WO2017008548A1 - 一种呼吸机比例阀的流量控制方法 - Google Patents
一种呼吸机比例阀的流量控制方法 Download PDFInfo
- Publication number
- WO2017008548A1 WO2017008548A1 PCT/CN2016/079342 CN2016079342W WO2017008548A1 WO 2017008548 A1 WO2017008548 A1 WO 2017008548A1 CN 2016079342 W CN2016079342 W CN 2016079342W WO 2017008548 A1 WO2017008548 A1 WO 2017008548A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow
- proportional valve
- value
- voltage
- flow rate
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/021—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
- A61M16/022—Control means therefor
- A61M16/024—Control means therefor including calculation means, e.g. using a processor
- A61M16/026—Control means therefor including calculation means, e.g. using a processor specially adapted for predicting, e.g. for determining an information representative of a flow limitation during a ventilation cycle by using a root square technique or a regression analysis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/201—Controlled valves
- A61M16/202—Controlled valves electrically actuated
- A61M16/203—Proportional
- A61M16/204—Proportional used for inhalation control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/201—Controlled valves
- A61M16/202—Controlled valves electrically actuated
- A61M16/203—Proportional
- A61M16/205—Proportional used for exhalation control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D7/00—Control of flow
- G05D7/06—Control of flow characterised by the use of electric means
- G05D7/0617—Control of flow characterised by the use of electric means specially adapted for fluid materials
- G05D7/0629—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
- G05D7/0635—Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/003—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
- A61M2016/0033—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
- A61M2016/0039—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/003—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
- A61M2016/0033—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
- A61M2016/0042—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the expiratory circuit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
Definitions
- the invention relates to the field of ventilators, and in particular to a flow control method for a proportional valve of a ventilator.
- the ventilator controls the output flow precisely by controlling the proportional valve.
- the ideal flow characteristic curve of the proportional valve used in the ventilator is mostly linear, and the control method basically adopts the linear control method.
- the flow characteristic curve of the proportional valve changes, especially the small flow section shows nonlinear characteristics, which is a small flow. Control has caused a lot of problems.
- the object of the present invention is to overcome the above problems existing in the existing neural network deep learning model in big data applications.
- the object of the present invention is to overcome the above drawbacks of the prior art ventilator proportional valve control method, and to propose a ventilator proportional valve
- the flow control method provides an effective and versatile method for accurate flow control of proportional valves.
- the present invention provides a flow control method for a ventilator proportional valve, the method comprising:
- Step 1) Obtain the minimum flow value a and the maximum flow value b of the proportional valve and their corresponding driving voltage values; divide the [a, b] interval into N flow segment intervals uniformly, and obtain N intervals in the left end by linear fitting
- the voltage of the point is the feedforward voltage
- the feed-forward voltage is the initial voltage.
- the drive voltage corresponding to the left end flow rate of each interval is calculated by the closed-loop control algorithm, and then the flow rate and the drive voltage of the N intervals are linearly fitted to establish a ventilator.
- Step 2 according to the proportional valve flow value of the desired output, first find the interval of the flow segment where it is located, and then calculate the driving voltage value corresponding to the flow value according to the linear relationship of the fitting;
- Step 3) Adjust the voltage of the proportional valve to step 2) to obtain the driving voltage value, and the flow rate output by the proportional valve meets the requirements.
- the step 1) specifically includes:
- Step 101 Obtain a minimum flow value a and a maximum flow value b of the proportional valve, and corresponding voltage values thereof;
- Step 102 N-divide the minimum flow value a with the flow interval [a, b] of the maximum flow value b; obtain N flow segment intervals;
- Step 103 calculating a feedforward voltage of each left end point of the N flow segment intervals by linear fitting
- Step 104) The feed forward voltage is the initial voltage, and the driving voltage corresponding to the left end flow value of each flow segment interval is calculated by the closed loop control algorithm;
- Step 105) According to the flow value and the driving voltage value of the left and right end points of the N flow segment sections, the N linear straight lines are fitted, the abscissa of each straight line is the flow value, and the ordinate is the driving voltage value.
- the step 101) specifically includes:
- Step 101-1) closing the proportional valve
- the flow sensor is used to measure the flow value of the proportional valve, and when the flow value is less than the first threshold, it is determined that the proportional valve has been closed;
- Step 101-2 obtaining a minimum flow value a of the proportional valve and a corresponding driving voltage thereof;
- Step 101-3 obtaining the maximum flow point b of the proportional valve and its corresponding driving voltage
- the maximum driving voltage is output to maximize the proportional valve opening, and the flow sensor at the suction end is used to collect the flow rate and record the value, which is the maximum flow value.
- the actual flow value obtained by inputting the feedforward voltage is the feedback flow rate, and the left end point of each flow segment interval is the verification flow rate.
- the difference between the feedback flow rate and the verification flow rate is used to adjust the driving voltage of the proportional valve, and gradually adjust.
- the opening of the proportional valve until the output flow is equal to the verified flow value, at which time the corresponding voltage is the drive voltage at that point.
- the first threshold is 10 ml/s.
- the second threshold is 20 ml/s.
- the method of the invention does not require a complicated mathematical model, and has the characteristics of simple implementation and high precision;
- the flow control method of the ventilator proportional valve of the present invention is applicable to voltage control or voltage control proportional valves on other devices.
- FIG. 1 is a flow chart of a flow control method of a ventilator proportional valve of the present invention.
- a flow control method for a ventilator proportional valve comprising:
- Step 1) Obtain the minimum flow value a and the maximum flow value b of the proportional valve, and their corresponding driving voltage values;
- the [a, b] interval is evenly divided into N flow segment intervals, and the voltage of the left end points of the N intervals is obtained as a feedforward voltage by linear fitting, and the driving voltage corresponding to the left end flow rate of each interval is calculated by a closed loop control algorithm.
- the flow rate and the driving voltage of the N intervals are linearly fitted to establish a linear relationship between the flow rate of the ventilator proportional valve and the driving voltage; specifically:
- Step 101 Obtain a minimum flow value a and a maximum flow value b of the proportional valve, and corresponding voltage values thereof; specifically:
- Step 101-1) closing the proportional valve
- the flow sensor is used to measure the flow value of the proportional valve, and when the flow value is less than the first threshold, it is determined that the proportional valve has been closed;
- the flow sensor is a flow sensor of the inhalation end or the exhalation end; preferably, the first threshold is 10 ml/s;
- Step 101-2 obtaining a minimum flow value a of the proportional valve and a corresponding driving voltage thereof;
- the driving voltage of the proportional valve is gradually increased, and then the flow rate of the gas at the exhalation end is collected.
- the proportional valve is considered to be open, which is the minimum valve opening point and the minimum valve opening.
- the flow value corresponding to the point is a minimum flow value, and the second threshold is 20 ml/s;
- Step 101-3 obtaining the maximum flow point b of the proportional valve and its corresponding driving voltage
- the maximum driving voltage is output to maximize the opening of the proportional valve, and the flow sensor is used to collect the flow rate and record the value, which is the maximum flow value;
- Step 102 N-divide the minimum flow value a with the flow interval [a, b] of the maximum flow value b; obtain N flow segment intervals;
- N 40;
- Step 103 calculating a feedforward voltage of each left end point of the N flow segment segments
- the linear fitting estimate is based on the voltage value corresponding to the known minimum flow value and the voltage value corresponding to the maximum flow value;
- Step 104) The feed forward voltage is the initial voltage, and the driving voltage corresponding to the left end flow value of each flow segment interval is calculated by the closed loop control algorithm;
- the actual flow value obtained by inputting the feedforward voltage is the feedback flow rate, and the left end point of each flow segment interval is the verification flow rate.
- the difference between the feedback flow rate and the verification flow rate is used to adjust the driving voltage of the proportional valve, and gradually adjust.
- the opening degree of the proportional valve until the output flow rate is equal to the verified flow value, and the corresponding voltage is the driving voltage at the point;
- parameter adjustment is a problem. Improper setting of the coefficients may cause the adjustment to be too slow or overshoot, and it needs to be determined according to the specific application.
- Step 105) fitting N linearities according to flow values and driving voltage values of left and right end points of the N flow segment intervals
- the straight line, the abscissa of each line is the flow value, and the ordinate is the A/D digital quantity corresponding to the driving voltage value;
- Step 2 according to the proportional valve flow value of the desired output, first find the interval of the flow segment where it is located, and then calculate the driving voltage value corresponding to the flow value according to the linear relationship of the fitting;
- Step 3) Adjust the voltage of the proportional valve to step 2) to obtain the driving voltage value, and the flow rate output by the proportional valve meets the requirements.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Emergency Medicine (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Public Health (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Feedback Control In General (AREA)
- Flow Control (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种呼吸机比例阀的流量控制方法,所述方法包括:步骤1)获取比例阀的最小流量值a和最大流量值b,及其对应的驱动电压值;将[a,b]区间均匀划分为N个流量段区间,通过线性拟合获取N个区间左端点的电压为前馈电压,以前馈电压为初始电压通过闭环控制算法计算每个区间的左端点流量对应的驱动电压,然后对N个区间的流量和驱动电压进行线性拟合,从而建立呼吸机比例阀的流量和驱动电压的线性关系;步骤2)根据所需输出的比例阀流量值,首先找到其所在流量段区间,然后根据拟合的线性关系计算该流量值对应的驱动电压值;步骤3)调节比例阀的电压到步骤2)得到驱动电压值,则比例阀输出的流量满足要求。
Description
本发明涉及呼吸机领域,特别涉及一种呼吸机比例阀的流量控制方法。
呼吸机是通过控制比例阀实现对输出流量的精确控制。而目前呼吸机采用的比例阀的理想流量特性曲线大多是线性的,在控制方法上基本上也都采用线性控制的方法。但在实际应用上,由于比例阀的安装应用环境以及长期使用的重复性和一致性,使得比例阀的流量特性曲线发生改变,特别是小流量段部分表现出非线性特性,这就为小流量控制造成了很大的难题。
发明内容
本发明的目的在于,克服在大数据应用中现有神经网络深度学习模型存在的上述问题本发明的目的在于克服现有呼吸机比例阀控制方法存在的上述缺陷,提出了一种呼吸机比例阀的流量控制方法,为实现比例阀的流量精确控制提供一种有效、通用的方法。
为了实现上述目的,本发明提供了一种呼吸机比例阀的流量控制方法,所述方法包括:
步骤1)获取比例阀的最小流量值a和最大流量值b,及其对应的驱动电压值;将[a,b]区间均匀划分为N个流量段区间,通过线性拟合获取N个区间左端点的电压为前馈电压,以前馈电压为初始电压通过闭环控制算法计算每个区间的左端点流量对应的驱动电压,然后对N个区间的流量和驱动电压进行线性拟合,从而建立呼吸机比例阀的流量和驱动电压的线性关系;
步骤2)根据所需输出的比例阀流量值,首先找到其所在流量段区间,然后根据拟合的线性关系计算该流量值对应的驱动电压值;
步骤3)调节比例阀的电压到步骤2)得到驱动电压值,则比例阀输出的流量满足要求。
上述技术方案中,所述步骤1)具体包括:
步骤101)获取比例阀的最小流量值a和最大流量值b,及其对应的电压值;
步骤102)将最小流量值a与最大流量值b的流量区间[a,b]进行N等分;获得N个流量段区间;
步骤103)通过线性拟合计算N个流量段区间的每个左端点的前馈电压;
步骤104)以前馈电压为初始电压通过闭环控制算法计算每个流量段区间的左端点流量值对应的驱动电压;
步骤105)根据N个流量段区间的左右端点的流量值和驱动电压值拟合成N条线性的直线,每条直线的横坐标为流量值,纵坐标为驱动电压值。
上述技术方案中,所述步骤101)具体包括:
步骤101-1)关闭比例阀;
利用流量传感器测量比例阀的流量值,当流量值小于第一阈值时,判定比例阀已经关闭;
步骤101-2)获取比例阀的最小流量值a及其对应的驱动电压;
逐渐增大比例阀的驱动电压,采集呼气端气体的流量,当流量达到第二阈值时,则认为比例阀已经打开,该点为最小开阀点,最小开阀点对应的流量值为最小流量值,
步骤101-3)获取比例阀的最大流量点b及其对应的驱动电压;
首先输出最大驱动电压使比例阀开度达到最大,利用吸气端的流量传感器采集流量并记录该值,该值为最大流量值。
上述技术方案中,所述步骤104)的具体实现过程为:
输入前馈电压得到的实际流量值为反馈流量,每个流量段区间的左端点为校验流量,利用反馈流量与校验流量的差值大小对比例阀的驱动电压进行闭环的调节,逐渐调整比例阀的开度,直至输出流量等于校验的流量值,此时对应的电压为该点的驱动电压。
上述技术方案中,所述第一阈值为10ml/s。
上述技术方案中,所述第二阈值为20ml/s。
本发明的优点在于:
1、本发明的方法不需要复杂的数学模型,具有实现简单,精度高的特点;
2、本发明的呼吸机比例阀的流量控制方法,对于其它设备上的电压控制或者电压控制的比例阀均适用。
图1为本发明的呼吸机比例阀的流量控制方法的流程图。
下面结合附图和具体实施例对本发明做进一步详细的说明。
如图1所示,一种呼吸机比例阀的流量控制方法,所述方法包括:
步骤1)获取比例阀的最小流量值a和最大流量值b,及其对应的驱动电压值;将
[a,b]区间均匀划分为N个流量段区间,通过线性拟合获取N个区间左端点的电压为前馈电压,并通过闭环控制算法计算每个区间的左端点流量对应的驱动电压,然后对N个区间的流量和驱动电压进行线性拟合,从而建立呼吸机比例阀的流量和驱动电压的线性关系;具体包括:
步骤101)获取比例阀的最小流量值a和最大流量值b,及其对应的电压值;具体包括:
步骤101-1)关闭比例阀;
利用流量传感器测量比例阀的流量值,当流量值小于第一阈值时,判定比例阀已经关闭;
所述流量传感器为吸气端或呼气端的流量传感器;优选的,所述第一阈值为10ml/s;
步骤101-2)获取比例阀的最小流量值a及其对应的驱动电压;
通过D/A输出,逐渐增大比例阀的驱动电压,然后采集呼气端气体的流量,当流量达到第二阈值时,则认为比例阀已经打开,该点为最小开阀点,最小开阀点对应的流量值为最小流量值,所述第二阈值为20ml/s;
步骤101-3)获取比例阀的最大流量点b及其对应的驱动电压;
首先输出最大驱动电压使比例阀开度达到最大,利用吸气端的流量传感器采集流量并记录该值,该值为最大流量值;
步骤102)将最小流量值a与最大流量值b的流量区间[a,b]进行N等分;获得N个流量段区间;
在本实施例中,N=40;
步骤103)计算N个流量段区间的每个左端点的前馈电压;
根据已知的最小流量值对应的电压和最大流量值对应的电压值进行线性拟合估算得出;
步骤104)以前馈电压为初始电压通过闭环控制算法计算每个流量段区间的左端点流量值对应的驱动电压;
输入前馈电压得到的实际流量值为反馈流量,每个流量段区间的左端点为校验流量,利用反馈流量与校验流量的差值大小对比例阀的驱动电压进行闭环的调节,逐渐调整比例阀的开度,直至输出流量等于校验的流量值,此时对应的电压为该点的驱动电压;
在闭环控制中,参数的调整是一个难题,系数设置不当可能会导致调节过慢或超调,需要根据具体应用情况进行确定。
步骤105)根据N个流量段区间的左右端点的流量值和驱动电压值拟合成N条线性
的直线,每条直线的横坐标为流量值,纵坐标为驱动电压值对应的A/D数字量;
步骤2)根据所需输出的比例阀流量值,首先找到其所在流量段区间,然后根据拟合的线性关系计算该流量值对应的驱动电压值;
步骤3)调节比例阀的电压到步骤2)得到驱动电压值,则比例阀输出的流量满足要求。
Claims (6)
- 一种呼吸机比例阀的流量控制方法,所述方法包括:步骤1)获取比例阀的最小流量值a和最大流量值b,及其对应的驱动电压值;将[a,b]区间均匀划分为N个流量段区间,通过线性拟合获取N个区间左端点的电压为前馈电压,以前馈电压为初始电压通过闭环控制算法计算每个区间的左端点流量对应的驱动电压,然后对N个区间的流量和驱动电压进行线性拟合,从而建立呼吸机比例阀的流量和驱动电压的对应关系;步骤2)根据所需输出的比例阀流量值,首先找到其所在流量段区间,然后根据拟合的直线计算该流量值对应的驱动电压值;步骤3)调节比例阀的电压到步骤2)得到驱动电压值,则比例阀输出的流量满足要求。
- 根据权利要求1所述的呼吸机比例阀的流量控制方法,其特征在于,所述步骤1)具体包括:步骤101)获取比例阀的最小流量值a和最大流量值b,及其对应的驱动电压值;步骤102)将最小流量值a与最大流量值b的流量区间[a,b]进行N等分;获得N个流量段区间;步骤103)通过线性拟合计算N个流量段区间的每个左端点的前馈电压;步骤104)以前馈电压为初始电压通过闭环控制算法计算每个流量段区间的左端点流量值对应的驱动电压;步骤105)根据N个流量段区间的左右端点的流量值和驱动电压值拟合成N条线性的直线,每条直线的横坐标为流量值,纵坐标为驱动电压值。
- 根据权利要求2所述的呼吸机比例阀的流量控制方法,其特征在于,所述步骤101)具体包括:步骤101-1)关闭比例阀;利用流量传感器测量比例阀的流量值,当流量值小于第一阈值时,判定比例阀已经关闭;步骤101-2)获取比例阀的最小流量值a及其对应的驱动电压;逐渐增大比例阀的驱动电压,采集呼气端气体的流量,当流量达到第二阈值时,则认为比例阀已经打开,该点为最小开阀点,最小开阀点对应的流量值为最小流量值,步骤101-3)获取比例阀的最大流量点b及其对应的驱动电压;首先输出最大驱动电压使比例阀开度达到最大,利用吸气端的流量传感器采集流量并记录该值,该值为最大流量值。
- 根据权利要求2所述的呼吸机比例阀的流量控制方法,其特征在于,所述步骤104)的具体实现过程为:输入前馈电压得到的实际流量值为反馈流量,每个流量段区间的左端点为校验流量,利用反馈流量与校验流量的差值大小对比例阀的驱动电压进行闭环的调节,逐渐调整比例阀的开度,直至输出流量等于校验的流量值,此时对应的电压为该点的驱动电压。
- 根据权利要求3所述的呼吸机比例阀的流量控制方法,其特征在于,所述第一阈值为10ml/s。
- 根据权利要求3所述的呼吸机比例阀的流量控制方法,其特征在于,所述第二阈值为20ml/s。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16823695.8A EP3321759A4 (en) | 2015-07-14 | 2016-04-15 | Flow control method for proportional valve of breathing machine |
EA201800104A EA035473B1 (ru) | 2015-07-14 | 2016-04-15 | Способ регулирования расхода пропорционального клапана аппарата искусственной вентиляции легких |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510412886.5A CN106693128B (zh) | 2015-07-14 | 2015-07-14 | 一种呼吸机比例阀的流量控制方法 |
CN201510412886.5 | 2015-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017008548A1 true WO2017008548A1 (zh) | 2017-01-19 |
Family
ID=57756789
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/079342 WO2017008548A1 (zh) | 2015-07-14 | 2016-04-15 | 一种呼吸机比例阀的流量控制方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3321759A4 (zh) |
CN (1) | CN106693128B (zh) |
EA (1) | EA035473B1 (zh) |
WO (1) | WO2017008548A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112827034A (zh) * | 2020-12-31 | 2021-05-25 | 北京谊安医疗系统股份有限公司 | 一种用于气动电控麻醉机的吸气阀的标校系统及其方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109237115B (zh) * | 2017-07-10 | 2022-01-18 | 青岛经济技术开发区海尔热水器有限公司 | 比例阀工作范围自适应调节方法及燃气热水器 |
CN108498930A (zh) * | 2018-03-31 | 2018-09-07 | 湖南明康中锦医疗科技发展有限公司 | 呼吸辅助设备比例阀的流量控制方法 |
CN110051454A (zh) * | 2019-05-28 | 2019-07-26 | 深圳市瑞沃德生命科技有限公司 | 呼吸机的通气控制方法 |
CN111324154B (zh) * | 2020-01-20 | 2022-06-24 | 深圳市科曼医疗设备有限公司 | 混合腔压力控制方法、呼吸机设备和计算机可读存储介质 |
CN114215824B (zh) * | 2021-11-11 | 2023-06-09 | 浙江三一装备有限公司 | 获取比例阀控制范围的方法、测试系统及液压系统 |
CN114209955B (zh) * | 2021-11-16 | 2023-07-18 | 北京谊安医疗系统股份有限公司 | 一种比例阀开机自检方法 |
CN115095620B (zh) * | 2022-07-25 | 2023-08-15 | 深圳市安保医疗科技股份有限公司 | 一种弹片、比例阀及比例阀流量线性度优化方法 |
CN115944825B (zh) * | 2022-12-14 | 2024-08-13 | 江苏鱼跃医疗设备股份有限公司 | 比例阀稳流量控制方法、装置、呼吸机、可读存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4823788A (en) * | 1988-04-18 | 1989-04-25 | Smith Richard F M | Demand oxygen controller and respiratory monitor |
WO1993010844A1 (en) * | 1991-11-29 | 1993-06-10 | Cambridge Life Systems Limited | Neonatal ventilation apparatus |
US5474062A (en) * | 1987-11-04 | 1995-12-12 | Bird Products Corporation | Medical ventilator |
CN101614575A (zh) * | 2008-06-26 | 2009-12-30 | 北京谊安医疗系统股份有限公司 | 校正质量流量传感器的电压与气流速度关系的方法 |
CN203745923U (zh) * | 2013-12-26 | 2014-07-30 | 北京谊安医疗系统股份有限公司 | 呼吸机的通气流量的控制系统 |
CN104707228A (zh) * | 2015-03-02 | 2015-06-17 | 深圳市科曼医疗设备有限公司 | 经鼻高流量氧疗压力监测系统及其监测方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI120472B (fi) * | 2006-06-06 | 2009-10-30 | Metso Automation Oy | Ohjausmenetelmä ja ohjausjärjestelmä virtausta säätävää venttiiliä varten |
US7707831B2 (en) * | 2007-07-17 | 2010-05-04 | Audi, Ag | Method for controlling boost pressure in an internal combustion engine for motor vehicles |
CN101561361B (zh) * | 2009-05-07 | 2010-12-01 | 北京理工大学 | 一种基于模型的电液比例阀加载方法 |
US9644796B2 (en) * | 2011-09-29 | 2017-05-09 | Applied Materials, Inc. | Methods for in-situ calibration of a flow controller |
CN103893865B (zh) * | 2012-12-26 | 2017-05-31 | 北京谊安医疗系统股份有限公司 | 一种呼吸机涡轮容量控制通气的方法 |
CN103893891B (zh) * | 2012-12-26 | 2016-03-02 | 北京谊安医疗系统股份有限公司 | 一种呼吸机非线性比例阀的校验方法 |
-
2015
- 2015-07-14 CN CN201510412886.5A patent/CN106693128B/zh active Active
-
2016
- 2016-04-15 EA EA201800104A patent/EA035473B1/ru not_active IP Right Cessation
- 2016-04-15 WO PCT/CN2016/079342 patent/WO2017008548A1/zh active Application Filing
- 2016-04-15 EP EP16823695.8A patent/EP3321759A4/en not_active Withdrawn
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5474062A (en) * | 1987-11-04 | 1995-12-12 | Bird Products Corporation | Medical ventilator |
US4823788A (en) * | 1988-04-18 | 1989-04-25 | Smith Richard F M | Demand oxygen controller and respiratory monitor |
WO1993010844A1 (en) * | 1991-11-29 | 1993-06-10 | Cambridge Life Systems Limited | Neonatal ventilation apparatus |
CN101614575A (zh) * | 2008-06-26 | 2009-12-30 | 北京谊安医疗系统股份有限公司 | 校正质量流量传感器的电压与气流速度关系的方法 |
CN203745923U (zh) * | 2013-12-26 | 2014-07-30 | 北京谊安医疗系统股份有限公司 | 呼吸机的通气流量的控制系统 |
CN104707228A (zh) * | 2015-03-02 | 2015-06-17 | 深圳市科曼医疗设备有限公司 | 经鼻高流量氧疗压力监测系统及其监测方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3321759A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112827034A (zh) * | 2020-12-31 | 2021-05-25 | 北京谊安医疗系统股份有限公司 | 一种用于气动电控麻醉机的吸气阀的标校系统及其方法 |
CN112827034B (zh) * | 2020-12-31 | 2023-04-18 | 北京谊安医疗系统股份有限公司 | 一种用于气动电控麻醉机的吸气阀的标校系统及其方法 |
Also Published As
Publication number | Publication date |
---|---|
EA035473B1 (ru) | 2020-06-22 |
CN106693128B (zh) | 2018-12-25 |
EP3321759A4 (en) | 2018-06-06 |
EP3321759A1 (en) | 2018-05-16 |
EA201800104A1 (ru) | 2018-05-31 |
CN106693128A (zh) | 2017-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017008548A1 (zh) | 一种呼吸机比例阀的流量控制方法 | |
CN103984234A (zh) | 一种电液伺服系统自修正模糊pid控制的方法 | |
JP2014057879A5 (zh) | ||
CN108489015B (zh) | 基于极点配置和帕德近似的空调系统温度控制方法 | |
CN107133433A (zh) | 一种基于模型自适应汽轮机调门流量特性优化方法 | |
CN104375415A (zh) | 一种密集烤房控制器的温湿度控制算法 | |
EA039070B1 (ru) | Способ контролирования мощности аппарата для анестезии на основе нечеткого адаптивного пид-контролирования | |
RU2015142451A (ru) | Способ настройки коэффициента усиления привода регулятора давления наддува (варианты) и система наддува двигателя | |
CN114207339A8 (zh) | 管接头施加器和接头产生方法 | |
EP3356901A1 (en) | Methods and systems for controlling gas flow using a proportional flow valve | |
US9880569B2 (en) | Pressure control method for process chamber and pressure control device for process chamber | |
CN111650829B (zh) | 基于人工智能的内嵌pid模块参数调节方法、系统及装置 | |
WO2017008549A1 (zh) | 一种呼吸机的闭环容量控制方法 | |
JP2018530393A5 (zh) | ||
JP2009282819A (ja) | 流量制御方法 | |
TWI643047B (zh) | 冷卻水塔的控制方法 | |
SA522441852B1 (ar) | طرق وأجهزة التحكم في معدل تدفق المضخة | |
CN113987404A (zh) | 基于参数更新校正的流量阀开度调节方法、系统 | |
JP2016514324A5 (zh) | ||
CN103353161B (zh) | 变风量空调压力无关型末端装置控制系统及其控制方法 | |
CN104020673B (zh) | 一种液位仪用自适应控制算法 | |
CN108066860A (zh) | 一种呼吸机漏气补偿方法 | |
CN105892338A (zh) | 一种麻醉呼吸机吸气上升时间控制方法 | |
CN108066874A (zh) | 一种麻醉呼吸机吸气上升时间调节方法 | |
CN102397610B (zh) | 麻醉机、呼吸机压力控制下斜坡斜率调节方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16823695 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2016823695 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 201800104 Country of ref document: EA |