WO2017008416A1 - 结晶塔和结晶方法 - Google Patents

结晶塔和结晶方法 Download PDF

Info

Publication number
WO2017008416A1
WO2017008416A1 PCT/CN2015/094102 CN2015094102W WO2017008416A1 WO 2017008416 A1 WO2017008416 A1 WO 2017008416A1 CN 2015094102 W CN2015094102 W CN 2015094102W WO 2017008416 A1 WO2017008416 A1 WO 2017008416A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystallization
gas
tray
column according
crystallization column
Prior art date
Application number
PCT/CN2015/094102
Other languages
English (en)
French (fr)
Inventor
彭德强
齐慧敏
王璐瑶
陈新
孟凡飞
王岩
刘杰
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司抚顺石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司抚顺石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to DK15898143.1T priority Critical patent/DK3323485T3/da
Priority to SG11201800349PA priority patent/SG11201800349PA/en
Priority to KR1020187004623A priority patent/KR102061603B1/ko
Priority to RU2018103357A priority patent/RU2683757C1/ru
Priority to US15/745,050 priority patent/US10384148B2/en
Priority to EP15898143.1A priority patent/EP3323485B1/en
Publication of WO2017008416A1 publication Critical patent/WO2017008416A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D7/00Sublimation
    • B01D7/02Crystallisation directly from the vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/004Fractional crystallisation; Fractionating or rectifying columns
    • B01D9/0045Washing of crystals, e.g. in wash columns
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/20Sulfides; Polysulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D2009/0086Processes or apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/005Selection of auxiliary, e.g. for control of crystallisation nuclei, of crystal growth, of adherence to walls; Arrangements for introduction thereof

Definitions

  • the invention belongs to the field of chemical industry and relates to a crystallization device for gas phase reaction, in particular to a crystallization column for treating two gases to form a solid phase and a crystallization method thereof.
  • Crystallization is a process in which a solid substance is precipitated from a vapor, a solution or a melt in a crystalline state.
  • the traditional industrial crystallization research field can be generally divided into four categories, namely solution crystallization, melt crystallization, precipitation crystallization and sublimation crystallization.
  • Crystallization equipment is an important unit chemical equipment.
  • the cooling crystallization equipment mainly adopts the partition wall cooling crystallization equipment and the vacuum cooling crystallization equipment, wherein the partition wall cooling crystallization equipment mostly has a jacket cooling crystallization tank, the water consumption thereof is large, the heat exchange surface is easy to scale, and the cooling production efficiency is low; Vacuum-cooled crystallization equipment is only used in a small number of companies, and steam consumption is generally high due to the need to use steam for jet vacuuming.
  • the air cooling crystallization tower has been successfully applied to the cooling crystallization of chemical production, but the crystallization tower has a large volume and high energy consumption still exists.
  • the existing crystal tower has problems in that crystals are not easily detached, energy consumption is large, and the concentration of acidic water formed is low, which causes waste of resources.
  • a conventional crystal tower structure composed of a plurality of perforated plates the structure is complicated, the cost is high, the crystals are easily enriched and firmly adhered to the crystal plate, and are not easily peeled off, and the cycle of the crystallizing tower by additional vibration equipment is required.
  • Sexual vibrations help the detachment of crystals, which makes the energy consumption large.
  • the crystals are not easily detached, the amount of water used for rinsing the crystals is large, and the concentration of the formed acidic water is low, which is a problem that needs to be solved in the design of the crystallization tower.
  • the present invention provides a crystallization column and a crystallization method thereof, which have a simple structure, a low cost, high crystallization efficiency, and easy detachment of crystals.
  • a crystallization column comprising an upper head provided with a gas outlet, a tower body, and a lower head provided with a gas inlet and a material outlet, the tower body comprising a crystallization section, wherein the crystallization section is provided with a tray comprising a tray plate extending from the inner wall of the tower body and a plurality of lower crystal members spaced apart from each other on the lower surface of the tray plate.
  • the top end of the lower crystallized member may form a movable connection with the tray plate such that a wobble collision between adjacent two lower crystal members can occur.
  • the lower surface of the tray plate may be spaced apart from the plurality of lifting ears, and the top end of the lower crystal member may be provided with a lifting ring which is fastened to the lifting lug so that the lower crystal member can swing.
  • a plurality of lifting lugs are uniformly disposed on the lower surface of the tray plate, and the plurality of lower crystal members are connected to the plurality of lifting ears in a one-to-one correspondence.
  • the lower crystallized member may include a sling and a lower cylinder, and a radial distance between the centers of the cylinders of any two adjacent lower cylinders that are downwardly depending is smaller than the axial height of the lower cylinder.
  • the surface of the cylinder of the lower cylinder may be provided with a projection.
  • the projections are preferably thorns, and the plurality of lances project radially outward from the cylindrical surface of the lower cylinder, such that the lower cylinder is formed into a macadam-like structure.
  • the radial maximum extension length of the thorn may be from 1/20 to 1/8 of the axial height of the lower cylinder, preferably from 1/15 to 1/10.
  • the height gap between the upper and lower adjacent ridges is 1/20 to 1/8 of the axial height of the lower cylinder, preferably 1/15 to 1/10.
  • the top end of the lower crystalline member can also be attached to the lower surface of the tray plate by a flexible cord.
  • the lower crystal member is an elastic member or a flexible member whose tip is fixedly coupled to the lower surface of the tray plate, and the elastic member or the flexible member can be bent so that a swing collision can occur between the adjacent two lower crystal members.
  • the lower crystal member may also include a lower cylinder and a flexible wire, and the flexible wire is disposed on the lower cylinder to form a twisted wire structure.
  • one end of the tray plate is connected to the inner wall of the tower body, and the other end is laterally extended and protrudes from the tower
  • a gas flow gap may be formed between the inner walls of the opposite sides of the body.
  • the crystallization section is provided with multi-layer trays which are sequentially spaced up and down, and the multi-layer trays are arranged on both sides of the central axis of the tower body and are formed in a left-right staggered arrangement, so that the gas phase can sequentially flow upward through the gas of each tray plate.
  • the gap is formed to form a baffle.
  • the tray further includes a plurality of upper crystal members extending upward from the upper surface of the tray plate.
  • the height gap is preferably 20 mm to 150 mm, more preferably 50mm ⁇ 100mm.
  • the upper crystal member may include an upper cylinder and a flexible wire, and the flexible wire is disposed on the upper cylinder to form a twisted wire structure.
  • the upper cylinder may be made of stainless steel, PTFE or carbon steel lining, and the flexible thread is a material that does not react with ammonium sulphate and is insoluble in water, such as carbon fiber, nylon, fluoroplastic, stainless steel wire.
  • the diameter of the flexible thread is 1 mm to 12 mm.
  • the diameter of the flexible thread is preferably 1 mm to 3 mm.
  • the flexible thread is made of a non-metal material, the diameter of the flexible thread is preferably 2 mm to 5 mm.
  • the tower body may further comprise a cooling section, wherein the cooling section is provided with a heat taking component, and the heat taking component is preferably any one of a tube-tube evaporative cooler, a plate heat exchanger, an electric refrigeration unit, and a gas-fired lithium bromide unit.
  • the column body may also include a feed mixing section located below the cooling section, and a gas phase distributor is disposed in the feed mixing section, and the gas phase distributor is preferably an aeration head, a plate type gas phase distributor, or a tray type gas phase distributor.
  • the upper head may also be provided with a water inlet, and the water inlet may be connected with an inlet water distribution pipe, and the inlet water distribution pipe may be provided with a plurality of nozzles.
  • the water inlet and the gas outlet may be the same port, or the water inlet and the gas outlet may be independently set.
  • the present invention also provides a crystallization method using the above crystallization column of the present invention, wherein a gas to be crystallized enters the column body through a gas inlet, and a gas to be crystallized in the crystallization section The upper reaction crystallizes, and the crystallized gas is discharged from the gas outlet.
  • the crystallization method may further include: introducing water from the top of the tower body to wash the crystals on the tray, the washed water and The mixture of crystals flows out of the material outlet.
  • the gas to be crystallized is preferably a mixed gas containing hydrogen sulfide gas and ammonia gas.
  • the molar ratio of the hydrogen sulfide-containing gas to the ammonia gas is from 1:1 to 1:2, preferably from 5:6 to 2:3.
  • the reaction crystallization temperature of the hydrogen sulfide-containing gas and the ammonia gas is 0 to 40 ° C, preferably 0 to 20 ° C.
  • the crystallization column of the present invention has at least the following advantages:
  • a tray and a plurality of suspended lower crystal members are disposed in the crystallization section, and the reaction gas flows through the lower crystal member when it flows through the lower crystal member, and the gas phase flows through the lower portion.
  • the crystal member is crystallized, there is a difference in the flow around it, the crystal adhesion is a non-uniform state, the gas phase flow is blown and the center of gravity is shifted, which tends to cause the lower crystal member to oscillate.
  • the crystal is broken. And peeling off, falling on the next tray or the bottom of the tower body, so the crystal tower of the invention is easy to crystallize and peel off;
  • the crystallized member is further provided by the twisted wire brush type, and the crystal grain attachment area is greatly increased.
  • the tow of the upper crystal member is The space still exists, which can make the falling crystals in a fluffy state, the reaction gas can still pass through, and continue to crystallize and attach during the crossing process; and the falling crystal surface can also be used as a crystal attachment surface, which greatly increases the crystallinity. Attached area.
  • the switching operation is performed, and the crystallizing tower filled with crystals is filled with water from the top, since the crystallized material is in a fluffy state between the gaps of the twisted brush crystal column, in the water flooding distributor Under the impulse, it is easy to fall off onto the tray plate;
  • the crystallization column of the invention has a large surface area for attaching crystals, easy to fall off and deposits on the tray, and the amount of water injection is small, and the formed acidic water concentration is high, which can effectively reduce the energy consumption of acid water stripping.
  • the ammonium thiosulfate crystallization process in the refinery acidic water treatment process is especially suitable for the separation process of hydrogen sulfide in acid gas containing carbon dioxide.
  • FIG. 1 is a schematic structural view of a crystallization column according to a preferred embodiment of the present invention, the arrows in the figure represent the flow direction of the gas phase, that is, the upward baffle is formed;
  • FIGS. 2 to 5 are schematic structural views of a tray according to various embodiments of the present invention.
  • Figure 6 is a schematic view showing the structure of an upper crystal member according to a preferred embodiment of the present invention.
  • orientation words such as “up, down, top, and bottom” are generally used for the directions shown in the drawings or for vertical, vertical or gravity directions, unless otherwise stated.
  • the components are described in terms of their positional relationship; the “vertical direction” refers to the upper and lower directions of the paper, and the “horizontal direction” refers to the horizontal and horizontal directions of the paper which are substantially horizontal; “inside and outside” generally refers to the interior and exterior of the chamber relative to the chamber.
  • the present invention provides a crystallization column comprising an upper head 1 provided with a gas outlet 4, a tower body 2, and a lower head 3 provided with a gas inlet 8 and a material outlet 7, the tower
  • the body 2 includes a crystallization section 11 in which a tray 14 is disposed, and the tray 14 includes a tray plate 15 extending substantially laterally from the inner wall of the tower body 2 and disposed below the tray plate 15 at a distance from each other.
  • a plurality of lower crystalline members 17 of the surface is
  • the crystallization column of the present invention it is preferably applied to a gas-gas crystallization reaction, but is not limited thereto, and can be used for other gas-liquid reactions.
  • the gas to be crystallized enters the column body 2 from the gas inlet 8, and crystals are generated in the tray 14 in the crystallizing section 11, mainly adhering to the lower crystal member 7 of the tray plate 15, and the crystals are peeled off or washed to
  • the material outlet 7 at the bottom of the tower body 2 is discharged to the next process, and the gas is discharged from the gas outlet 4 after the reaction.
  • the present invention adopts a simple crystallization device, that is, a tray 14 having a large crystal area, and a plurality of lower crystal members protruding from the tray 14 17. While increasing the crystal area, the crystal on the suspended lower crystal member 17 is also easily peeled off from the lower crystal member 17 under the disturbance of the flowing gas.
  • the lower crystal member 17 can be formed into the twisted wire brush structure shown in FIG. 6, which has a large surface area for facilitating adhesion and crystallization, and the lower crystal member 7 as a twisted wire brush structure can be fixed or movably connected to the tray plate 15. lower surface.
  • the lower crystal member 17 may also be an elastic member or a flexible member whose tip is fixedly coupled to the lower surface of the tray plate 15, and the elastic member or the flexible member can be bent so that adjacent ones A swing collision can occur between the two lower crystal members 17.
  • the tip end of the lower crystal member 17 and the tray plate 15 are preferably formed in a movable connection so that a swing collision can occur between the adjacent two lower crystal members 17.
  • a buckle sliding connection manner of a lifting eye of a lifting eye is exemplified.
  • the lower surface of the tray plate 15 is spaced apart from the plurality of lifting lugs 16, and the top end of the lower crystallizing member 17 is provided with a lifting ring 18, and the lifting ring 18 is fastened to the lifting lug 16 so that the lower crystallizing member 17 can swing.
  • a plurality of lifting lugs 16 are uniformly disposed on the lower surface of the tray plate 15, and the plurality of lower crystal members 17 are connected to the plurality of lifting lugs 16 one by one.
  • the top end of the lower crystal member 17 can also be connected to the tower through a flexible rope or the like.
  • the lower surface of the disk plate 15 can also cause the adjacent two lower crystal members 17 to oscillate and collide with each other under the action of the airflow or the self-gravity deflection.
  • the lower crystal member 17 in a preferred embodiment of the lower crystal member 17, it includes a lower cylinder 19 and a lifting eye 18 connected to the top end of the lower cylinder 19.
  • the lower crystal members 17 When the lower crystal members 17 are connected one-to-one to the uniformly arranged plurality of lugs 16, the length of the lower crystal members 17 and their spacing density are required to facilitate the generation of wobbles and collisions, for example, in various embodiments illustrated,
  • the radial distance between the centers of the cylinders of any two adjacent lower cylinders 19 that are suspended downward is smaller than the axial height of the lower cylinders 19.
  • the adjacent undergrowth-shaped lower crystal members 17 are preferably shifted from each other in height so that the adjacent lower crystal members 17 are favorable for the thorns 20 to be aligned when the oscillating collision occurs.
  • the crystals between the two thorns 20 on one side make it easy to peel off.
  • the radial maximum extent of the lance 20 is 1/10 of the axial height of the lower cylinder 19. 20 to 1/8, preferably 1/15 to 1/10.
  • the height gap between the vertically adjacent ridges 20 is 1/20 to 1/8 of the axial height of the lower cylinder 19, preferably 1/15 to 1 /10.
  • the tray plate 15 when the tray plate 15 is installed, one end thereof is connected to the inner wall of the tower body 2, and the other end is laterally extended and a gas flow gap is formed between the projecting end and the inner wall of the opposite side of the tower body 2, and the gas phase can pass through the gas phase. There is no need to form a perforation or the like on the tray plate 15 in the gas flow gap.
  • the gas flow gap facilitates the formation of a duct to blow the lower crystal member 17.
  • the multi-layer trays 14 which are vertically spaced apart are disposed in the crystallization section 11 shown in FIG. 1, the multi-layer trays 14 are disposed on the central axis of the tower body 2 (not shown in the drawings for clarity).
  • the sides are formed in a left-right staggered arrangement such that the gas phase can sequentially pass upward through the gas flow gap of each tray plate 15 to form a baffle.
  • the gas phase flows in a direction indicated by an arrow in the figure to form a baffle, the lower crystal member 17 on each of the tray plates 15 can be blown to contribute to the occurrence of a wobble collision, which is advantageous for crystallization and peeling of crystals.
  • the tray plate 15 projecting laterally or laterally obliquely from the inner wall of the tower body 2 is not limited to the arrangement of the upper and lower intervals and the left and right sides of the illustration, and is not limited to a plurality of blocks, and the tower body 2 may be only A single tray plate 15 is mounted, and perforations may also be formed in the single tray plate 15 for airflow therethrough.
  • the tray 14 in order to increase the crystal area, also preferably includes a plurality of upper crystal members 21 which extend upward from the upper surface of the tray plate 15.
  • the gas phase baffling can not only blow the lower crystal member 17 to adhere to the crystal, but also simultaneously blow the upper crystal member 21, thereby greatly increasing the crystal area.
  • the height gap is preferably from 20 mm to 150 mm, and more preferably from 50 mm to 100 mm.
  • a preferred structural form of the upper crystalline member 21 includes an upper cylinder 23 and a flexible wire 22, and a flexible wire 22 is disposed on the upper cylinder 23 to form a twisted wire structure.
  • This similar brush shape can greatly increase the crystal area, and the crystals are easily peeled off, and the falling crystal surface can also be used as a crystal attachment surface.
  • This upper crystallizing member 21 is applied to the embodiment shown in Figs. 4 and 5, and Fig. 5 differs from Fig. 4 in that the lower crystal member 17 with the thorn 20 is employed in Fig. 5.
  • the upper cylinder 23 is preferably a corrosion-resistant stainless steel material, a PTFE material or a carbon steel outer lining material according to the reaction gas and the reaction characteristics, and the flexible yarn 22 is preferably not reactive with ammonium hydrogen sulfide and is insoluble in water.
  • the material is preferably any one of carbon fiber, nylon, fluoroplastic, and stainless steel wire.
  • the flexible wire 22 has a diameter of approximately 1 mm to 12 mm. When the flexible wire 22 is made of a metal material, the diameter of the flexible wire 22 is preferably 1 mm to 3 mm. When the flexible wire 22 is a non-metallic material, the diameter of the flexible wire 22 is preferably 2 mm. ⁇ 5mm.
  • the tower body 2 further includes a cooling section 10, and the cooling section is provided with a heat-removing component 13, which is preferably a tube-tube evaporative cooler, a plate heat exchanger, an electric refrigeration unit, and a gas. Any of the lithium bromide units.
  • the gas entering the crystallization column through the gas inlet 8 can be cooled by the heat taking unit 13 to be cooled to near the crystallization reaction temperature, thereby facilitating the immediate crystallization reaction in the upper crystallization stage 11.
  • the cooling of the gas to be crystallized and its cooling device can also be disposed outside the tower body 2 as needed.
  • the tower body 2 further comprises a feed mixing section 9 located below the cooling section 10, in which a gas phase distributor 12 is provided, which is preferably an aeration head, a plate type gas phase distributor, or a tray Gas phase distributor, etc.
  • the gas phase distributor 12 makes the gas distribution uniform, the flow field stable, and the crystals uniform.
  • the upper head 1 is also provided with a water inlet 5, water inlet The inlet 5 is connected to the inlet water distribution pipe 6, and the inlet water distribution pipe 6 is provided with a plurality of nozzles. By spraying water from the nozzle, the crystals can be washed and dissolved to form, for example, acidic water or the like, and flow out from the material outlet 7 at the bottom of the tower body.
  • the crystallized material is in a fluffy state between the gaps of the twisted wire type crystallizing member 21, and is easily detached onto the tray plate 15 under the water injection force.
  • the water inlet 5 and the gas outlet 4 can be separately provided, but since the water injection and the discharge reaction tail gas are switching operations of different time periods, the water inlet 5 and the gas outlet 4 can preferably be the same port.
  • the present invention also provides a corresponding crystallization method, that is, the gas to be crystallized is sent into the column body 2 through the gas inlet 8, and the crystallization gas is reacted and crystallized on the tray 14 of the crystallization section 11, The crystallized gas is discharged from the gas outlet 4. Water is introduced from the top of the tower body 2 to wash the crystals on the tray 14, and the washed mixture of water and crystals flows out of the material outlet 7.
  • the working process of the crystallization column of the present invention will be further described below in conjunction with specific applications, and the working flow of the crystallization column of the present invention will be specifically described by taking ammonia gas treatment of hydrogen sulfide containing gas as an example.
  • the molar ratio of the hydrogen sulfide-containing gas to the ammonia gas is 1:1 to 1:2, preferably 5:6 to 2:3.
  • the reaction crystallization temperature of the hydrogen sulfide-containing gas and the ammonia gas is 0 to 40 ° C, preferably 0 to 20 ° C.
  • the acid gas (hydrogen sulfide gas) mixed with ammonia gas enters the crystallization column from the gas inlet 8 of the crystallization column, and the gas phase uniformly distributed through the plate type gas phase distributor 12 in the feed mixing section 9 enters the cooling section 10 and passes through the column.
  • the tubular evaporative cooler realizes cooling and cooling under the action of liquid ammonia, and the liquid ammonia absorbs heat to form an ammonia gas sending device, or the ammonia gas reacted with the acid gas enters the crystallization tower, and after the cooling, the ammonia gas is mixed.
  • the acid gas starts to crystallize on the lower crystal member 17 of the tray 14, and when the ammonium hydrogen sulfide flows through the lower crystal member 17, crystallizes on the surface thereof, and as the gas phase flows through the lower crystal member 17, there is a difference in the flow around it, and the crystal adheres.
  • the vapor phase flow is blown and the center of gravity is shifted, causing the lower crystal member 17 to oscillate.
  • the crystal is broken and peeled off from the lower crystal member 17, and falls to the next.
  • the use efficiency of the crystallization tower is greatly increased.
  • the crystallized material in the crystallization tower reaches a certain load, the crystallization tower is switched and operated.
  • Water is injected from the water inlet 5 of the crystallization tower, and the ammonium hydrogen hydride crystal is washed and dissolved to form acidic water, which is sent out through the material outlet 7 provided by the lower head 3 of the crystallization tower.
  • a plurality of the water inlet 5 and the gas inlet 8 may be provided, for example, a plurality of ports arranged at equal intervals in the circumferential direction.
  • the crystallization column shown in Fig. 1 was used, and the acid gas was used as a raw material for treatment.
  • the volume fraction of CO 2 in the acid gas is 94%
  • the volume fraction of H 2 S is 5%
  • the volume fraction of hydrocarbons is 1%.
  • the acid gas is first cooled to 20 ° C by a cooler, and then uniformly mixed with ammonia gas.
  • the molar ratio of acid gas to ammonia gas is 2:3, and the mixed stream enters the crystallization column to obtain a gas phase stream and ammonium hydrogen hydride crystal.
  • the ammonium hydrogensulfide crystals are deposited in a crystallization column.
  • Table 1 The material analysis results are shown in Table 1.
  • the reaction conditions were the same as in Example 1, except that a crystallizing tank of the present invention was used instead of the crystallizing column of the present invention, which was a conventional empty tank, but ensured crystallization of the crystallizing tank and the crystallizing tower of the present invention.
  • the space is the same.
  • the crystallization column of the present invention can be continuously operated, the crystallization effect is outstanding, the crystal body is easy to obtain, the water consumption is small, the gas purification degree is high, and the energy consumption is reduced, and is particularly suitable for the separation process of hydrogen sulfide in the acid gas containing carbon dioxide. .
  • the present invention is not limited to the specific details of the embodiments described above, and various modifications may be made to the technical solutions of the present invention within the scope of the technical idea of the present invention.
  • the non-uniform spacing distribution of the lower crystal members 17 and the non-uniform connection of the lifting rings 18 to the lifting lugs 16 may be movably connected to the single lifting lugs 16 with a plurality of lifting lugs 18, and the upper cylindrical body 23 and the lower crystalline members 17 are not limited thereto.
  • the shape of the cylinder shown may be various curved shapes and the like, and such a simple modification is considered to fall within the scope of protection of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种结晶塔和结晶方法,该结晶塔包括上封头(1)、塔体(2)和下封头(3),结晶段(11)内设置有塔盘(14),塔盘(14)包括塔盘板(15)和多个下结晶构件(17)。下结晶构件(17)的顶端与塔盘板(15)可形成活动连接,使得相邻的两个下结晶构件(17)之间能够摆动碰撞。塔盘(14)还可包括从塔盘板(15)的上表面向上延伸的多个上结晶构件(21)。

Description

结晶塔和结晶方法 技术领域
本发明属于化工领域,涉及一种用于气相反应的结晶设备,特别是一种用于处理两种气体反应生成固相的结晶塔及其结晶方法。
背景技术
结晶是固体物质以晶体状态从蒸汽、溶液或熔融物中析出的过程。传统的工业结晶研究领域,一般可以分为四大类,即溶液结晶、熔融结晶、沉淀结晶和升华结晶。
结晶设备是一个重要的单元化工设备。目前,冷却结晶设备主要采用间壁冷却结晶设备和真空冷却结晶设备,其中间壁冷却结晶设备以夹套冷却结晶槽居多,其耗水量较大,且换热面易结垢,冷却生产效率很低;真空冷却结晶设备仅在少数企业采用,通常由于需要使用蒸汽进行喷射抽真空,蒸汽能耗较高。为了克服间壁冷却结晶设备和真空结晶设备存在的缺点与不足,空气冷却结晶塔已成功应用于化工生产冷却结晶,但结晶塔体积较大,能耗较高的问题仍然存在。
此外,现有的结晶塔存在结晶物不易脱落,能耗大,形成的酸性水浓度较低等问题,造成资源浪费。例如,常规的由多层穿孔板构成的结晶塔结构中,构造复杂,造价高,结晶物容易富集和牢固粘结于结晶板上,不易脱落,需要通过额外的振动设备对结晶塔的周期性振动以助力结晶物的脱落,使得能耗大,另外还需防止结晶物对穿孔的堵塞,甚至结晶物还需要不定时的停工以进行维护或协助脱落结晶物,使得结晶塔的效率低下。另外,结晶物不易脱落时,对于冲洗结晶物的用水量较大,且形成的酸性水浓度较低,这均是在结晶塔的设计时亟需解决的难题。
发明内容
针对现有技术中的上述缺陷或不足,本发明提供了一种结晶塔及其结晶方法,该结晶塔的结构简单、成本低,结晶效率高且结晶物易于脱落。
为实现上述目的,根据本发明的一个方面,提供了一种结晶塔,包括设有气体出口的上封头、塔体以及设有气体入口和物料出口的下封头,塔体包括结晶段,其中,结晶段内设置有塔盘,塔盘包括从塔体的内壁上伸出的塔盘板和彼此间隔地布置在该塔盘板的下表面的多个下结晶构件。
下结晶构件的顶端与塔盘板可形成活动连接,使得相邻的两个下结晶构件之间能够发生摆动碰撞。其中优选地,塔盘板的下表面可间隔布置有多个吊耳,下结晶构件的顶端可设有吊环,该吊环与吊耳扣连,使得下结晶构件能够摆动。多个吊耳均匀地设置在塔盘板的下表面,多个下结晶构件一一对应地连接于多个吊耳。下结晶构件可包括吊环和下柱体,呈向下悬垂状的任意相邻两个下柱体的柱体中心之间的径向距离小于下柱体的轴向高度。
下柱体的柱体表面可设置有凸起。凸起优选为刺状物,多个刺状物分别从下柱体的柱体表面径向向外伸出,使得下柱体形成为狼牙棒状结构。刺状物的径向最大伸出长度可为下柱体的轴向高度的1/20~1/8,优选为1/15~1/10。在狼牙棒状结构的下柱体中,上下相邻的刺状物之间的高度间隙为下柱体的轴向高度的1/20~1/8,优选为1/15~1/10。
为形成所述活动连接,下结晶构件的顶端也可通过柔性绳索连接于塔盘板的下表面。或者,下结晶构件为顶端固定连接于塔盘板的下表面的弹性构件或柔性构件,该弹性构件或柔性构件能够弯曲,以使得相邻的两个下结晶构件之间能够发生摆动碰撞。当然,下结晶构件也可包括下柱体和柔性丝线,柔性丝线设置在下柱体上以形成扭丝刷式结构。
其中,塔盘板的一端与塔体的内壁相连,另一端横向伸出且伸出端与塔 体的相对侧的内壁之间可形成有气体流通间隙。
优选地,结晶段内设置有依次上下间隔的多层塔盘,多层塔盘设置在塔体的中心轴线的两侧且形成左右交错布置,使得气相能够依次向上通过各个塔盘板的气体流通间隙以形成折流。
更优选地,塔盘还包括多个上结晶构件,该上结晶构件从塔盘板的上表面向上延伸。在上下相邻的两个塔盘中,下方的塔盘的上结晶构件的顶端与上方的塔盘的下结晶构件的底端之间存在高度间隙,高度间隙优选为20mm~150mm,更优选为50mm~100mm。
上结晶构件可包括上柱体和柔性丝线,柔性丝线设置在上柱体上以形成扭丝刷式结构。上柱体可以是不锈钢材质、四氟材质或碳钢外衬四氟材质等,柔性丝线为不与硫氢化铵反应且不溶于水的材质,例如碳纤维、尼龙、氟塑料、不锈钢丝中的任一种。柔性丝线的直径为1mm~12mm,当柔性丝线为金属材质时,柔性丝线的直径优选为1mm~3mm,当柔性丝线为非金属材质时,柔性丝线的直径优选为2mm~5mm。
塔体还可包括冷却段,冷却段内设置有取热组件,取热组件优选为列管式蒸发冷却器、板式热交换器、电制冷机组、燃气型溴化锂机组中的任一种。塔体也可包括位于冷却段下方的进料混合段,该进料混合段内设置气相分布器,气相分布器优选为曝气头、板式气相分布器、或槽盘式气相分布器等。上封头还可设有进水口,进水口可连接有进水分布管,进水分布管上可设有若干喷嘴。进水口与气体出口可为同一个口,或者进水口与气体出口分别独立设置。
根据本发明的另一方面,本发明还提供了一种结晶方法,该结晶方法采用本发明上述的结晶塔,其中将待结晶气体通过气体入口进入塔体内,待结晶气体在结晶段的塔盘上反应结晶,结晶后的气体从气体出口排出。该结晶方法还可包括:从塔体的顶部通入水以冲刷塔盘上的结晶物,冲刷后的水和 结晶物的混合液从物料出口流出。
其中,待结晶气体优选为含硫化氢气体与氨气的混合气体。含硫化氢气体与氨气的进料摩尔比为1:1~1:2,优选为5:6~2:3。含硫化氢气体与氨气的反应结晶温度为0~40℃,优选为0~20℃。
与现有技术相比,本发明的结晶塔至少具有如下优点:
1)、在本发明的结晶塔中,在结晶段内设有塔盘及悬挂的多个下结晶构件,当反应气体流经下结晶构件时容易在其表面结晶附着,而且由于气相流经下结晶构件时,其周围流动存在差异,结晶附着为非均匀态,气相流动吹拂及重心的偏移,易导致下结晶构件的摆动,一旦与相邻的下结晶构件产生碰撞,则结晶物碎裂并剥落,坠落于下一层塔盘上或塔体底部,因而本发明的结晶塔容易结晶和剥落;
2)、本发明所述结晶塔中,还通过设置扭丝刷式上结晶构件,极大地增加了结晶物附着面积,当上一层塔盘的结晶物坠落时,该上结晶构件的丝束空间依然存在,可使坠落结晶物处于蓬松状态,反应气体依然可以穿越,并在穿越过程中继续结晶附着;而且还可以将坠落的结晶物表面也作为结晶附着面使用,极大的增加了结晶附着面积。当扭丝刷式上结晶构件的空隙内充满结晶物时,切换操作,充满结晶物的结晶塔从顶部注水,由于结晶物在扭丝刷式结晶柱空隙间为蓬松状态,在注水分布器的冲力下,极容易脱落至塔盘板上;
3)、本发明所述结晶塔具有可附着结晶物的表面积大、结晶物易脱落并堆积塔盘上,注水用量小,形成的酸性水浓度高,可有效降低酸性水汽提的能耗,适用于炼厂酸性水处理过程中的硫氢化铵结晶过程,尤其适用于含二氧化碳的酸性气中硫化氢的分离过程。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。在附图中:
图1为根据本发明的优选实施方式的结晶塔的结构示意图,图中的箭头代表气相的流动方向,即形成向上的折流;
图2~图5为根据本发明的多种实施方式的塔盘的结构示意图;
图6是根据本发明的优选实施方式的上结晶构件的结构示意图。
附图标记说明
1        上封头                   2           塔体
3        下封头                   4           气体出口
5        进水口                   6           进水分布管
7        物料出口                 8           气体入口
9        进料混合段               10          冷却段
11       结晶段                   12          气相分布器
13       取热组件                 14          塔盘
15       塔盘板                   16          吊耳
17       下结晶构件               18          吊环
19       下柱体                   20          刺状物
21       上结晶构件               22          柔性丝线
23       上柱体
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是, 此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本发明中,在未作相反说明的情况下,使用的方位词如“上、下、顶、底”通常是针对附图所示的方向而言的或者是针对竖直、垂直或重力方向上而言的各部件相互位置关系描述用词;“竖直方向”指的是图示的纸面上下方向,“横向”指的是图示的大致水平的纸面左右方向;“内、外”通常指的是相对于腔室而言的腔室内外。
如图1所示,本发明提供了一种结晶塔,该结晶塔包括设有气体出口4的上封头1、塔体2以及设有气体入口8和物料出口7的下封头3,塔体2包括结晶段11,结晶段11内设置有塔盘14,塔盘14包括从塔体2的内壁上大致横向伸出的塔盘板15和彼此间隔地布置在该塔盘板15的下表面的多个下结晶构件17。
在本发明的结晶塔中,其优选地应用于气-气结晶反应,但并不限于此,也可用于其他气液反应。待结晶气体从气体入口8进入塔体2内,在结晶段11内的塔盘14中产生结晶,主要附着结晶于塔盘板15的下结晶构件7上,结晶物剥落后下落或被冲刷至塔体2底部的物料出口7排出,进入下一工艺流程,反应后气体则从气体出口4排出。
不同于现有技术中采用的较为复杂和昂贵的结晶装置,本发明采用结构简单的结晶装置,即结晶面积较大的塔盘14,塔盘14上还伸出有悬垂的多个下结晶构件17,在增大结晶面积的同时,悬垂的下结晶构件17上的结晶物也易于在流动气体的扰动下从下结晶构件17上剥落。
其中,下结晶构件17可形成为图6所示的扭丝刷式结构,其表面积大,便于附着结晶,作为扭丝刷式结构的下结晶构件7可固定或活动连接于塔盘板15的下表面。下结晶构件17也可以是顶端固定连接于塔盘板15的下表面的弹性构件或柔性构件,该弹性构件或柔性构件能够弯曲,以使得相邻的 两个下结晶构件17之间能够发生摆动碰撞。或者,如附图1至图5所示的,下结晶构件17的顶端与塔盘板15之间优选地形成为活动连接,使得相邻的两个下结晶构件17之间能够发生摆动碰撞。当反应气体流经下结晶构件17时容易在其表面结晶附着,而且由于气相流经下结晶构件17时,下结晶构件17周围的流场或流速必然存在一定差异,使得附着于下结晶构件17上的结晶物的分布为非均匀态。由于下结晶构件17与塔盘板15之间的活动连接以及结晶物的非均匀态分布,在下结晶构件17的自身重力及结晶物的重力作用下,加上气相流动吹拂,下结晶构件17必然产生重心的偏移,易导致摆动,一旦与相邻的下结晶构件17产生碰撞,则结晶物碎裂并剥落,可坠落于下一层塔盘14上或落至塔体2的底部。
为形成活动连接,如附图2至图5所示,例举了一种吊环吊耳的扣环滑动连接方式。其中,塔盘板15的下表面间隔布置有多个吊耳16,下结晶构件17的顶端设有吊环18,该吊环18与吊耳16扣连,使得下结晶构件17能够摆动。其中优选地,多个吊耳16均匀地设置在塔盘板15的下表面,多个下结晶构件17一一对应地连接于多个吊耳16。当然,本领域技术人员能够理解的是,构成上述活动连接的形式和连接结构有多种,并不限于上述扣环滑动连接方式,例如下结晶构件17的顶端也可通过柔性绳索等连接于塔盘板15的下表面,同样可使得相邻的两个下结晶构件17之间在气流吹动下或自身重力偏斜时能够发生摆动和彼此碰撞。
如图2所示,在下结晶构件17的一种优选实施方式中,其包括下柱体19和连接于下柱体19的顶端的吊环18。在下结晶构件17一一对应地连接于均匀布置的多个吊耳16时,下结晶构件17的长度及其间隔密度需有利于产生摆动和碰撞,例如在图示的多种实施方式中,呈向下悬垂状的任意相邻两个下柱体19的柱体中心之间的径向距离小于下柱体19的轴向高度。
为增加下结晶构件17的表面积,以增进附着结晶,下柱体19的柱体表 面还可设置有凸起。如图3所示的另一种优选实施方式的下结晶构件17,其不仅包括下柱体19和吊环18,还包括形成在下柱体19的柱体表面上的多个刺状物20,刺状物20分别从下柱体19的柱体表面径向向外伸出,使得下柱体19形成为狼牙棒状结构。而且,如图3所示,相邻的狼牙棒状下结晶构件17之间在高度上优选为相互错开,使得相邻的下结晶构件17在摆动碰撞时,有利于刺状物20对准另一侧的两个刺状物20之间的结晶物,使之易于剥落。同样的,为最大化增加表面积且利于结晶物的结晶与剥落,在图示的多种实施方式中,刺状物20的径向最大伸出长度为下柱体19的轴向高度的1/20~1/8,优选为1/15~1/10。在狼牙棒状结构的下柱体19中,上下相邻的刺状物20之间的高度间隙为下柱体19的轴向高度的1/20~1/8,优选为1/15~1/10。
此外,塔盘板15在安装时,其一端与塔体2的内壁相连,另一端横向伸出且伸出端与塔体2的相对侧的内壁之间形成有气体流通间隙,气相能够通过该气体流通间隙,塔盘板15上无需形成穿孔等。气体流通间隙有利于引导形成风道,以吹拂下结晶构件17。例如,在图1所示的结晶段11内设置有依次上下间隔的多层塔盘14时,多层塔盘14设置在塔体2的中心轴线(为清楚起见,图中未标示)的两侧且形成左右交错布置,使得气相能够依次向上通过各个塔盘板15的气体流通间隙以形成折流。气相沿图中箭头所示的方向流动形成折流时,能够吹拂到各个塔盘板15上的下结晶构件17,有助于发生摆动碰撞,利于结晶及结晶物的剥落。当然,从塔体2的内壁上横向伸出或横向倾斜伸出的塔盘板15并不限于图示的上下间隔和左右错开的布置方式,也不限于多块,塔体2内也可仅安装单块的塔盘板15,单块塔盘板15上还可形成穿孔以供气流穿过。
在图1所示的结晶塔中,为增加结晶面积,塔盘14还优选地包括多个上结晶构件21,该上结晶构件21从塔盘板15的上表面向上延伸。如图1 所示,气相折流不仅可吹拂下结晶构件17,使之附着结晶,也可同时吹拂上结晶构件21,从而大大增加了结晶面积。其中,在上下相邻的两个塔盘14中,下方的塔盘14的上结晶构件21的顶端与上方的塔盘14的下结晶构件17的底端之间存在高度间隙,以利于气相的通过。该高度间隙优选为20mm~150mm,更优选为50mm~100mm。
如图6所示,一种优选结构形式的上结晶构件21包括上柱体23和柔性丝线22,柔性丝线22设置在上柱体23上以形成扭丝刷式结构。此类似毛刷形状可很大程度上增大结晶面积,而且结晶物易于脱落,坠落的结晶物表面也可作为结晶附着面使用。这种上结晶构件21应用于图4和图5所示的实施方式中,图5与图4的区别之处在于图5中采用了带有刺状物20的下结晶构件17。其中,根据反应气体和反应特性,上柱体23优选为耐腐蚀的不锈钢材质、四氟材质或碳钢外衬四氟材质等,柔性丝线22优选为不与硫氢化铵反应且不溶于水的材质,优选为碳纤维、尼龙、氟塑料、不锈钢丝中的任一种。其中柔性丝线22的直径大致为1mm~12mm,当柔性丝线22为金属材质时,柔性丝线22的直径优选为1mm~3mm,当柔性丝线22为非金属材质时,柔性丝线22的直径优选为2mm~5mm。
另外,参见图1,塔体2内还包括了冷却段10,冷却段内设置有取热组件13,取热组件13优选为列管式蒸发冷却器、板式热交换器、电制冷机组、燃气型溴化锂机组中的任一种。通过取热组件13可对通过气体入口8进入结晶塔的气体进行冷却,降温至接近结晶反应温度,从而便于立即在上方的结晶段11产生结晶反应。当然,对于待结晶气体的冷却及其冷却设备根据需要也可设置在塔体2外。而且,塔体2还包括位于冷却段10下方的进料混合段9,该进料混合段9内设置气相分布器12,气相分布器12优选为曝气头、板式气相分布器、或槽盘式气相分布器等。气相分布器12可使得气体分布均匀,流场稳定,结晶均匀。此外,上封头1还设有进水口5,进水 口5连接有进水分布管6,进水分布管6上设有若干喷嘴。通过喷嘴的喷水,可冲洗、溶解结晶物以形成例如酸性水等,从塔体底部的物料出口7流出。结晶物在扭丝刷式上结晶构件21的空隙间为蓬松状态,在注水冲力下,极容易脱落至塔盘板15上。其中,如图1所示,进水口5与气体出口4可分别独立设置,但由于注水和排出反应尾气为不同时段的切换操作,因而进水口5与气体出口4可优选为同一个口。
在上述结晶塔的基础上,本发明还提供了相应的一种结晶方法,即将待结晶气体通过气体入口8送入塔体2内,待结晶气体在结晶段11的塔盘14上反应结晶,结晶后的气体从气体出口4排出。从塔体2的顶部通入水以冲刷塔盘14上的结晶物,冲刷后的水和结晶物的混合液从物料出口7流出。
下面结合具体应用来进一步说明本发明的结晶塔是如何工作的,以采用氨气处理含硫化氢气体为例来具体说明本发明的结晶塔的工作流程。其中,含硫化氢气体与氨气的进料摩尔比为1:1~1:2,优选为5:6~2:3。含硫化氢气体与氨气的反应结晶温度为0~40℃,优选为0~20℃。
首先混合了氨气的酸性气(含硫化氢气体)自结晶塔的气体入口8进入结晶塔,经过进料混合段9内的板式气相分布器12均匀分布后的气相进入冷却段10,经过列管式蒸发冷却器,在液氨的作用下,实现降温冷却,液氨吸热升温成氨气送出装置,或者作为与酸性气反应的氨气进入结晶塔,经过降温后的混合了氨气的酸性气在塔盘14的下结晶构件17上开始结晶,当硫氢化铵流经下结晶构件17时在其表面结晶附着,由于气相流经下结晶构件17时,其周围流动存在差异,结晶附着为非均匀态,气相流动吹拂及重心的偏移,导致下结晶构件17摆动,一旦与相邻的下结晶构件17碰撞时,结晶物碎裂并从下结晶构件17上剥落,坠落于下一层塔盘14上,极大的增加了结晶塔的使用效率,当结晶塔内结晶物达到一定负荷时,使结晶塔切换操作, 从结晶塔的进水口5开始注水,冲洗、溶解硫氢化铵结晶,形成酸性水,经结晶塔的下封头3设置的物料出口7送出装置。进水口5和气体入口8均可设置多个,例如为沿周向等间隔排布的多个口。
下面给出实施例与对比例,以验证使用本发明的结晶塔的结晶效果。
实施例1
采用如图1所示的结晶塔,以酸性气为原料,进行处理。酸性气中CO2体积分数为94%,H2S体积分数为5%,烃类体积分数为1%。酸性气首先经冷却器降温至20℃,然后与氨气混合均匀,酸性气与氨气的进料摩尔比2:3,混合后的物流进入结晶塔,得到气相物流和硫氢化铵结晶。所述硫氢化铵结晶沉积在结晶塔内。物料分析结果见表1。
比较例1
反应条件与实施例1相同,所不同之处为采用普通的结晶罐代替本发明的结晶塔,所述普通的结晶罐为常规的空罐,但确保结晶罐与本发明的结晶塔内的结晶空间相同。
表1实施例和比较例的反应结果对比
Figure PCTCN2015094102-appb-000001
由表1可见,本发明的结晶塔可持续运转,结晶效果突出,结晶体易取得,且用水量小,气体净化度高,减少能耗,特别适用于含二氧化碳的酸性气中硫化氢的分离过程。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行各种简单变型,例如下结晶构件17的非均匀间隔分布,吊环18与吊耳16的非一一对应连接,可单个吊耳16上活动连接有多个吊环18,上柱体23和下结晶构件17也不限于图示的柱体形状,可以是各种弯曲形状等,这种简单变型应视为落入本发明的保护范围内。
并且上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (28)

  1. 一种结晶塔,包括设有气体出口(4)的上封头(1)、塔体(2)以及设有气体入口(8)和物料出口(7)的下封头(3),所述塔体(2)包括结晶段(11),其中,所述结晶段(11)内设置有塔盘(14),所述塔盘(14)包括从所述塔体(2)的内壁上伸出的塔盘板(15)和彼此间隔地布置在该塔盘板(15)的下表面的多个下结晶构件(17)。
  2. 根据权利要求1所述的结晶塔,其中,所述下结晶构件(17)的顶端与所述塔盘板(15)的下表面形成活动连接,使得相邻的两个所述下结晶构件(17)之间能够发生摆动碰撞。
  3. 根据权利要求2所述的结晶塔,其中,所述塔盘板(15)的下表面间隔布置有多个吊耳(16),所述下结晶构件(17)的顶端设有吊环(18),该吊环(18)与所述吊耳(16)扣连,使得所述下结晶构件(17)能够摆动。
  4. 根据权利要求3所述的结晶塔,其中,多个所述吊耳(16)均匀地设置在所述塔盘板(15)的下表面,多个所述下结晶构件(17)一一对应地连接于多个所述吊耳(16)。
  5. 根据权利要求4所述的结晶塔,其中,所述下结晶构件(17)包括所述吊环(18)和下柱体(19),呈向下悬垂状的任意相邻两个所述下柱体(19)的柱体中心之间的径向距离小于所述下柱体(19)的轴向高度。
  6. 根据权利要求5所述的结晶塔,其中,所述下柱体(19)的柱体表面设置有凸起。
  7. 根据权利要求6所述的结晶塔,其中,所述凸起为刺状物(20),多个所述刺状物(20)分别从所述下柱体(19)的柱体表面径向向外伸出,使得所述下柱体(19)形成为狼牙棒状结构。
  8. 根据权利要求7所述的结晶塔,其中,所述刺状物(20)的径向最大伸出长度为所述下柱体(19)的轴向高度的1/20~1/8,优选为1/15~1/10。
  9. 根据权利要求7所述的结晶塔,其中,在狼牙棒状结构的所述下柱体(19)中,上下相邻的所述刺状物(20)之间的高度间隙为所述下柱体(19)的轴向高度的1/20~1/8,优选为1/15~1/10。
  10. 根据权利要求2所述的结晶塔,其中,所述下结晶构件(17)的顶端通过柔性绳索连接于所述塔盘板(15)的下表面。
  11. 根据权利要求1所述的结晶塔,其中,所述下结晶构件(17)为顶端固定连接于所述塔盘板(15)的下表面的弹性构件或柔性构件,该弹性构件或柔性构件能够弯曲,以使得相邻的两个所述下结晶构件(17)之间能够发生摆动碰撞。
  12. 根据权利要求1所述的结晶塔,其中,所述下结晶构件(17)包括下柱体(19)和柔性丝线(22),所述柔性丝线(22)设置在所述下柱体(19)上以形成扭丝刷式结构。
  13. 根据权利要求1~12中任意一项所述的结晶塔,其中,所述塔盘板(15)的一端与所述塔体(2)的内壁相连,另一端横向伸出且伸出端与所 述塔体(2)的相对侧的内壁之间形成有气体流通间隙。
  14. 根据权利要求13所述的结晶塔,其中,所述结晶段(11)内设置有依次上下间隔的多层所述塔盘(14),多层所述塔盘(14)设置在所述塔体(2)的中心轴线的两侧且形成左右交错布置,使得气相能够依次向上通过各个所述塔盘板(15)的所述气体流通间隙以形成折流。
  15. 根据权利要求14所述的结晶塔,其中,所述塔盘(14)还包括多个上结晶构件(21),该上结晶构件(21)从所述塔盘板(15)的上表面向上延伸。
  16. 根据权利要求15所述的结晶塔,其中,在上下相邻的两个所述塔盘(14)中,下方的所述塔盘(14)的所述上结晶构件(21)的顶端与上方的所述塔盘(14)的所述下结晶构件(17)的底端之间存在高度间隙,所述高度间隙优选为20mm~150mm,更优选为50mm~100mm。
  17. 根据权利要求15所述的结晶塔,其中,所述上结晶构件(21)包括上柱体(23)和柔性丝线(22),所述柔性丝线(22)设置在所述上柱体(23)上以形成扭丝刷式结构。
  18. 根据权利要求17所述的结晶塔,其中,所述上柱体(23)为不锈钢材质、四氟材质或碳钢外衬四氟材质,所述柔性丝线(22)为不与硫氢化铵反应且不溶于水的材质,优选为碳纤维、尼龙、氟塑料、不锈钢丝中的任一种。
  19. 根据权利要求17所述的结晶塔,其中,所述柔性丝线(22)的直径为1mm~12mm,当所述柔性丝线(22)为金属材质时,所述柔性丝线(22)的直径优选为1mm~3mm,当所述柔性丝线(22)为非金属材质时,所述柔性丝线(22)的直径优选为2mm~5mm。
  20. 根据权利要求1所述的结晶塔,其中,所述塔体(2)还包括冷却段(10),所述冷却段内设置有取热组件(13),所述取热组件(13)优选为列管式蒸发冷却器、板式热交换器、电制冷机组、燃气型溴化锂机组中的任一种。
  21. 根据权利要求20所述的结晶塔,其中,所述塔体(2)还包括位于所述冷却段(10)下方的进料混合段(9),该进料混合段(9)内设置气相分布器(12),所述气相分布器(12)优选为曝气头、板式气相分布器、或槽盘式气相分布器。
  22. 根据权利要求1所述的结晶塔,其中,所述上封头(1)还设有进水口(5),所述进水口(5)连接有进水分布管(6),所述进水分布管(6)上设有若干喷嘴。
  23. 根据权利要求22所述的结晶塔,其中,所述进水口(5)与所述气体出口(4)为同一个口,或者所述进水口(5)与所述气体出口(4)分别独立设置。
  24. 一种结晶方法,该结晶方法采用权利要求1~23中任一权利要求所述的结晶塔,其中将待结晶气体通过所述气体入口(8)进入所述塔体(2) 内,所述待结晶气体在所述结晶段(11)的所述塔盘(14)上反应结晶,结晶后的气体从所述气体出口(4)排出。
  25. 根据权利要求24所述的结晶方法,其中,进入所述塔体(2)内的所述待结晶气体为含硫化氢气体与氨气的混合气体。
  26. 根据权利要求25所述的结晶方法,其中,所述含硫化氢气体与氨气的进料摩尔比为1:1~1:2,优选为5:6~2:3。
  27. 根据权利要求25所述的结晶方法,其中,所述含硫化氢气体与氨气的反应结晶温度为0~40℃,优选为0~20℃。
  28. 根据权利要求24所述的结晶方法,其中,该结晶方法还包括:从所述塔体(2)的顶部通入水以冲刷所述塔盘(14)上的结晶物,冲刷后的水和所述结晶物的混合液从所述物料出口(7)流出。
PCT/CN2015/094102 2015-07-15 2015-11-09 结晶塔和结晶方法 WO2017008416A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK15898143.1T DK3323485T3 (da) 2015-07-15 2015-11-09 Krystalliseringssøjle og krystalliseringsfremgangsmåde
SG11201800349PA SG11201800349PA (en) 2015-07-15 2015-11-09 Crystallization column and crystallization method
KR1020187004623A KR102061603B1 (ko) 2015-07-15 2015-11-09 결정화 컬럼 및 결정화 방법
RU2018103357A RU2683757C1 (ru) 2015-07-15 2015-11-09 Кристаллизационная колонна и способ проведения кристаллизации
US15/745,050 US10384148B2 (en) 2015-07-15 2015-11-09 Crystallization column and crystallization method
EP15898143.1A EP3323485B1 (en) 2015-07-15 2015-11-09 Crystallization column and crystallization method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510414141.2A CN106345136B (zh) 2015-07-15 2015-07-15 一种用于气—气反应的结晶塔
CN201510414141.2 2015-07-15

Publications (1)

Publication Number Publication Date
WO2017008416A1 true WO2017008416A1 (zh) 2017-01-19

Family

ID=57756762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094102 WO2017008416A1 (zh) 2015-07-15 2015-11-09 结晶塔和结晶方法

Country Status (9)

Country Link
US (1) US10384148B2 (zh)
EP (1) EP3323485B1 (zh)
KR (1) KR102061603B1 (zh)
CN (1) CN106345136B (zh)
DK (1) DK3323485T3 (zh)
RU (1) RU2683757C1 (zh)
SG (1) SG11201800349PA (zh)
TW (1) TWI574729B (zh)
WO (1) WO2017008416A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112090105B (zh) * 2020-09-11 2021-06-22 山东博苑医药化学股份有限公司 一种循环风升华精制碘的方法
CN112569628A (zh) * 2020-12-09 2021-03-30 湖北富奕达电子科技有限公司 一种对内部结晶后颗粒直接输出的磷酸二氢铝的结晶反应釜
CN113842664A (zh) * 2021-11-09 2021-12-28 湖南博溥立材料科技有限公司 一种气液反应用晶粒结晶设备
CN114345257B (zh) * 2022-01-06 2024-05-10 上海安恪企业管理咨询有限公司 用于炼化装置防结盐的捕集装置、系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891191A (en) * 1983-12-05 1990-01-02 Monsanto Company High efficiency column crystallizer
US4891190A (en) * 1983-02-15 1990-01-02 Monsanto Company Incrustation resistive crystallizer employing multifrequency vibrations
CN1205983A (zh) * 1997-07-22 1999-01-27 中国石油化工总公司 一种处理炼油厂酸性污水多段汽提方法
CN202942677U (zh) * 2012-12-04 2013-05-22 瓮福(集团)有限责任公司 一种气相碘结晶器
CN103752032A (zh) * 2014-02-08 2014-04-30 山东科信生物化学有限公司 一种较低熔点物质的结晶塔设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758570A (fr) 1970-11-06 1971-04-16 Lefebvre Simon Procede et appareillage pour la mise en contact de fluides et le transfert de matiere et de chaleur entre ceux-ci.
NL158709B (nl) * 1970-11-13 1978-12-15 Apparaten En Ketelfabriek Akf Kristallisatiekolom.
US4126425A (en) * 1977-06-15 1978-11-21 Hatch Associates Ltd. Gas mixer for sublimation purposes
DE3210117C2 (de) * 1982-03-19 1986-06-12 Georg Dipl.-Ing. 5000 Köln Schreiber Kolonne
NL1016434C2 (nl) * 2000-10-18 2002-04-22 Solutherm B V Inrichting voor het sublimeren of condenseren van een waterhoudend flu´dum in een afgesloten ruimte.
DE10119991A1 (de) * 2001-04-23 2002-10-24 Stephan Pieper Verfahren bzw. Vorrichtung zur Reinigung von Biogas
US6582498B1 (en) * 2001-05-04 2003-06-24 Battelle Memorial Institute Method of separating carbon dioxide from a gas mixture using a fluid dynamic instability
CN1159220C (zh) * 2001-07-02 2004-07-28 中国石油化工股份有限公司 一种净化回收氨气的方法
KR100452407B1 (ko) * 2002-06-24 2004-10-12 변재식 증류탑 트레이
WO2004106649A1 (de) * 2003-05-26 2004-12-09 Logos-Innovationen Gmbh Vorrichtung zur gewinnung von wasser aus atmosphärischer luft
CN100348938C (zh) * 2004-06-27 2007-11-14 中国石化仪征化纤股份有限公司 颗粒状固体物料结晶干燥装置和方法
CN200995120Y (zh) * 2006-12-04 2007-12-26 无锡利保科技发展有限公司 整体玻璃钢氨法烟气脱硫吸收塔
EP2248569A1 (en) * 2009-05-06 2010-11-10 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Wash column
KR100982032B1 (ko) * 2009-12-29 2010-09-13 한국건설기술연구원 왕겨를 이용한 펠렛의 제조방법
CN101829491A (zh) * 2010-05-17 2010-09-15 上海申川环保科技有限公司 含硫烟气净化装置
CN103721553A (zh) * 2014-01-07 2014-04-16 江苏新世纪江南环保股份有限公司 一种利用氨法脱硫技术高效去除酸性气硫化物的方法
CN203777696U (zh) * 2014-02-08 2014-08-20 山东科信生物化学有限公司 一种较低熔点物质的结晶设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4891190A (en) * 1983-02-15 1990-01-02 Monsanto Company Incrustation resistive crystallizer employing multifrequency vibrations
US4891191A (en) * 1983-12-05 1990-01-02 Monsanto Company High efficiency column crystallizer
CN1205983A (zh) * 1997-07-22 1999-01-27 中国石油化工总公司 一种处理炼油厂酸性污水多段汽提方法
CN202942677U (zh) * 2012-12-04 2013-05-22 瓮福(集团)有限责任公司 一种气相碘结晶器
CN103752032A (zh) * 2014-02-08 2014-04-30 山东科信生物化学有限公司 一种较低熔点物质的结晶塔设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3323485A4 *

Also Published As

Publication number Publication date
CN106345136B (zh) 2018-10-12
EP3323485B1 (en) 2020-10-14
RU2683757C1 (ru) 2019-04-01
KR102061603B1 (ko) 2020-02-11
KR20180044271A (ko) 2018-05-02
US20180264377A1 (en) 2018-09-20
SG11201800349PA (en) 2018-02-27
EP3323485A1 (en) 2018-05-23
US10384148B2 (en) 2019-08-20
DK3323485T3 (da) 2020-11-30
TW201701934A (zh) 2017-01-16
TWI574729B (zh) 2017-03-21
EP3323485A4 (en) 2019-01-09
CN106345136A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2017008416A1 (zh) 结晶塔和结晶方法
CN106975375B (zh) 微气泡装置、脱硫设备、氧化以及提升水体含氧量的方法
CN101967114A (zh) 合成联二脲的连续生产方法及装置
CN209828695U (zh) 一种酸洗废液处理用尾气排放装置
CN103055525A (zh) 一种防堵塞并产生清洁二次蒸汽的蒸发沉降室
CN203075681U (zh) 一种防堵塞并产生清洁二次蒸汽的蒸发沉降室
CN207137924U (zh) 一种用于氰化尾渣处理的曝气搅拌装置
CN212818237U (zh) 一种结晶分离器
CN204490537U (zh) 用于高含盐废水的蒸发结晶器
PL117822B1 (en) Apparatus for chlorine dioxide manufacture
CN105056844B (zh) 一种乙炔加氢制乙烯浆态床的气体分布器及其应用
CN209493325U (zh) 用于煤制甲醇含氨尾气生产碳酸氢铵的碳化塔
CN207738464U (zh) 一种除结晶自冲洗型氨冷凝冷却装置
CN204447375U (zh) 一种制备七水硫酸镁的雾化空冷结晶塔
CN111634990A (zh) 一种脱除四钴废水中碳酸根及碳酸氢根的装置
CN218686427U (zh) 一种易于维护的闪蒸除沫器
CN221732911U (zh) 一种浸没式膜组器的改进脉冲曝气装置
CN216935459U (zh) 一种石油化工用尾气处理设备
CN107934987B (zh) 一种除结晶自冲洗型氨冷凝冷却装置
CN112694105B (zh) 高效碳化反应系统
CN220878317U (zh) 一种含硫烟气吸收塔的搅拌结晶装置
CN110282639A (zh) 碳化塔加高圈
RU32706U1 (ru) Установка для жидкофазного одностадийного синтеза изопрена (варианты)
CN219722912U (zh) 一种物料的循环处理装置
CN208050466U (zh) 碳酸氢铵碳化塔塔内结晶物清除装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898143

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15745050

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187004623

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018103357

Country of ref document: RU

Ref document number: 2015898143

Country of ref document: EP