solution) (Avebe) 50% by mass
  • Sodium carbonate trade name: Soda ash, manufactured by Tokuyama Corporation
  • the superheated steam process was performed for 180 degreeC x 8 minutes using the HT steamer. After that, after washing in a soap bath of 2g / L of Rakkor ISF (manufactured by Meisei Chemical Industry Co., Ltd.) at 80 ° C for 20 minutes, it is washed with water, dehydrated and dried to obtain a processed warp knitted fabric. It was.
  • a soap bath of 2g / L of Rakkor ISF manufactured by Meisei Chemical Industry Co., Ltd.
  • the pitting property was visually evaluated. As shown in Table 3, the evaluation criteria are as follows. For the removal property, the fiber that has been removed from the printed part cannot be visually confirmed as ⁇ , and a small amount of residue can be visually confirmed, but the removal is performed. In addition, a product that can be judged as usable as a product was rated as “good”, and a residue that could be visually confirmed was not removed. Further, the burst strength of the removed portion was measured according to JIS L 1018 Murren method. The results are shown in Table 3. The burst strength of the processed knitted fabric of the non-exhausted portion was 755 kPa.
  • Example 6 As shown in Table 3, an extraction knitted fabric was obtained in the same manner as in Example 5 except that an extraction accelerator (Maysei Chemical Industries, May Printer OP-2) was used. Table 3 shows the evaluation of the dischargeability. By using the above-mentioned removal accelerator, the removal property was the same as that when a strong alkali was used. On the other hand, there was little decrease in burst strength.
  • an extraction accelerator Maysei Chemical Industries, May Printer OP-2
  • Example 5 containing only sodium carbonate was able to perform the discharge process, and there was little decrease in the strength of the extracted part.
  • Comparative Example 6 using guanidine carbonate and Comparative Example 7 using sodium hydroxide the excavability of the excised part was good, but an extreme decrease in strength of the excised part was observed.
  • the processing agent using guanidine carbonate has a pH of 11.8. However, it is known that guanidine carbonate becomes a strong alkali when heated, so that the decrease in burst strength is large. Further, in Example 6 containing Mayprinter OP-2, which is a discharge accelerator, and sodium carbonate, good dischargeability was obtained, and there was little decrease in strength of the discharged portion.
  • Example 7 A knitted fabric (modified polyester fiber 50% / regular polyester fiber) using the same modified polyester fiber as in Example 4 and the same regular polyester fiber as in Comparative Example 5 (84 dtex, manufactured by Teijin Ltd.). Exhaust processing was performed in the same manner as in Example 6 except that 50%) was used, and an excavation knitted fabric was obtained. Table 4 shows the evaluation of the dischargeability. The evaluation of the biting property was evaluated as “ ⁇ ” because the fiber that had been discharged on the printed part could not be visually confirmed.
  • the modified polyester fiber as the modified polyester fiber, only the modified polyester fiber in the printed part is obtained without performing alkali weight loss on the woven or knitted fabric composed of the modified polyester fiber and the unmodified polyester fiber. It is possible to obtain an exfoliation processed cloth with good exfoliation property of the modified polyester fiber that does not cause embrittlement of the unmodified polyester fiber, and a strong alkaline substance that is highly harmful to humans can be obtained. Since it is not used, it is possible to perform a discharge process with high safety in operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Woven Fabrics (AREA)
  • Artificial Filaments (AREA)
  • Decoration Of Textiles (AREA)
  • Knitting Of Fabric (AREA)

Abstract

Provided is a modified polyester fiber which is used as a fiber having reduced weight, the modified polyester fiber comprising ethylene terephthalate as a primary constituent unit and being obtained by copolymerizing 12-25 mol.% of an aliphatic dicarboxylic acid having 4-8 carbon atoms and 2-5 mol.% of a metal sulfonate group-containing aromatic dicarboxylic acid. This modified polyester fiber has a single fiber fineness of 0.6-3.5 dtex. In a mixed woven and knitted fabric comprising two or more types of fiber consisting of the modified polyester fiber and a regular polyester fiber and, optionally, a polyurethane fiber, good opal finish properties can be achieved by an opal finish agent that contains sodium carbonate and, for example, a Mei printer OP-2 (manufactured by Meisei Chemical Works, Ltd.), which is an opal finish accelerator, and a reduction in strength of non-opal finished parts is also low.

Description

改質ポリエステル繊維、同繊維を含む抜蝕加工織編物及びその製造方法Modified polyester fiber, discharge-processed woven or knitted fabric containing the same, and method for producing the same
 本発明は、抜蝕性の高いアルカリ易溶解性ポリエステル繊維と、該繊維を含む抜蝕加工織編物及びその織編物の製造方法に関する。 [Technical Field] The present invention relates to an alkali-dissolvable polyester fiber having high dischargeability, a discharge-processed woven or knitted fabric containing the fiber, and a method for producing the woven or knitted fabric.
 一般に、抜蝕性の高い繊維と抜蝕し難い繊維の2種以上の繊維からなる織編物に抜蝕糊を柄状に印捺し、抜蝕性の高い繊維を脆化除去する抜蝕加工はオパール加工ともいわれ、透かし模様或いは高伸縮性部位を形成する加工として広く知られている。抜蝕加工における化学反応は、繊維の種類によって様々である。例えば、ポリエステル繊維を除去する方法はアルカリ減量とも称されており、水酸化ナトリウムや水酸化カリウムなどを用いるアルカリ加水分解である。一方、綿やアセテート等などのセルロース系繊維の除去には、酸加水分解及び炭化や熱有機溶媒による溶解などが利用される。 In general, the discharge process is to remove the embrittlement and removal of high-exhaustable fibers by imprinting the extractive paste in a pattern on a woven or knitted fabric consisting of two or more types of fibers, high-extractable fibers and difficult-extractable fibers. It is also called opal processing and is widely known as processing for forming a watermark pattern or a highly stretchable part. The chemical reaction in the removal process varies depending on the type of fiber. For example, a method for removing polyester fibers is also called alkali weight loss, and is alkali hydrolysis using sodium hydroxide, potassium hydroxide, or the like. On the other hand, for removal of cellulosic fibers such as cotton and acetate, acid hydrolysis, carbonization and dissolution with a hot organic solvent are used.
 ポリエステル繊維からなる織編物の抜蝕加工として、抜蝕性の高い変性ポリエステル繊維と抜蝕性の低い未変性ポリエステル繊維からなる織編物に対して抜蝕糊を柄状に印捺し、抜蝕性の高い変性ポリエステル繊維を除去することは公知であって、抜蝕加工剤として水酸化ナトリウムや水酸化カリウムを含む糊液を印捺し熱処理する方法が知られている。 As a discharging process for woven and knitted fabrics made of polyester fibers, we use a pattern to print a discharging paste on woven and knitted fabrics made of modified polyester fibers with high dischargeability and unmodified polyester fibers with low dischargeability. It is known to remove highly modified polyester fibers, and a method is known in which a paste liquid containing sodium hydroxide or potassium hydroxide is printed and heat-treated as a pitting agent.
 しかし、抜蝕性の高い変性ポリエステル繊維と抜蝕性の低い未変性ポリエステル繊維の加水分解性の差を利用して抜蝕加工する際に用いる、水酸化ナトリウムや水酸化カリウムによる方法は、未変性ポリエステル繊維まで脆化させかねず、強度低下や抜蝕不良につながるという問題がある。また、水酸化ナトリウムや水酸化カリウムは強アルカリ性物質であるため、人への毒性や刺激性が高く、水性環境への影響も高い。 However, the method using sodium hydroxide or potassium hydroxide, which is used for the removal processing utilizing the difference in hydrolyzability between modified polyester fiber with high pitting property and unmodified polyester fiber with low pitting property, is not yet available. There is a problem that even the modified polyester fiber may be embrittled, leading to a decrease in strength and poor discharge. Moreover, since sodium hydroxide and potassium hydroxide are strong alkaline substances, they are highly toxic and irritating to humans and have a high impact on the aqueous environment.
 一方、分散染料により高圧高温染色されるポリエチレンテレフタレート繊維の染色性を改善して、分散染料及びカチオン染料を使い常圧染色により染色可能とするため、ポリエチレンテレフタレートに5-ナトリウムスルホイソフタル酸を0.4~5モル%、及びアジピン酸を2~15モル%を共重合させた改質ポリエステル繊維が、例えば特開昭61-239015号公報(特許文献1)、特開平8-269820号公報(特許文献2)、特開2013-18802号公報(特許文献3)などによって知られている。 On the other hand, in order to improve the dyeability of polyethylene terephthalate fibers that are dyed at high pressure and high temperature with disperse dyes and to enable dyeing by atmospheric dyeing using disperse dyes and cationic dyes, 0.1% of 5-sodium sulfoisophthalic acid is added to polyethylene terephthalate. Modified polyester fibers obtained by copolymerizing 4 to 5 mol% and 2 to 15 mol% of adipic acid are disclosed in, for example, JP-A-61-239015 (Patent Document 1) and JP-A-8-269820 (Patent Document 1). Document 2), Japanese Patent Application Laid-Open No. 2013-18802 (Patent Document 3), and the like.
 このような改質ポリエステル繊維は、適用できる染料の広がりにより染色面での多様化のほかに、オパール加工における耐薬品性の高いポリエチレンテレフタレート繊維と、耐薬品性の低い繊維とを組み合わせて用いられてもいる。しかしながら、従来の改質ポリエステル繊維では、オパール加工の際のアルカリによる抜蝕除去性がいまだ十分満足すべきものではなく、オパール加工製品の多様化のために繊維物性をできるだけ保持しながらより抜蝕除去の容易な改質ポリエステル繊維が要望されている。 Such modified polyester fibers are used in combination with polyethylene terephthalate fibers with high chemical resistance in opal processing and fibers with low chemical resistance in addition to diversification on the dyed surface due to the spread of applicable dyes. There is also. However, with conventional modified polyester fibers, the removal resistance by alkali at the time of opal processing is still not fully satisfactory, and for the purpose of diversification of opal processed products, more removal removal is performed while maintaining the fiber properties as much as possible. Therefore, there is a demand for a modified polyester fiber that is easy to use.
 また、例えば特開2000-096439号公報(特許文献4)によれば、布帛が変性ポリエステル繊維と未変性ポリエステル繊維とからなる織編物に対する変性ポリエステル繊維の抜蝕加工において、炭酸グアニジンを含む抜蝕加工剤を使った抜蝕加工が提案されている。しかしながら、炭酸グアニジンによる抜蝕加工では変性ポリエステルの抜蝕性は良好だが、未変性ポリエステルが脆化し、強度低下を引き起こす問題がある。 Further, for example, according to Japanese Patent Laid-Open No. 2000-096439 (Patent Document 4), in the process of removing a modified polyester fiber from a woven or knitted fabric made of a modified polyester fiber and an unmodified polyester fiber, a discharge containing guanidine carbonate is performed. Exhaust processing using a processing agent has been proposed. However, in the erosion processing with guanidine carbonate, the denatured polyester has good pitting property, but there is a problem that the unmodified polyester becomes brittle and causes strength reduction.
 更に、例えは特開2000-282377号公報(特許文献5)では、常圧カチオン可染型ポリエステル繊維を必須成分とする織編物に対する変性ポリエステル繊維の抜蝕加工にあって、第4級アンモニウム塩を含む糊液を印捺し、熱処理後にアルカリ減量を行い、変性ポリエステル繊維を除去する方法が提案されている。しかしながら、水酸化ナトリウムを使用したアルカリ減量加工であるため、変性ポリエステル繊維及び未変性ポリエステル繊維の強度が保てないといった問題がある。 Furthermore, for example, in Japanese Patent Application Laid-Open No. 2000-282377 (Patent Document 5), a quaternary ammonium salt is used in the discharge processing of a modified polyester fiber for a woven or knitted fabric containing an atmospheric pressure cationic dyeable polyester fiber as an essential component. There has been proposed a method of printing a paste liquid containing, removing alkali by weight reduction after heat treatment, and removing modified polyester fibers. However, there is a problem that the strength of the modified polyester fiber and the unmodified polyester fiber cannot be maintained because it is an alkali weight reduction process using sodium hydroxide.
 また更に、例えば特開2008-038332号公報(特許文献6)では、変性ポリエステル繊維と未変性ポリエステル繊維からなる織編物に対する変性ポリエステル繊維の抜蝕加工に当たって、インクジェット捺染により炭酸グアニジン、苛性ソーダ、苛性カリの少なくとも1つを含む抜蝕加工剤を付着させて抜蝕加工を行うことが提案されている。インクジェット捺染によって抜蝕加工剤の付着量をコントロールして抜蝕加工が行われているが、未変性ポリエステル繊維の強度を保持するため、未変性ポリエステル繊維の繊度を太くするか、または、芯部が未変性ポリエステル繊維、鞘部が変性ポリエステル繊維の複合糸を使用して、変性ポリエステル繊維のみに抜蝕加工剤を付着させるなどしているが、いずれにしても未変性ポリエステル繊維に対する脆化は防止できないという問題がある。    Still further, for example, in Japanese Patent Application Laid-Open No. 2008-038332 (Patent Document 6), in the process of discharging a modified polyester fiber to a woven or knitted fabric composed of a modified polyester fiber and an unmodified polyester fiber, guanidine carbonate, caustic soda, caustic potash by inkjet printing is used. It has been proposed to perform a removal process by attaching a removal agent containing at least one. The discharge processing is performed by controlling the amount of the removal agent applied by inkjet printing, but in order to maintain the strength of the unmodified polyester fiber, the fineness of the unmodified polyester fiber is increased, or the core part Is a non-modified polyester fiber, a sheath yarn is a modified polyester fiber composite yarn, and the removal processing agent is attached only to the modified polyester fiber. There is a problem that cannot be prevented. *
 また例えば、国際公開第2007/086593号(特許文献7)によれば、抜蝕加工を施す布帛が非弾性繊維と弾性繊維とから構成され、非弾性繊維には抜蝕性繊維であるカチオン可染ポリエステル繊維と非抜蝕性繊維であるナイロン繊維とが使われ、弾性繊維にエーテル系ポリウレタン繊維が使われており、抜蝕加工剤に水酸化ナトリウムを使用すると、抜蝕の対象外であるカチオン可染ポリエステル繊維やポリウレタン繊維が抜蝕されてしまい、伸縮性や強度の低下を起こす問題がある。 Further, for example, according to International Publication No. 2007/086593 (Patent Document 7), the fabric to be subjected to the removal process is composed of non-elastic fibers and elastic fibers, and the non-elastic fibers may be cationically acceptable as a dischargeable fiber. Dyed polyester fiber and non-exhaustable nylon fiber are used, ether-based polyurethane fiber is used for elastic fiber, and if sodium hydroxide is used as an extraction processing agent, it is not subject to extraction. There is a problem that the cationic dyeable polyester fiber and the polyurethane fiber are eroded and the stretchability and strength are lowered.
特開昭61-239015号公報JP-A 61-239015 特開平8-269820号公報JP-A-8-269820 特開2013-18802号公報JP 2013-18802 A 特開2000-096439号公報JP 2000-096439 A 特開2000-282377号公報JP 2000-282377 A 特開2008-038332号公報JP 2008-038332 A 国際公開第2007/086593号International Publication No. 2007/086593
 本発明の目的の1つは、オパール加工における耐薬品の低い繊維として用いられ、アルカリにより抜蝕除去が容易なアルカリ易溶解性の改質ポリエステル繊維を提供することにある。従来からポリエチレンテレフタレート繊維の染色性の改質効果のあることが知られている共重合成分でありながら、脂肪族ジカルボン酸及び金属スルホネート基含有芳香族ジカルボン酸を特定量用いると、染色性の改質効果を保持しつつ、加えて抜蝕除去が容易なアルカリ易溶解性を得られることを見出し、本発明に到ったものである。 One of the objects of the present invention is to provide an easily soluble alkali-modified polyester fiber which is used as a fiber having low chemical resistance in opal processing and can be easily removed by alkali. Although it is a copolymer component that has been known to have an effect of modifying the dyeability of polyethylene terephthalate fiber, the use of a specific amount of aliphatic dicarboxylic acid and metal sulfonate group-containing aromatic dicarboxylic acid improves dyeability. In addition, the present inventors have found that it is possible to obtain an alkali-soluble solubility that is easy to remove and remove while maintaining the quality effect.
 また、上述のとおり、変性ポリエステル繊維を抜蝕する抜蝕加工において、強アルカリでないと十分な抜蝕がなされず、逆に強アルカリを使うと抜蝕加工した布帛の強度が低下するという問題がある。この状況に鑑みて本発明の他の目的の1つは、十分な抜蝕性能を有する改質ポリエステル繊維を用いて、弱アルカリであっても抜蝕ができ易い、未改質ポリエステル繊維を含む抜蝕部以外の繊維の強度低下が避けられる抜蝕性の高い抜蝕加工織編物とその製造方法を提供することをも本発明の課題としている。 In addition, as described above, in the discharging process for discharging the modified polyester fiber, sufficient discharging is not performed unless it is a strong alkali, and conversely, if a strong alkali is used, the strength of the discharged cloth decreases. is there. In view of this situation, one of the other objects of the present invention includes unmodified polyester fibers that can be easily discharged even with a weak alkali, using modified polyester fibers having sufficient discharging performance. It is also an object of the present invention to provide a highly evacuated woven or knitted fabric having a high evacuation property and a method for producing the same, in which a decrease in strength of fibers other than the erosion portion is avoided.
 従来技術では、変性ポリエステル繊維と未変性ポリエステル繊維の織編物の抜蝕加工において、未変性ポリエステル繊維の脆化を防止するために、抜蝕糊に水酸化ナトリウムや水酸化カリウムなどの強アルカリ性物質を使用せず、アルカリ減量促進剤を印捺熱処理し、印捺熱処理後のアルカリ減量時に印捺部のアルカリ減量を促進させることが検討されていた。しかしながら本発明者らは、変性ポリエステル繊維の更なる改質に着目し、様々な検討と実験を重ねた結果、ある特定の改質されたポリエステル繊維が水酸化ナトリウムや水酸化カリウムなどの強アルカリ性物質を使用せず、未改質ポリエステル繊維やポリウレタン繊維に強度低下の影響を与えることなしに、改質ポリエステル繊維のみを特定のpH領域でアルカリ減量が行えることを見出した。 In the prior art, a strong alkaline substance such as sodium hydroxide or potassium hydroxide is used in the removal paste to prevent embrittlement of the unmodified polyester fiber in the removal processing of the woven or knitted fabric of the modified polyester fiber and the unmodified polyester fiber. It has been studied that an alkali weight loss accelerator is heat-treated without printing, and the alkali weight loss of the printed portion is promoted when the alkali weight is reduced after the heat treatment. However, the present inventors have paid attention to further modification of the modified polyester fiber, and as a result of various examinations and experiments, a certain modified polyester fiber is strongly alkaline such as sodium hydroxide or potassium hydroxide. It has been found that alkali weight reduction can be carried out in a specific pH region only with a modified polyester fiber without using a substance and without affecting the strength of unmodified polyester fiber or polyurethane fiber.
 本発明の改質ポリエステル繊維は、以下の測定方法により得られる減量率が、5%以上15%以下である改質ポリエステル繊維である。
<繊維の減量率測定方法>
 繊維100gを、炭酸ナトリウム40g/L水溶液2L中に入れ、100℃30分の加熱を行い、80℃60分乾燥処理後の繊維質量Agを測定する。
 減量率(%)={(100-A)/100}×100
The modified polyester fiber of the present invention is a modified polyester fiber having a weight loss rate of 5% to 15% obtained by the following measurement method.
<Method for measuring fiber weight loss>
100 g of fiber is put into 2 L of sodium carbonate 40 g / L aqueous solution, heated at 100 ° C. for 30 minutes, and fiber mass Ag after drying at 80 ° C. for 60 minutes is measured.
Weight loss rate (%) = {(100−A) / 100} × 100
 本発明の改質ポリエステル繊維は、エチレンテレフタレートを主たる構成単位とし、炭素数4~8の脂肪族ジカルボン酸12モル%以上25モル%以下、及び金属スルホネート基含有芳香族ジカルボン酸2モル%以上5モル%以下が共重合された改質ポリエステルからなることが好ましい。 The modified polyester fiber of the present invention comprises ethylene terephthalate as a main constituent unit, 12 to 25 mol% of an aliphatic dicarboxylic acid having 4 to 8 carbon atoms, and 2 to 5 mol% of a metal sulfonate group-containing aromatic dicarboxylic acid. It is preferably made of a modified polyester copolymerized in an amount of not more than mol%.
 本発明の改質ポリエステル繊維は、前記脂肪族ジカルボン酸がアジピン酸、前記金属スルホネート基含有芳香族ジカルボン酸が5-ナトリウムスルホイソフタル酸であることが好ましい。 In the modified polyester fiber of the present invention, the aliphatic dicarboxylic acid is preferably adipic acid and the metal sulfonate group-containing aromatic dicarboxylic acid is preferably 5-sodium sulfoisophthalic acid.
 本発明の改質ポリエステル繊維は、ジエチレングリコールの含有量が0.5質量%以上3.0質量%以下であることが好ましい。
 本発明の改質ポリエステル繊維は、単繊維繊度が0.6dtex以上3.5dtex以下、繊維強度が2.0cN/dtex以上3.5cN/dtex以下及び繊維伸度が25%以上45%以下であることが好ましい。
 本発明の改質ポリエステル繊維は、前記改質ポリエステル繊維が、酢酸リチウム及びジエチレングリコールを含有し、前記酢酸リチウムの含有量がリチウム原子の量で50~120ppmであることが好ましい。
The modified polyester fiber of the present invention preferably has a diethylene glycol content of 0.5% by mass or more and 3.0% by mass or less.
The modified polyester fiber of the present invention has a single fiber fineness of 0.6 dtex to 3.5 dtex, a fiber strength of 2.0 cN / dtex to 3.5 cN / dtex, and a fiber elongation of 25% to 45%. It is preferable.
In the modified polyester fiber of the present invention, the modified polyester fiber preferably contains lithium acetate and diethylene glycol, and the lithium acetate content is preferably 50 to 120 ppm in terms of the amount of lithium atoms.
 本発明の織編物は、以下の測定方法により得られる減量率が5%以上15%以下である改質ポリエステル繊維と同減量率が0%以上5%未満である非減量繊維とを含有する織編物であって、織編物に対する前記改質ポリエステル繊維の含有量が5質量%以上50質量%以下であり、前記非減量繊維の含有量が50質量%以上95質量%以下である。
<繊維の減量率測定方法>
 繊維100gを、炭酸ナトリウム40g/L水溶液2L中に入れ、100℃30分で加熱し、80℃60分乾燥処理後の繊維質量Agを測定する。
 減量率(%)={(100-A)/100}×100
The woven or knitted fabric of the present invention comprises a modified polyester fiber having a weight loss rate of 5% to 15% and a non-weight loss fiber having a weight loss rate of 0% to less than 5% obtained by the following measurement method. In the knitted fabric, the content of the modified polyester fiber with respect to the woven or knitted fabric is 5% by mass or more and 50% by mass or less, and the content of the non-reduced fiber is 50% by mass or more and 95% by mass or less.
<Method for measuring fiber weight loss>
100 g of fiber is put into 2 L of sodium carbonate 40 g / L aqueous solution, heated at 100 ° C. for 30 minutes, and fiber mass Ag after drying at 80 ° C. for 60 minutes is measured.
Weight loss rate (%) = {(100−A) / 100} × 100
 本発明の織編物は、前記繊維の減量率測定方法により得られる減量率が5%以上15%以下である改質ポリエステル繊維と前記減量率が0%以上5%未満である非減量繊維とを含有し、前記改質ポリエステル繊維の抜蝕部分を有する織編物であって、非抜蝕部分の前記改質ポリエステル繊維に対して、前記抜蝕部分の前記改質ポリエステル繊維の減量率が、50質量%以上100質量%以下である。
 本発明の織編物は、前記改質ポリエステル繊維の該減量率と非抜蝕繊維の該減量率の差が5%以上であることが好ましい。
The woven or knitted fabric of the present invention comprises a modified polyester fiber having a weight loss rate of 5% or more and 15% or less obtained by the fiber weight loss rate measuring method and a non-weight loss fiber having a weight loss rate of 0% or more and less than 5%. A woven or knitted fabric having a discharge portion of the modified polyester fiber, wherein the weight loss rate of the modified polyester fiber in the discharge portion is 50 with respect to the modified polyester fiber in the non-discharge portion. It is not less than 100% by mass.
In the woven or knitted fabric of the present invention, it is preferable that the difference between the weight loss rate of the modified polyester fiber and the weight loss rate of the non-exhaust fiber is 5% or more.
 本発明の織編物は、抜蝕部分の織編物の破裂強度が250kPa以上900kPa以下であることが好ましい。
 本発明の織編物は、織編物の非抜蝕部分の破裂強度に対する織編物の抜蝕部分の破裂強度の強度保持率が50%以上であることが好ましい。
In the woven or knitted fabric of the present invention, it is preferable that the burst strength of the woven or knitted fabric in the discharged portion is 250 kPa or more and 900 kPa or less.
In the woven or knitted fabric of the present invention, it is preferable that the strength retention of the rupture strength of the eroded portion of the woven or knitted fabric with respect to the rupture strength of the non-extracted portion of the woven or knitted fabric is 50% or more.
 本発明の織編物は、前記改質ポリエステル繊維が、エチレンテレフタレートを主たる構成単位とし、炭素数4~8の脂肪族ジカルボン酸16モル%以上25モル%以下、及び金属スルホネート基含有芳香族ジカルボン酸2モル%以上5モル%以下が共重合された改質ポリエステルであることが好ましい。 In the woven or knitted fabric of the present invention, the modified polyester fiber has ethylene terephthalate as a main constituent unit, an aliphatic dicarboxylic acid having 4 to 8 carbon atoms, and an aromatic dicarboxylic acid containing a metal sulfonate group. The modified polyester is preferably copolymerized in an amount of 2 mol% or more and 5 mol% or less.
 本発明の織編物は、前記非減量繊維が、合成繊維を50質量%以上95質量%以下含有することが好ましい。
 本発明の織編物は、前記合成繊維が、レギュラーポリエステル繊維、ポリアミド繊維、弾性繊維、ポリオレフィン繊維、アクリル繊維のいずれか1つ以上であることが好ましい。
In the woven or knitted fabric of the present invention, the non-reducing fiber preferably contains 50% by mass or more and 95% by mass or less of synthetic fiber.
In the woven or knitted fabric of the present invention, the synthetic fiber is preferably any one or more of regular polyester fiber, polyamide fiber, elastic fiber, polyolefin fiber, and acrylic fiber.
 本発明の織編物は、前記改質ポリエステル繊維の単繊維繊度が0.6dtex以上3.5dtex以下であることが好ましい。
 本発明の織編物は、前記弾性繊維が、ポリウレタン繊維、ポリトリメチレンテレフタレート繊維、ポリブチレンテレフタレート繊維のいずれかからなることが好ましい。
In the woven or knitted fabric of the present invention, the single fiber fineness of the modified polyester fiber is preferably 0.6 dtex or more and 3.5 dtex or less.
In the woven or knitted fabric of the present invention, the elastic fiber is preferably made of any one of polyurethane fiber, polytrimethylene terephthalate fiber, and polybutylene terephthalate fiber.
 本発明の織編物の製造方法は、前記繊維の減量率測定方法により得られる減量率が5%以上15%以下である改質ポリエステル繊維と非減量繊維とを含有する生地に、抜蝕加工剤を印捺し、抜蝕加工剤を印捺した部分に過熱蒸気を付与して減量加工する織編物の製造方法であって、前記抜蝕加工剤のpHが8以上13以下であり、加熱方法が、150℃以上200℃以下の過熱蒸気であり、加熱時間が5分以上15分以下であることが好ましい。 The method for producing a woven or knitted fabric according to the present invention is a method for removing a weight loss from a fiber containing a modified polyester fiber having a weight loss rate of 5% to 15% and a non-weight loss fiber obtained by the fiber weight loss rate measuring method. Is a method of manufacturing a knitted or knitted fabric that is subjected to weight loss processing by applying superheated steam to a portion printed with a removal processing agent, wherein the pH of the removal processing agent is 8 or more and 13 or less, and the heating method is The superheated steam at 150 ° C. or more and 200 ° C. or less, and the heating time is preferably 5 minutes or more and 15 minutes or less.
 本発明によれば、改質ポリエステル繊維を含む織編物の抜蝕加工において、改質ポリエステル繊維の抜蝕部以外の強度低下が起こらず、かつ、改質ポリエステル繊維以外の繊維を含む織編物の抜蝕部の強度低下を起こさないことが可能であり、同時に良好な抜蝕作用を得ることができる。本発明によれば、改質ポリエステル繊維が良好に抜蝕され強度低下のない抜蝕加工品を得ることができる。 According to the present invention, in the removal processing of a woven or knitted fabric containing a modified polyester fiber, the strength of the modified polyester fiber other than the discharged portion does not decrease, and the woven or knitted fabric containing a fiber other than the modified polyester fiber is removed. It is possible not to cause a decrease in strength of the extracted portion, and at the same time, a good discharging effect can be obtained. According to the present invention, it is possible to obtain a discharge-processed product in which the modified polyester fiber is excellently discharged and the strength is not reduced.
 本発明の改質ポリエステル繊維は、以下の測定方法により得られる減量率が、5%以上15%以下である改質ポリエステル繊維である。
<繊維の減量率測定方法>
 繊維100gを、炭酸ナトリウム40g/L水溶液2L中に入れ、100℃30分の加熱を行い、80℃60分乾燥処理後の繊維質量Agを測定する。
 減量率(%)={(100-A)/100}×100
The modified polyester fiber of the present invention is a modified polyester fiber having a weight loss rate of 5% to 15% obtained by the following measurement method.
<Method for measuring fiber weight loss>
100 g of fiber is put into 2 L of sodium carbonate 40 g / L aqueous solution, heated at 100 ° C. for 30 minutes, and fiber mass Ag after drying at 80 ° C. for 60 minutes is measured.
Weight loss rate (%) = {(100−A) / 100} × 100
 本発明の改質ポリエステル繊維の前記減量率が5%以上であれば、アルカリで容易に減量ができ、非減量繊維の物性の低下を低減できる。また前記減量率が15%以下であれば、本発明の改質ポリエステル繊維の強度低下が少なく、織編物の製造工程で糸切れを少なくできる。
 以上の観点から、繊維減量率は、7%以上13%以下がより好ましく、8%以上11%以下がさらに好ましい。
If the weight loss ratio of the modified polyester fiber of the present invention is 5% or more, the weight can be easily reduced with an alkali, and the deterioration of the physical properties of the non-weight loss fiber can be reduced. Moreover, if the said weight loss rate is 15% or less, there will be little intensity | strength fall of the modified polyester fiber of this invention, and it can reduce thread breakage in the manufacturing process of a woven / knitted fabric.
From the above viewpoint, the fiber weight loss rate is more preferably 7% or more and 13% or less, and further preferably 8% or more and 11% or less.
 本発明の改質ポリエステル繊維は、エチレンテレフタレートを主たる構成単位とし、炭素数4~8の脂肪族ジカルボン酸12モル%以上25モル%以下、及び金属スルホネート基含有芳香族ジカルボン酸2モル%以上5モル%以下が共重合された改質ポリエステルからなることが好ましい。
 本発明の改質ポリエステル繊維は、前記脂肪族ジカルボン酸がアジピン酸、前記金属スルホネート基含有芳香族ジカルボン酸が5-ナトリウムスルホイソフタル酸であることが好ましい。
The modified polyester fiber of the present invention comprises ethylene terephthalate as a main constituent unit, 12 to 25 mol% of an aliphatic dicarboxylic acid having 4 to 8 carbon atoms, and 2 to 5 mol% of a metal sulfonate group-containing aromatic dicarboxylic acid. It is preferably made of a modified polyester copolymerized in an amount of not more than mol%.
In the modified polyester fiber of the present invention, the aliphatic dicarboxylic acid is preferably adipic acid and the metal sulfonate group-containing aromatic dicarboxylic acid is preferably 5-sodium sulfoisophthalic acid.
 共重合成分である炭素数4~8の脂肪族ジカルボン酸は、繊維の非晶構造を乱すことによりポリエステル繊維のアルカリ溶解性を増大させる。炭素数4~8の脂肪族ジカルボン酸としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸が挙げられ、特にアジピン酸が好ましいものとして挙げられる。 The aliphatic dicarboxylic acid having 4 to 8 carbon atoms, which is a copolymerization component, increases the alkali solubility of the polyester fiber by disturbing the amorphous structure of the fiber. Examples of the aliphatic dicarboxylic acid having 4 to 8 carbon atoms include succinic acid, glutaric acid, adipic acid, pimelic acid and suberic acid, with adipic acid being particularly preferred.
 炭素数4~8の脂肪族ジカルボン酸の共重合量は、16モル%以上25モル%以下、好ましくは18モル%以上20モル%以下であり、この共重合量の範囲で、力学的、熱特性の著しい低下を抑え繊維の非晶構造を乱すことにより、分散染料、カチオン染料による染色性に向上に寄与するだけでなく、繊維のアルカリ溶解性を著しく高める。炭素数4~8の脂肪族ジカルボン酸が、16モル%以上であると、オパール加工に好適なアルカリ易溶解性が得られ易く、25モル%以下であれば、繊維として使用するために必要な繊維物性、堅牢性、耐熱性等の熱特性が維持し易くなる。 The copolymerization amount of the aliphatic dicarboxylic acid having 4 to 8 carbon atoms is 16 mol% or more and 25 mol% or less, preferably 18 mol% or more and 20 mol% or less. By suppressing the remarkable deterioration of the characteristics and disturbing the amorphous structure of the fiber, not only contributes to the improvement of the dyeability by the disperse dye and the cationic dye, but also significantly increases the alkali solubility of the fiber. If the aliphatic dicarboxylic acid having 4 to 8 carbon atoms is 16 mol% or more, it is easy to obtain alkali-soluble solubility suitable for opal processing, and if it is 25 mol% or less, it is necessary for use as a fiber. Thermal properties such as fiber properties, fastness and heat resistance are easily maintained.
 もう一方の共重合成分である金属スルホネート基含有芳香族ジカルボン酸は、金属スルホネート基が繊維中に導入されてカチオン染料の染着座席となり、ポリエチレンテレフタレート繊維をカチオン染料による常圧での染色を可能とする成分である。また金属スルホネート基は芳香環とともに繊維中に導入され、分散染料に対する染色性も向上させ染色温度の低温度化を可能とする。さらには、繊維のアルカリ溶解性の向上にも寄与する。金属スルホネート基含有芳香族ジカルボン酸としては、例えば5-ナトリウムスルホイソフタル酸、カリウムスルホテレフタル酸、ナトリウムスルホナフタレンジカルボン酸等が挙げられ、特に5-ナトリウムスルホイソフタル酸が好ましいものとして挙げられる。 The metal sulfonate group-containing aromatic dicarboxylic acid, which is the other copolymerization component, introduces a metal sulfonate group into the fiber to serve as a dyeing seat for the cationic dye, and allows the polyethylene terephthalate fiber to be dyed at atmospheric pressure with the cationic dye. It is a component. In addition, the metal sulfonate group is introduced into the fiber together with the aromatic ring, so that the dyeing property for the disperse dye is improved and the dyeing temperature can be lowered. Furthermore, it contributes to the improvement of the alkali solubility of the fiber. Examples of the metal sulfonate group-containing aromatic dicarboxylic acid include 5-sodium sulfoisophthalic acid, potassium sulfoterephthalic acid, sodium sulfonaphthalenedicarboxylic acid, and the like. Particularly preferred is 5-sodium sulfoisophthalic acid.
 金属スルホネート基含有芳香族ジカルボン酸の共重合量は、2モル%以上5モル%以下であり、2モル%以上であれば、カチオン染料による充分な染色性が得られ易く、また分散染料による染色での低温度化が充分となり易く、5モル%以下であれば、紡糸時の糸切れや毛羽の発生が少なくなり易くなる。 The copolymerization amount of the metal sulfonate group-containing aromatic dicarboxylic acid is 2 mol% or more and 5 mol% or less, and if it is 2 mol% or more, sufficient dyeability with a cationic dye can be easily obtained, and dyeing with a disperse dye When the temperature is less than 5 mol%, yarn breakage and fluff generation during spinning are likely to be reduced.
 本発明における改質ポリエステルの製造は、ポリエチレンテレフタレートの製造と同様の公知の方法で得ることができる。すなわち、テレフタル酸を用いる場合は、酸のままエチレングリコールとエステル化反応、或いはテレフタル酸ジメチルエステルを用いる場合は、エチレングリコールとエステル交換反応を行った後、重縮合させる方法が採用される。 The production of the modified polyester in the present invention can be obtained by a known method similar to the production of polyethylene terephthalate. That is, when terephthalic acid is used, an esterification reaction with ethylene glycol as the acid is used, or when terephthalic acid dimethyl ester is used, a method of polycondensation is performed after an ester exchange reaction with ethylene glycol.
 共重合成分の炭素数4~8の脂肪族ジカルボン酸は、重縮合の完結前の任意の段階において添加することができ、例えば、テレフタル酸とエチレングリコールとのエステル化反応開始時にエチレングリコールスラリーとして添加する、テレフタル酸とエチレングリコールとのエステル化反応によって生じたビス(β-ヒドロキシルエチル)テレフタレートに脂肪族ジカルボン酸またはビスヒドロキシジカルボネートのエチレングリコール分散液または溶液として添加する。なお、改質ポリエステルの製造時には、重縮合完結前の任意の段階において、艶消剤、耐電防止剤、難燃剤、顔料等が添加することができる。 The aliphatic dicarboxylic acid having 4 to 8 carbon atoms as a copolymerization component can be added at any stage before the completion of polycondensation, for example, as an ethylene glycol slurry at the start of the esterification reaction of terephthalic acid and ethylene glycol. The bis (β-hydroxylethyl) terephthalate produced by the esterification reaction of terephthalic acid and ethylene glycol is added as an ethylene glycol dispersion or solution of an aliphatic dicarboxylic acid or bishydroxydicarbonate. In the production of the modified polyester, a matting agent, an antistatic agent, a flame retardant, a pigment, and the like can be added at any stage before the completion of polycondensation.
 同様に、改質ポリエステルの製造時における共重合成分の金属スルホネート基含有芳香族ジカルボン酸は、重縮合の完結前の任意の段階において添加することができ、例えば、テレフタル酸とエチレングリコールとのエステル化反応開始時にエチレングリコールスラリーとして添加する、テレフタル酸とエチレングリコールとのエステル化反応によって生じたビス(β-ヒドロキシルエチル)テレフタレートに金属スルホネート基含有芳香族ジカルボン酸のジメチルエステル或いはジグリコールエステルのエチレングリコール分散液または溶液として添加する。 Similarly, the metal sulfonate group-containing aromatic dicarboxylic acid as a copolymerization component in the production of the modified polyester can be added at any stage before the completion of the polycondensation, for example, an ester of terephthalic acid and ethylene glycol. Bis (β-hydroxylethyl) terephthalate produced by esterification reaction of terephthalic acid and ethylene glycol, added as an ethylene glycol slurry at the start of the conversion reaction, dimethyl ester of dicarboxylic acid containing metal sulfonate group or ethylene of diglycol ester Add as glycol dispersion or solution.
 本発明の改質ポリエステル繊維は、ジエチレングリコールの含有量が0.5質量%以上3.0質量%以下であることが好ましい。
 改質ポリエステルの製造の際、特に直接エステル化する方法による場合、エチレングリコールが脱水して二量体化したジエチレングリコールが副生し、後の重縮合の反応系に残留する。
 本発明の改質ポリエステル繊維のジエチレングリコールの含有量が3.0質量%以下であれば、繊維強度の低下を減少できる。前記観点から、2.5質量%以下がより好ましく、2.0質量%以下がさらに好ましい。
The modified polyester fiber of the present invention preferably has a diethylene glycol content of 0.5% by mass or more and 3.0% by mass or less.
When the modified polyester is produced, particularly by the method of direct esterification, ethylene glycol is dehydrated to dimerize diethylene glycol, which remains as a by-product in the subsequent polycondensation reaction system.
If the content of diethylene glycol in the modified polyester fiber of the present invention is 3.0% by mass or less, the decrease in fiber strength can be reduced. From the said viewpoint, 2.5 mass% or less is more preferable, and 2.0 mass% or less is further more preferable.
 ジエチレングリコールの副生を抑える方法としては、エステル化反応時の反応系にアルカリ金属或いはアルカリ土類金属の弱酸塩や水酸化物を添加することが好ましく、特に水酸化ナトリウム、酢酸ナトリウム、酢酸リチウム等は、ジエチレングリコールの副生を抑えることに有効であり、共重合成分のジカルボン酸が10モル%以上である場合に好ましく用いられる。本発明では酢酸リチウムがより好ましく用いられる。 As a method for suppressing the by-production of diethylene glycol, it is preferable to add a weak acid salt or hydroxide of an alkali metal or alkaline earth metal to the reaction system during the esterification reaction, particularly sodium hydroxide, sodium acetate, lithium acetate, etc. Is effective in suppressing the by-production of diethylene glycol, and is preferably used when the dicarboxylic acid of the copolymer component is 10 mol% or more. In the present invention, lithium acetate is more preferably used.
 本発明の改質ポリエステル繊維は、酢酸リチウムを含有し、前記酢酸リチウムの含有量がリチウム原子の量で50~120ppmであることが好ましい。
 酢酸リチウムの含有量は、ポリマー組成物に対してリチウム原子の量で50~150ppmであることが好ましく、より好ましくは100~150ppm、さらに好ましくは120~150ppmであり、かかる量の酢酸リチウムが添加含有されることにより、エチレングリコール含有量が0.5質量%以上3.0質量%以下である改質ポリエステルを得ることができる。
The modified polyester fiber of the present invention preferably contains lithium acetate, and the lithium acetate content is preferably 50 to 120 ppm in terms of lithium atoms.
The lithium acetate content is preferably 50 to 150 ppm, more preferably 100 to 150 ppm, and still more preferably 120 to 150 ppm in terms of lithium atoms based on the polymer composition. By containing, the modified polyester whose ethylene glycol content is 0.5 mass% or more and 3.0 mass% or less can be obtained.
 本発明の改質ポリエステル繊維は、単繊維繊度が0.6dtex以上3.5dtex以下、繊維強度が2cN/dtex以上3.5cN/dtex以下、及び繊維伸度が25%以上45%以下であることが好ましい。 The modified polyester fiber of the present invention has a single fiber fineness of 0.6 dtex or more and 3.5 dtex or less, a fiber strength of 2 cN / dtex or more and 3.5 cN / dtex or less, and a fiber elongation of 25% or more and 45% or less. Is preferred.
 本発明の改質ポリエステル繊維の単繊維繊度が0.6dtex以上であれば、繊維強度を保持でき、製編織性が良好であるため好ましく、3.5dtex以下であれば、減量加工性が良好であるため好ましい。前記観点から、前記単繊維繊度は、1dtex以上3dtex以下がより好ましく、1.3dtex以上2.5dtex以下がさらに好ましい。    If the single fiber fineness of the modified polyester fiber of the present invention is 0.6 dtex or more, it is preferable because fiber strength can be maintained and the knitting property is good, and if it is 3.5 dtex or less, the weight loss processability is good. This is preferable. From the above viewpoint, the single fiber fineness is more preferably 1 dtex or more and 3 dtex or less, and further preferably 1.3 dtex or more and 2.5 dtex or less. *
 本発明の改質ポリエステル繊維の繊維強度が2cN/dtex以上3.5cN/dtex以下であれば、製編織性に問題がないため好ましく、2.3cN/dtex以上3cN/dtex以下がより好ましい。また、本発明の改質ポリエステル繊維の伸度が25%以上45%以下であれば、製編織性が良好であるため好ましく、30%以上40%以下がより好ましい。 If the fiber strength of the modified polyester fiber of the present invention is 2 cN / dtex or more and 3.5 cN / dtex or less, there is no problem in the knitting property, and 2.3 cN / dtex or more and 3 cN / dtex or less is more preferable. Further, if the elongation of the modified polyester fiber of the present invention is 25% or more and 45% or less, it is preferable because the knitting property is good, and more preferably 30% or more and 40% or less.
 本発明における改質ポリエステルは、例えば次のような製造工程を経て製造される。
 ビス(β-ヒドロキシルエチル)テレフタレート及びそのオリゴマーの存在するエステル化反応缶に、テレフタル酸とエチレングリコールのスラリーを供給し、250℃前後の温度で3~8時間エステル化反応させエステル化率95%以上の反応物とする工程、このエステル化反応物を重合缶に移し、共重合成分の脂肪族ジカルボン酸、金属スルホネート基含有芳香族ジカルボン酸、酢酸リチウム、酢酸マグネシウム、トリエチルホスフェート、二酸化ゲルマニウムをそれぞれエチレングリコール溶液または分散液として添加した後、重合触媒の三酸化アンチモンをエチレングリコール分散液として添加し、昇温し270℃前後の減圧下で重縮合反応を行い所定の極限粘度になるまで重縮合する工程を経た後、重縮合物を取り出しストランドとし、チップとする。
The modified polyester in the present invention is produced, for example, through the following production process.
A slurry of terephthalic acid and ethylene glycol is supplied to an esterification reactor in which bis (β-hydroxylethyl) terephthalate and its oligomer are present, and the esterification is carried out at a temperature of about 250 ° C. for 3 to 8 hours to achieve an esterification rate of 95%. The process of making the above reactants, this esterification reaction product is transferred to a polymerization can, and aliphatic dicarboxylic acid of copolymerization component, metal sulfonate group-containing aromatic dicarboxylic acid, lithium acetate, magnesium acetate, triethyl phosphate, germanium dioxide, respectively. After addition as an ethylene glycol solution or dispersion, the polymerization catalyst antimony trioxide is added as an ethylene glycol dispersion, and the temperature is raised and a polycondensation reaction is performed under a reduced pressure of around 270 ° C. until polycondensation is achieved until a predetermined intrinsic viscosity is reached. After passing through the process, the polycondensate is taken out and the strand And, to a chip.
 本発明の改質ポリエステル繊維は、ポリエチレンテレフタレート繊維の製造と同様の公知の溶融紡糸法で得ることができ、改質ポリエステルチップを紡糸口金の紡出孔より吐出する紡糸とその後の延伸を含めた製糸方法も公知の方法が適用できる。例えば、改質ポリエステル繊維の製造には、紡糸温度が240~300℃、紡糸速度が1000~2000m/分、延伸温度が60~90℃、延伸速度が400~1000m/分、延伸倍率が1.8~3.5倍、延伸倍率が最大延伸倍率の0.65~0.80倍、熱セット温度110~160℃の条件が用いられる。ここで最大延伸倍率とは、延伸温度80℃、熱セット温度145℃、延伸速度600m/分で未延伸糸が切断されるまで延伸したときの倍率をいう。 The modified polyester fiber of the present invention can be obtained by a known melt spinning method similar to the production of polyethylene terephthalate fiber, and includes spinning for discharging the modified polyester chip from the spinning hole of the spinneret and subsequent stretching. A known method can be applied to the yarn production method. For example, in the production of the modified polyester fiber, the spinning temperature is 240 to 300 ° C., the spinning speed is 1000 to 2000 m / min, the stretching temperature is 60 to 90 ° C., the stretching speed is 400 to 1000 m / min, and the draw ratio is 1. Conditions of 8 to 3.5 times, a draw ratio of 0.65 to 0.80 times the maximum draw ratio, and a heat setting temperature of 110 to 160 ° C. are used. Here, the maximum draw ratio refers to the ratio when the undrawn yarn is drawn until it is cut at a drawing temperature of 80 ° C., a heat setting temperature of 145 ° C., and a drawing speed of 600 m / min.
 製糸過程においては、紡糸した未延伸糸を一旦巻き取ったのち延伸する、紡糸した未延伸糸を巻き取ることなく延伸する、紡糸速度が2000m/分以上の高速紡糸により半未延伸糸として巻き取る、或いは高速紡糸して巻き取ることなく延伸する等の方法が用いられる。 In the spinning process, the spun unstretched yarn is wound once and then stretched, the spun unstretched yarn is stretched without being wound, and the spun speed is wound as a semi-unstretched yarn by high speed spinning of 2000 m / min or more. Alternatively, a method such as spinning at high speed and drawing without winding is used.
 本発明の改質ポリエステル繊維は、織編物の一部の組成繊維が抜蝕除去されるオパール加工に好適に用いられることから、改質ポリエステル繊維の単繊維繊度は、繊維の形態がフィラメント糸であれば単糸繊度は、繊維の抜蝕除去が容易な0.6dtex以上3.5dtex以下であることが好ましい。改質ポリエステル繊維の断面形状は、円形、扁平、三角形、Y字形、多葉形等任意の形状であってよい。また改質ポリエステル繊維の形態も短繊維、フィラメントのいずれであってもよく、繊維の形態がフィラメントであるときは、そのフィラメント糸に捲縮加工、仮撚加工を施すこともできる。 Since the modified polyester fiber of the present invention is suitably used for opal processing in which a part of the composition fiber of the woven or knitted fabric is removed by discharge, the single fiber fineness of the modified polyester fiber is a filament yarn. If it exists, it is preferable that the single yarn fineness is 0.6 dtex or more and 3.5 dtex or less which is easy for the fiber to remove and remove. The cross-sectional shape of the modified polyester fiber may be any shape such as a circle, a flat shape, a triangle, a Y shape, and a multi-leaf shape. The modified polyester fiber may be either a short fiber or a filament, and when the fiber is a filament, the filament yarn can be crimped or false twisted.
 本発明の改質ポリエステル繊維は、分散染料にて常圧で染色可能な易染性及びカチオン染料にて常圧で染色可能な可染性を有しながら、抜蝕除去が容易なアルカリ易溶解性を有するものであり、他の耐薬品性の高い繊維と組み合わせて交織または交編により混用織編物とし、この混用織編物をオパール加工する際に、印捺する抜蝕糊或いは抜蝕促進剤含有糊への分散染料またはカチオン染料の添加により、多様な色彩、色調のオパール加工製品を得ることができる。耐薬品性の高い繊維としては、ポリエチレンテレフタレート繊維が特に好ましく用いられる。したがって、本発明の改質ポリエステル繊維は、ポリエチレンテレフタレート繊維と組み合わせることによってポリエステル系繊維のみからなる混用織編物のオパール加工製品を得ることができる。また、本発明の改質ポリエステル繊維は、耐薬品性の高い繊維の他に、必要に応じ他の耐薬品性の低い或いは異なる耐薬品性の繊維、例えば羊毛、絹、綿、レーヨン、アセテート繊維、ポリアミド繊維等と混用することもでき、混用する繊維に適した染料を抜蝕糊に添加することにより多様な色彩、色調、風合いのオパール加工製品を得ることができる。 The modified polyester fiber of the present invention has an easily dyeable and easily dissolvable alkali-dissolving property while being easily dyeable at normal pressure with a disperse dye and dyeable at normal pressure with a cationic dye. It is a combination of other highly chemical-resistant fibers to make a mixed woven or knitted fabric by cross knitting or knitting, and when this mixed woven knitted fabric is opal processed, it is a discharge paste or discharge accelerator that is printed. Opal processed products with various colors and tones can be obtained by adding disperse dyes or cationic dyes to the contained paste. As the fiber having high chemical resistance, polyethylene terephthalate fiber is particularly preferably used. Therefore, the modified polyester fiber of the present invention can be combined with polyethylene terephthalate fiber to obtain an opal processed product of a mixed woven or knitted fabric made only of polyester fibers. Further, the modified polyester fiber of the present invention is not only a fiber having high chemical resistance but also other low or different chemical resistance fibers as required, such as wool, silk, cotton, rayon, acetate fiber. It can also be mixed with polyamide fibers and the like, and an opal processed product with various colors, colors and textures can be obtained by adding a dye suitable for the mixed fiber to the discharge paste.
 また、本発明の改質ポリエステル繊維は、そのアルカリ易溶解性により、ポリエチレンテレフタレート繊維及びポリウレタン繊維を組み合わせて軽度のアルカリ処理条件下にてオパール加工することによって、ポリウレタン繊維を脆化させることなく改質ポリエステル繊維のみが抜蝕除去された高伸縮性部位を形成し、ストレッチ性のあるオパール加工製品を得ることを可能とする。用いられるポリウレタン繊維は、ポリエーテル系ポリウレタン繊維、ポリエステル系ポリウレタン繊維のいずれかであってもよい。 In addition, the modified polyester fiber of the present invention is modified without causing embrittlement of the polyurethane fiber by opalizing the polyethylene terephthalate fiber and the polyurethane fiber under mild alkali treatment conditions due to its alkali solubility. This makes it possible to obtain a stretchable opal processed product by forming a highly stretchable part from which only the high quality polyester fiber is removed. The polyurethane fiber used may be either a polyether-based polyurethane fiber or a polyester-based polyurethane fiber.
 本発明の改質ポリエステル繊維をポリエチレンテレフタレート繊維或いはさらにポリウレタン繊維と組み合わせた交織または交編による混用織編物に対して行われるオパール加工は、織編物組織、繊維の混用率、抜蝕模様、用途等によりその条件が異なるが、例えば、苛性ソーダを抜蝕剤として含有する抜蝕糊の印捺工程、乾燥工程、湿熱または乾熱による抜蝕処理工程、ソーピング・水洗工程からなる方法、或いは抜蝕促進剤含有糊の印捺工程、乾燥・熱処理工程、ソーピング・水洗工程、苛性ソーダによるアルカリ減量処理(抜蝕処理)工程からなる方法等が採用される。本発明の改質ポリエステル繊維とポリエチレンテレフタレート繊維或いはさらにポリウレタン繊維との混用織編物のオパール加工の場合は、後者の方法におけるアルカリ減量処理(抜蝕処理)をポリエステル繊維の織編物に一般に適用されるアルカリ減量加工で行ってもよく、後者の方法が好ましく採用される。オパール加工の際には、抜蝕糊或いは抜蝕促進剤含有糊には適宜染料を添加し、抜蝕と同時に非抜蝕繊維の着色を行うこともでき、またオパール加工の前或いは後の染色と組み合わされ、色彩が多様で、単繊維繊度の細いことと相俟って、高級感のあるオパール加工製品を得ることができる。 The opal processing performed on the mixed woven or knitted fabric obtained by combining or knitting with the modified polyester fiber of the present invention combined with polyethylene terephthalate fiber or polyurethane fiber is a woven / knitted structure, mixed fiber ratio, discharge pattern, usage, etc. Depending on the conditions, for example, a method consisting of a printing process of an extraction paste containing caustic soda as an extraction agent, a drying process, an extraction treatment process by wet heat or dry heat, a soaping / washing process, or an acceleration of extraction A method comprising an agent-containing paste printing process, a drying / heat treatment process, a soaping / washing process, and an alkali weight reduction process (discharge process) with caustic soda is employed. In the case of opal processing of a mixed woven or knitted fabric of the modified polyester fiber of the present invention and polyethylene terephthalate fiber or further polyurethane fiber, the alkali weight loss treatment (discharge process) in the latter method is generally applied to the woven or knitted fabric of polyester fiber. Alkali weight loss processing may be performed, and the latter method is preferably employed. During opal processing, dyes can be added appropriately to the extraction paste or extraction accelerator-containing paste, and the non-extraction fibers can be colored simultaneously with the extraction, and dyeing before or after the opal processing. Combined with this, combined with the variety of colors and fine single fiber fineness, a high-quality opal processed product can be obtained.
 本発明の改質ポリエステル繊維を用いてなる混用織編物のオパール加工製品としては、エンブロイダリーレース、ランジェリー、ファンデーション、水着、スポーツインナー、ボディスーツ、レオタード、スポーツ用タイツ、ガードル等のアウターウエア、インナーウエアが挙げられる。 As the opal processed product of the mixed woven or knitted fabric using the modified polyester fiber of the present invention, outerwear such as embroidery lace, lingerie, foundation, swimsuit, sports inner, body suit, leotard, sports tights, girdle, Inner wear is listed.
 本発明の織編物は、以下の測定方法により得られる減量率が5%以上15%以下である改質ポリエステル繊維と同減量率が0%以上5%未満である非減量繊維とを含有する織編物であって、織編物に対する前記改質ポリエステル繊維の含有量が5質量%以上50質量%以下、前記非減量繊維の含有量が50質量%以上95質量%以下である織編物である。
<繊維の減量率測定方法>
 繊維100gを、炭酸ナトリウム40g/L水溶液2L中に入れ、100℃30分で加熱し、80℃60分乾燥処理後の繊維質量Agを測定する。
 減量率(%)={(100-A)/100}×100
The woven or knitted fabric of the present invention comprises a modified polyester fiber having a weight loss rate of 5% to 15% and a non-weight loss fiber having a weight loss rate of 0% to less than 5% obtained by the following measurement method. A knitted fabric, wherein the content of the modified polyester fiber relative to the woven fabric is 5% by mass to 50% by mass, and the content of the non-reduced fiber is 50% by mass to 95% by mass.
<Method for measuring fiber weight loss>
100 g of fiber is put into 2 L of sodium carbonate 40 g / L aqueous solution, heated at 100 ° C. for 30 minutes, and fiber mass Ag after drying at 80 ° C. for 60 minutes is measured.
Weight loss rate (%) = {(100−A) / 100} × 100
 前記減量率が0%以上5%未満である非減量繊維を含有することによって、本発明の改質ポリエステル繊維をアルカリで減量しても、非減量繊維が残り、抜蝕加工ができる。
 上記観点から、前記非減量繊維の減量率は、4%以下がより好ましく、3%以下がさらに好ましい。
By containing the non-weight-reducing fiber whose weight loss rate is 0% or more and less than 5%, even when the modified polyester fiber of the present invention is weight-reduced with an alkali, the non-weight-reducing fiber remains and can be discharged.
From the above viewpoint, the weight loss rate of the non-weight-reducing fiber is more preferably 4% or less, and further preferably 3% or less.
 また、織編物に対する前記改質ポリエステル繊維の含有量が5質量%以上であれば、抜蝕加工の効果が出やすくなり、50質量%以下であれば、非抜蝕繊維が十分残るので、織編物の強度が十分保持できる。
 こうした観点から、織編物に対する前記改質ポリエステル繊維の含有量は、10質量%以上40質量%以下がより好ましく、15質量%以上30質量%以下がさらに好ましい。   
Further, if the content of the modified polyester fiber with respect to the woven or knitted fabric is 5% by mass or more, the effect of the discharge process is likely to occur, and if it is 50% by mass or less, the non-exhaust fibers remain sufficiently. The strength of the knitted fabric can be sufficiently maintained.
From such a viewpoint, the content of the modified polyester fiber with respect to the woven or knitted fabric is more preferably 10% by mass or more and 40% by mass or less, and further preferably 15% by mass or more and 30% by mass or less.
 本発明の織編物は、以下の測定方法により得られる減量率が5%以上15%以下である改質ポリエステル繊維と減量率が0%以上5%未満である非減量繊維とを含有し、前記改質ポリエステル繊維の抜蝕部分を有する織編物であって、非抜蝕部分の前記ポリエステル繊維に対して、前記抜蝕部分の前記改質ポリエステル繊維の減量率が、50質量%以上100質量%以下である織編物である。
<繊維の減量率測定方法>
 繊維100gを、炭酸ナトリウム40g/L水溶液2L中に入れ、100℃30分で加熱し、80℃60分乾燥処理後の繊維質量Agを測定する。
 減量率(%)={(100-A)/100}×100
The woven or knitted fabric of the present invention contains a modified polyester fiber having a weight loss rate of 5% to 15% and a non-weight loss fiber having a weight loss rate of 0% to less than 5% obtained by the following measurement method, A knitted or knitted fabric having a portion to which the modified polyester fiber is removed, wherein the weight loss rate of the modified polyester fiber in the portion to be removed is 50% by mass or more and 100% by mass with respect to the polyester fiber in the non-exhausted portion It is the following woven or knitted fabric.
<Method for measuring fiber weight loss>
100 g of fiber is put into 2 L of sodium carbonate 40 g / L aqueous solution, heated at 100 ° C. for 30 minutes, and fiber mass Ag after drying at 80 ° C. for 60 minutes is measured.
Weight loss rate (%) = {(100−A) / 100} × 100
 抜蝕部分を有する本発明の織編物は、非抜蝕部分の前記改質ポリエステル繊維に対して、前記抜蝕部分の前記改質ポリエステル繊維の減量率が、50質量%以上100質量%以下である。
 前記減量率が50%であれば、織物における減量加工の効果が十分である。前記減量率が100%であることは、抜蝕部分の前記改質ポリエステル繊維がなくなっていることであり、この状態が好ましい。しかしながら、織編物の意匠効果から、抜蝕部分に前記改質ポリエステルを一部残すことが好ましい。
In the woven or knitted fabric of the present invention having an extracted portion, the weight loss rate of the modified polyester fiber in the extracted portion is 50% by mass to 100% by mass with respect to the modified polyester fiber in the non-extracted portion. is there.
If the weight loss rate is 50%, the effect of weight loss processing on the fabric is sufficient. That the weight loss rate is 100% means that the modified polyester fiber in the portion to be removed has disappeared, and this state is preferable. However, in view of the design effect of the woven or knitted fabric, it is preferable to leave a part of the modified polyester in the removed portion.
 本発明の織編物は、抜蝕部分の織編物の破裂強度が250kPa以上900kPa以下であることが好ましい。
 前記破裂強度が250kPa以上であれば、製品としての使用上問題ない強度である。また、900kPaあれば使用上十分な強度である。
 前記観点から、前記破裂強度は、400kPa以上が好ましく、600kPa以上がさらに好ましい。
In the woven or knitted fabric of the present invention, it is preferable that the burst strength of the woven or knitted fabric in the discharged portion is 250 kPa or more and 900 kPa or less.
When the burst strength is 250 kPa or more, the strength is satisfactory for use as a product. Moreover, if it is 900 kPa, it is intensity | strength sufficient on use.
From the above viewpoint, the burst strength is preferably 400 kPa or more, and more preferably 600 kPa or more.
 本発明の織編物は、織編物の非抜蝕部分の破裂強度に対する織編物の抜蝕部分の破裂強度の強度保持率が50%以上であることが好ましい。
 前記破裂強度の強度保持率が50%以上であれば、抜蝕部分に応力が集中し過ぎて織編物が破断することが低減される。
 前記観点から前記強度保持率は、70%以上がより好ましく、85%以上がさらに好ましい。
In the woven or knitted fabric of the present invention, it is preferable that the strength retention of the rupture strength of the eroded portion of the woven or knitted fabric with respect to the rupture strength of the non-extracted portion of the woven or knitted fabric is 50% or more.
If the strength retention of the burst strength is 50% or more, it is possible to reduce the fact that the stress is excessively concentrated on the removed portion and the woven or knitted fabric breaks.
From the above viewpoint, the strength retention is more preferably 70% or more, and further preferably 85% or more.
 本発明の織編物は、前記改質ポリエステル繊維が、エチレンテレフタレートを主たる構成単位とし、炭素数4~8の脂肪族ジカルボン酸16モル%以上25モル%以下、及び金属スルホネート基含有芳香族ジカルボン酸2モル%以上5モル%以下が共重合された改質ポリエステル繊維であることが好ましい。 In the woven or knitted fabric of the present invention, the modified polyester fiber has ethylene terephthalate as a main constituent unit, an aliphatic dicarboxylic acid having 4 to 8 carbon atoms, and an aromatic dicarboxylic acid containing a metal sulfonate group. It is preferable that the modified polyester fiber is copolymerized in an amount of 2 mol% or more and 5 mol% or less.
 前記改質ポリエステル繊維は、炭素数4~8の脂肪族ジカルボン酸の共重合量が16モル%以上であれば、pH9以上13以下の範囲でも減量され易くなり、25モル%以下であれば、該繊維の紡糸時の糸切れが低減でき、生産性が良好となる。
 前記観点から、前記炭素数4~8の脂肪族ジカルボン酸の共重合量は、20モル%以下であることがより好ましい。
If the amount of the copolymerized aliphatic dicarboxylic acid having 4 to 8 carbon atoms is 16 mol% or more, the modified polyester fiber can be easily reduced in the range of pH 9 to 13, and if it is 25 mol% or less, Yarn breakage during spinning of the fibers can be reduced, and productivity is improved.
From the above viewpoint, the copolymerization amount of the aliphatic dicarboxylic acid having 4 to 8 carbon atoms is more preferably 20 mol% or less.
 本発明の織編物は、非減量繊維が、合成繊維を50質量%以上95質量%以下含有することが好ましい。
 織編物に対する前記合成繊維の含有量が50質量%以上であれば、抜蝕部分の破裂強度の低下が少なくできる。また、前記合成繊維の含有量が95質量%以下であれば、抜蝕繊維を含むことができ、抜蝕加工の効果を出しやすくできる。前記観点から、前記合成繊維の含有量は、60質量%以上80質量%以下がより好ましい。
In the woven or knitted fabric of the present invention, the non-reducing fiber preferably contains 50% by mass to 95% by mass of synthetic fiber.
When the content of the synthetic fiber with respect to the woven or knitted fabric is 50% by mass or more, a decrease in the burst strength of the discharged portion can be reduced. Moreover, if content of the said synthetic fiber is 95 mass% or less, a removal fiber can be included and it can be easy to produce the effect of a removal process. From the above viewpoint, the content of the synthetic fiber is more preferably 60% by mass or more and 80% by mass or less.
 本発明の織編物は、前記合成繊維が、レギュラーポリエステル繊維、ポリアミド繊維、弾性繊維、ポリオレフィン繊維、アクリル繊維のいずれか1つ以上の繊維であることが好ましい。
 中でも、強度の点でレギュラーポリエステル繊維が好ましく、ストレッチ性を出す観点からは弾性繊維であることが好ましい。
In the woven or knitted fabric of the present invention, the synthetic fiber is preferably any one or more of regular polyester fiber, polyamide fiber, elastic fiber, polyolefin fiber, and acrylic fiber.
Among these, regular polyester fibers are preferable in terms of strength, and elastic fibers are preferable from the viewpoint of exerting stretch properties.
 本発明の織編物は、前記改質ポリエステル繊維の単繊維繊度が0.6dtex以上3.5dtex以下であることが好ましい。
 前記単繊維繊度が0.6dtex以上であれば、織編物の強度を高めることができ、3.5dtex以下であれば、抜蝕性が良好となり、織編物の風合いもソフトにでき易くなる。
 前記観点から、前記単繊維繊度が0.9dtex以上2.5dtex以下であることがより好ましい。
In the woven or knitted fabric of the present invention, the single fiber fineness of the modified polyester fiber is preferably 0.6 dtex or more and 3.5 dtex or less.
If the single fiber fineness is 0.6 dtex or more, the strength of the woven or knitted fabric can be increased, and if it is 3.5 dtex or less, the pitting property becomes good and the texture of the woven or knitted fabric can be made soft easily.
From the viewpoint, the single fiber fineness is more preferably 0.9 dtex or more and 2.5 dtex or less.
 本発明の織編物は、前記弾性繊維が、既述したとおりポリウレタン繊維、ポリトリメチレンテレフタレート繊維、ポリブチレンテレフタレート繊維のいずれかであることが好ましい。 In the woven or knitted fabric of the present invention, it is preferable that the elastic fiber is any one of polyurethane fiber, polytrimethylene terephthalate fiber, and polybutylene terephthalate fiber as described above.
 本発明の織編物は、改質ポリエステル繊維、レギュラーポリエステル繊維及びポリウレタン繊維からなることが好ましい。前記構成であれば、ストレッチ性を有し、強度が高く、ソフトな風合いの織編物を得ることができる。 The woven or knitted fabric of the present invention is preferably composed of a modified polyester fiber, a regular polyester fiber and a polyurethane fiber. If it is the said structure, it has stretch property, is high intensity | strength, and can obtain the soft texture woven or knitted fabric.
 本発明の織編物の製造方法は、pH8以上13以下の条件下において減量する改質ポリエステル繊維と非減量繊維とを含有する生地に、抜蝕加工剤を印捺し、抜蝕加工剤を印捺した部分に過熱蒸気を与えて減量加工する織編物の製造方法であって、前記抜蝕加工剤のpHが8以上13以下であり、加熱方法は、150℃以上200℃以下の過熱蒸気であり、加熱時間が5分以上15分以下である。 The method for producing a woven or knitted fabric according to the present invention comprises printing a discharging agent on a fabric containing a modified polyester fiber and a non-reducing fiber that are reduced in weight under a pH of 8 or more and 13 or less. A method of manufacturing a knitted or knitted fabric that is subjected to weight reduction processing by applying superheated steam to the part, wherein the pH of the removal processing agent is 8 or more and 13 or less, and the heating method is 150 ° C or more and 200 ° C or less of superheated steam. The heating time is 5 minutes or more and 15 minutes or less.
 前記加熱方法は、抜蝕加工剤を印捺した部分に150℃以上200℃以下の過熱蒸気を与える。前記過熱蒸気の温度が150℃以上になると、抜蝕性が良好となり、200℃以下であれば、ポリエステル系繊維の風合いが硬くなることを低減できる。 In the heating method, overheated steam of 150 ° C. or higher and 200 ° C. or lower is applied to the portion where the removal processing agent is printed. When the temperature of the superheated steam is 150 ° C. or higher, the pitting property is good, and when it is 200 ° C. or lower, it is possible to reduce the texture of the polyester fiber becoming hard.
 前記加熱時間は、5分以上15分以下であることが好ましい。
 前記加熱時間が、5分以上であれば、抜蝕性が良好となり、15分以下であれば、非抜蝕部分の強度低下が少なくできる。
The heating time is preferably 5 minutes or more and 15 minutes or less.
If the heating time is 5 minutes or more, the dischargeability is good, and if the heating time is 15 minutes or less, the strength reduction of the non-extraction portion can be reduced.
 抜蝕加工剤は、糊剤と、炭酸グアニジンを除く特定のpH領域(pH8以上13以下) で抜蝕作用を有する成分とを含むことを特徴とする。抜蝕作用を有する前記成分としては、炭酸ナトリウムまたは炭酸カリウムの1種または2種が好ましく、炭酸ナトリウムの1種がより好ましい。炭酸ナトリウムまたは炭酸カリウムの使用量は抜蝕する改質ポリエステル繊維の質量に応じて調整すれはよいが、一般的には抜蝕加工剤に対して5質量%以上15質量%以下の範囲で用いることが好ましい。抜蝕加工剤には、必要に応じて抜蝕促進剤を含んでいても良い。抜蝕促進剤は、特に限定されるものではなく、市販されているものを使用することができる。例えば、明成化学工業株式会社製、メイプリンターOP-2が好ましい。 The discharge processing agent is characterized by containing a paste and a component having a discharging action in a specific pH range (pH 8 to 13) excluding guanidine carbonate. As said component which has a pitting action, 1 type or 2 types of sodium carbonate or potassium carbonate is preferable, and 1 type of sodium carbonate is more preferable. The amount of sodium carbonate or potassium carbonate may be adjusted according to the mass of the modified polyester fiber to be removed, but is generally used in the range of 5 to 15% by mass with respect to the removal processing agent. It is preferable. The removal processing agent may contain a removal promotion agent as necessary. The extraction accelerator is not particularly limited, and a commercially available one can be used. For example, May printer OP-2 manufactured by Meisei Chemical Industry Co., Ltd. is preferable.
 抜蝕加工剤に含まれる糊剤としては、ローカストビーンガム系、デンプン系、デキストリン系、クリスタルガム系、トラガントガム系、セルロース系、カルボキシメチルセルロース、ポリビニルアルコール、ポリアクリル酸ソーダなどの、天然、加工、半合成、合成の糊剤を単独でまたは2種以上を用いることができる。糊剤の割合は、抜蝕加工剤を印捺し、熱処理を行うために適切な粘度を保持できる限り特に制限されないが、例えば抜蝕加工剤に対して1質量%以上10質量%以下含有されることが好ましい。
 抜蝕加工剤には、さらに、染料など他の化合物を配合することもできる。
As paste contained in the extraction processing agent, locust bean gum, starch, dextrin, crystal gum, tragacanth gum, cellulose, carboxymethylcellulose, polyvinyl alcohol, sodium polyacrylate, natural, processed, Semi-synthetic and synthetic pastes can be used alone or in combination of two or more. The ratio of the paste is not particularly limited as long as it can maintain the appropriate viscosity for printing and performing heat treatment, but for example, it is contained in an amount of 1% by mass or more and 10% by mass or less with respect to the extraction processing agent. It is preferable.
In addition, other compounds such as dyes can be added to the removal processing agent.
 上記の抜蝕加工剤を用いる抜蝕加工方法について説明する。
 上記抜蝕加工剤は、改質ポリエステル繊維を含む織編物に対して好ましく適用される。
 改質ポリエステル繊維と組み合わせて用いる繊維は、改質ポリエステル繊維と異なる非減量性を有する繊維であれば特に制限されないが、例えば未変性ポリエステル繊維(未改質のポリエチレンテレフタレートからなり、レギュラーポリエステル繊維ともいわれる。)、ポリアミド繊維、ポリトリメチレンテレフタレート繊維、ポリブチレンテレフタレート繊維、ポリプロピレン繊維、ポリエチレン繊維、ポリウレタン繊維などを用いることができる。改質ポリエステル繊維とこれらの繊維とを、混紡、混繊、交撚等の任意の方法で組み合わせた糸条、ステープル糸条などからなる織編物について、抜蝕加工を行う。上記織編物は、必要に応じて染色を行った布帛を使用してもよい。染色としては公知の任意の方法にて布帛の全部または一部を無地染めまたは捺染により行う。
A discharging process using the above-described discharging agent will be described.
The above-mentioned removal processing agent is preferably applied to woven or knitted fabrics containing modified polyester fibers.
The fiber used in combination with the modified polyester fiber is not particularly limited as long as it is a non-weight loss fiber different from the modified polyester fiber. For example, unmodified polyester fiber (made of unmodified polyethylene terephthalate, also called regular polyester fiber) Polyamide fiber, polytrimethylene terephthalate fiber, polybutylene terephthalate fiber, polypropylene fiber, polyethylene fiber, polyurethane fiber, and the like can be used. The woven or knitted fabric composed of yarns, staple yarns, and the like in which the modified polyester fibers and these fibers are combined by any method such as blending, blending, and twisting is subjected to a discharge process. The woven or knitted fabric may be a fabric dyed as necessary. As the dyeing, all or part of the fabric is performed by plain dyeing or printing by any known method.
 抜蝕加工は既述した抜蝕加工剤を用いて、概略的には印捺、熱処理、洗浄という公知の工程に従って行うことができる。印捺工程において、改質ポリエステル繊維を含む織編物に、抜蝕加工剤を所望の模様に応じた形状で印捺する。抜蝕加工剤の印捺には、捺染法、スプレイ法などが用いられる。捺染法としては特に限定されず、型枠捺染法、フラットスクリーン法、ロータリースクリーン法、ローラー法などが用いられる。織編物への抜蝕加工剤の付着量は、印捺の方法、布帛の織編組織、所望の模様により任意に決定することができる。 The removal process can be performed generally using the above-described removal process agent according to known processes such as printing, heat treatment, and washing. In the printing process, a discharging agent is printed on the woven or knitted fabric containing the modified polyester fiber in a shape corresponding to a desired pattern. A printing method, a spray method, etc. are used for the printing of the discharge processing agent. The printing method is not particularly limited, and a form printing method, a flat screen method, a rotary screen method, a roller method, and the like are used. The amount of the removal processing agent attached to the woven or knitted fabric can be arbitrarily determined depending on the printing method, the woven or knitted structure of the fabric, and the desired pattern.
 例えば、フラットスクリーン法の場合、印捺を行う織編組織、所望の模様を印捺する型枠のメッシュなどにより、抜蝕加工剤の粘度、ゴムスキージの硬度、抜蝕加工剤の印捺を行うゴムスキージ圧力、スキージの印捺スピードを決定し、布帛へ抜蝕加工剤を所望の模様で均一に付与する。布帛へ均一に付着しているかの確認としては、目視で印捺部のカスレがないか、ゴムスキージ左右での模様に差がないか、印捺部の裏面へ抜蝕加工剤が均一に浸透しているかなどを確認することにより行う。また、抜蝕加工剤の付着部以外の部分に抜蝕加工剤を含まない染色糊により所望の模様に応じた形状を印捺してもよい。染色糊の捺染法は特に限定されず、抜蝕加工剤と同様に印捺を行う。抜蝕加工剤や染色糊を織編物に印捺した後、適宜乾燥し、続いて熱処理を行う。 For example, in the case of the flat screen method, the viscosity of the removal processing agent, the hardness of the rubber squeegee, the printing of the removal processing agent is performed with a woven or knitted structure that performs printing, a mesh of a formwork that prints a desired pattern, or the like. The rubber squeegee pressure and the printing speed of the squeegee are determined, and the discharging agent is uniformly applied to the fabric in a desired pattern. To check whether the fabric is evenly adhered, check that there is no blurring of the printed part visually, there is no difference in the pattern on the left and right of the rubber squeegee, and the removal processing agent penetrates uniformly into the back of the printed part. It is done by confirming whether it is. Moreover, you may print the shape according to a desired pattern with the dyeing glue which does not contain a removal processing agent in parts other than the adhesion part of a removal processing agent. The printing method of the dyeing paste is not particularly limited, and printing is performed in the same manner as the discharge processing agent. After the discharge processing agent and the dyeing paste are printed on the woven or knitted fabric, the fabric is appropriately dried and subsequently heat-treated.
 熱処理方法としては、ベーキング法、スチーム法、HTスチーム法などが挙げられ、HTスチーム法がより好ましい。 Examples of the heat treatment method include a baking method, a steam method, and an HT steam method, and the HT steam method is more preferable.
 熱処理工程の後、印捺部の脆化した改質ポリエステル繊維の除去、抜蝕加工剤に併用した染料の繊維への未固着染料の除去、抜蝕加工剤の付着部以外に使用した染色糊の糊剤、繊維への未固着染料などの洗浄を行う。洗浄方法としては特に限定されず公知の工程により洗浄を行う。例えば、界面活性剤2g/Lでの洗浄、界面活性剤2g/L,ソーダ灰2g/Lでのアルカリ洗浄、界面活性剤2g/L,酢酸(90%)2g/Lでの酸性洗浄、界面活性剤2g/L,ソーダ灰2g/L,ハイドロサルファイトまたは二酸化チオ尿素2g/Lでのアルカリ還元洗浄、界面活性剤2g/L,酢酸(90%)2g/L,ロンガリット4g/Lでの酸性還元洗浄がある。洗浄温度は60℃以上100℃以下が好ましく、洗浄時間は5分間以上30分間以下が好ましい。その後、水洗、脱水、乾燥を行う。 After the heat treatment process, removal of embrittled modified polyester fibers in the printed part, removal of unfixed dyes on the fibers of the dye used in combination with the removal processing agent, and dyeing paste used for areas other than the attachment portion of the removal processing agent Cleaning of adhesives and unfixed dyes on fibers is performed. The cleaning method is not particularly limited, and cleaning is performed by a known process. For example, cleaning with 2 g / L of surfactant, 2 g / L of surfactant, alkali cleaning with 2 g / L of soda ash, 2 g / L of surfactant, acidic cleaning with 2 g / L of acetic acid (90%), interface Activator 2g / L, soda ash 2g / L, hydrosulfite or thiourea dioxide 2g / L alkali reduction cleaning, surfactant 2g / L, acetic acid (90%) 2g / L, Rongalite 4g / L There is acid reduction cleaning. The washing temperature is preferably 60 ° C. or more and 100 ° C. or less, and the washing time is preferably 5 minutes or more and 30 minutes or less. Thereafter, washing, dehydration and drying are performed.
 洗浄に用いる界面活性剤としては、非イオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤が挙げられ、これらを単独で又は2種以上を混合して用いることができる。 Examples of the surfactant used for washing include nonionic surfactants, anionic surfactants, cationic surfactants, and amphoteric surfactants, and these can be used alone or in admixture of two or more.
 非イオン界面活性剤としては、高級アルコールアルキレンオキサイド付加物、アルキルフェノールアルキレンオキサイド付加物、スチレン化アルキルフェノールアルキレンオキサイド付加物、スチレン化フェノールアルキレンオキサイド付加物、高級アルキルアミンアルキレンオキサイド付加物などのエーテル型の非イオン界面活性剤;脂肪酸アルキレンオキサイド付加物、多価アルコール脂肪酸エステルアルキレンオキサイド付加物、脂肪酸アミドアルキレンオキサイド付加物、油脂のアルキレンオキサイド付加物などのエーテルエステル型の非イオン界面活性剤;ポリプロピレングリコールエチレンオキサイド付加物などのポリアルキレングリコール型の非イオン界面活性剤;グリセロールの脂肪酸エステル、ペンタエリスリトールの脂肪酸エステル、ソルビトールの脂肪酸エステル、ソルビタンの脂肪酸エステル、ショ糖の脂肪酸エステルなどのエステル型の非イオン界面活性剤;多価アルコールのアルキルエーテル、アルカノールアミン類の脂肪酸アミドなどのその他の非イオン界面活性剤を挙げることができる。アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドを挙げることができ、アルキレンオキサイドの付加形態は、2種以上のランダム付加でも、ブロック付加でもよい。 Examples of nonionic surfactants include ether type non-alkylating agents such as higher alcohol alkylene oxide adducts, alkylphenol alkylene oxide adducts, styrenated alkylphenol alkylene oxide adducts, styrenated phenol alkylene oxide adducts, and higher alkylamine alkylene oxide adducts. Ionic surfactants; Ether ester type nonionic surfactants such as fatty acid alkylene oxide adducts, polyhydric alcohol fatty acid ester alkylene oxide adducts, fatty acid amide alkylene oxide adducts, and fatty acid alkylene oxide adducts; polypropylene glycol ethylene oxide Polyalkylene glycol type nonionic surfactants such as adducts; fatty acid esters of glycerol, pentaerythritol Ester-type nonionic surfactants such as fatty acid esters, fatty acid esters of sorbitol, fatty acid esters of sorbitan, fatty acid esters of sucrose; other nonionic interfaces such as alkyl ethers of polyhydric alcohols, fatty acid amides of alkanolamines Mention may be made of activators. Examples of the alkylene oxide include ethylene oxide, propylene oxide, and butylene oxide. The addition form of the alkylene oxide may be random addition of two or more kinds or block addition.
 アニオン界面活性剤としては、脂肪酸セッケンなどのカルボン酸塩のアニオン界面活性剤;高級アルコール硫酸エステル塩、高級アルコールアルキレンオキサイド付加物硫酸エステル塩、ポリオキシアルキレンエーテル硫酸エステル塩、フェノールアルキレンオキサイド付加物硫酸エステル塩、アルキルフェノールアルキレンオキサイド付加物硫酸エステル塩、スチレン化アルキルフェノールアルキレンオキサイド付加物硫酸エステル塩、スチレン化フェノールアルキレンオキサイド付加物硫酸エステル塩、多価アルコールアルキレンオキサイド付加物硫酸エステル塩、硫酸化油、硫酸化脂肪酸エステル、硫酸化脂肪酸、硫酸化オレフィン等の硫酸エステル塩;アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ナフタレンスルホン酸等のホルマリン縮合物、α-オレフィンスルホン酸塩、パラフィンスルホン酸塩、スルホコハク酸ジエステル塩などのスルホン酸塩などのスルホン酸エステル塩のアニオン界面活性剤;オレオイルメチルタウリンナトリウム塩、高級アルコールリン酸エステル塩、ポリオキシアルキレンエーテルリン酸エステル塩、フェノールアルキレンオキサイド付加物リン酸エステル塩、アルキルフェノールアルキレンオキサイド付加物リン酸エステル塩、スチレン化アルキルフェノールアルキレンオキサイド付加物リン酸エステル塩、スチレン化フェノールアルキレンオキサイド付加物リン酸エステル塩、多価アルコールアルキレンオキサイド付加物リン酸エステル塩などのリン酸エステル塩;N-メチルタウリンオレイン酸塩、N-メチルタウリンステアリン酸塩などのその他のアニオン界面活性剤が挙げられる。アルキレンオキサイドとしては、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドを挙げることができ、アルキレンオキサイドの付加形態は、2種以上のランダム付加でも、ブロック付加でもよい。塩としては、リチウム、ナトリウム、カリウム等のアルカリ金属塩;アンモニア、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、アリルアミンなどの1級アミン;ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジアリルアミン等の2級アミン;トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン等の3級アミン;モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等のアルカノールアミンなどのアミン塩を挙げることができる。 Anionic surfactants include anionic surfactants of carboxylates such as fatty acid soaps; higher alcohol sulfates, higher alcohol alkylene oxide adduct sulfates, polyoxyalkylene ether sulfates, phenol alkylene oxide adducts sulfuric acid Ester salt, alkylphenol alkylene oxide adduct sulfate ester, styrenated alkylphenol alkylene oxide adduct sulfate ester, styrenated phenol alkylene oxide adduct sulfate ester, polyhydric alcohol alkylene oxide adduct sulfate ester, sulfated oil, sulfuric acid Sulfate esters such as sulfated fatty acid esters, sulfated fatty acids, sulfated olefins; alkylbenzenesulfonates, alkylnaphthalenesulfonates, naphthalene Anionic surfactants of sulfonate salts such as formalin condensates such as sulfonic acid, sulfonates such as α-olefin sulfonate, paraffin sulfonate, sulfosuccinate diester salt; oleoyl methyl taurine sodium salt, higher alcohol Phosphate ester salt, polyoxyalkylene ether phosphate ester salt, phenol alkylene oxide adduct phosphate ester salt, alkylphenol alkylene oxide adduct phosphate ester salt, styrenated alkylphenol alkylene oxide adduct phosphate ester salt, styrenated phenol alkylene Phosphate ester salts such as oxide adduct phosphate salts, polyhydric alcohol alkylene oxide adduct phosphate ester salts; N-methyl taurine oleate, N-methyl Other anionic surfactants such as taurine stearate can be mentioned. Examples of the alkylene oxide include ethylene oxide, propylene oxide, and butylene oxide. The addition form of the alkylene oxide may be random addition of two or more kinds or block addition. Examples of the salt include alkali metal salts such as lithium, sodium and potassium; primary amines such as ammonia, methylamine, ethylamine, propylamine, butylamine and allylamine; 2 such as dimethylamine, diethylamine, dipropylamine, dibutylamine and diallylamine Examples include tertiary amines; tertiary amines such as trimethylamine, triethylamine, tripropylamine, and tributylamine; amine salts such as alkanolamines such as monoethanolamine, diethanolamine, and triethanolamine.
 カチオン界面活性剤としては、アルキルエーテル4級アンモニウム塩、アルキルアミド4級アンモニウム塩、ジアルキルエステル4級アンモニウム塩、ジアルキルイミダゾリン4級アンモニウム塩、アルキルアミドアミン、アルキルエーテルアミン、アルキルアミドグアニジン、アルギニン誘導体を挙げることができる。 Examples of cationic surfactants include alkyl ether quaternary ammonium salts, alkylamide quaternary ammonium salts, dialkyl ester quaternary ammonium salts, dialkylimidazoline quaternary ammonium salts, alkylamidoamines, alkyl etheramines, alkylamidoguanidines, and arginine derivatives. be able to.
 両性界面活性剤としては、アルキルベタイン型界面活性剤、アミドプロピルベタイン型界面活性剤、イミダゾリニウムベタイン型界面活性剤などを挙げることができる。 Examples of amphoteric surfactants include alkyl betaine surfactants, amidopropyl betaine surfactants, and imidazolinium betaine surfactants.
 上記加工方法によって、抜蝕加工剤を印捺した部分の改質ポリエステル繊維が脱落した抜蝕加工品を得ることができる。得られた抜蝕加工品は必要に応じて、染色、仕上げなどの公知の処理を行う。 By the above processing method, it is possible to obtain an extraction processed product in which the modified polyester fiber in the portion where the extraction processing agent is printed is dropped. The obtained extracted processed product is subjected to known processes such as dyeing and finishing as necessary.
 以下、実施例を挙げて本発明についてより具体的に説明するが、本発明はこれらの実施例に制限されるものではない。なお、実施例中の各種特性値の測定、評価方法は、次のとおりである。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples. In addition, the measurement of various characteristic values in an Example and the evaluation method are as follows.
(極限粘度[η])
 改質ポリエステルをフェノール/四塩化エタン=1/1の混合溶媒中で20℃に調温し、ウベローデ法により測定した。
(Intrinsic viscosity [η])
The modified polyester was adjusted to 20 ° C. in a mixed solvent of phenol / ethane tetrachloride = 1/1 and measured by the Ubbelohde method.
(ジエチレングリコール(以下、DEGと略記)含有量)
 得られた改質ポリエステルをアルカリ加水分解した後、島津製作所社製ガスクロマトグラフGC-9Aを用い、エチレングリコールとDEGの各モル数を定量し、エチレングリコールとDEGの総モル数に対するDEGのモル数の割合(%)で求めた。
(Diethylene glycol (hereinafter abbreviated as DEG) content)
The resulting modified polyester was hydrolyzed with alkali, and then the number of moles of ethylene glycol and DEG was quantified using a gas chromatograph GC-9A manufactured by Shimadzu Corporation. The number of moles of DEG relative to the total number of moles of ethylene glycol and DEG It calculated | required in the ratio (%).
(ガラス転移温度Tg)
 セイコー電子工業社製示差熱分析計DSC220を用い、昇温速度10℃/分で改質ポリエステルのTg(℃)を測定した。
(Glass transition temperature Tg)
The Tg (° C.) of the modified polyester was measured at a heating rate of 10 ° C./min using a differential thermal analyzer DSC220 manufactured by Seiko Denshi Kogyo.
(強度・伸度)
 JIS L1013に準拠し、オリエンテック社製引張試験機テンシロンUTM-4-100型を用い、強度(cN/dtex)、伸度(%)を測定した。
(Strength / Elongation)
In accordance with JIS L1013, strength (cN / dtex) and elongation (%) were measured using a tensile tester Tensilon UTM-4-100 manufactured by Orientec.
(アルカリ減量率)
 アルカリ減量を行った繊維の減量率を処理前後の繊維の質量から、次式により減量率(%)を求めた。
 減量率(%)={(処理前の繊維の質量-処理後の繊維の質量)/処理前の繊維の質量}×100
 繊維は、編地の形態にしてアルカリ減量することが、取扱い性の点で好ましい。
(Alkaline weight loss rate)
The weight loss rate (%) was calculated from the weight loss rate of the fiber subjected to alkali weight loss from the mass of the fiber before and after the treatment according to the following formula.
Weight loss rate (%) = {(mass of fiber before treatment−mass of fiber after treatment) / mass of fiber before treatment} × 100
It is preferable from the viewpoint of handleability that the fiber is reduced in alkali in the form of a knitted fabric.
(破裂強度)
 JIS L 1018のミューレン法に準じて測定した。
(Burst strength)
The measurement was performed according to the MU Len method of JIS L 1018.
(破裂強度保持率)
 破裂強度保持率={織編物の抜蝕加工後の抜蝕部分の破裂強度/織編物の抜蝕加工後の非抜蝕部分の破裂強度}×100(%)
(Burst strength retention)
Rupture strength retention rate = {rupture strength of the eroded portion after the woven / knitted fabric's erosion process / burst strength of the non-exhausted portion after the woven / knitted fabric's eradicating processing} × 100 (%)
 (実施例1)
 ビス(β-ヒドキシルエチル)テレフタレート及びそのオリゴマーの存在するエステル化反応缶にテレフタル酸(以下、TPAと略記する。)とエチレングリコール(以下、EGと略記する。)とのモル比1/1.6のスラリーを連続的に供給し、温度250℃、圧力0.1Pa、滞留時間8時間の条件でエステル化反応を行った。次いで、得られたエステル化反応物15.4kgを重縮合反応缶に移送し、アジピン酸(以下、ADAと略記する。)の濃度が50質量%に調整されたEG分散液4.6kgを添加し、また、DEG副生抑制のため酢酸リチウムをリチウム原子の量で120ppmとなるように添加した。その後温度230℃で5分間攪拌混合後、安定剤として酢酸マグネシウムをマグネシウム原子の量で120ppm、トリエチルホスフェートをリン原子の量で140ppm、二酸化ゲルマニウムをゲルマニウム原子の量で30ppm添加し、5-ナトリウムスルホイソフタル酸(以下、SIPと略記する。)のEGエステルの濃度が35質量%に調整されたSIPのEG溶液2.6kgを添加し、温度230℃で攪拌混合を行った。次いで、重縮合触媒として三酸化アンチモンを400ppm添加した後、徐々に減圧していき60分後に1.2hPa以下に減圧し、撹拌混合を行い、その後温度270℃まで昇温し、重縮合物が所定の極限粘度[η]になるまで重縮合反応を行い、ADAの共重合量が18モル%、SIPの共重合量が2.5モル%である改質ポリエステルを得て、これをチップ化した。改質ポリエステルのポリマー物性を表1に示した。
(Example 1)
A molar ratio of terephthalic acid (hereinafter abbreviated as TPA) to ethylene glycol (hereinafter abbreviated as EG) is 1/1 in an esterification reaction vessel in which bis (β-hydroxyethyl) terephthalate and its oligomer exist. .6 slurry was continuously supplied, and the esterification reaction was performed under the conditions of a temperature of 250 ° C., a pressure of 0.1 Pa, and a residence time of 8 hours. Next, 15.4 kg of the obtained esterification reaction product was transferred to a polycondensation reaction can, and 4.6 kg of an EG dispersion whose concentration of adipic acid (hereinafter abbreviated as ADA) was adjusted to 50% by mass was added. Moreover, lithium acetate was added so that the amount of lithium atoms was 120 ppm in order to suppress DEG by-product. Then, after stirring and mixing at 230 ° C. for 5 minutes, magnesium acetate as a stabilizer was added in an amount of 120 ppm of magnesium atoms, triethyl phosphate was added in an amount of 140 ppm of phosphorus atoms, germanium dioxide was added in an amount of 30 ppm of germanium atoms, and 5-sodium sulfo 2.6 kg of SIP EG solution in which the concentration of EG ester of isophthalic acid (hereinafter abbreviated as SIP) was adjusted to 35% by mass was added, and the mixture was stirred and mixed at a temperature of 230 ° C. Next, after adding 400 ppm of antimony trioxide as a polycondensation catalyst, the pressure is gradually reduced, and after 60 minutes, the pressure is reduced to 1.2 hPa or less, stirring and mixing are performed, and then the temperature is raised to 270 ° C. A polycondensation reaction is performed until a predetermined intrinsic viscosity [η] is obtained, and a modified polyester having an ADA copolymerization amount of 18 mol% and a SIP copolymerization amount of 2.5 mol% is obtained, and this is converted into a chip. did. The polymer properties of the modified polyester are shown in Table 1.
 得られた改質ポリエステルチップを、孔形状が円形、孔数が24の紡糸口金にて、紡糸温度255℃、紡糸速度1800m/分で紡糸し、この未延伸糸を延伸温度65℃、延伸倍率2.28倍、最大延伸倍率に対する延伸倍率の比(MDR比)が0.72倍で延伸し150℃で熱セットして84dtex/24f(単糸繊度3.5dtex)の改質ポリエステル繊維を得た。 The resulting modified polyester chip was spun at a spinning temperature of 255 ° C. and a spinning speed of 1800 m / min with a spinneret having a circular hole shape and a hole number of 24, and this undrawn yarn was drawn at a drawing temperature of 65 ° C. and a draw ratio. 2.28 times, the ratio of the draw ratio to the maximum draw ratio (MDR ratio) is 0.72 times, and heat-set at 150 ° C. to obtain a modified polyester fiber of 84 dtex / 24f (single yarn fineness 3.5 dtex). It was.
 前記改質ポリエステル繊維の横編地を作製し、前記編地10gを苛性ソーダの濃度が10g/L、温度が98℃の水溶液1Lに20分間浸漬処理し、その後水洗、脱水、乾燥を行い、次式により減量率を測定した。
 減量率(%)={(アルカリ減量加工前の横編地の質量-アルカリ減量加工後の加工編地の質量)/アルカリ減量加工前の横編地の質量}×100
 得られた改質ポリエステルフィラメント糸の物性を表1に示した。
A flat knitted fabric of the modified polyester fiber was prepared, 10 g of the knitted fabric was immersed in 1 L of an aqueous solution having a caustic soda concentration of 10 g / L and a temperature of 98 ° C. for 20 minutes, and then washed with water, dehydrated and dried. The weight loss rate was measured by the formula.
Weight loss rate (%) = {(mass of flat knitted fabric before alkali weight loss processing−mass of processed knitted fabric after alkali weight loss processing) / mass of flat knitted fabric before alkali weight loss processing} × 100
The physical properties of the obtained modified polyester filament yarn are shown in Table 1.
 (実施例2)
 実施例1で得られた改質ポリエステルチップを用い、紡糸の際のポリマー吐出量を実施例1での2/5に変更した以外は、実施例1と同様にして紡糸、延伸して33dtex/24f(単糸繊度1.38dtex)の改質ポリエステルフィラメント糸を得た。得られた改質ポリエステルフィラメント糸の物性を表1に示した。
(Example 2)
Using the modified polyester chip obtained in Example 1, spinning and drawing were carried out in the same manner as in Example 1 except that the polymer discharge rate during spinning was changed to 2/5 in Example 1, and 33 dtex / A modified polyester filament yarn having 24f (single yarn fineness of 1.38 dtex) was obtained. The physical properties of the obtained modified polyester filament yarn are shown in Table 1.
 (実施例3)
 実施例1において、得られたエステル化反応物15.9kgを重縮合反応缶に移送し、ADAのEG分散液の添加量を4.1kg及びSIPのEG溶液の添加量を2.4kgに変更した以外は、実施例1と同様にしてADA16モル%及びSIP2.25モル%を共重合した改質ポリエステルを得て、チップ化した。改質ポリエステルのポリマー物性を表1に示す。得られた改質ポリエステルチップを用い、紡糸の際の紡糸速度を1200m/分とした以外は、実施例1と同様に紡糸、延伸して84dtex/24f(単糸繊度3.5dtex)の改質ポリエステルフィラメント糸を得た。得られた改質ポリエステルフィラメント糸の物性を表1に示した。
(Example 3)
In Example 1, 15.9 kg of the obtained esterification reaction product was transferred to a polycondensation reactor, and the addition amount of ADA EG dispersion was changed to 4.1 kg and the addition amount of SIP EG solution to 2.4 kg. Except for the above, a modified polyester obtained by copolymerizing ADA 16 mol% and SIP 2.25 mol% was obtained in the same manner as in Example 1 to obtain chips. Table 1 shows the polymer physical properties of the modified polyester. Using the resulting modified polyester chip, spinning and drawing were carried out in the same manner as in Example 1 except that the spinning speed at the time of spinning was 1200 m / min, and a modification of 84 dtex / 24f (single yarn fineness of 3.5 dtex) was made. A polyester filament yarn was obtained. The physical properties of the obtained modified polyester filament yarn are shown in Table 1.
 (比較例1)
 実施例1において、得られたエステル化反応物16.4kgを重縮合反応缶に移送し、ADAのEG分散液の添加量を3.6kg及びSIPのEG溶液の添加量を2.1kgに変更した以外は、実施例1と同様にしてADA14モル%及びSIP2.0モル%を共重合した改質ポリエステルを得て、チップ化した。改質ポリエステルのポリマー物性は表1に示した。得られた改質ポリエステルチップを用い、表1に示す紡糸条件、延伸条件で紡糸、延伸して84dtex/24f(単糸繊度3.5dtex)の改質ポリエステルフィラメント糸を得た。得られた改質ポリエステルフィラメント糸の物性を表1に示した。
(Comparative Example 1)
In Example 1, 16.4 kg of the obtained esterification reaction product was transferred to a polycondensation reactor, and the addition amount of the ADA EG dispersion was changed to 3.6 kg and the addition amount of the SIP EG solution was changed to 2.1 kg. Except that, a modified polyester obtained by copolymerizing ADA 14 mol% and SIP 2.0 mol% was obtained in the same manner as in Example 1 to obtain chips. The polymer properties of the modified polyester are shown in Table 1. Using the obtained modified polyester chip, spinning and drawing were performed under the spinning conditions and drawing conditions shown in Table 1 to obtain a modified polyester filament yarn of 84 dtex / 24f (single yarn fineness 3.5 dtex). The physical properties of the obtained modified polyester filament yarn are shown in Table 1.
 (比較例2)
 実施例1において、得られたエステル化反応物16.9kgを重縮合反応缶に移送し、ADAのEG分散液の添加量を2.6kg及びSIPのEG溶液の添加量を2.1kgに変更した以外は、実施例1と同様にしてADA10モル%及びSIP2.0モル%を共重合した改質ポリエステルを得て、チップ化した。改質ポリエステルのポリマー物性は表1に示した。得られた改質ポリエステルチップを用い、表1に示す紡糸条件、延伸条件で紡糸、延伸して84dtex/24f(単糸繊度3.5dtex)の改質ポリエステルフィラメント糸を得た。得られた改質ポリエステルフィラメント糸の物性を表1に示した。
(Comparative Example 2)
In Example 1, 16.9 kg of the obtained esterification reaction product was transferred to a polycondensation reactor, and the addition amount of ADA EG dispersion was changed to 2.6 kg and the addition amount of SIP EG solution to 2.1 kg. Except for the above, a modified polyester obtained by copolymerizing 10 mol% of ADA and 2.0 mol% of SIP was obtained in the same manner as in Example 1 to obtain chips. The polymer properties of the modified polyester are shown in Table 1. Using the obtained modified polyester chip, spinning and drawing were performed under the spinning conditions and drawing conditions shown in Table 1 to obtain a modified polyester filament yarn of 84 dtex / 24f (single yarn fineness 3.5 dtex). The physical properties of the obtained modified polyester filament yarn are shown in Table 1.
 (比較例3)
 実施例1において、得られたエステル化反応物17.6kgを重縮合反応缶に移送し、ADAのEG分散液の添加量を1.3kg及びSIPのEG溶液の添加量を2.3kgに変更した以外は、実施例1と同様にしてADA5モル%及びSIP2.25モル%を共重合した改質ポリエステルを得て、チップ化した。改質ポリエステルのポリマー物性は表1に示した。得られた改質ポリエステルチップを用い、表1に示す紡糸条件、延伸条件で紡糸、延伸して84dtex/24f(単糸繊度3.5dtex)の改質ポリエステルフィラメント糸を得た。
 当該繊維は、一般に市場で使用されている常圧カチオン可染ポリエステル繊維の共重合成分である。
 得られた改質ポリエステルフィラメント糸の物性を表1に示した。
(Comparative Example 3)
In Example 1, 17.6 kg of the obtained esterification reaction product was transferred to a polycondensation reaction can, and the addition amount of ADA EG dispersion was changed to 1.3 kg and the addition amount of SIP EG solution was changed to 2.3 kg. Except that, a modified polyester obtained by copolymerizing ADA 5 mol% and SIP 2.25 mol% was obtained in the same manner as in Example 1 to obtain chips. The polymer properties of the modified polyester are shown in Table 1. Using the obtained modified polyester chip, spinning and drawing were performed under the spinning conditions and drawing conditions shown in Table 1 to obtain a modified polyester filament yarn of 84 dtex / 24f (single yarn fineness 3.5 dtex).
The fiber is a copolymer component of atmospheric pressure cationic dyeable polyester fiber that is generally used in the market.
The physical properties of the obtained modified polyester filament yarn are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (実施例4)
 エチレンテレフタレートを主たる構成単位とし、ADA16モル%及びSIP2.5モル%が共重合された改質ポリエステル樹脂からなる、繊度84dtex、48フィラメントの改質ポリエステル繊維を編成し、天竺組織の緯編地を作製した。
 前記緯編地100gをミニカラー染色機((株)テクサム技研製、多色回転ポット染色試験機)を用いて、炭酸ナトリウムの濃度が40g/L、前記緯編地の質量と炭酸ナトリウム水溶液の質量の比を1:20、前記水溶液温度を100℃×30分間のアルカリ減量加工を行い、水洗、脱水し、80℃60分の乾燥処理を行い、加工編地を得た。
 また、炭酸ナトリウムに代えて、炭酸カリウム、水酸化ナトリウムの水溶液でもそれぞれ同様にアルカリ減量加工を行い、加工編地を得た。
 前記各水溶液のpH、改質ポリエステル繊維の減量率をそれぞれ表2に示す。
 減量率(%)={(アルカリ減量加工前の緯編地の質量-アルカリ減量加工後の加工編地の質量)/アルカリ減量加工前の緯編地の質量}×100
(Example 4)
A modified polyester fiber having a fineness of 84 dtex and 48 filaments, composed of a modified polyester resin in which ethylene terephthalate is the main constituent unit and 16 mol% of ADA and 2.5 mol% of SIP is copolymerized, Produced.
Using a mini-color dyeing machine (manufactured by Teksam Giken Co., Ltd., a multicolor rotating pot dyeing tester), 100 g of the weft knitted fabric is 40 g / L in sodium carbonate concentration, The weight ratio was 1:20, and the aqueous solution temperature was reduced to 100 ° C. for 30 minutes by alkali reduction, washed with water, dehydrated, and dried at 80 ° C. for 60 minutes to obtain a processed knitted fabric.
Further, in place of sodium carbonate, alkaline weight reduction processing was similarly performed with an aqueous solution of potassium carbonate and sodium hydroxide to obtain a processed knitted fabric.
Table 2 shows the pH of each aqueous solution and the weight loss rate of the modified polyester fiber.
Weight loss rate (%) = {(mass of weft knitted fabric before alkali weight loss processing-mass of processed knitted fabric after alkali weight loss processing) / mass of weft knitted fabric before alkali weight loss processing} × 100
 (比較例4)
 緯編地に使用した糸を、エチレンテレフタレートを主たる構成単位とし、ADA5モル%及びSIP2.3モル%が共重合されたポリエステル樹脂からなる、繊度84dtex、48フィラメントのカチオン可染ポリエステル繊維を使用した以外は、実施例4と同様にして加工編地を得た。
 表2に、減量率を示す。
(Comparative Example 4)
The yarn used for the weft knitted fabric is composed of a polyester resin in which ethylene terephthalate is the main structural unit and copolymerized with 5 mol% of ADA and 2.3 mol% of SIP, and has a fineness of 84 dtex and a 48 filament cationic dyeable polyester fiber. Except for the above, a processed knitted fabric was obtained in the same manner as in Example 4.
Table 2 shows the weight loss rate.
 (比較例5)
 緯編地に使用した糸を、ポリエチレンテレフタレート繊維(未改質のポリエチレンテレフタレートからなる糸とした。以下、「レギュラーポリエステル繊維」ともいう。)このレギュラーポリエステル繊維からなる糸を帝人(株)社製の糸で構成し、繊度84dtex、36フィラメントを使用した以外は、実施例4と同様にして加工編地を得た。
 表2に、減量率を示す。
(Comparative Example 5)
The yarn used for the weft knitted fabric was made of polyethylene terephthalate fiber (yarn made of unmodified polyethylene terephthalate; hereinafter also referred to as “regular polyester fiber”). This yarn made of regular polyester fiber was manufactured by Teijin Limited. A processed knitted fabric was obtained in the same manner as in Example 4 except that a yarn having a fineness of 84 dtex and 36 filament was used.
Table 2 shows the weight loss rate.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、炭酸ナトリウムでアルカリ減量を行った場合、実施例4の改質ポリエステル繊維は比較例4の一般的なカチオン可染ポリエステル繊維に比べ減量率が高い結果となり、比較例5のレギュラーポリエステル繊維は炭酸ナトリウムではアルカリ減量が行えなかった。また、炭酸カリウムでアルカリ減量を行った場合、実施例4の改質ポリエステル繊維は比較例4の一般的なカチオン可染ポリエステル繊維に比べ減量率が高い結果となり、比較例4の一般的なカチオン可染ポリエステル繊維は、表2に示すとおり、炭酸カリウムでは減量率が2%と低かった。苛性ソーダでアルカリ減量を行った場合、実施例4の改質ポリエステル繊維は比較例4の一般的なカチオン可染ポリエステル繊維、比較例5のレギュラーポリエステル繊維に比べて高い減量率となった。 As shown in Table 2, when alkali weight reduction was performed with sodium carbonate, the modified polyester fiber of Example 4 resulted in a higher weight loss rate than the general cationic dyeable polyester fiber of Comparative Example 4, and Comparative Example The regular polyester fiber No. 5 was not able to lose weight with sodium carbonate. Moreover, when alkali weight reduction was performed with potassium carbonate, the modified polyester fiber of Example 4 resulted in a higher weight loss rate than the general cationic dyeable polyester fiber of Comparative Example 4, and the general cation of Comparative Example 4 As shown in Table 2, the dyeable polyester fiber had a low weight loss rate of 2% with potassium carbonate. When alkali weight reduction was performed with caustic soda, the modified polyester fiber of Example 4 had a higher weight loss rate than the general cationic dyeable polyester fiber of Comparative Example 4 and the regular polyester fiber of Comparative Example 5.
 (実施例5)
 実施例4で使用した改質ポリエステル繊維と比較例5で使用したレギュラーポリエステル繊維とを使用した経編地(改質ポリエステル繊維=16.7%、レギュラーポリエステル繊維=83.4%)を用い、抜蝕加工剤は以下の組成の抜蝕加工剤を用い、改質ポリエステル繊維を溶解する抜蝕加工を行った。抜蝕加工剤の組成を表3に示した。
・ソルビトーゼC-5(10%水溶液)(Avebe社製) 50質量%
・炭酸ナトリウム((株)トクヤマ社製、商品名:ソーダ灰) 10質量%
・水 40質量%
 上記の抜蝕加工剤で、被処理編地に四角の柄を印捺し、110℃×2分間乾燥を行った。次いで、HTスチーマーを使用して180℃×8分の過熱蒸気処理を行った。その後、ラッコールISF(明成化学工業社製、ノニオン界面活性剤)2g/Lのソーピング浴で80℃×20分間洗浄したのち、水洗、脱水、乾燥させ、抜蝕加工された加工経編地を得た。
(Example 5)
Using the warp knitted fabric (modified polyester fiber = 16.7%, regular polyester fiber = 83.4%) using the modified polyester fiber used in Example 4 and the regular polyester fiber used in Comparative Example 5, As the removal processing agent, a removal processing agent having the following composition was used, and a removal processing for dissolving the modified polyester fiber was performed. Table 3 shows the composition of the removal processing agent.
・ Sorbitose C-5 (10% aqueous solution) (Avebe) 50% by mass
・ Sodium carbonate (trade name: Soda ash, manufactured by Tokuyama Corporation) 10% by mass
・ Water 40% by mass
A square pattern was printed on the treated knitted fabric with the above-described discharge processing agent and dried at 110 ° C. for 2 minutes. Subsequently, the superheated steam process was performed for 180 degreeC x 8 minutes using the HT steamer. After that, after washing in a soap bath of 2g / L of Rakkor ISF (manufactured by Meisei Chemical Industry Co., Ltd.) at 80 ° C for 20 minutes, it is washed with water, dehydrated and dried to obtain a processed warp knitted fabric. It was.
 評価:抜蝕性を目視にて評価した。評価基準として、表3に示すとおり、抜蝕性については印捺部に抜蝕を行った繊維が目視で確認できないものを◎とし、目視で少しの残渣が確認できるが抜蝕が行えており、商品として使用可能なものと判断できるものを○とし、目視で残渣の確認ができ抜蝕が行えておらず、商品として使用不可と判断できるものを×とした。また、抜蝕部分の破裂強度をJIS L 1018 ミューレン法に準じ測定した。その結果を表3に示す。非抜蝕部分の加工編地の破裂強度は755kPaであった。 Evaluation: The pitting property was visually evaluated. As shown in Table 3, the evaluation criteria are as follows. For the removal property, the fiber that has been removed from the printed part cannot be visually confirmed as ◎, and a small amount of residue can be visually confirmed, but the removal is performed. In addition, a product that can be judged as usable as a product was rated as “good”, and a residue that could be visually confirmed was not removed. Further, the burst strength of the removed portion was measured according to JIS L 1018 Murren method. The results are shown in Table 3. The burst strength of the processed knitted fabric of the non-exhausted portion was 755 kPa.
 (実施例6)
 糊液組成を表3に示すとおり、抜蝕促進剤(明成化学工業社製、メイプリンターOP-2)を使用した以外は実施例5と同様にして抜蝕加工編地を得た。その抜蝕性評価を表3に示す。
 前記抜蝕促進剤を使用することで、抜蝕性は、強アルカリを使用したときと同様の抜蝕性が得られた。一方、破裂強度の低下は少なかった。
(Example 6)
As shown in Table 3, an extraction knitted fabric was obtained in the same manner as in Example 5 except that an extraction accelerator (Maysei Chemical Industries, May Printer OP-2) was used. Table 3 shows the evaluation of the dischargeability.
By using the above-mentioned removal accelerator, the removal property was the same as that when a strong alkali was used. On the other hand, there was little decrease in burst strength.
 (比較例6、7)
 抜蝕加工剤を表3に示す各組成及び条件とした他は実施例5と同様にして抜蝕加工を行い、得られた抜蝕加工編地を評価した。その結果を表3に示す。
 アルカリ性が強いため、抜蝕性は良好であったが、破裂強度の低下が大きかった。
(Comparative Examples 6 and 7)
Exhaust processing was conducted in the same manner as in Example 5 except that the composition and conditions shown in Table 3 were used as the discharge processing agent, and the resulting discharge processed knitted fabric was evaluated. The results are shown in Table 3.
Since the alkalinity is strong, the biting property was good, but the burst strength was greatly reduced.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示されるとおり、炭酸ナトリウムのみを含有した実施例5は抜蝕加工を行うことができ、抜蝕部の強度低下も少なかった。一方、炭酸グアニジンを用いた比較例6、水酸化ナトリウムを用いた比較例7は抜蝕部の抜蝕性は良好だが抜蝕部の極端な強度低下が見られた。
 炭酸グアニジンを使用した加工剤はpH11.8であるが、炭酸グアニジンは加熱すると強アルカリになることが知られており、そのため破裂強度の低下が大きくなった。
 また、抜蝕促進剤であるメイプリンターOP-2と炭酸ナトリウムとを含有した実施例6では良好な抜蝕性が得られ、抜蝕部の強度低下も少なかった。
As shown in Table 3, Example 5 containing only sodium carbonate was able to perform the discharge process, and there was little decrease in the strength of the extracted part. On the other hand, in Comparative Example 6 using guanidine carbonate and Comparative Example 7 using sodium hydroxide, the excavability of the excised part was good, but an extreme decrease in strength of the excised part was observed.
The processing agent using guanidine carbonate has a pH of 11.8. However, it is known that guanidine carbonate becomes a strong alkali when heated, so that the decrease in burst strength is large.
Further, in Example 6 containing Mayprinter OP-2, which is a discharge accelerator, and sodium carbonate, good dischargeability was obtained, and there was little decrease in strength of the discharged portion.
 (実施例7)
 被処理編地を実施例4と同じ改質ポリエステル繊維と、比較例5と同じレギュラーポリエステル繊維(帝人(株)社製、84dtex)とを使用した編物(改質ポリエステル繊維50%/レギュラーポリエステル繊維50%)を用いた以外は実施例6と同様にして抜蝕加工を行い、抜蝕加工編地を得た。その抜蝕性評価を表4に示す。抜蝕性の評価については、印捺部に抜蝕を行った繊維が目視で確認できなかったため◎となった。
(Example 7)
A knitted fabric (modified polyester fiber 50% / regular polyester fiber) using the same modified polyester fiber as in Example 4 and the same regular polyester fiber as in Comparative Example 5 (84 dtex, manufactured by Teijin Ltd.). Exhaust processing was performed in the same manner as in Example 6 except that 50%) was used, and an excavation knitted fabric was obtained. Table 4 shows the evaluation of the dischargeability. The evaluation of the biting property was evaluated as “◎” because the fiber that had been discharged on the printed part could not be visually confirmed.
 (比較例8~11)
 実施例5の改質ポリエステル繊維を、表4に記載されたポリエステル繊維に変えた以外は、実施例5と同様にして抜蝕加工布帛を得た。その抜蝕性評価を表4に示す。
(Comparative Examples 8 to 11)
Exfoliated fabric was obtained in the same manner as in Example 5 except that the modified polyester fiber of Example 5 was changed to the polyester fiber described in Table 4. Table 4 shows the evaluation of the dischargeability.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、変性ポリエステル繊維に改質ポリエステル繊維を使用することで、改質ポリエステル繊維と未変性ポリエステル繊維とからなる織編物にアルカリ減量を行わずに印捺部の改質ポリエステル繊維のみを除去し、未変性ポリエステル繊維の脆化を起こさない、改質ポリエステル繊維の抜蝕性が良好な抜蝕加工布を得ることが可能であり、人に対して有害性の高い強アルカリ性物質を用いていないため、作業上安全性の高い抜蝕加工が可能となる。 According to the present invention, by using the modified polyester fiber as the modified polyester fiber, only the modified polyester fiber in the printed part is obtained without performing alkali weight loss on the woven or knitted fabric composed of the modified polyester fiber and the unmodified polyester fiber. It is possible to obtain an exfoliation processed cloth with good exfoliation property of the modified polyester fiber that does not cause embrittlement of the unmodified polyester fiber, and a strong alkaline substance that is highly harmful to humans can be obtained. Since it is not used, it is possible to perform a discharge process with high safety in operation.

Claims (17)

  1.  以下の測定における減量率が、5%以上15%以下である改質ポリエステル繊維。
     繊維100gを、炭酸ナトリウム40g/L水溶液2L中に入れ、100℃30分の加熱を行い、80℃60分の乾燥処理後の繊維質量Agを測定する。
     減量率(%)={(100-A)/100}×100
    A modified polyester fiber having a weight loss rate of 5% to 15% in the following measurement.
    100 g of fiber is put into 2 L of sodium carbonate 40 g / L aqueous solution, heated at 100 ° C. for 30 minutes, and fiber mass Ag after drying at 80 ° C. for 60 minutes is measured.
    Weight loss rate (%) = {(100−A) / 100} × 100
  2.  エチレンテレフタレートを主たる構成単位とし、炭素数4~8の脂肪族ジカルボン酸12モル%以上25モル%以下、及び金属スルホネート基含有芳香族ジカルボン酸2モル%以上5モル%以下が共重合された改質ポリエステルからなる請求項1に記載の改質ポリエステル繊維。 The main structural unit is ethylene terephthalate, and 12 to 25 mol% of an aliphatic dicarboxylic acid having 4 to 8 carbon atoms and 2 to 5 mol% of a metal sulfonate group-containing aromatic dicarboxylic acid are copolymerized. The modified polyester fiber according to claim 1, comprising a modified polyester.
  3.  前記脂肪族ジカルボン酸がアジピン酸、前記金属スルホネート基含有芳香族ジカルボン酸が5-ナトリウムスルホイソフタル酸である請求項2に記載の改質ポリエステル繊維。 The modified polyester fiber according to claim 2, wherein the aliphatic dicarboxylic acid is adipic acid, and the metal sulfonate group-containing aromatic dicarboxylic acid is 5-sodium sulfoisophthalic acid.
  4.  ジエチレングリコールの含有量が0.5質量%以上3.0質量%以下である請求項1~3のいずれか一項に記載の改質ポリエステル繊維。 The modified polyester fiber according to any one of claims 1 to 3, wherein the content of diethylene glycol is 0.5 mass% or more and 3.0 mass% or less.
  5.  単繊維繊度が0.6dtex以上3.5dtex以下、繊維強度が2.0cN/dtex以上3.5cN/dtex以下及び繊維伸度が25%以上45%以下である請求項1~4のいずれか一項に記載の改質ポリエステル繊維。 The single fiber fineness is 0.6 dtex or more and 3.5 dtex or less, the fiber strength is 2.0 cN / dtex or more and 3.5 cN / dtex or less, and the fiber elongation is 25% or more and 45% or less. The modified polyester fiber according to Item.
  6.  前記改質ポリエステル繊維が、酢酸リチウムを含有し、前記酢酸リチウムの含有量がリチウム原子の量で50~120ppmである請求項1~5のいずれか一項に記載の改質ポリエステル繊維。 The modified polyester fiber according to any one of claims 1 to 5, wherein the modified polyester fiber contains lithium acetate, and the content of the lithium acetate is 50 to 120 ppm in terms of lithium atoms.
  7.  以下の測定における減量率が5%以上15%以下である改質ポリエステル繊維と前記減量率が0%以上5%未満である非減量繊維とを含有する織編物であって、織編物に対する前記改質ポリエステル繊維の含有量が5質量%以上50質量%以下であり、前記非減量繊維の含有量が50質量%以上95質量%以下である織編物。
    <減量率測定方法>
     繊維100gを、炭酸ナトリウム40g/L水溶液2L中に入れ、100℃30分で加熱し、80℃60分の乾燥処理後の繊維質量Agを測定する。
     減量率(%)={(100-A)/100}×100
    A knitted or knitted fabric containing a modified polyester fiber having a weight loss rate of 5% or more and 15% or less and non-weight loss fiber having a weight loss rate of 0% or more and less than 5% in the following measurement, A woven or knitted fabric in which the content of the quality polyester fiber is 5% by mass or more and 50% by mass or less, and the content of the non-reduced fiber is 50% by mass or more and 95% by mass or less.
    <Method for measuring weight loss>
    100 g of fiber is put into 2 L of sodium carbonate 40 g / L aqueous solution, heated at 100 ° C. for 30 minutes, and the fiber mass Ag after drying at 80 ° C. for 60 minutes is measured.
    Weight loss rate (%) = {(100−A) / 100} × 100
  8.  以下の測定における減量率が5%以上15%以下である改質ポリエステル繊維と前記減量率が0%以上5%未満である非減量繊維とを含有し、前記改質ポリエステル繊維の抜蝕部分を有する織編物であって、非抜蝕部分の前記改質ポリエステル繊維に対して、前記抜蝕部分の前記改質ポリエステル繊維の減量率が、50質量%以上100質量%以下である織編物。
    <減量率測定方法>
     繊維100gを、炭酸ナトリウム40g/L水溶液2L中に入れ、100℃30分で加熱し、80℃60分の乾燥処理後の繊維質量Agを測定する。
     減量率(%)={(100-A)/100}×100
    A modified polyester fiber having a weight loss rate of 5% or more and 15% or less in the following measurement and a non-weight loss fiber having a weight loss rate of 0% or more and less than 5%, A woven or knitted fabric having a weight loss rate of 50% by mass or more and 100% by mass or less of the modified polyester fiber in the extracted portion with respect to the modified polyester fiber in the non-extracted portion.
    <Method for measuring weight loss>
    100 g of fiber is put into 2 L of sodium carbonate 40 g / L aqueous solution, heated at 100 ° C. for 30 minutes, and the fiber mass Ag after drying at 80 ° C. for 60 minutes is measured.
    Weight loss rate (%) = {(100−A) / 100} × 100
  9.  前記改質ポリエステル繊維の該減量率と非抜蝕繊維の該減量率の差が5%以上である請求項7または8に記載の織編物。 The woven or knitted fabric according to claim 7 or 8, wherein a difference between the weight loss ratio of the modified polyester fiber and the weight loss ratio of the non-exhaust fiber is 5% or more.
  10.  前記抜蝕部分の織編物の破裂強度が250kPa以上900kPa以下である請求項8または9に記載の織編物。 The woven or knitted fabric according to claim 8 or 9, wherein the burst strength of the woven or knitted fabric in the discharged portion is 250 kPa or more and 900 kPa or less.
  11.  織編物の前記非抜蝕部分の破裂強度に対する織編物の前記抜蝕部分の破裂強度の強度保持率が50%以上である請求項8~10のいずれか一項に記載の織編物。 The woven or knitted fabric according to any one of claims 8 to 10, wherein the strength retention of the rupture strength of the eroded portion of the woven or knitted fabric relative to the rupture strength of the non-exhausted portion of the woven or knitted fabric is 50% or more.
  12.  前記改質ポリエステル繊維が、エチレンテレフタレートを主たる構成単位とし、炭素数4以上8以下の脂肪族ジカルボン酸16モル%以上25モル%以下、及び金属スルホネート基含有芳香族ジカルボン酸2モル%以上5モル%以下が共重合された改質ポリエステルである請求項8~11のいずれか一項に記載の織編物。 The modified polyester fiber has ethylene terephthalate as a main constituent unit, an aliphatic dicarboxylic acid having 4 to 8 carbon atoms in an amount of 16 mol% to 25 mol%, and a metal sulfonate group-containing aromatic dicarboxylic acid in an amount of 2 mol% to 5 mol. The woven or knitted fabric according to any one of claims 8 to 11, wherein the woven or knitted fabric is a modified polyester copolymerized in an amount of 1% or less.
  13.  前記非減量繊維が、合成繊維を50質量%以上95質量%以下含有する請求項8~12のいずれか一項に記載の織編物。 The woven or knitted fabric according to any one of claims 8 to 12, wherein the non-weight-reducing fiber contains 50% by mass or more and 95% by mass or less of a synthetic fiber.
  14.  前記合成繊維は、レギュラーポリエステル繊維、ポリアミド繊維、弾性繊維、ポリオレフィン繊維、アクリル繊維のいずれか1つ以上である請求項13に記載の織編物。 The woven or knitted fabric according to claim 13, wherein the synthetic fiber is at least one of regular polyester fiber, polyamide fiber, elastic fiber, polyolefin fiber, and acrylic fiber.
  15.  前記改質ポリエステル繊維の単繊維繊度が0.6dtex以上3.5dtex以下である請求項8~14のいずれか一項に記載の織編物。 The woven or knitted fabric according to any one of claims 8 to 14, wherein a single fiber fineness of the modified polyester fiber is 0.6 dtex or more and 3.5 dtex or less.
  16.  前記弾性繊維が、ポリウレタン繊維、ポリトリメチレンテレフタレート繊維、ポリブチレンテフタレート繊維のいずれかである請求項14または15に記載の織編物。 The woven or knitted fabric according to claim 14 or 15, wherein the elastic fiber is any one of polyurethane fiber, polytrimethylene terephthalate fiber, and polybutylene terephthalate fiber.
  17.  以下の測定における減量率が5%以上15%以下である改質ポリエステル繊維と非減量繊維とを含有する生地に、抜蝕加工剤を印捺し、抜蝕加工剤を印捺した部分に過熱蒸気を与えて減量加工する織編物の製造方法であって、前記抜蝕加工剤のpHが8以上13以下であり、加熱方法が、150℃以上200℃以下の過熱蒸気であり、加熱時間が5分以上15分以下である織編物の製造方法。
    <減量率測定方法>
     繊維100gを、炭酸ナトリウム40g/L水溶液2L中に入れ、100℃30分で加熱し、80℃60分の乾燥処理後の繊維質量Agを測定する。
     減量率(%)={(100-A)/100}×100
    In the following measurement, the removal processing agent is printed on the fabric containing the modified polyester fiber and the non-reduction fiber with a weight loss rate of 5% or more and 15% or less, and superheated steam is applied to the portion where the removal processing agent is printed. Is a method for producing a woven or knitted fabric for weight reduction processing, wherein the pH of the removal processing agent is 8 or more and 13 or less, the heating method is 150 ° C. or more and 200 ° C. or less superheated steam, and the heating time is 5 A method for producing a woven or knitted fabric that is not shorter than 15 minutes and not longer than 15 minutes.
    <Method for measuring weight loss>
    100 g of fiber is put into 2 L of sodium carbonate 40 g / L aqueous solution, heated at 100 ° C. for 30 minutes, and the fiber mass Ag after drying at 80 ° C. for 60 minutes is measured.
    Weight loss rate (%) = {(100−A) / 100} × 100
PCT/JP2015/081399 2015-07-15 2015-11-06 Modified polyester fiber, opal finished woven and knitted fabric containing the fiber, and method for producing same WO2017010024A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15898335.3A EP3323913A4 (en) 2015-07-15 2015-11-06 Modified polyester fiber, opal finished woven and knitted fabric containing the fiber, and method for producing same
US15/743,429 US20180209074A1 (en) 2015-07-15 2015-11-06 Modified polyester fiber, etching finished woven and knitted fabric containing the fiber, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-141163 2015-07-15
JP2015141163A JP6515715B2 (en) 2015-07-15 2015-07-15 A erosion-treated woven or knitted fabric containing a modified polyester fiber and a method for producing the same

Publications (1)

Publication Number Publication Date
WO2017010024A1 true WO2017010024A1 (en) 2017-01-19

Family

ID=57757197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081399 WO2017010024A1 (en) 2015-07-15 2015-11-06 Modified polyester fiber, opal finished woven and knitted fabric containing the fiber, and method for producing same

Country Status (5)

Country Link
US (1) US20180209074A1 (en)
EP (1) EP3323913A4 (en)
JP (1) JP6515715B2 (en)
TW (1) TWI612190B (en)
WO (1) WO2017010024A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076182A (en) * 2018-11-05 2020-05-21 三菱ケミカル株式会社 Knitted fabric having partial opal finish part
JP2021038489A (en) * 2019-09-04 2021-03-11 三菱ケミカル株式会社 Partially etched fabric

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI671328B (en) * 2018-07-30 2019-09-11 遠東新世紀股份有限公司 Cationic dyeable polyester and preparation method thereof
CN113026360B (en) * 2019-12-09 2023-06-13 协兴建筑科技有限公司 Modified polyester fiber for cement-based composite material and surface modification method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115181A (en) * 1981-12-24 1983-07-08 三菱レイヨン株式会社 Production of continuous yarn dyed processed yarn
JP2004225192A (en) * 2003-01-23 2004-08-12 Mitsubishi Rayon Co Ltd Polyester fiber for etching, etched polyester fabric and method for producing etched polyester fabric
WO2007074833A1 (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Co., Ltd. Fabric composed of regions different in stretchability and process for production thereof
JP2013018802A (en) * 2011-07-07 2013-01-31 Mitsubishi Rayon Textile Co Ltd Polyester resin composition, method for producing the same, polyester fiber composed of the same, and fiber product of the polyester fiber
JP2015212444A (en) * 2014-05-07 2015-11-26 三菱レイヨン・テキスタイル株式会社 Modified polyester fiber and blended article thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0177014B1 (en) * 1984-10-03 1991-01-02 Teijin Limited Modified polyester fiber and process for preparation thereof
US5059482A (en) * 1988-09-13 1991-10-22 Kuraray Company, Ltd. Composite fiber and process for producing the same
US4990594A (en) * 1990-03-07 1991-02-05 Hoechst Celanese Corporation Producing a copolyester from a lower dialkyl ester of terephthalic acid, a glycol and a dicarboxylic acid
TW211030B (en) * 1991-10-01 1993-08-11 Du Pont
US20130232937A1 (en) * 2007-01-23 2013-09-12 Reliance Industries Limited Easily alkali soluble polyester and method for producing the same
TW200905029A (en) * 2007-07-30 2009-02-01 Men Chuen Fibre Industry Co Ltd A manufacturing method of burn-out for tricot

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115181A (en) * 1981-12-24 1983-07-08 三菱レイヨン株式会社 Production of continuous yarn dyed processed yarn
JP2004225192A (en) * 2003-01-23 2004-08-12 Mitsubishi Rayon Co Ltd Polyester fiber for etching, etched polyester fabric and method for producing etched polyester fabric
WO2007074833A1 (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Co., Ltd. Fabric composed of regions different in stretchability and process for production thereof
JP2013018802A (en) * 2011-07-07 2013-01-31 Mitsubishi Rayon Textile Co Ltd Polyester resin composition, method for producing the same, polyester fiber composed of the same, and fiber product of the polyester fiber
JP2015212444A (en) * 2014-05-07 2015-11-26 三菱レイヨン・テキスタイル株式会社 Modified polyester fiber and blended article thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3323913A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020076182A (en) * 2018-11-05 2020-05-21 三菱ケミカル株式会社 Knitted fabric having partial opal finish part
JP2021038489A (en) * 2019-09-04 2021-03-11 三菱ケミカル株式会社 Partially etched fabric
JP7383427B2 (en) 2019-09-04 2023-11-20 ユニチカトレーディング株式会社 Partially etched fabric

Also Published As

Publication number Publication date
TWI612190B (en) 2018-01-21
TW201702444A (en) 2017-01-16
EP3323913A4 (en) 2018-07-11
EP3323913A1 (en) 2018-05-23
US20180209074A1 (en) 2018-07-26
JP6515715B2 (en) 2019-05-22
JP2017020147A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2017010024A1 (en) Modified polyester fiber, opal finished woven and knitted fabric containing the fiber, and method for producing same
JP5367261B2 (en) Fabric having partially different stretch properties and method for producing the same
JP2007039854A (en) Elastic cloth formed with watermark and method for producing the same
JP5224249B2 (en) Method for producing stretchable fabric
JP5854997B2 (en) Fiber fabric and method for producing fiber fabric
CN105133400A (en) Preparation technology of copper fiber knitted double faced fabric
JP6379643B2 (en) Modified polyester fiber and its mixed goods
JP2000282377A (en) Erosion removal processing for fiber textile
JPH0681245A (en) Production of fabric comprising splittable conjugate fiber and fabric with excellent touch feel
JP2020076182A (en) Knitted fabric having partial opal finish part
JP5060235B2 (en) Ink set for opal processing and method for producing opal processed fabric using the same
JP2000160452A (en) Polyester woven fabric and its production
JP4065808B2 (en) Weight loss accelerator for polyester fiber removal processing and removal processing method
JP3792676B2 (en) Accelerator for polyester fiber alkali weight loss processing and alkali weight loss processing method for polyester fiber using the accelerator
JP2772935B2 (en) Method for producing a polyester fiber fabric processed by etching
JP4254440B2 (en) Textile manufacturing method
KR20170112573A (en) Method for manufacturing ultra-light denim fabric
JP2007146319A (en) Fabric for opal finish and method for producing opal finished fabric
JP2021075804A (en) Partial burnt-out knitting fabric
JP2000345445A (en) Fabric
WO2023074074A1 (en) Method for restoring lost shape of textile product
JP3157643B2 (en) Method for producing fiber, yarn or fabric
JP2009091676A (en) Pretreatment method for dyeing fabric containing polyester fiber
JPH0987926A (en) Production of ultrafine synthetic fiber
JPH09132883A (en) Etching processed polyester-based textile fabric and its production

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898335

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15743429

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE