WO2017008229A1 - 多气缸旋转压缩机及具有其的制冷循环装置 - Google Patents
多气缸旋转压缩机及具有其的制冷循环装置 Download PDFInfo
- Publication number
- WO2017008229A1 WO2017008229A1 PCT/CN2015/083898 CN2015083898W WO2017008229A1 WO 2017008229 A1 WO2017008229 A1 WO 2017008229A1 CN 2015083898 W CN2015083898 W CN 2015083898W WO 2017008229 A1 WO2017008229 A1 WO 2017008229A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder
- rotary compressor
- compression mechanism
- crankshaft
- chamber
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/356—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
Definitions
- the present invention relates to the field of refrigeration, and more particularly to a multi-cylinder rotary compressor and a refrigeration cycle apparatus therewith.
- the refrigerant circulation is adjusted only by the rotational speed control, and usually cannot adapt to the need of heavy load change. Therefore, multiple compressors can be used in parallel in the same refrigeration cycle system, which can greatly expand the refrigeration cycle.
- the load capacity range of the system but in a refrigeration cycle device in which multiple compressors are connected in parallel, the mixed fluid of the refrigeration oil and the refrigerant of each compressor enters the pipeline, the condenser and the evaporator in the refrigeration cycle device, and is frozen.
- the flow of the mixed fluid of the oil and the refrigerant is not uniform with the flow of the refrigerant. Therefore, it is difficult to ensure that the amount of oil returned to each compressor is the same as the amount of oil discharged from each compressor, and the compressors in operation may have uneven oil return. It may cause the compressor oil level to drop, which may damage the compressor.
- the present invention aims to solve at least one of the technical problems in the related art to some extent.
- the present invention proposes a multi-cylinder rotary compressor that can achieve a wide range of load regulation by simultaneously rotating the number of compression mechanisms and varying the number of compression mechanisms.
- the present invention also proposes a refrigeration cycle apparatus having the above-described multi-cylinder rotary compressor.
- a multi-cylinder rotary compressor which accommodates a motor portion connected via a crankshaft, a plurality of compression mechanism portions, and two bearings in a sealed casing, each of the compression mechanism portions including a cylinder, a crankshaft, and a roller a slide and a slide, a cylinder chamber for introducing a low-pressure gas is formed in an inner diameter portion of each of the cylinders, and a slide back pressure chamber communicating with the cylinder chambers via a vane groove; each of the crankshafts being accommodated An eccentric portion in the cylinder chamber of the corresponding cylinder; each of the rollers is fitted to an eccentric portion of the corresponding crankshaft, and is eccentrically rotated in a corresponding cylinder chamber as the crankshaft rotates Each of the sliding sheets is movably received in the corresponding sliding groove, and divides the cylinder chamber into two chambers in a state where the front end portion thereof abuts against the peripheral wall of the roller;
- the cylinders are disposed via an
- the multi-cylinder rotary compressor by changing the number of cylinders that are effectively compressed, the amount of refrigerant circulation in one sealed casing can be changed, and only the change in the rotational speed of the existing inverter compressor is changed.
- the amount, the range of variation is wider, and since the multi-cylinder rotary compressor R includes a plurality of cylinder chambers, and the plurality of cylinder chambers can control whether or not effective compression is performed, in a refrigeration cycle device of a single compressor, both the rotational speed and the The number of compression mechanisms that vary the effective compression is varied to achieve a wide range of load regulation.
- crankshafts of the plurality of compression mechanism portions may be combined and separated.
- crankshafts that can be combined and separated are cooperatively connected by grooves and protrusions.
- the cross section of the groove and the protrusion are respectively formed in a "ten" shape.
- the compression mechanism portion is an even number and is divided into a plurality of pairs, and each pair of the compression mechanism portions shares one of the crankshafts.
- the joints of the two crankshafts that can be combined and separated have a gap.
- a refrigeration cycle apparatus includes a multi-cylinder rotary compressor according to the above embodiment of the present invention.
- FIG. 1 is a cross-sectional view showing a multi-cylinder rotary compressor according to an embodiment of the present invention
- FIG. 2 is a schematic view of a crankshaft connecting portion according to an embodiment of the present invention.
- Fig. 3 is a graph showing the efficiency and rotation speed of the compressor of the present invention and the refrigerant circulation amount characteristic of the effective compression mechanism portion.
- R ⁇ Multi-cylinder rotary compressor 2 ⁇ sealed casing, 3 ⁇ exhaust pipe, 4 ⁇ condenser, 5 ⁇ expansion valve, 6 ⁇ evaporator, 7 ⁇ intake pipe, 21 ⁇ - Stator, 22 ⁇ Rotor, 23a to 23b ⁇ Crankshaft, 24a to 24d ⁇ Compression mechanism unit, 25a to 25d ⁇ Cylinder, 26a to 26d ⁇ roller, 27a to 27d ⁇ slide, 28a ⁇ Bearing, 28f ⁇ bearing, 28b ⁇ 28e ⁇ intermediate partition, 29 ⁇ oil pump mechanism, 30a ⁇ 30d ⁇ slide back pressure chamber, 31a ⁇ 31d ⁇ pressure switching tube, 32a ⁇ 32d ⁇ pressure switching valve , 34 ⁇ ⁇ spring.
- first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
- features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
- the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
- the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. Or in one piece; it may be a mechanical connection, or it may be an electrical connection or a communication with each other; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship between two elements. Unless otherwise expressly defined. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
- a multi-cylinder rotary compressor R according to an embodiment of the present invention will be described in detail below with reference to FIGS. 1 to 3, wherein the multi-cylinder rotary compressor R can be applied to a refrigeration cycle apparatus, which can be an air conditioner, an on-board refrigeration air conditioner. Equipment that requires cooling or heating.
- a multi-cylinder rotary compressor R houses a motor portion connected via a crankshaft, a plurality of compression mechanism portions 24a-24d, and two bearings 28a, 28f in a sealed casing 2.
- Each compression mechanism portion includes a cylinder, a crankshaft, a roller and a slide, and an inner diameter portion of each cylinder is formed with a cylinder chamber for introducing low-pressure gas, and a slider back communicating with the cylinder chambers via a vane groove is provided a pressure chamber; each crankshaft has an eccentric portion housed in a cylinder chamber of a corresponding cylinder.
- Each of the rollers is fitted to the eccentric portion of the corresponding crankshaft, and is eccentrically rotated in the corresponding cylinder chamber as the crankshaft rotates.
- Each of the slide pieces is movably accommodated in the corresponding slide groove, and the cylinder chamber is divided into two chambers in a state where the front end portion thereof abuts against the peripheral wall of the roller.
- the plurality of cylinders 25a to 25d are provided via an intermediate partition.
- the two bearings 28a, 28f are respectively provided at the end faces of the plurality of cylinders 25a to 25d, and cover the cylinder chamber together with the intermediate partition.
- the slider back pressure chamber 30a provided in the first cylinder 25a includes a spring 34 that applies an elastic force to the rear end portion of the slider 27a to bring the front end portion of the slider 27a into contact with the peripheral wall of the roller 26a.
- the slide back pressure chambers 30b-30d of the respective cylinders 25b-25d other than the first cylinder 25a are connected to pressure control pipes for switching between high pressure gas and low pressure gas to control whether or not each cylinder chamber is effectively compressed.
- the multi-cylinder rotary compressor R includes a sealed casing 2, an electric motor portion, and a plurality of The mechanism units 24a to 24d are compressed.
- the motor unit and the plurality of compression mechanism portions 24a to 24d are respectively provided in the sealed casing 2, and the motor portion and the plurality of compression mechanism portions 24a to 24d are connected by a crankshaft.
- the motor portion includes a stator 21 and a rotor 22.
- Each compression mechanism portion includes a cylinder, a crankshaft, a roller, and a slider.
- the plurality of cylinders 25a to 25d are arranged in order in the longitudinal direction of the crankshaft.
- Each cylinder has a cylinder chamber and a vane back pressure chamber that communicates with the cylinder chamber through the vane slots.
- An intermediate partition is sandwiched between each adjacent two cylinders, a bearing 28a is placed on the first cylinder 25a, a bearing 28f is placed on the last cylinder 25d, a bearing 28a, a bearing 28f and a plurality of intermediate partitions 28b ⁇
- the 28e cooperates to space a plurality of cylinder chambers.
- crankshaft of the first compression mechanism portion 24a is connected to the rotor 22 to be driven to rotate by the rotor 22, and the crankshafts of the plurality of compression mechanism portions are connected.
- Each of the crankshafts includes an eccentric portion, and the plurality of eccentric portions are respectively housed in the plurality of cylinder chambers. Rollers are also accommodated in each of the cylinder chambers, and each of the roller jackets is eccentrically rotated by the eccentric portion on the corresponding eccentric portion. Reciprocating slides are provided in the eccentric grooves of each cylinder, and the front end portion of each slide can be stopped against the outer peripheral wall of the corresponding roller to divide the corresponding cylinder chamber into two chambers.
- a spring 34 is provided in the slider back pressure chamber 30a of the first cylinder 25a, and the spring 34 applies an elastic force to the rear end portion of the slider 27a in the slider groove of the first cylinder 25a to make the slider 27a The front end portion is always stopped against the outer peripheral wall of the roller 26a.
- the vane back pressure chambers 30b-30d of the remaining cylinders 25b-25d of the first cylinder 25a are respectively switched between a low pressure environment and a high pressure environment, and when the environment of the slide back chamber of one of the cylinders is a high pressure environment, correspondingly There is a pressure difference between the rear end portion and the front end portion of the sliding plate of the cylinder. Under the pressure difference, the front end portion of the corresponding sliding plate stops against the outer peripheral wall of the corresponding roller to divide the cylinder chamber into two. The chamber allows the cylinder to be compressed.
- the multi-cylinder rotary compressor R of the embodiment of the present invention by changing the number of cylinders that are effectively compressed, the amount of refrigerant circulation in one of the sealed casings 2 can be changed, and only the rotational speed change band of the existing inverter compressor The amount of change, the range of variation is wider, and since the multi-cylinder rotary compressor R includes a plurality of cylinder chambers, and the plurality of cylinder chambers can control whether or not effective compression is performed, in the refrigeration cycle device of a single compressor, simultaneously A wide range of load regulation is achieved by the number of compression mechanisms that vary in rotational speed and effective compression.
- the crankshafts of the plurality of compression mechanism portions 24a-24d can be combined and separated. That is, the crankshafts of the plurality of compression mechanism portions 24a to 24d are detachably, thereby facilitating the forming of the multi-cylinder rotary compressor R while satisfying the assembly of the multi-cylinder rotary compressor R to the cylinder, the crankshaft and the roller. Clearance requirements.
- the compression mechanism portion is an even number and is divided into a plurality of pairs, and each pair of compression mechanism portions shares a crankshaft. That is to say, the crankshaft of each pair of compression mechanism portions is not detachable.
- the compression mechanism portion is four, the first compression mechanism portion 24a and the second compression mechanism portion 24b share one crankshaft, and the third compression mechanism portion 24c and the fourth compression mechanism portion 24d share one. Crankshaft.
- the two crankshafts that can be combined and separated are cooperatively connected by grooves and projections. This facilitates the assembly of the crankshaft. Further optionally, the cross sections of the grooves and the projections are each formed in a "ten" shape. Thereby, the connection strength between the connected crankshafts can be improved.
- a refrigeration cycle apparatus includes a multi-cylinder rotary compressor R according to the above embodiment of the present invention.
- a multi-cylinder rotary compressor R according to an embodiment of the present invention will be described in detail below with reference to Figs.
- FIG. 1 A schematic sectional structural view of a multi-cylinder rotary compressor R and a refrigeration cycle configuration of a refrigeration cycle apparatus including the multi-cylinder rotary compressor R according to an embodiment of the present invention will be described with reference to FIG.
- the upper portion of the sealed casing 2 is provided with a motor portion composed of the stator 21 and the rotor 22, and the lower portion of the sealed casing 2 is provided with a compression mechanism portion, the motor portion and the compression portion.
- the mechanism portion is connected to the crankshaft 23b via the crankshaft 23a.
- the multi-cylinder rotary compressor R according to the embodiment of the present invention is connected in order from the exhaust pipe 3, the condenser 4, the expansion valve 5, the evaporator 6, and the intake pipe 7, and constitutes a refrigeration cycle device, corresponding to a large load of the refrigeration cycle system.
- the capacity range changes.
- the multi-cylinder rotary compressor R has four compression mechanism portions 24a to 24d, and includes a plurality of cylinders 25a to 25d which are disposed via the intermediate partition plates 28b to 28e, and The respective inner diameter portions are formed with cylinder chambers for introducing low-pressure gas, and are provided with a slider back pressure chamber communicating with the cylinder chambers via the vane slots; bearings 28a, 28f, the bearings 28a, 28f are provided to the plurality of cylinders 25a
- the end faces of ⁇ 25d cover the cylinder chamber together with the intermediate partition plates 28b to 28e, and the crankshafts 23a and 23b having eccentric portions housed in the cylinder chambers of the plurality of cylinders; the rollers 26a to 26d, the rollers
- the eccentric portion of the crankshaft 23a and the crankshaft 23b is fitted, and is eccentrically rotated in the cylinder chamber as the crankshaft 23a and the crankshaft 23b rotate; and the sliders 27a to 27d are freely
- the cylinder chamber is housed in the slide groove, and the cylinder chamber is divided into two chambers in a state where the front end portion thereof abuts against the peripheral wall of the rollers 26a to 26d;
- the slide back pressure chamber provided in the first cylinder chamber includes Applying an elastic force to the rear end portion of the slider 27a to make the front end of the slider 27a
- a spring in contact with the peripheral wall 26a of the roller 34, the compression mechanism at the lower bearing portion 28f of the oil pump means 29 is supplied to the refrigerating machine oil used in lubricating the through hole 23b of the crankshaft.
- the slider back pressure chamber 30a of the cylinder 25a communicates with the inside of the sealed casing 2.
- the vane back pressure chambers 30b to 30d of the cylinders 25b to 25d are respectively switched from the external connection of the compressor R to the high pressure gas and the low pressure gas through the pressure switching tubes 31b to 31d. The pressure to supply.
- the pressure switching tube 31b branches and is connected to the pressure switching valve 32a, and is connected to the line 33a that communicates with the pressure switching valve 32b.
- the pressure switching tube 31c is branched and connected to the pressure switching valve 32b, and is connected to the line 33b that communicates with the pressure switching valve 32c.
- the pressure switching tube 31d is branched and connected to the pressure switching valve 32c, and is connected to the line 33c that communicates with the pressure switching valve 32d.
- the pressure switching valve 32a is connected to the line 33a and a line communicating with the high pressure line of the refrigeration cycle, and the line 33a is in a high pressure state when it is opened.
- the pressure switching valve 32d is connected to the line 33c and the low pressure line of the refrigeration cycle, and when the line 33c is opened, the line 33c is in a low pressure state.
- a schematic diagram of a connecting portion of a crankshaft 23a and a crankshaft 23b of a multi-cylinder rotary compressor R according to an embodiment of the present invention will be described with reference to FIG.
- a cross-shaped convex portion 40 is formed at the upper end of the crankshaft 23b, and a lower end of the crankshaft 23a is formed with a concave portion 41 that is fitted into the convex portion 40.
- the size of the concave portion 41 is larger than the size of the convex portion 40, and the middle interval of the compression mechanism portion is ensured.
- the gap between the plate 28c and the intermediate partition 28d of the compression mechanism portion is greater than the maximum assembly tolerance.
- the compressor efficiency and rotational speed variation curve and the effective refrigerant circulation amount characteristic of the compression mechanism portion according to the present invention will be described with reference to FIG. First, the minimum amount of refrigerant circulation, the pressure switching valve 32a is closed, and the pressure switching valves 32b, 32c, 32d are opened.
- the compression mechanism portion 24a acts on the spring wall 34 to bring the front end portion of the slider 27a into contact with the peripheral wall of the roller 26a, and the cylinder chamber of the compression mechanism portion 24a is normally and effectively compressed.
- the compression mechanism portion 24a is effectively compressed, the pressure in the sealed casing 2 rises, and the pressure on the suction pipe 7 side decreases.
- the pressure of the vane back pressure chamber 30a becomes the pressure in the hermetic casing (hereinafter referred to as high pressure), and the front end portion of the vane 27a and the peripheral wall of the roller 26a. Close contact.
- the pressure switching valve 32a is closed, the pressure switching valves 32b, 32c, and 32d are opened, and the pipes 33a, 33b, and 33c all become the pressure on the suction pipe 7 side (hereinafter referred to as a low pressure).
- the slider back pressure chambers 30b, 30c, and 30d are low pressure, and the radial forces of the sliders 27b, 27c, and 27d along the slider grooves are zero, and are accommodated in the slider grooves. Since the cylinders 25b, 25c, and 25d are not divided into the compression portion and the suction portion, the compression operation will not be performed. Therefore, as shown in Fig. 3, only the cylinder 25a of the compression mechanism portion 24a is operated, and the refrigerant circulation amount Qr1 in the operation of r1 rps is operated.
- the refrigerant circulation amount is ensured by raising the number of revolutions to r2 in the state of the above-described pressure switching valve.
- the pressure switching valve 32b is closed, the pressure switching valves 32a, 32c, and 32d are opened, and the compressor rotation speed is set to r3.
- the pressure switching valve 32a is opened, the vane back pressure chamber 30b becomes high pressure through the line 33a, the front end portion of the vane 27b is in close contact with the peripheral wall of the roller 26b, and the cylinder chamber of the compression mechanism portion 24b is normally effectively compressed.
- the pressure switching valve 32b Since the pressure switching valve 32b is closed, the pipes 33b, 33c and the vane back pressure chambers 30c, 30d are maintained at a low pressure, and the cylinder chambers of the compression mechanism portions 24c, 24d are not subjected to the compression operation. Therefore, the cylinders 25a and 25b of the compression mechanism units 24a and 24b are operated. Therefore, as shown in Fig. 3, the cylinders 25a and 25b of the compression mechanism units 24a and 24b are operated in the state of the refrigerant circulation amount Qr2 under the rotation of the r3rps.
- the refrigerant circulation amount is ensured by raising the number of revolutions to r4 in the state of the above-described pressure switching valve.
- the pressure switching valve 32c is closed, the pressure switching valves 32a, 32b, and 32d are opened, and the compressor rotation speed is set to r5.
- the slider back pressure chambers 30b, 30c become high pressure through the pipes 33a, 33b, and the front end portions of the sliders 27b, 27c are in close contact with the peripheral walls of the rollers 26b, 26c, and the compression mechanism portion
- the cylinder chambers of 24b and 24c are normally effectively compressed.
- the pressure switching valve 32c Since the pressure switching valve 32c is closed, the line 33c and the vane back pressure chamber 30d are maintained at a low pressure, and the cylinder chamber of the compression mechanism portion 24d is not subjected to the compression operation. Therefore, the cylinders 25a to 25c of the compression mechanism units 24a to 24c are operated. Therefore, as shown in Fig. 3, the cylinders 25a to 25c of the compression mechanism units 24a to 24c are operated in the state of the refrigerant circulation amount Qr3 under the rotation of r5rps.
- the refrigerant circulation amount is ensured by raising the number of revolutions to r6 in the state of the above-described pressure switching valve.
- the pressure switching valve 32d is closed, the pressure switching valves 32a, 32b, and 32c are opened, and the compressor rotation speed is set to r7. Since the pressure switching valves 32a, 32b, 32c are opened, the pressure switching valve 32d is closed, and the slide back pressure chambers 30b, 30c, 30d become high pressure through the pipes 33a, 33b, 33c, and the front end portions of the slide pieces 27b to 27d are rolled.
- the peripheral walls of the sub-stages 26b to 26d are in close contact with each other, and the cylinder chambers of the full compression mechanism portions 24a to 24d can be effectively compressed normally. Therefore, the cylinders 25a to 25d which are the compression mechanism units 24a to 24d are operated. Therefore, as shown in Fig. 3, the cylinders 25a to 25d of the compression mechanism units 24a to 24d are operated in the state of the refrigerant circulation amount qr4 under the rotation of r8rps.
- the refrigerant circulation amount is from Qr4 to the maximum refrigerant circulation amount Qr5
- the refrigerant circulation amount is ensured by raising the rotation speed to the maximum rotation speed r8 in the state of the above-described pressure switching valve.
- the amount of refrigerant circulation in a sealed casing can be changed from Qr1 to Qr5, which is a change from the rotational speed change of the ordinary inverter compressor only. Quantity, the range of variation is wider.
- the efficiency can be changed by the change of the compressor speed to ensure stable and efficient from 30rps to 90rps, but the compressor efficiency drops significantly when the compressor speed is lower than 20rps or higher than 100rps. .
- the multi-cylinder rotary compressor of the embodiment of the present invention almost all of the refrigerant circulation amount can be changed from 30 rps to 90 rps, and the high-efficiency operation in actual use can be realized.
- the assembly of the cylinder, the crankshaft, and the roller in the rotary compressor is strict in the management of the required clearance, and it is impossible to assemble a plurality of compression mechanism portions through one crankshaft.
- the two existing compression mechanism portions are assembled by one crankshaft, and as shown in FIG. 2, the connection portion of the crankshaft is provided with a gap, and the absorption axis shift is smooth. Pass the rotational torque.
- the multi-cylinder rotary compressor according to the embodiment of the present invention is a rotary compressor having four compression mechanism portions, and more compression mechanism portions can be employed in the same configuration.
- the first feature may be “on” or “under” the second feature unless otherwise specifically stated and defined.
- the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediate medium.
- the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
- the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
一种多气缸旋转压缩机(R)及具有其的制冷循环装置,多气缸旋转压缩机(R)包括电动机部、多个压缩机构部(24a~24d)和两个轴承(28a、28f),每个压缩机构部(24a~24d)包括一个气缸(25a~25d)、曲轴(23a~23b)、滚子(26a~26d)和滑片(27a~27d),设于第一个气缸(25a)的滑片背压室(30a)包括对滑片(27a)的后端部施加弹性力以使滑片(27a)的前端部与滚子(26a)的周壁接触的弹簧(34);除第一个气缸(25a)外的各气缸(25b~25d)的滑片背压室(30b~30d)连接有切换高压气体与低压气体来进行供应的压力控制用配管,以控制各气缸室是否进行有效压缩。
Description
本发明涉及制冷领域,尤其是涉及一种多气缸旋转压缩机及具有其的制冷循环装置。
在单台压缩机的制冷循环装置中,仅通过转速控制来调节冷媒循环量,通常不能适应负荷剧烈变换的需要,因此将多台压缩机并联使用在同一制冷循环系统中,可以大大拓宽制冷循环系统的负荷容量范围,但是在多台压缩机并联的制冷循环装置中,各台压缩机的冷冻机油与冷媒的混合流体会一同进入制冷循环装置中的管路、冷凝器和蒸发器,而冷冻机油和冷媒的混合流体与冷媒的流动情况并不一致,因此很难保证返回各台压缩机的油量与各台压缩机排出的油量一致,运转中的各台压缩机会出现回油不均匀,可能导致压缩机油面下降,从而损坏压缩机。
为了保证各台压缩机回油均匀,通常需要在制冷循环装置中增加油分离器、电磁阀和油量平衡回路等,但构成和控制比较复杂,成本会大幅增加。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明提出一种多气缸旋转压缩机,可同时通过转速和变化有效压缩作用的压缩机构部的个数来实现大范围的负荷调节。
本发明还提出一种具有上述多气缸旋转压缩机的制冷循环装置。
根据本发明实施例的多气缸旋转压缩机,其在密封壳体内收容了经由曲轴连接的电动机部、多个压缩机构部和两个轴承,每个所述压缩机构部包括一个气缸、曲轴、滚子和滑片,每个所述气缸的内径部形成有供低压气体导入的气缸室,并且设有经由滑片槽与这些气缸室连通的滑片背压室;每个所述曲轴具有被收容在相应的所述气缸的所述气缸室内的偏心部;每个所述滚子与相应的所述曲轴的偏心部嵌合,随着所述曲轴的旋转而在相应的所述气缸室内偏心旋转;每个所述滑片可被自由移动地收容在相应的所述滑片槽中,并在其前端部与所述滚子周壁抵接的状态下将所述气缸室分成两个室;多个所述气缸隔着中间隔板设置;所述两个轴承分别设于所述多个气缸的端面,与所述中间隔板一起覆盖所述气缸室;设于第一个气缸的所述滑片背压室包括对所述滑片的后端部施加弹性力以使所述滑片的前端部与所述滚子的周壁接触的弹簧;除所述第一个气缸外的各气缸的所述滑片背压
室连接有切换高压气体与低压气体来进行供应的压力控制用配管,以控制所述各气缸室是否进行有效压缩。
根据本发明实施例的多气缸旋转压缩机,通过改变有效进行压缩的气缸的个数,在一个密封壳体内的冷媒循环量可以进行变更,与现有的变频压缩机仅转速变化带来的变化量,变化范围更宽,同时由于多气缸旋转压缩机R包括多个气缸室,且多个气缸室可控制是否进行有效压缩,因此在单台压缩机的制冷循环装置中,可同时通过转速和变化有效压缩作用的压缩机构部的个数来实现大范围的负荷调节。
在本发明的一些实施例中,所述多个压缩机构部的所述曲轴可进行组合、分离。
可选地,可进行组合、分离的两个所述曲轴之间通过凹槽和凸起配合以固定连接。
进一步可选地,所述凹槽和所述凸起的横截面分别形成为“十”形状。
在本发明的具体实施例中,所述压缩机构部为偶数个且分成多对,每对所述压缩机构部共用一个所述曲轴。
优选地,可进行组合、分离的两个所述曲轴的连接部具有间隙。
根据本发明实施例的制冷循环装置,包括根据本发明上述实施例的多气缸旋转压缩机。
图1为本发明实施例的多气缸旋转压缩机的截面图;
图2为本发明实施例的曲轴连接部示意图;
图3为本发明的压缩机效率和转速变化曲线、有效的压缩机构部的冷媒循环量特性。
附图标记:
R··多气缸旋转压缩机、2··密封壳体、3··排气管、4··冷凝器、5··膨胀阀、6··蒸发器、7··吸气管、21··定子、22··转子、23a~23b··曲轴、24a~24d··压缩机构部、25a~25d··气缸、26a~26d··滚子、27a~27d··滑片、28a··轴承、28f··轴承、28b~28e··中间隔板、29··油泵机构、30a~30d··滑片背压室、31a~31d··压力切换管、32a~32d··压力切换阀、34··弹簧。
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、
“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图3详细描述根据本发明实施例的多气缸旋转压缩机R,其中该多气缸旋转压缩机R可以应用在制冷循环装置中,上述制冷循环装置可以为空调器、车载制冷空调等需要制冷或制热的装置。
如图1所示,根据本发明实施例的多气缸旋转压缩机R,其在密封壳体2内收容了经由曲轴连接的电动机部、多个压缩机构部24a-24d和两个轴承28a、28f,每个压缩机构部包括一个气缸、曲轴、滚子和滑片,每个气缸的内径部形成有供低压气体导入的气缸室,并且设有经由滑片槽与这些气缸室连通的滑片背压室;每个曲轴具有被收容在相应的气缸的气缸室内的偏心部。
每个滚子与相应的曲轴的偏心部嵌合,随着曲轴的旋转而在相应的气缸室内偏心旋转。
每个滑片可被自由移动地收容在相应的滑片槽中,并在其前端部与滚子周壁抵接的状态下将气缸室分成两个室。
多个气缸25a~25d隔着中间隔板设置。两个轴承28a、28f分别设于多个气缸25a~25d的端面,与中间隔板一起覆盖气缸室。
设于第一个气缸25a的滑片背压室30a包括对滑片27a的后端部施加弹性力以使滑片27a的前端部与滚子26a的周壁接触的弹簧34。
除第一个气缸25a外的各气缸25b-25d的滑片背压室30b-30d连接有切换高压气体与低压气体来进行供应的压力控制用配管,以控制各气缸室是否进行有效压缩。
换言之,根据本发明实施例的多气缸旋转压缩机R,包括密封壳体2、电动机部和多个
压缩机构部24a~24d。其中电动机部和多个压缩机构部24a~24d分别设在密封壳体2内,且电动机部与多个压缩机构部24a~24d通过曲轴连接。电机部包括定子21和转子22。
每个压缩机构部包括一个气缸、曲轴、滚子和滑片。多个气缸25a~25d在曲轴的长度方向上依次排布设置。每个气缸具有气缸室和通过滑片槽与气缸室连通的滑片背压室。每相邻的两个气缸之间夹持有中间隔板,轴承28a放置在第一个气缸25a上,轴承28f放置在最后一个气缸25d上,轴承28a、轴承28f和多个中间隔板28b~28e配合以间隔开多个气缸室。
第一个压缩机构部24a的曲轴的上端与转子22相连以由转子22驱动转动,多个压缩机构部的曲轴相连。每个曲轴包括偏心部,多个偏心部分别收纳在多个气缸室内。每个气缸室内还收纳有滚子,每个滚子外套在相应的偏心部上以由偏心部驱动偏心转动。每个气缸的偏心槽内设有可往复运动的滑片,每个滑片的前端部可止抵在相应的滚子的外周壁上以将相应的气缸室分割成两个室。
第一个气缸25a的滑片背压室30a内设有弹簧34,该弹簧34对第一个气缸25a的滑片槽内的滑片27a的后端部施加弹性力以使该滑片27a的前端部始终止抵在滚子26a的外周壁上。
除去第一个气缸25a的其余气缸25b-25d的滑片背压室30b-30d分别在低压环境和高压环境之间切换,当其中一个气缸的滑片背压室内的环境为高压环境时,相应的气缸的滑片的后端部和前端部之间存在压力差,在压力差的作用下,相应的滑片的前端部止抵在相应的滚子的外周壁上以将气缸室分割成两个室,从而该气缸可以进行压缩工作。
因此,通过控制除去第一个气缸25a的其余气缸25b-25d的处于高压环境的滑片背压室的个数,可以控制进行压缩的气缸的个数,从而实现多气缸旋转式压缩机的压缩量的调整。
根据本发明实施例的多气缸旋转压缩机R,通过改变有效进行压缩的气缸的个数,在一个密封壳体2内的冷媒循环量可以进行变更,与现有的变频压缩机仅转速变化带来的变化量,变化范围更宽,同时由于多气缸旋转压缩机R包括多个气缸室,且多个气缸室可控制是否进行有效压缩,因此在单台压缩机的制冷循环装置中,可同时通过转速和变化有效压缩作用的压缩机构部的个数来实现大范围的负荷调节。
在本发明的一些实施例中,多个压缩机构部24a~24d的曲轴可进行组合、分离。也就是说,多个压缩机构部24a~24d的曲轴是可拆卸地,从而便于多气缸旋转压缩机R的加工成型,同时满足多气缸旋转压缩机R对气缸、曲轴和滚子之间的装配间隙的要求。在本发明的具体示例中,压缩机构部为偶数个且分成多对,每对压缩机构部共用一个曲轴,
也就是说,每对压缩机构部的曲轴是不可拆卸的。例如如图1所示,压缩机构部为四个,第一个压缩机构部24a和第二个压缩机构部24b共用一个曲轴,第三个压缩机构部24c和第四个压缩机构部24d共用一个曲轴。
可选地,如图2所示,可进行组合、分离的两个曲轴之间通过凹槽和凸起配合以固定连接。从而便于曲轴的装配。进一步可选地,凹槽和凸起的横截面分别形成为“十”形状。从而可以提高连接的曲轴之间的连接强度。
优选地,可进行组合、分离的两个曲轴的连接部之间具有间隙。从而可以吸收轴心的偏移,可顺畅传递旋转扭矩。
根据本发明实施例的制冷循环装置,包括根据本发明上述实施例的多气缸旋转压缩机R。
下面参考图1-图3对根据本发明具体实施例的多气缸旋转压缩机R进行详细描述。
参见图1描述根据本发明实施例的多气缸旋转压缩机R的示意截面结构图和包括该多气缸旋转压缩机R的制冷循环装置的制冷循环结构示意图。
根据本发明实施例的多气缸旋转压缩机R:密封壳体2内的上部设有由定子21与转子22构成的电动机部,密封壳体2内的下部设有压缩机构部,电动机部与压缩机构部通过曲轴23a和曲轴23b连接。
根据本发明实施例的多气缸旋转压缩机R按从排气管3、冷凝器4、膨胀阀5、蒸发器6、吸气管7的顺序连接构成制冷循环装置,对应制冷循环系统的大负荷容量范围变化。
根据本发明实施例的多气缸旋转压缩机R有4个压缩机构部24a~24d,包括:多个气缸25a~25d,该多个气缸25a~25d隔着中间隔板28b~28e设置,并在各自的内径部形成有供低压气体导入的气缸室,并且设有经由滑片槽与这些气缸室连通的滑片背压室;轴承28a、28f,该轴承28a、28f设于该多个气缸25a~25d的端面,与中间隔板28b~28e一起覆盖气缸室;曲轴23a,23b,该曲轴具有被收容在多个气缸各自的所述气缸室内的偏心部;滚子26a~26d,该滚子与曲轴23a和曲轴23b的偏心部嵌合,随着所述曲轴23a和曲轴23b的旋转而在所述气缸室内分别偏心旋转;滑片27a~27d,该滑片27a~27d可被自由移动的收容在所述滑片槽中,并在其前端部与滚子26a~26d周壁抵接的状态下将所述气缸室分成两个室;设于第一个气缸室的滑片背压室包括对滑片27a的后端部施加弹性力以使滑片27a的前端部与滚子26a的周壁接触的弹簧34,压缩机构部的下轴承28f的下部有油泵机构29向贯通曲轴23b的孔供给润滑用的冷冻机油。
气缸25a的滑片背压室30a与密封壳体2内连通。气缸25b~25d的滑片背压室30b~30d分别通过压力切换管31b~31d从压缩机R外部连接切换高压气体与低压气体来
进行供应的压力。
压力切换管31b分支,一边与压力切换阀32a连接,一边与和压力切换阀32b连通的管路33a连接。压力切换管31c分支,一边与压力切换阀32b连接,一边与和压力切换阀32c连通的管路33b连接。所述压力切换管31d分支,一边与压力切换阀32c连接,一边与和压力切换阀32d连通的管路33c连接。
压力切换阀32a与管路33a及与制冷循环的高压管路连通的管路相连接,打开时管路33a为高压状态。压力切换阀32d与管路33c及与制冷循环的低压管路相连接,打开时管路33c为低压状态。
参见图2描述根据本发明实施例的多气缸旋转压缩机R的曲轴23a和曲轴23b连接部示意图。在曲轴23b的上端形成了十字形状的凸起部40,曲轴23a的下端形成了与凸起部40相嵌的凹部41,凹部41尺寸大于凸起部40的尺寸,确保压缩机构部的中间隔板28c与压缩机构部的中间隔板28d的最大装配公差以上的间隙。
参见图3描述根据本发明的压缩机效率和转速变化曲线、有效的压缩机构部的冷媒循环量特性。首先是最少冷媒循环量,关闭压力切换阀32a,打开压力切换阀32b、32c、32d。若压缩机以最小转速r1旋转,压缩机构部24a内因有弹簧34的弹性力作用,使滑片27a的前端部与滚子26a的周壁接触,压缩机构部24a的气缸室正常进行有效压缩。压缩机构部24a进行有效压缩,则密闭壳体2内的压力上升,通过吸入管7侧的压力下降。因滑片背压室30a是与密闭壳体2内连通的,则滑片背压室30a压力变成密闭壳体内的压力(以下称高压),滑片27a的前端部与滚子26a的周壁紧紧接触。关闭压力切换阀32a,因压力切换阀32b、32c、32d打开,管路33a、33b、33c均变成吸入管7侧的压力(以下称低压)。滑片背压室30b、30c、30d为低压,滑片27b、27c、27d沿滑片槽的径向力为零,均收纳在滑片槽内。因气缸25b、25c、25d未被分割成压缩部与吸入部,将不进行压缩工作。因此按图3所示,仅压缩机构部24a的气缸25a运转,按r1rps运转下的冷媒循环量Qr1的状态运转。
当冷媒循环量从Qr1至Qr2时,在上述压力切换阀的状态下,通过将转速提升至r2来确保冷媒循环量。冷媒循环量为Qr2时,关闭压力切换阀32b、打开压力切换阀32a、32c、32d,压缩机转速设为r3。通过打开压力切换阀32a,通过管路33a,滑片背压室30b变为高压,滑片27b的前端部与滚子26b的周壁紧紧接触,压缩机构部24b的气缸室正常进行有效压缩。因压力切换阀32b被关闭,管路33b、33c及滑片背压室30c、30d维持低压,压缩机构部24c、24d的气缸室将不进行压缩工作。因此变成压缩机构部24a、24b的气缸25a、25b运转,因此按图3所示,压缩机构部24a、24b的气缸25a、25b运转的r3rps旋转下的冷媒循环量Qr2的状态运转。
当冷媒循环量从Qr2至Qr3,在上述压力切换阀的状态下,通过将转速提升至r4来确保冷媒循环量。当冷媒循环量变成Qr3,则关闭压力切换阀32c,打开压力切换阀32a、32b、32d,将压缩机转速设为r5。通过打开压力切换阀32a、32b,滑片背压室30b、30c通过管路33a、33b变成高压,滑片27b、27c的前端部与滚子26b、26c的周壁紧紧接触,压缩机构部24b、24c的气缸室正常进行有效压缩。因压力切换阀32c被关闭,管路33c及滑片背压室30d维持低压,压缩机构部24d的气缸室将不进行压缩工作。因此变成压缩机构部24a~24c的气缸25a~25c运转,因此按图3所示,压缩机构部24a~c的气缸25a~c运转的r5rps旋转下的冷媒循环量Qr3的状态运转。
当冷媒循环量从Qr3至Qr4,在上述压力切换阀的状态下,通过将转速提升至r6确保冷媒循环量。当冷媒循环量变成Qr4,则关闭压力切换阀32d,打开压力切换阀32a、32b、32c,压缩机转速设为r7。因压力切换阀32a、32b,32c打开,压力切换阀32d关闭,通过管路33a、33b、33c,滑片背压室30b、30c、30d变为高压,滑片27b~27d的前端部与滚子26b~26d的周壁紧紧接触,可实现全压缩机构部24a~24d的气缸室正常进行有效压缩。因此变成压缩机构部24a~24d的气缸25a~25d运转,因此按图3所示,压缩机构部24a~24d的气缸25a~25d运转的r8rps旋转下的冷媒循环量qr4的状态运转。
当冷媒循环量从Qr4至最大冷媒循环量Qr5,在上述压力切换阀的状态下,通过将转速提升至最大转速r8确保冷媒循环量。
根据本发明实施例的多气缸旋转压缩机,通过改变有效进行压缩的压缩机构部,在一个密封壳体内的冷媒循环量可从Qr1至Qr5变更,较普通变频压缩机仅转速变化带来的变化量,变化范围更宽。
普通变频压缩机上,如图3所示,通过压缩机转速变化可改变效率,确保从30rps至90rps区间内稳定高效,但是当压缩机转速低于20rps时或高于100rps时,压缩机效率明显下降。根据本发明实施例的多气缸旋转压缩机,几乎所有冷媒循环量变化的情况均能实现从30rps至90rps间转速运转,能实现实际使用时的高效运转。
旋转压缩机内的气缸、曲轴、滚子的装配,对要求间隙管理严格,不可能将多个压缩机构部通过一个曲轴进行装配。根据本发明实施例的多气缸旋转压缩机,将已有的2个压缩机构部通过1个曲轴进行装配,如图2所示,曲轴的连接部设置间隙,吸收轴心的偏移,可顺畅传递旋转扭矩。
根据本发明实施例的多气缸旋转压缩机为有4个压缩机构部的旋转压缩机,按同样的构成,可采用更多的压缩机构部。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可
以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (7)
- 一种多气缸旋转压缩机,其在密封壳体内收容了经由曲轴连接的电动机部、多个压缩机构部和两个轴承,其特征在于,每个所述压缩机构部包括一个气缸、曲轴、滚子和滑片,每个所述气缸的内径部形成有供低压气体导入的气缸室,并且设有经由滑片槽与这些气缸室连通的滑片背压室;每个所述曲轴具有被收容在相应的所述气缸的所述气缸室内的偏心部;每个所述滚子与相应的所述曲轴的偏心部嵌合,随着所述曲轴的旋转而在相应的所述气缸室内偏心旋转;每个所述滑片可被自由移动地收容在相应的所述滑片槽中,并在其前端部与所述滚子周壁抵接的状态下将所述气缸室分成两个室;多个所述气缸隔着中间隔板设置;所述两个轴承分别设于所述多个气缸的端面,与所述中间隔板一起覆盖所述气缸室;设于第一个气缸的所述滑片背压室包括对所述滑片的后端部施加弹性力以使所述滑片的前端部与所述滚子的周壁接触的弹簧;除所述第一个气缸外的各气缸的所述滑片背压室连接有切换高压气体与低压气体来进行供应的压力控制用配管,以控制所述各气缸室是否进行有效压缩。
- 根据权利要求1所述的多气缸旋转压缩机,其特征在于,所述多个压缩机构部的所述曲轴可进行组合、分离。
- 根据权利要求2所述的多气缸旋转压缩机,可进行组合、分离的两个所述曲轴之间通过凹槽和凸起配合以固定连接。
- 根据权利要求3所述的多气缸旋转压缩机,其特征在于,所述凹槽和所述凸起的横截面分别形成为“十”形状。
- 根据权利要求2所述的多气缸旋转压缩机,其特征在于,所述压缩机构部为偶数个且分成多对,每对所述压缩机构部共用一个所述曲轴。
- 根据权利要求2所述的多气缸旋转压缩机,其特征在于,可进行组合、分离的两个所述曲轴的连接部具有间隙。
- 一种制冷循环装置,其特征在于,包括根据权利要求1-6中任一项所述的多气缸旋转压缩机。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/083898 WO2017008229A1 (zh) | 2015-07-13 | 2015-07-13 | 多气缸旋转压缩机及具有其的制冷循环装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/083898 WO2017008229A1 (zh) | 2015-07-13 | 2015-07-13 | 多气缸旋转压缩机及具有其的制冷循环装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017008229A1 true WO2017008229A1 (zh) | 2017-01-19 |
Family
ID=57757826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/083898 WO2017008229A1 (zh) | 2015-07-13 | 2015-07-13 | 多气缸旋转压缩机及具有其的制冷循环装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2017008229A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112196795A (zh) * | 2020-09-29 | 2021-01-08 | 广东美芝制冷设备有限公司 | 旋转压缩机和制冷循环系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4780067A (en) * | 1986-09-30 | 1988-10-25 | Mitsubishi Denki Kabushiki Kaisha | Multicylinder rotary compressor |
CN1670374A (zh) * | 2004-03-15 | 2005-09-21 | 三洋电机株式会社 | 多气缸旋转压缩机和具备它的压缩系统以及制冷装置 |
EP1813814A2 (en) * | 2004-07-08 | 2007-08-01 | Sanyo Electric Co., Ltd. | Compression system |
US20100092324A1 (en) * | 2006-12-27 | 2010-04-15 | Sang-Myung Byun | Variable capacity rotary compressor |
JP2011064183A (ja) * | 2009-09-18 | 2011-03-31 | Toshiba Carrier Corp | 多気筒回転式圧縮機 |
CN104963864A (zh) * | 2015-07-13 | 2015-10-07 | 广东美芝制冷设备有限公司 | 多气缸旋转压缩机及具有其的制冷循环装置 |
CN204783668U (zh) * | 2015-07-13 | 2015-11-18 | 广东美芝制冷设备有限公司 | 多气缸旋转压缩机及具有其的制冷循环装置 |
-
2015
- 2015-07-13 WO PCT/CN2015/083898 patent/WO2017008229A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4780067A (en) * | 1986-09-30 | 1988-10-25 | Mitsubishi Denki Kabushiki Kaisha | Multicylinder rotary compressor |
CN1670374A (zh) * | 2004-03-15 | 2005-09-21 | 三洋电机株式会社 | 多气缸旋转压缩机和具备它的压缩系统以及制冷装置 |
EP1813814A2 (en) * | 2004-07-08 | 2007-08-01 | Sanyo Electric Co., Ltd. | Compression system |
US20100092324A1 (en) * | 2006-12-27 | 2010-04-15 | Sang-Myung Byun | Variable capacity rotary compressor |
JP2011064183A (ja) * | 2009-09-18 | 2011-03-31 | Toshiba Carrier Corp | 多気筒回転式圧縮機 |
CN104963864A (zh) * | 2015-07-13 | 2015-10-07 | 广东美芝制冷设备有限公司 | 多气缸旋转压缩机及具有其的制冷循环装置 |
CN204783668U (zh) * | 2015-07-13 | 2015-11-18 | 广东美芝制冷设备有限公司 | 多气缸旋转压缩机及具有其的制冷循环装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112196795A (zh) * | 2020-09-29 | 2021-01-08 | 广东美芝制冷设备有限公司 | 旋转压缩机和制冷循环系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8419395B2 (en) | Compressor and refrigeration apparatus | |
EP3628871B1 (en) | Compressor, air conditioner, and method for assembling compressor | |
US8353693B2 (en) | Fluid machine | |
CN101008389A (zh) | 密封型旋转式压缩机及具有密封型旋转式压缩机的制冷循环装置 | |
CN104963864A (zh) | 多气缸旋转压缩机及具有其的制冷循环装置 | |
US10451067B2 (en) | Rotary compressor and compression unit thereof, and air conditioner | |
JP6568841B2 (ja) | 密閉形回転圧縮機及び冷凍空調装置 | |
CN105143676B (zh) | 多气缸旋转压缩机及具有该多气缸旋转压缩机的蒸气压缩式冷冻循环装置 | |
KR20170013345A (ko) | 스핀들 콤프레서를 갖는 압축 냉동기 | |
JP5338314B2 (ja) | 圧縮機および冷凍装置 | |
WO2017132824A1 (zh) | 变容式压缩机和具有其的制冷装置 | |
US12055325B2 (en) | Rotary compressor and home appliance including the same | |
JP5515289B2 (ja) | 冷凍装置 | |
WO2017008229A1 (zh) | 多气缸旋转压缩机及具有其的制冷循环装置 | |
KR20040097822A (ko) | 로터리 압축기 | |
KR101587174B1 (ko) | 로터리 압축기 | |
WO2016179813A1 (zh) | 旋转式压缩机及具有其的冷冻装置 | |
CN204783668U (zh) | 多气缸旋转压缩机及具有其的制冷循环装置 | |
WO2016123765A1 (zh) | 制冷系统及其旋转式压缩机 | |
CN208870785U (zh) | 四缸十级输气量的单级滚动转子压缩机 | |
JP2013104368A (ja) | ロータリ圧縮機 | |
KR20110064280A (ko) | 로터리 압축기 | |
JP2013224595A (ja) | 2気筒ロータリ圧縮機 | |
JP2009074445A (ja) | 2気筒回転式圧縮機および冷凍サイクル装置 | |
WO2012120808A1 (ja) | ロータリ圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15897957 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15897957 Country of ref document: EP Kind code of ref document: A1 |