WO2017008487A1 - 有机发光器件 - Google Patents

有机发光器件 Download PDF

Info

Publication number
WO2017008487A1
WO2017008487A1 PCT/CN2016/071471 CN2016071471W WO2017008487A1 WO 2017008487 A1 WO2017008487 A1 WO 2017008487A1 CN 2016071471 W CN2016071471 W CN 2016071471W WO 2017008487 A1 WO2017008487 A1 WO 2017008487A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sub
light
color conversion
light emitting
Prior art date
Application number
PCT/CN2016/071471
Other languages
English (en)
French (fr)
Inventor
赖韦霖
盖人荣
张晓晋
玄明花
Original Assignee
京东方科技集团股份有限公司
鄂尔多斯市源盛光电有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 鄂尔多斯市源盛光电有限责任公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/117,563 priority Critical patent/US10181583B2/en
Publication of WO2017008487A1 publication Critical patent/WO2017008487A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/818Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/828Transparent cathodes, e.g. comprising thin metal layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80518Reflective anodes, e.g. ITO combined with thick metallic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80524Transparent cathodes, e.g. comprising thin metal layers

Definitions

  • Embodiments of the invention relate to organic light emitting devices.
  • OLED Organic Light Emitting Diode
  • OLED Organic Light Emitting Diode
  • the existing OLED full colorization technology includes a pixel juxtaposition method, a color filter method, a micro cavity toning method, a multilayer stacking method, and a color conversion method.
  • the color conversion method uses the light emitted by the organic light-emitting material as the excitation light, and then excites the color conversion material to emit light of red, green, blue, etc., thereby achieving the purpose of full colorization. Since the red, green and blue colors have the highest blue light energy, the color conversion method mostly uses a blue organic light-emitting material as the main excitation light source body, as shown in FIG.
  • An embodiment of the present invention provides an organic light emitting device including: a substrate substrate, a first electrode layer, a second electrode layer, a first color conversion layer, a first light emitting layer, and a second light emitting layer laminated on the base substrate
  • the first luminescent layer is disposed between the first electrode layer and the second electrode layer, the first luminescent layer emitting a first emitted light under electrical excitation
  • the first electrode layer a transparent electrode layer
  • the first color conversion layer is disposed on a side of the first electrode layer away from the second electrode layer
  • the second light emitting layer is disposed on the first light emitting layer and the first
  • the second luminescent layer emits second emitted light under electrical excitation; the peak wavelength of the second emitted light in the blue region is greater than the peak wavelength of the first emitted light in the blue region.
  • the first emitted light and the second emitted light are both blue light.
  • the first emitted light is blue light
  • the second emitted light is white light
  • the first emitted light is blue light
  • the second light emitting layer includes two sublayers, one of which emits blue light and the other of which emits white light.
  • the thickness of the first light emitting layer is greater than the thickness of the second light emitting layer.
  • the organic light emitting device further includes a third light emitting layer and a second color conversion layer, wherein the second electrode layer is a transparent electrode layer, and the second color conversion layer is disposed at a side of the second electrode layer away from the first electrode layer; the third light emitting layer is disposed between the second light emitting layer and the second electrode layer, and the third light emitting layer is electrically
  • the third emitted light is emitted under excitation, and the peak wavelength of the second emitted light in the blue light region is greater than the peak wavelength of the third emitted light in the blue light region.
  • the third emitted light is blue light, and a peak wavelength of the third emitted light in the blue light region is substantially equal to a peak wavelength of the first emitted light in the blue light region.
  • a peak wavelength of the first emitted light in the blue region is 420 nm to 470 nm
  • a peak wavelength of the second emitted light in the blue region is 450 nm to 500 nm
  • the third emitted light The peak wavelength in the blue region is 420 nm to 470 nm.
  • the second electrode layer is a reflective electrode layer, and the second electrode layer is disposed on a side close to the substrate, and the first electrode layer is disposed on a side away from the substrate.
  • the second electrode layer is a reflective electrode layer
  • the first electrode layer is disposed on a side close to the substrate
  • the second electrode layer is disposed on a side away from the substrate.
  • one of the first electrode layer and the second electrode layer includes a first sub-pixel electrode and a second sub-pixel electrode disposed in the same layer, and the first color conversion layer is disposed In a region opposite to the first sub-pixel electrode.
  • the first sub-pixel electrode further includes a third sub-pixel electrode and a fourth sub-pixel electrode disposed in the same layer
  • the first color conversion layer includes a first sub-layer disposed in the same layer a color conversion layer and a second sub-color conversion layer, the first sub-color conversion layer being opposite to the third sub-pixel electrode, the second sub-color conversion layer being opposite to the fourth sub-pixel electrode.
  • the first sub-color conversion layer is a red conversion layer
  • the second sub-color conversion layer is a green conversion layer
  • one of the first electrode layer and the second electrode layer includes a first sub-pixel electrode and a second sub-pixel electrode disposed in the same layer, the first color conversion layer and The second color conversion layer is disposed in a region opposite to the first sub-pixel electrode.
  • the first sub-pixel electrode further includes a third sub-pixel electrode and a fourth sub-pixel electrode disposed in the same layer, the first color conversion layer and/or the second color
  • the conversion layer includes a first sub-color conversion layer and a second sub-color conversion layer disposed in the same layer, the first sub-color conversion layer being opposite to the third sub-pixel electrode, the second sub-color conversion layer and the The fourth sub-pixel electrode is opposite.
  • the first sub-color conversion layer is a red conversion layer
  • the second sub-color conversion layer is a green conversion layer
  • the organic light emitting device further includes at least one layer disposed between the first electrode layer and the second electrode layer, the at least one layer being selected from the group consisting of a hole injection layer and a hole transport layer a hole blocking layer, an electron transport layer, an electron injection layer, and an electron blocking layer.
  • FIG. 1 is a schematic diagram of an OLED structure of a prior art using a color conversion method to achieve full color display
  • FIG. 2 is a schematic structural diagram of a top emission type OLED having two light emitting layers according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a top-emission OLED structure having two light-emitting layers and two light-emitting layers having two sub-layers according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a top-emission OLED structure having two light-emitting layers and two light-emitting layers having two sub-layers according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a bottom emission type OLED having two light emitting layers according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a bottom emission type OLED structure having two light emitting layers and two light emitting layers having two sublayers according to an embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of a double-sided emission type OLED having three light emitting layers according to an embodiment of the present invention.
  • 100, 200, 300-substrate substrate 101, 201-first electrode layer; 1011-first sub-pixel electrode; 1012-second sub-pixel electrode; 1013-third sub-pixel electrode; 102, 202-second electrode Layer; 103-blue light emitting layer; 106-color conversion layer; 1061-red conversion layer; 1062-green conversion layer; 107, 207-hole transport layer; 108, 208-electron transport layer; 206-first color conversion layer 2061 - first sub-color conversion layer; 2062-second sub-color conversion layer; 203 - first luminescent layer; 204 - second luminescent layer; 2021 - first sub-pixel electrode; 20211 - third sub-pixel electrode; a fourth sub-pixel electrode; 2022-second sub-pixel electrode; 209-hole injection layer; 210-electron injection layer.
  • FIG. 1 shows an OLED structure of the prior art that implements full color display using a color conversion method.
  • a first electrode layer 101 is disposed on the base substrate 100, and the first electrode layer 101 is composed of a first sub-pixel electrode 1011, a second sub-pixel electrode 1012, and a third sub-pixel electrode 1013 which are disposed in the same layer. Further, a hole transport layer 107, a blue light-emitting layer 103, an electron transport layer 108, a second electrode layer 102, and a color conversion layer 106 are provided on the first electrode layer 101 in this order.
  • the color conversion layer 106 includes the same layer The red conversion layer 1061 and the green conversion layer 1062 are disposed.
  • the first electrode layer 101 is a reflective electrode
  • the second electrode layer 102 is a transparent electrode, thereby forming a top emission type OLED device.
  • holes and electrons recombine in the blue light-emitting layer 103 to emit blue light.
  • a part of the blue light excites the light conversion substance in the red conversion layer 1061 and the green conversion layer 1062, and is converted into red (R) and green (G), respectively, and the remaining part of the blue light (B) is directly from the device. Shoot out to achieve full color display.
  • the life of the blue light-emitting material is the shortest.
  • the lifetime of a blue luminescent material is significantly shorter than that of a red luminescent material or a green luminescent material. This limits the useful life of the OLEDs employing the above structure.
  • an embodiment of the present invention provides an organic light emitting device including: a substrate substrate 200, a first electrode layer 201, a second electrode layer 202, a first color conversion layer 206, and a first light emitting layer 203.
  • a second luminescent layer 204 wherein the first electrode layer 201 is a transparent electrode layer, and the first color conversion layer 206 is disposed on a side of the first electrode layer 201 away from the second electrode layer 202;
  • the first luminescent layer 203 is disposed between the first electrode layer 201 and the second electrode layer 202, and the first luminescent layer 203 emits first emitted light under electrical excitation;
  • the second illuminating The layer 204 is disposed between the first luminescent layer 203 and the second electrode layer 202, and the second luminescent layer 204 emits second emitted light under electrical excitation; the second emitted light is in the blue region
  • the peak wavelength is greater than the peak wavelength of the first emitted light in the blue region.
  • the first emitted light and the second emitted light may be monochromatic light or composite light.
  • monochromatic light blue light
  • the wavelength corresponding to the highest point of the Gaussian Peak on the luminescence spectrum is its peak wavelength
  • composite light it is first fitted with a Gaussian function to fit the peak (can be used)
  • the computer application can be, for example, Origin, divided into several Gaussian peaks, and the wavelength corresponding to the highest point of the Gaussian peak in the blue region is the peak wavelength of the first emitted light or the second emitted light in the blue region.
  • fitting the peak of the spectrum of the composite light by using a Gaussian function is only an example, and any other suitable method may be used to perform the fitting peak.
  • the first emitted light is generally a blue light having a shorter wavelength
  • the second emitted light is generally a blue light having a longer wavelength.
  • the above OLED device provided by the embodiment of the present invention has at least the following two advantages: 1) There are two wavelengths of blue light as the excitation light, and the substance of the color conversion layer will be more fully excited to obtain a better luminescent effect. It should be noted that the short-wavelength blue light energy is higher, and it is placed closer to the dichroic conversion layer to ensure the best excitation effect. 2)
  • the second luminescent layer 204 has a long lifetime, and the device provided by the embodiment of the present invention has a longer life than the structure of the prior art single luminescent layer.
  • the first emitted light may be a short-wavelength blue light
  • the second emitted light may be a white light
  • the corresponding second luminescent layer 204 may be a co-doped single layer that emits white light, or a multi-layer stacked structure that emits red, green, and blue light, respectively.
  • White light is a kind of composite light, which is generally composed of three colors of red, green and blue. It can be peak-fitted by computer program such as Origin to obtain three kinds of monochromatic light such as red, green and blue. The peak wavelength of the blue light is greater than the peak wavelength of the first emitted light.
  • the second luminescent layer 204 will also have a longer lifetime, thereby extending the useful life of the OLED device.
  • the thickness H 1 of the first luminescent layer 203 is greater than the thickness H 2 of the second luminescent layer 204. Since the wavelength of light emitted by the first light-emitting layer 203 is shorter and the energy is higher, the setting can ensure the excitation effect on the color conversion layer.
  • the second electrode layer 202 may include, for example, a first sub-pixel electrode 2021 and a second sub-pixel electrode 2022 .
  • the first color conversion layer 206 is disposed in a region opposite to the first sub-pixel electrode 2021.
  • the projection of the first color conversion layer 206 on the base substrate 200 is set as projection (a)
  • the projection of the first sub-pixel electrode 2021 on the base substrate 200 is set as projection (b)
  • the projection (a) ) coincides with the projection (b).
  • the first color conversion layer 206 includes two sub-color conversion layers disposed in the same layer, which are a first sub-color conversion layer 2061 and a second sub-color conversion layer 2062, respectively.
  • the first sub-pixel electrode 2021 further includes a third sub-pixel electrode 20211 and a fourth sub-pixel electrode 2012 .
  • the sub-pixel electrodes 20211, 20212, and 2022 are shown as being connected together for convenience of display, these sub-pixel electrodes may be electrically insulated from each other and may be driven independently.
  • the first sub-color conversion layer 2061 is opposite to the third sub-pixel electrode 20211, and the second sub-color conversion layer 2062 is opposite to the fourth sub-pixel electrode 20212. That is, the first sub-color conversion layer 2061 is disposed in a region opposite to the third sub-pixel electrode 20211, the second sub-color The conversion layer 2062 is disposed in a region opposing the fourth sub-pixel electrode 20212.
  • the first sub-color conversion layer 2061 is a red conversion layer, and the emitted light L1 is red light; the second sub-color conversion layer 2062 is a green conversion layer, and the emitted light L2 is green light.
  • the first sub-color conversion layer 2061 and the second sub-color conversion layer 2062 may also be conversion layers of other colors as long as they can emit light under the excitation of the first emitted light and/or the second emitted light.
  • the area opposite to the second sub-pixel electrode 2022 is not provided with any color conversion layer, and the corresponding area is blue light.
  • the OLED device provided by the embodiment of the present invention may further include a hole injection layer 209 and a hole transport layer 207 sequentially formed on the second electrode layer 202, and sequentially formed in the first The electron transport layer 208 and the electron injection layer 210 on the light emitting layer 203.
  • These layers are mainly set according to the types of the first electrode and the second electrode.
  • a hole injection layer and a hole transport layer may be disposed between the anode and the light emitting layer, and the electron transport layer and the electron injection layer may be disposed between the light emitting layer and the cathode.
  • the laminated structure shown in FIG. 2 is merely an example, and the order in which the above layers are arranged can be adjusted according to actual needs.
  • the first luminescent layer 203 emits blue light
  • the second luminescent layer 204 emits blue light or white light
  • the emitted light is irradiated to the red conversion layer 2061 and
  • red light and green light are respectively emitted, and a region opposite to the second sub-pixel electrode 2022 directly emits blue light.
  • FIG. 3 shows an OLED device according to still another embodiment of the present invention.
  • the structure shown in FIG. 3 is the same as the structure shown in FIG. 2, and will not be described again.
  • the OLED device includes a base substrate 300 and a second electrode layer 302 sequentially formed on the base substrate 300, a hole injection layer 309, a hole transport layer 307, a second light emitting layer 304, a first light emitting layer 303, and an electron transport Layer 308, electron injection layer 310, first electrode layer 302, and first color conversion layer 306.
  • the second luminescent layer 304 may further include two sub-layers 3041 and 3042.
  • the first luminescent layer 303 emits blue light
  • the sub-layer 3041 emits blue light
  • the sub-layer 3042 emits Fish white light.
  • the blue layer peak wavelength emitted by the sub-layer 3041 is greater than the peak wavelength of the blue light emitted by the first light-emitting layer 303.
  • the peak wavelength of the white light emitted by the sub-layer 3042 in the blue light region is greater than the peak wavelength at which the first light-emitting layer 303 emits blue light.
  • the second electrode layer 302 is a reflective electrode layer.
  • the second electrode layer 302 may include a first sub-pixel electrode 3021 and a second sub-pixel electrode 3022.
  • the first color conversion layer 306 is disposed in a region opposite to the first sub-pixel electrode 3021.
  • the projection of the first color conversion layer 306 on the base substrate 300 is set as projection (c)
  • the projection of the first sub-pixel electrode 3021 on the base substrate 300 is set as projection (d)
  • the projection (c) ) coincides with the projection (d).
  • the first color conversion layer 306 includes two sub-color conversion layers disposed in the same layer, which are a first sub-color conversion layer 3061 and a second sub-color conversion layer 3062, respectively.
  • the first sub-pixel electrode 3021 further includes a third sub-pixel electrode 30211 and a fourth sub-pixel electrode 3012 .
  • the first sub-color conversion layer 3061 is opposite to the third sub-pixel electrode 30211, and the second sub-color conversion layer 3062 is opposite to the fourth sub-pixel electrode 3012.
  • the first sub-color conversion layer 3061 is a red conversion layer, and the emitted light is red light; the second sub-color conversion layer 3062 is a green conversion layer, and the emitted light is green light.
  • the first sub-color conversion layer 3061 and the second sub-color conversion layer 3062 may also be conversion layers of other colors as long as they can emit light under the excitation of the first emitted light and/or the second emitted light.
  • the area opposite to the second sub-pixel electrode 3022 is not provided with any color conversion layer, and the corresponding area is blue light.
  • another embodiment of the present invention provides an OLED device including a base substrate 400 and a second electrode layer 402, a hole injection layer 409, a hole transport layer 407, which are sequentially formed on the base substrate 400, The second light emitting layer 404, the first light emitting layer 403, the electron transport layer 408, the electron injection layer 410, The first electrode layer 401 and the first color conversion layer 406.
  • the structure of the device is substantially the same as that of the device shown in FIG. 3, except that the positional relationship of the two sub-layers 4041 and 4042 in the second light-emitting layer 404 is opposite to that shown in FIG.
  • the white light-emitting sub-layer 4042 is disposed in close proximity to the first light-emitting layer 403.
  • another embodiment of the present invention provides an OLED device including a substrate substrate 500 and a first color conversion layer 506, a first electrode layer 501, and a hole injection layer 509 sequentially formed on the substrate substrate 500.
  • the device shown in Fig. 5 is a bottom emission type device including two light emitting layers.
  • another embodiment of the present invention provides an OLED device including a substrate substrate 600 and a first color conversion layer 606, a first electrode layer 601, and a hole injection layer 609 which are sequentially formed on the substrate substrate 600.
  • the second luminescent layer 604 further includes two sub-layers 6041 and 6042.
  • the sub-layer 6041 emits white light
  • the sub-layer 6042 emits blue light
  • the sub-layer 6041 emits blue light
  • the sub-layer 6042 emits white light.
  • the device shown in FIG. 6 is a bottom emission type device including two light emitting layers and the second light emitting layer including two sublayers.
  • Both the first luminescent layer 703 and the third luminescent layer 705 emit short-wavelength blue light, and the same luminescent material may be used for both, or different luminescent materials may be used. Since the first luminescent layer 703 is closer to the first color conversion layer 706, the first emitted light mainly excites the luminescent substance in the first color conversion layer 706. Similarly, since the third luminescent layer 705 is closer to the second color conversion layer 711, the third emitted light mainly excites the luminescent substance in the second color conversion layer 711.
  • the second luminescent layer 704 can emit blue light or white light, and only needs to ensure that the peak wavelength of the emitted light of the second luminescent layer 704 in the blue region is greater than the peak wavelength of the first luminescent layer 703 in the blue region, and is greater than the second luminescent layer.
  • the peak wavelength of 704 in the blue region is sufficient. Since the peak wavelength of the emitted light of the second light-emitting layer 704 is longer in the blue light region, the second light-emitting layer will have a longer light-emitting lifetime, whereby the service life of the OLED device is prolonged.
  • the luminescent layer material in the embodiment of the present invention may be selected according to the color of the emitted light.
  • the organic light-emitting material of the embodiment of the present invention includes a fluorescent light-emitting material or a phosphorescent light-emitting material, and a doping system is generally used, that is, a dopant material is mixed into the host light-emitting material to obtain a usable light-emitting material.
  • the host luminescent material may be a metal complex material, a ruthenium derivative, an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, or a triarylamine polymer; Specifically, for example, bis(2-methyl-8-hydroxyquinoline-N1,O8)-(1,1'-biphenyl-4-hydroxy)aluminum (Balq), 9,10-di-(2-naphthalene) (ADN), TAZ, 4,4'-bis(9-carbazole)biphenyl (CBP), MCP, 4,4',4"-tri-9-oxazolyl triphenylamine (TCTA) or N,N-bis( ⁇ -naphthyl-phenyl)-4,4-biphenyldiamine (NPB), etc.
  • TCTA 4,4',4"-tri-9-oxazolyl triphenylamine
  • NPB N,N-bis( ⁇ -na
  • Fluorescent materials or doping materials include, for example, coumarin dyes (coumarin 6, C-545T), Quinacridone (DMQA), or 4-(dinitritemethylene)-2-methyl-6-(4-dimethylamino-styrene)-4H-pyran (DCM) series, etc.
  • the material or dopant material includes, for example, metal complex luminescent materials based on Ir, Pt, Ru, Cu, etc., such as: FIRpic, Fir6, FirN4, FIRtaz, Ir(ppy) 3 , Ir(ppy) 2 (acac), PtOEP, ( Btp) 2 Iracac, Ir(piq) 2 (acac) or (MDQ) 2 Iracac, etc.
  • the luminescent material may also include a dual host and doping.
  • the hole injecting layer in the embodiment of the present invention may be, for example, a triphenylamine compound or an organic layer having a P-type doping or a polymer such as tris-[4-(5-phenyl-2-thienyl).
  • the hole transport layer in the embodiment of the present invention can be, for example, an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, a triarylamine polymer, and a carbazole polymer.
  • an aromatic diamine compound a triphenylamine compound
  • an aromatic triamine compound a biphenyldiamine derivative
  • a triarylamine polymer a carbazole polymer.
  • carbazole polymer e.g., NPB, TPD, TCTA and polyvinyl carbazole or their monomers.
  • the electron transport layer in the embodiment of the present invention may be, for example, a phenanthroline derivative, an oxazole derivative, a thiazole derivative, an imidazole derivative, a metal complex, or a hydrazine derivative.
  • the electron injecting layer in the embodiment of the present invention may be, for example, an alkali metal oxide, an alkali metal fluoride or the like.
  • the alkali metal oxide includes lithium oxide (Li 2 O), lithium boron oxide (LiBO), potassium oxychloride (K 2 SiO 3 ), cesium carbonate (Cs 2 CO 3 ), and the like;
  • alkali metal fluoride includes lithium fluoride (LiF) ), sodium fluoride (NaF), and the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光器件,包括:衬底基板(200)、层叠于衬底基板(200)上的第一电极层(201)、第二电极层(202)、第一色转换层(206)、第一发光层(203)和第二发光层(204),第一发光层(203)设置在第一电极层(201)和第二电极层(202)之间,第一发光层(203)在电激发下发射出第一发射光;第一电极层(201)为透明电极层,第一色转换层(206)设置在第一电极层(201)的远离第二电极层(202)的一侧;第二发光层(204)设置在第一发光层(203)和第二电极层(202)之间,第二发光层(204)在电激发下发射出第二发射光;第二发射光在蓝光区的峰值波长大于第一发射光在蓝光区的峰值波长。

Description

有机发光器件 技术领域
本发明的实施例涉及有机发光器件。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)由于具有自发光、高亮度、广视角、反应快速以及红、绿、蓝全彩组件皆可制作等优点,被视为次世代显示器的明星产品。目前OLED实用化的阶段已经来临,市场上已有汽车音响与移动电话使用OLED作为显示面板,可以预期今后OLED的应用范围将拓展至移动产品、笔记本电脑、监视器、壁挂电视等薄型显示器市场。而全彩化的发展将进一步提高OLED产品竞争力和市场占有率。
目前已有的OLED全彩化技术包括像素并置法、彩色滤光片法、微共振腔调色法、多层堆叠法以及色转换法等。其中色转换法是利用有机发光材料所发出的光作为激发光,再次激发色转换材料而发出红、绿、蓝等颜色的光,从而达到全彩化的目的。由于红绿蓝三颜色中以蓝色的光能量最高,因此,色转换法技术多以蓝色有机发光材料作为主要激发光源主体,如图1所示。
发明内容
本发明的实施例提供一种有机发光器件,包括:衬底基板、层叠于衬底基板上的第一电极层、第二电极层、第一色转换层、第一发光层和第二发光层,其中,所述第一发光层设置在所述第一电极层和所述第二电极层之间,所述第一发光层在电激发下发射出第一发射光;所述第一电极层为透明电极层,所述第一色转换层设置在所述第一电极层的远离所述第二电极层的一侧;所述第二发光层设置在所述第一发光层和所述第二电极层之间,所述第二发光层在电激发下发射出第二发射光;所述第二发射光在蓝光区的峰值波长大于所述第一发射光在蓝光区的峰值波长。
在所述有机发光器件中,例如,所述第一发射光和所述第二发射光均为蓝光。
在所述有机发光器件中,例如,所述第一发射光为蓝光,所述第二发射光为白光。
在所述有机发光器件中,例如,所述第一发射光为蓝光,所述第二发光层包括两个亚层,其中一个亚层发射蓝光,另一个亚层发射白光。
在所述有机发光器件中,例如,所述第一发光层的厚度大于所述第二发光层的厚度。
在所述有机发光器件中,例如,所述有机发光器件还包括第三发光层和第二色转换层,其中,所述第二电极层为透明电极层,所述第二色转换层设置在所述第二电极层的远离所述第一电极层的一侧;所述第三发光层设置在所述第二发光层和所述第二电极层之间,所述第三发光层在电激发下发射出第三发射光,所述第二发射光在蓝光区的峰值波长大于所述第三发射光在蓝光区的峰值波长。
在所述有机发光器件中,例如,所述第三发射光为蓝光,所述第三发射光在蓝光区的峰值波长大致等于所述第一发射光在蓝光区的峰值波长。
在所述有机发光器件中,例如,所述第一发射光在蓝光区的峰值波长为420nm-470nm,所述第二发射光在蓝光区的峰值波长为450nm-500nm,所述第三发射光在蓝光区的峰值波长为420nm-470nm。
在所述有机发光器件中,例如,第二电极层为反射电极层,且第二电极层设置在靠近基板的一侧,第一电极层设置在远离基板的一侧。
在所述有机发光器件中,例如,第二电极层为反射电极层,且第一电极层设置在靠近基板的一侧,第二电极层设置在远离基板的一侧。
在所述有机发光器件中,例如,所述第一电极层和所述第二电极层之一包括同层设置的第一子像素电极和第二子像素电极,所述第一色转换层设置在与所述第一子像素电极相对的区域中。
在所述有机发光器件中,例如,所述第一子像素电极进一步包括同层设置的第三子像素电极和第四子像素电极,所述第一色转换层包括同层设置的第一子色转换层和第二子色转换层,所述第一子色转换层与所述第三子像素电极相对,所述第二子色转换层与所述第四子像素电极相对。
在所述有机发光器件中,例如,所述第一子色转换层为红色转换层,所述第二子色转换层为绿色转换层。
在所述有机发光器件中,例如,所述第一电极层和所述第二电极层之一包括同层设置的第一子像素电极和第二子像素电极,所述第一色转换层和所述第二色转换层设置在与所述第一子像素电极相对的区域中。
在所述有机发光器件中,例如,所述第一子像素电极进一步包括同层设置的第三子像素电极和第四子像素电极,所述第一色转换层和/或所述第二色转换层包括同层设置的第一子色转换层和第二子色转换层,所述第一子色转换层与所述第三子像素电极相对,所述第二子色转换层与所述第四子像素电极相对。
在所述有机发光器件中,例如,所述第一子色转换层为红色转换层,所述第二子色转换层为绿色转换层。
在所述有机发光器件中,例如,所述有机发光器件还包括设置于第一电极层和第二电极层之间的至少一层,该至少一层选自空穴注入层、空穴传输层、空穴阻挡层、电子传输层、电子注入层和电子阻挡层。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为现有技术采用色转换法实现全色彩显示的一种OLED结构示意图;
图2为本发明一实施例提供的具有两个发光层的顶发射型OLED结构示意图;
图3为本发明一实施例提供的具有两个发光层、且第二发光层具有两个亚层的顶发射型OLED结构示意图;
图4为本发明一实施例提供的具有两个发光层、且第二发光层具有两个亚层的顶发射型OLED结构示意图;
图5为本发明一实施例提供的具有两个发光层的底发射型OLED结构示意图;
图6为本发明一实施例提供的具有两个发光层、且第二发光层具有两个亚层的底发射型OLED结构示意图;
图7为本发明一实施例提供的具有三个发光层的双面发射型OLED结构示意图。
附图标记:
100、200、300-衬底基板;101、201-第一电极层;1011-第一子像素电极;1012-第二子像素电极;1013-第三子像素电极;102、202-第二电极层;103-蓝光发光层;106-色转换层;1061-红色转换层;1062-绿色转换层;107、207-空穴传输层;108、208-电子传输层;206-第一色转换层;2061-第一子色转换层;2062-第二子色转换层;203-第一发光层;204-第二发光层;2021-第一子像素电极;20211-第三子像素电极;20212-第四子像素电极;2022-第二子像素电极;209-空穴注入层;210-电子注入层。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,本公开所使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
图1示出了现有技术采用色转换法实现全色彩显示的一种OLED结构。在衬底基板100上设置第一电极层101,所述第一电极层101由同层设置的第一子像素电极1011、第二子像素电极1012和第三子像素电极1013组成。再依次在所述第一电极层101上设置空穴传输层107、蓝光发光层103、电子传输层108、第二电极层102、色转换层106。所述色转换层106包括同层设 置的红色转换层1061和绿色转换层1062。第一电极层101为反射电极,第二电极层102为透明电极,从而形成顶发射型OLED器件。当在该器件上施加适当的电压之后,空穴和电子在蓝色发光层103复合,发射出蓝光。该蓝光中的一部分激发红色转换层1061和绿色转换层1062中的光转换物质,分别转换为红光(R)和绿光(G)发射出来,其余部分的蓝光(B)则直接从器件中射出,从而实现全彩色显示。
然而,上述OLED结构存在的一个问题是,在各种有机发光材料中,蓝光发光材料的寿命最短。例如,蓝光发光材料的使用寿命明显短于红光发光材料或绿色发光材料。这限制了采用上述结构OLED的使用寿命。
为解决上述问题,本发明的实施例对现有技术的上述方案进行了改进。如图2所示,本发明的实施例提供了一种有机发光器件,包括:衬底基板200、第一电极层201、第二电极层202、第一色转换层206、第一发光层203和第二发光层204,其中,所述第一电极层201为透明电极层,所述第一色转换层206设置在所述第一电极层201远离所述第二电极层202的一侧;所述第一发光层203设置在所述第一电极层201和所述第二电极层202之间,所述第一发光层203在电激发下发射出第一发射光;所述第二发光层204设置在所述第一发光层203和所述第二电极层202之间,所述第二发光层204在电激发下发射出第二发射光;所述第二发射光在蓝光区的峰值波长大于所述第一发射光在蓝光区的峰值波长。
需要注意的是,上述第一发射光、第二发射光有可能是单色光,也有可能是复合光。对于单色光(蓝光),则发光光谱上高斯峰(Gaussian Peak)的最高点对应的波长即为其峰值波长;对于复合光,则需先用高斯函数对其进行拟合分峰(可以采用的计算机应用程序可以举出例如Origin),分为若干个高斯峰,位于蓝光区的高斯峰最高点对应的波长,即为第一发射光或第二发射光在蓝光区的峰值波长。另外,需要说明的是,利用高斯函数对复合光的光谱进行拟合分峰仅仅是一个示例,也可以采用其他任何合适的方法进行拟合分峰。
上述第一发射光一般是波长较短的蓝光,而第二发射光一般是波长较长的蓝光。对于蓝光发光物质而言,其发射的光波长越长,寿命也越长。因此,本发明实施例提供的上述OLED器件至少具有下面两方面的优点:1)由于 有两种波长的蓝光作为激发光,色转换层的物质将被更加充分的激发,从而获得更好的发光效果。需要说明的是,短波长的蓝光能量较高,将其设置在离色转换层较近的位置,保证获得最好的激发效果。2)第二发光层204具有较长的寿命,与现有技术单层发光层的结构相比,本发明实施例提供的器件寿命较长。
可选的,上述第一发射光可以是波长较短的蓝光,而第二发射光可以是白光。对应第二发光层204可以是包含能发射白光的共掺杂单层,也可以是分别发射红、绿、蓝光的多层堆叠结构。白光是一种复合光,一般由红、绿、蓝三种颜色的光复合而成,可以使用计算机程序如Origin对其进行分峰拟合,得到例如红、绿、蓝三种单色光,其中蓝色光的峰值波长大于第一发射光的峰值波长。第二发光层204同样将具有较长的寿命,从而延长OLED器件的使用寿命。
可选的,如图2所示,第一发光层203的厚度H1大于第二发光层204的厚度H2。由于第一发光层203所发射的光波长更短,能量更高,如此设定可以确保对色转换层的激发效果。
可选的,如图2所示,第二电极层202例如可以包括第一子像素电极2021和第二子像素电极2022。
可选的,如图2所示,第一色转换层206设置在与上述第一子像素电极2021相对的区域中。或者说,第一色转换层206在衬底基板200上的投影设为投影(a),第一子像素电极2021在衬底基板200上的投影设为投影(b),所述投影(a)与所述投影(b)重合。
可选的,如图2所示,第一色转换层206包括两个同层设置的子色转换层,分别为第一子色转换层2061和第二子色转换层2062。
可选的,如图2所示,所述第一子像素电极2021进一步包括第三子像素电极20211和第四子像素电极20212。虽然在图中为了显示的方便将子像素电极20211、20212和2022示出为连接在一起,然而,这些子像素电极可以是彼此电绝缘的且可以被独立地驱动。
可选的,所述第一子色转换层2061与所述第三子像素电极20211相对,所述第二子色转换层2062与所述第四子像素电极20212相对。也就是说,第一子色转换层2061设置在与第三子像素电极20211相对的区域中,第二子色 转换层2062设置在与所述第四子像素电极20212相对的区域中。
可选的,所述第一子色转换层2061为红色转换层,对应其发射光L1为红光;所述第二子色转换层2062为绿色转换层,对应其发射光L2为绿光。当然所述第一子色转换层2061和所述第二子色转换层2062还可以是其他颜色的转换层,只要其在第一发射光和/或第二发射光的激发下可以发光就行。与所述第二子像素电极2022相对的区域则不设置任何色转换层,对应区域射出的则为蓝光。设定第一发光层203厚度H1大于第二发光层204的厚度H2,可以确保当第二发光层204发射白光的时候,不设置任何色转换层的区域的出射光为蓝光。
可选的,如图2所示,本发明实施例提供的OLED器件还可以进一步包括依次形成在第二电极层202上的空穴注入层209和空穴传输层207,以及依次形成在第一发光层203上的电子传输层208和电子注入层210。这些层主要根据第一电极和第二电极的类型来设置的。空穴注入层和空穴传输层可以设置在阳极和发光层之间,电子传输层和电子注入层可以设置在发光层和阴极之间。图2所示的层叠结构仅仅为一个示例,上述层的设置顺序可以根据实际需要而调整。
在第一电极层201和第二电极层202之间施加一定电压,则第一发光层203发射出蓝光、第二发光层204发射出蓝光或白光,对应上述发射光照射到红色转换层2061和绿色转换层2062上,分别发射出红光和绿光,与所述第二子像素电极2022相对的区域则直接发射出蓝光,通过调节像素电极20211、20212、2022上的电压,便可以控制不同颜色光的强度,从而实现全彩色显示。
如图3所示为本发明的又一实施方式提供的OLED器件。图3所示的结构与图2所示结构相同的地方将不再赘述,下同。该OLED器件包括衬底基板300和依次形成于衬底基板300上的第二电极层302、空穴注入层309、空穴传输层307、第二发光层304、第一发光层303、电子传输层308、电子注入层310、第一电极层302、第一色转换层306。
可选的,如图3所示,第二发光层304可以进一步包括两个亚层3041和3042。
可选的,第一发光层303发射蓝光,亚层3041发射蓝光、亚层3042发 射白光。亚层3041发射的蓝光峰值波长大于第一发光层303发射蓝光的峰值波长。亚层3042发射的白光在蓝光区的峰值波长大于第一发光层303发射蓝光的峰值波长。
可选的,如图3所示,第二电极层302为反射电极层。第二电极层302可以包括第一子像素电极3021和第二子像素电极3022。
可选的,如图3所示,第一色转换层306设置在与上述第一子像素电极3021相对的区域中。或者说,第一色转换层306在衬底基板300上的投影设为投影(c),第一子像素电极3021在衬底基板300上的投影设为投影(d),所述投影(c)与所述投影(d)重合。
可选的,如图3所示,第一色转换层306包括两个同层设置的子色转换层,分别为第一子色转换层3061和第二子色转换层3062。
可选的,如图3所示,所述第一子像素电极3021进一步包括第三子像素电极30211和第四子像素电极30212。
可选的,所述第一子色转换层3061与所述第三子像素电极30211相对,所述第二子色转换层3062与所述第四子像素电极30212相对。
可选的,所述第一子色转换层3061为红色转换层,对应其发射光为红光;所述第二子色转换层3062为绿色转换层,对应其发射光为绿光。当然所述第一子色转换层3061和所述第二子色转换层3062还可以是其他颜色的转换层,只要其在第一发射光和/或第二发射光的激发下可以发光就行。与所述第二子像素电极3022相对的区域则不设置任何色转换层,对应区域射出的则为蓝光。
在第一电极层301和第二电极层302之间施加一定电压,则第一发光层303发射出蓝光、第二发光层304发射出蓝光或浅蓝光,对应上述发射光照射到红色转换层3061和绿色转换层3062上,分别发射出红光和绿光,与所述第二子像素电极3022相对的区域则直接发射出蓝光,通过调节像素电极30211、30212、3022上的电压,便可以控制不同颜色光的强度,从而实现全彩色显示。
如图4所示,本发明的又一实施方式提供的OLED器件包括衬底基板400和依次形成于衬底基板400上的第二电极层402、空穴注入层409、空穴传输层407、第二发光层404、第一发光层403、电子传输层408、电子注入层410、 第一电极层401、第一色转换层406。该器件结构基本与图3所示的器件结构相同,区别在于,第二发光层404中两个亚层4041、4042的位置关系与图3所示的结构相反。在图4所示的结构中,发白光的亚层4042紧邻第一发光层403设置。
如图5所示,本发明的又一实施方式提供的OLED器件包括衬底基板500和依次形成于衬底基板500上的第一色转换层506、第一电极层501、空穴注入层509、空穴传输层507、第一发光层503、第二发光层504、电子传输层508、电子注入层510、第二电极层502。图5所示的器件为包括两个发光层的底发射型器件。
如图6所示,本发明的又一实施方式提供的OLED器件包括衬底基板600和依次形成于衬底基板600上的第一色转换层606、第一电极层601、空穴注入层609、空穴传输层607、第一发光层603、第二发光层604、电子传输层608、电子注入层610、第二电极层602。其中第二发光层604进一步包括两个亚层6041和6042。亚层6041发射白光,亚层6042发射蓝光,或者亚层6041发射蓝光,亚层6042发射白光。图6所示的器件为包括两个发光层、且第二发光层包括两个亚层的底发射型器件。
如图7所示,本发明的又一实施方式提供的OLED器件包括衬底基板700和依次形成于衬底基板700上的第一色转换层706、第一电极层701、空穴注入层709、空穴传输层707、第一发光层703、第二发光层704、第三发光层705、电子传输层708、电子注入层710、第二电极层702、第二色转换层711。图7所示的器件为包括三个发光层的双面发射型器件。第一发光层703和第三发光层705均发射短波长蓝光,两者可采用相同的发光物质,也可以采用不同的发光物质。由于第一发光层703较接近第一色转换层706,第一发射光主要激发第一色转换层706中的发光物质。同理,由于第三发光层705较接近第二色转换层711,第三发射光主要激发第二色转换层711中的发光物质。第二发光层704可以发射蓝光,也可以发射白光,只需要保证第二发光层704的发射光在蓝光区的峰值波长大于第一发光层703在蓝光区的峰值波长,且大于第二发光层704在蓝光区的峰值波长,即可。由于第二发光层704的发射光在蓝光区的峰值波长较长,第二发光层将具有较长的发光寿命,由此OLED器件的使用寿命得到了延长。
本发明实施例中的发光层材料可以根据其发射光颜色的不同进行选择。另外,根据需要,本发明实施例的有机发光材料包括荧光发光材料或磷光发光材料,目前通常采用掺杂体系,即在主体发光材料中混入掺杂材料得到可用的发光材料。例如,主体发光材料可以采用金属配合物材料、蒽的衍生物、芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、或三芳胺聚合物等;更具体地,例如双(2-甲基-8-羟基喹啉-N1,O8)-(1,1'-联苯-4-羟基)铝(Balq)、9,10-二-(2-萘基)蒽(ADN)、TAZ、4,4'-二(9-咔唑)联苯(CBP)、MCP、4,4',4”-三-9-咔唑基三苯胺(TCTA)或N,N-双(α-萘基-苯基)-4,4-联苯二胺(NPB)等。荧光发光材料或掺杂材料例如包括香豆素染料(coumarin 6、C-545T)、喹吖啶酮(DMQA)、或4-(二腈亚甲叉)-2-甲基-6-(4-二甲胺基-苯乙烯)-4H-吡喃(DCM)系列等。磷光发光材料或掺杂材料例如包括基于Ir、Pt、Ru、Cu等金属配合物发光材料,比如:FIrpic、Fir6、FirN4、FIrtaz、Ir(ppy)3、Ir(ppy)2(acac)、PtOEP、(btp)2Iracac、Ir(piq)2(acac)或(MDQ)2Iracac等。另外,发光材料还可以包括双主体且进行掺杂的情形。
本发明实施例中的空穴注入层例如可采用三苯胺化合物或者是有P型掺杂的有机层或者是聚合物制成,如三-[4-(5-苯基-2-噻吩基)苯]胺、4,4’,4”-三[2-萘基(苯基)氨基]三苯胺(2-TNATA)或者4,4’,4”-三-(3-甲基苯基苯胺基)三苯胺(m-MTDATA)、酞箐铜(CuPc)、Pedot:Pss、TPD或F4TCNQ。
本发明实施例中的空穴传输层例如可采用芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、三芳胺聚合物以及咔唑类聚合物制成。如NPB、TPD、TCTA以及聚乙烯咔唑或者其单体。
本发明实施例中的电子传输层例如可采用邻菲罗林衍生物,噁唑衍生物,噻唑衍生物,咪唑衍生物,金属配合物,蒽的衍生物。具体示例包括:8-羟基喹啉铝(Alq3)、8-羟基喹啉锂(Liq)、8-羟基喹啉镓、双[2-(2-羟基苯基-1)-吡啶]铍、2-(4-二苯基)-5-(4-叔丁苯基)-1,3,4-噁二唑(PBD)、1,3,5-三(N-苯基-2-苯并咪唑-2)苯(TPBI)、BCP、Bphen等。
本发明实施例中的电子注入层例如可以采用碱金属氧化物、碱金属氟化物等。碱金属氧化物包括氧化锂(Li2O)、氧化锂硼(LiBO)、硅氧化钾(K2SiO3)、碳酸铯(Cs2CO3)等;碱金属氟化物包括氟化锂(LiF)、氟化钠(NaF)等。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。
本申请要求于2015年7月15日递交的中国专利申请第201510415378.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。

Claims (18)

  1. 一种有机发光器件,包括:
    衬底基板、层叠于衬底基板上的第一电极层、第二电极层、第一色转换层、第一发光层和第二发光层,其中,
    所述第一发光层设置在所述第一电极层和所述第二电极层之间,所述第一发光层在电激发下发射出第一发射光;
    所述第一电极层为透明电极层,所述第一色转换层设置在所述第一电极层的远离所述第二电极层的一侧;
    所述第二发光层设置在所述第一发光层和所述第二电极层之间,所述第二发光层在电激发下发射出第二发射光;
    所述第二发射光在蓝光区的峰值波长大于所述第一发射光在蓝光区的峰值波长。
  2. 根据权利要求1所述的有机发光器件,其中,所述第一发射光和所述第二发射光均为蓝光。
  3. 根据权利要求1所述的有机发光器件,其中,所述第一发射光为蓝光,所述第二发射光为白光。
  4. 根据权利要求1所述的有机发光器件,其中,所述第一发射光为蓝光,所述第二发光层包括两个亚层,其中一个亚层发射蓝光,另一个亚层发射白光。
  5. 根据权利要求1所述的有机发光器件,其中,所述第一发光层的厚度大于所述第二发光层的厚度。
  6. 根据权利要求1所述的有机发光器件,还包括第三发光层和第二色转换层,其中,
    所述第二电极层为透明电极层,所述第二色转换层设置在所述第二电极层的远离所述第一电极层的一侧;
    所述第三发光层设置在所述第二发光层和所述第二电极层之间,所述第三发光层在电激发下发射出第三发射光,所述第二发射光在蓝光区的峰值波长大于所述第三发射光在蓝光区的峰值波长。
  7. 根据权利要求6所述的有机发光器件,其中,所述第三发射光为蓝光, 所述第三发射光在蓝光区的峰值波长与所述第一发射光在蓝光区的峰值波长大致相等。
  8. 根据权利要求1-4任一项所述的有机发光器件,其中,所述第一发射光在蓝光区的峰值波长为420nm-470nm,所述第二发射光在蓝光区的峰值波长为450nm-500nm。
  9. 根据权利要求6所述的有机发光器件,其中,所述第一发射光在蓝光区的峰值波长为420nm-470nm,所述第二发射光在蓝光区的峰值波长为450nm-500nm,所述第三发射光在蓝光区的峰值波长为420nm-470nm。
  10. 根据权利要求1-4的任一项所述的有机发光器件,其中,第二电极层为反射电极层,且第二电极层设置在靠近基板的一侧,第一电极层设置在远离基板的一侧。
  11. 根据权利要求1-4的任一项所述的有机发光器件,其中,第二电极层为反射电极层,且第一电极层设置在靠近基板的一侧,第二电极层设置在远离基板的一侧。
  12. 根据权利要求1-4的任一项所述的有机发光器件,其中,所述第一电极层和所述第二电极层之一包括同层设置的第一子像素电极和第二子像素电极,所述第一色转换层设置在与所述第一子像素电极相对的区域中。
  13. 根据权利要求12所述的有机发光器件,其中,所述第一子像素电极进一步包括同层设置的第三子像素电极和第四子像素电极,所述第一色转换层包括同层设置的第一子色转换层和第二子色转换层,所述第一子色转换层与所述第三子像素电极相对,所述第二子色转换层与所述第四子像素电极相对。
  14. 根据权利要求13所述的有机发光器件,其中,所述第一子色转换层为红色转换层,所述第二子色转换层为绿色转换层。
  15. 根据权利要求6所述的有机发光器件,其中,所述第一电极层和所述第二电极层之一包括同层设置的第一子像素电极和第二子像素电极,所述第一色转换层和所述第二色转换层设置在与所述第一子像素电极相对的区域中。
  16. 根据权利要求15所述的有机发光器件,其中,所述第一子像素电极进一步包括同层设置的第三子像素电极和第四子像素电极,所述第一色转换 层和/或所述第二色转换层包括同层设置的第一子色转换层和第二子色转换层,所述第一子色转换层与所述第三子像素电极相对,所述第二子色转换层与所述第四子像素电极相对。
  17. 根据权利要求16所述的有机发光器件,其中,所述第一子色转换层为红色转换层,所述第二子色转换层为绿色转换层。
  18. 根据权利要求1-7的任一项所述的有机发光器件,还包括设置于第一电极层和第二电极层之间的至少一层,该至少一层选自空穴注入层、空穴传输层、空穴阻挡层、电子传输层、电子注入层和电子阻挡层。
PCT/CN2016/071471 2015-07-15 2016-01-20 有机发光器件 WO2017008487A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/117,563 US10181583B2 (en) 2015-07-15 2016-01-20 Organic light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510415378.2A CN104979486B (zh) 2015-07-15 2015-07-15 有机发光器件
CN201510415378.2 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017008487A1 true WO2017008487A1 (zh) 2017-01-19

Family

ID=54275795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/071471 WO2017008487A1 (zh) 2015-07-15 2016-01-20 有机发光器件

Country Status (3)

Country Link
US (1) US10181583B2 (zh)
CN (1) CN104979486B (zh)
WO (1) WO2017008487A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979486B (zh) * 2015-07-15 2017-12-08 京东方科技集团股份有限公司 有机发光器件
CN106920811B (zh) * 2015-12-25 2019-07-02 昆山工研院新型平板显示技术中心有限公司 一种有机电致发光显示装置
CN106206968B (zh) * 2016-08-17 2018-01-26 京东方科技集团股份有限公司 Oled显示器件的像素结构及其制备方法、oled显示器件
CN107658331B (zh) * 2017-10-17 2021-04-13 京东方科技集团股份有限公司 一种显示面板及显示装置
US10157897B1 (en) * 2018-01-02 2018-12-18 Intel Corporation Hybrid LED and color conversion film displays
CN108573998B (zh) * 2018-04-19 2021-01-26 京东方科技集团股份有限公司 显示面板及制造方法、显示装置
CN110828675B (zh) * 2018-08-10 2022-02-22 咸阳彩虹光电科技有限公司 一种自发光显示结构及显示装置
US10600846B1 (en) * 2018-09-13 2020-03-24 Innolux Corporation Electronic device
CN111384107B (zh) * 2018-12-27 2023-03-10 乐金显示有限公司 显示装置
KR102668520B1 (ko) * 2018-12-31 2024-05-22 엘지디스플레이 주식회사 투명 표시장치
CN110085638B (zh) * 2019-04-18 2021-08-06 深圳市华星光电半导体显示技术有限公司 双面白光有机发光二极管显示装置及其制造方法
CN110120404B (zh) * 2019-04-18 2021-04-27 深圳市华星光电半导体显示技术有限公司 双面白光有机发光二极管显示装置及其制造方法
CN110137225A (zh) * 2019-05-05 2019-08-16 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制备方法
US20200373360A1 (en) * 2019-05-23 2020-11-26 Universal Display Corporation Oled display panel with unpatterned emissive stack
KR102500996B1 (ko) * 2019-07-12 2023-02-20 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 표시 패널
CN110531549B (zh) * 2019-08-30 2022-04-12 武汉天马微电子有限公司 双面显示面板和显示装置
CN112530991A (zh) * 2019-09-18 2021-03-19 陕西坤同半导体科技有限公司 Oled器件及oled显示装置
CN113555514B (zh) * 2021-07-16 2023-11-21 京东方科技集团股份有限公司 电致发光器件及其制备方法、显示面板及显示装置
CN114899291B (zh) * 2022-07-12 2022-10-25 诺视科技(苏州)有限公司 用于半导体器件的像素单元及其制作方法、微显示屏
CN114899286B (zh) * 2022-07-12 2022-10-25 诺视科技(苏州)有限公司 一种像素级分立器件及其制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077954A (zh) * 2011-09-29 2013-05-01 佳能株式会社 显示单元
US20130320837A1 (en) * 2012-05-30 2013-12-05 Universal Display Corporation Four Component Phosphorescent OLED For Cool White Lighting Application
CN104752623A (zh) * 2013-12-31 2015-07-01 乐金显示有限公司 有机电致发光装置和有机电致发光显示装置
CN104979486A (zh) * 2015-07-15 2015-10-14 京东方科技集团股份有限公司 有机发光器件

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050072424A (ko) 2002-10-01 2005-07-11 코닌클리케 필립스 일렉트로닉스 엔.브이. 광 출력이 향상된 전기발광 디스플레이
CN100364134C (zh) * 2003-11-04 2008-01-23 友达光电股份有限公司 有机电激发光元件及其制造方法
KR100670383B1 (ko) 2006-01-18 2007-01-16 삼성에스디아이 주식회사 유기 발광 소자 및 이를 구비한 평판 표시 장치
KR20090045681A (ko) * 2007-11-02 2009-05-08 삼성전자주식회사 유기발광소자 및 그 동작방법
CN203085547U (zh) * 2012-12-14 2013-07-24 京东方科技集团股份有限公司 一种可变色发光元件、像素结构及显示装置
TWI527211B (zh) * 2012-12-28 2016-03-21 Lg顯示器股份有限公司 有機發光顯示裝置及其製造方法
TWI552332B (zh) * 2013-05-30 2016-10-01 群創光電股份有限公司 有機發光裝置、以及包含其之影像顯示系統
CN103474451A (zh) * 2013-09-12 2013-12-25 深圳市华星光电技术有限公司 彩色oled器件及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103077954A (zh) * 2011-09-29 2013-05-01 佳能株式会社 显示单元
US20130320837A1 (en) * 2012-05-30 2013-12-05 Universal Display Corporation Four Component Phosphorescent OLED For Cool White Lighting Application
CN104752623A (zh) * 2013-12-31 2015-07-01 乐金显示有限公司 有机电致发光装置和有机电致发光显示装置
CN104979486A (zh) * 2015-07-15 2015-10-14 京东方科技集团股份有限公司 有机发光器件

Also Published As

Publication number Publication date
US20170162829A1 (en) 2017-06-08
US10181583B2 (en) 2019-01-15
CN104979486B (zh) 2017-12-08
CN104979486A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
WO2017008487A1 (zh) 有机发光器件
CN107680987B (zh) 有机发光器件
EP3499598B1 (en) Organic light-emitting diode and preparation method thereof, and display device
CN106898630B (zh) 有机发光显示装置
US9130186B2 (en) Organic light emitting diode
US9252379B2 (en) Organic light emitting device
KR102362839B1 (ko) 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
WO2014185075A1 (ja) 有機エレクトロルミネッセンス素子
WO2016015422A1 (zh) 有机发光二极管阵列基板及显示装置
KR102149685B1 (ko) 유기 발광 소자
KR20150062759A (ko) 유기 발광 장치
CN102694127A (zh) 有机电场发光元件、显示装置和照明装置
US20160351809A1 (en) White-light oled display panel and the serially-connected white-light oled thereof
WO2016173135A1 (zh) 有机发光二极管器件及其制备方法
JP2011216861A (ja) 有機発光ダイオード装置
KR102353804B1 (ko) 유기 발광 소자
CN104253146A (zh) 有机发光二极管阵列基板及显示装置
WO2014185032A1 (ja) 有機エレクトロルミネッセンス素子
CN103636289A (zh) 有机电致发光元件
WO2019064333A1 (ja) 有機el表示装置およびその製造方法並びにその発光方法
KR20160063753A (ko) 유기 발광 소자
CN107068882A (zh) 一种白色有机电致发光器件
KR101941084B1 (ko) 유기전계발광소자
TWI432086B (zh) 具高演色性之有機發光二極體裝置
KR20170079487A (ko) 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15117563

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16823636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16823636

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16823636

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.08.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16823636

Country of ref document: EP

Kind code of ref document: A1