WO2016123765A1 - 制冷系统及其旋转式压缩机 - Google Patents

制冷系统及其旋转式压缩机 Download PDF

Info

Publication number
WO2016123765A1
WO2016123765A1 PCT/CN2015/072247 CN2015072247W WO2016123765A1 WO 2016123765 A1 WO2016123765 A1 WO 2016123765A1 CN 2015072247 W CN2015072247 W CN 2015072247W WO 2016123765 A1 WO2016123765 A1 WO 2016123765A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder
piston
rotary compressor
refrigeration system
chamber
Prior art date
Application number
PCT/CN2015/072247
Other languages
English (en)
French (fr)
Inventor
张河茂
郑立宇
Original Assignee
广东美芝制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝制冷设备有限公司 filed Critical 广东美芝制冷设备有限公司
Priority to PCT/CN2015/072247 priority Critical patent/WO2016123765A1/zh
Publication of WO2016123765A1 publication Critical patent/WO2016123765A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements

Definitions

  • the present invention relates to the field of refrigeration, and more particularly to a rotary compressor and a refrigeration system to which the rotary compressor is applied.
  • the refrigerant in the cylinder of the rotary compressor is compressed by the rotation of the piston in the cylinder.
  • the heating effect of the wall of the compression chamber surrounded by the piston, the cylinder and the upper and lower bearings on the refrigerant affects the refrigeration capacity and power consumption of the compressor, and ultimately affects the coefficient of performance (COP) of the refrigeration system.
  • COP coefficient of performance
  • the present invention aims to solve at least one of the technical problems in the related art to some extent. To this end, the present invention needs to provide a rotary compressor which can obtain an optimum coefficient of performance by controlling the sum S of the gas contact areas of the compression chamber within a certain range.
  • the present invention also needs to propose a refrigeration system having the rotary compressor.
  • a rotary compressor includes: a cylinder in which a cylinder chamber is defined; a piston in which the piston is disposed; an upper bearing in which the upper bearing is disposed An upper end surface of the cylinder; a lower bearing, the lower bearing is disposed at a lower end surface of the cylinder; an outer peripheral surface of the piston has an area of S1, an inner wall surface of the cylinder has an area of S2, the cylinder and the a contact area of the crescent-shaped compression chamber surrounded by the piston and the upper bearing is S3, and a contact area of the crescent-shaped compression chamber surrounded by the cylinder and the piston and the lower bearing is S4, and the volume of the cylinder chamber
  • the ratio S/V of the sum S of the gas contact areas of the compression chambers to the volume V of the cylinder chamber is set within the range of 0.37 mm -1 ⁇ S/V.
  • ⁇ 0.51mm -1 the loss of the refrigeration system is small, and the performance coefficient COP of the refrigeration system is high, so that the performance coefficient COP of the refrigeration system can be kept within the optimal range.
  • rotary compressor according to the present invention may have the following additional technical features:
  • the rotary compressor satisfies the following relationship: 0.37mm -1 ⁇ S / V ⁇ 0.40mm -1.
  • the rotary compressor satisfies the following relationship: 0.48 mm -1 ⁇ S / V ⁇ 0.51 mm -1 .
  • a refrigeration system includes the rotary compressor according to the first aspect of the present invention.
  • the rotary compressor according to the embodiment of the first aspect of the present invention has the above advantages, by applying the rotary compressor, the coefficient of performance COP of the refrigeration system can be improved.
  • FIG. 1 is a schematic structural view of a rotary compressor according to an embodiment of the present invention.
  • Figure 2 is a plan view of the cylinder and piston shown in Figure 1;
  • Figure 3 is a graph showing the relationship between the sum of the gas contact areas S of the compression chamber and the volume of the cylinder chamber and the coefficient of performance of the refrigeration system.
  • Housing 5 main housing 51; upper housing 52; lower housing 53;
  • crankshaft 7 main shaft portion 71; off-axis portion 72;
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may explicitly or implicitly include one or More of this feature. In the description of the present invention, the meaning of "a plurality" is two or more unless specifically and specifically defined otherwise.
  • connection In the description of the present invention, it should be noted that the terms “installation”, “connected”, and “connected” are to be understood broadly, and may be fixed or detachable, for example, unless otherwise explicitly defined and defined. Connected, or connected integrally; can be directly connected, or indirectly connected through an intermediate medium, which can be the internal communication of two elements or the interaction of two elements. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood on a case-by-case basis.
  • a rotary compressor 100 according to an embodiment of the first aspect of the present invention will be described below with reference to FIGS. 1 and 2.
  • a rotary compressor 100 according to an embodiment of the present invention includes a cylinder 1, a piston 2, an upper bearing 3, and a lower bearing 4.
  • the rotary compressor 100 further includes a housing 5 including a main housing 51, an upper housing 52, and a lower housing 53, which are configured to be open at both upper and lower rings.
  • a barrel-like structure an upper casing 52 is provided at an upper end of the main casing 51 to close an upper end opening of the main casing 51, and a lower casing 53 is provided at a lower end of the main casing 51 to close a lower end opening of the main casing 51, thereby being
  • the interior of the housing 5 defines a cavity that is closed relative to the outside.
  • the cylinder 1 is disposed inside the casing 5, and the cylinder 1 defines a cylinder chamber 11.
  • the piston 2 is disposed in the cylinder chamber 11 and rotatable in the cylinder chamber 11, and can be sucked by the rotation of the piston 2 in the cylinder chamber 11.
  • the refrigerant in the cylinder chamber 11 is compressed.
  • the cylinder 1 is configured as an annular structure that is open at both upper and lower sides, and the cylinder chamber 11 is a space formed by the inner wall of the cylinder 1, and the height of the cylinder chamber 11 is the height of the cylinder 1.
  • the rotary compressor 100 further includes a motor 6 and a crankshaft 7.
  • the motor 6 is disposed above the cylinder 1.
  • the crankshaft 7 is fixedly coupled to the rotor 61 of the motor 6, and the rotor 61 rotates the crankshaft 7 relative to the stator 62 of the motor 6.
  • the crankshaft 7 has a main shaft portion 71 and an off-axis portion 72.
  • the piston 2 is sleeved on the off-axis portion 72. During the rotation of the crankshaft 7, the piston 2 can be driven to rotate in the cylinder chamber 11.
  • the upper bearing 3 is disposed on the upper end surface of the cylinder 1
  • the lower bearing 4 is disposed on the lower end surface of the cylinder 1
  • the lower end surface of the upper bearing 3 blocks the upper end opening of the cylinder 1
  • the upper end surface of the lower bearing 4 is blocked.
  • the lower end of the cylinder 1 is open.
  • the refrigerant gas enters the cylinder chamber 11 from the intake port of the cylinder 1, and is in contact with the outer peripheral surface of the piston 2, the inner wall surface of the cylinder 1, the lower end surface of the upper bearing 3, and the upper end surface of the lower bearing 4, when working for a certain period of time. After that, the temperature of the outer peripheral surface of the piston 2, the inner wall surface of the cylinder 1, the lower end surface of the upper bearing 3, and the upper end surface of the lower bearing 4 rises, and at this time, a heating effect is generated to the refrigerant, which causes the temperature of the refrigerant gas to rise. High, when the exhaust gas temperature of the refrigerant gas is too high, it will affect the refrigeration capacity, power consumption, etc. of the compressor, and ultimately affect the coefficient of performance (COP) of the refrigeration system.
  • COP coefficient of performance
  • the sum of the outer peripheral surface of the piston 2, the inner wall surface of the cylinder 1, the lower end surface of the upper bearing 3, and the upper end surface of the lower bearing 4 and the contact area of the refrigerant gas is referred to as the gas contact area of the compression chamber.
  • the area of the outer peripheral surface of the piston 2 is S1
  • the area of the inner wall surface of the cylinder 1 is S2
  • the contact area of the crescent-shaped compression chamber 8 surrounded by the cylinder 1 and the piston 2 with the upper bearing 3 is S3
  • the "crescent-shaped compression chamber 8" refers to a compression space surrounded by the inner wall surface of the cylinder 1, the outer circumferential surface of the piston 2, the lower end surface of the upper bearing 3, and the upper end surface of the lower bearing 4, which space
  • the rotation of the piston 2 changes, but the area of the horizontal projection of the compression chamber 8 does not change, that is, the contact area S3 of the crescent-shaped compression chamber 8 and the upper bearing 3 surrounded by the cylinder 1 and the piston 2 is the inner wall surface of the cylinder 1.
  • the horizontal projected area is subtracted from the area of the circle in which the outer circumference of the piston 2 is located, and the contact areas S4 and S3 of the crescent-shaped compression chamber 8 and the lower bearing 4 surrounded by the cylinder 1 and the piston 2 are equal.
  • the inventors of the present application found during the research that, in the case where the displacement of the rotary compressor 100 is constant, if the sum S of the gas contact areas of the compression chamber is too small, that is, when the outer diameter of the piston 2, the height of the cylinder 1, or the cylinder
  • the amount of eccentricity of the crankshaft 7 is increased, and the wall thickness of the piston 2 is reduced.
  • An increase in the amount of eccentricity of the crankshaft 7 causes an increase in the force on the side of the slider 9, and the stroke of the slider 9 increases, which causes an increase in the frictional loss on the side of the slider 9, and an increase in the leakage of the end face of the slider 9.
  • the wall thickness of the piston 2 becomes thin, which increases the leakage loss of the end face of the piston 2, and finally deteriorates the coefficient of performance COP of the refrigeration system.
  • the inventors of the present application have found through continuous experiment and research that when the ratio S/V of the sum S of the gas contact areas of the compression chamber to the volume V of the cylinder chamber 11 of the cylinder 1 is controlled within a certain range
  • the compressor cooling capacity and power consumption can be controlled within an optimal range, thereby improving the performance coefficient COP of the refrigeration system.
  • the cylinder chamber 11 refers to a space surrounded by the inner wall surface of the cylinder 1, the lower end surface of the upper bearing 3, and the upper end surface of the lower bearing 4, and the volume V of the cylinder chamber 11 refers to the inner wall surface of the cylinder 1,
  • the volume of the space enclosed by the lower end surface of the bearing 3 and the upper end surface of the lower bearing 4 is common.
  • a rotary compressor 100 sets a ratio S/V of a sum S of gas contact areas of a compression chamber to a volume V of a cylinder chamber 11 within a range of 0.37 mm. -1 ⁇ S / V ⁇ 0.51mm -1 , the loss of the refrigeration system is small, the coefficient of performance COP of the refrigeration system is high, and the coefficient of performance COP of the refrigeration system can be kept within an optimal range.
  • COP> 310 This structural design achieves an optimum balance between the heating effect of the gas contact surface facing the refrigerant, the force of the moving parts, the compression resistance, and the leakage, thereby achieving an optimum energy efficiency.
  • the coefficient of performance COP of the refrigeration system can be further kept within an optimum range, that is, when 0.37 mm - 1 ⁇ S / V ⁇ 0.40mm -1 , COP> 315.
  • the coefficient of performance can be further COP of the refrigeration system is maintained within an optimal range, i.e., when 0.48mm -1 ⁇ S / V ⁇ 0.51mm -1 , COP> 315.
  • the S/V value is 0.51, at which time the coefficient of performance COP of the refrigeration system is 316; when the volume V of the cylinder chamber 11 is 17400 mm 3.
  • the S/V value is 0.57, and the coefficient of performance COP of the refrigeration system is 288.
  • the coefficient of performance COP of the refrigeration system drops significantly.
  • the S/V value is 0.37, at which time the coefficient of performance COP of the refrigeration system is 317; when the volume V of the cylinder chamber 11 is 43800 mm 3.
  • the S/V value is 0.35, and the coefficient of performance COP of the refrigeration system is 290.
  • the volume of the cylinder chamber 11 is constant, the sum S of the gas contact areas of the compression chamber is too small, and the coefficient of performance COP of the refrigeration system drops significantly.
  • the present invention also proposes a refrigeration system comprising a rotary compressor 100 according to an embodiment of the second aspect of the present invention.
  • the refrigeration system further includes an evaporator, a condenser, and a throttling device, the inlet of the condenser being connected to the outlet of the rotary compressor 100, the outlet of the condenser being connected to the inlet of the throttling device, and the outlet and evaporation of the throttling device
  • the inlets of the evaporators are connected and the outlet of the evaporator is connected to the inlet of the rotary compressor 100.
  • the rotary compressor 100 Since the rotary compressor 100 according to the embodiment of the first aspect of the present invention has the above advantages, With the rotary compressor 100, the coefficient of performance COP of the refrigeration system can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种制冷系统及其旋转式压缩机(100),其中旋转式压缩机(100)包括:气缸(1),气缸(1)内限定出气缸腔(11);活塞(2),活塞(2)设在气缸腔(11)内;上轴承(3),上轴承(3)设在气缸(1)的上端面;和下轴承(4),下轴承(4)设在气缸(1)的下端面。活塞(2)的外周面的面积为S1,气缸(1)的内壁面的面积为S2,气缸(1)和活塞(2)围成的月牙形压缩腔与上轴承(3)的接触面积为S3,气缸(1)和活塞(2)围成的月牙形压缩腔与下轴承(4)的接触面积为S4,气缸腔(11)的容积为V,旋转式压缩机(100)满足如下关系式:0.37mm -1≤S/V≤0.51 mm -1,其中S为压缩腔的气体接触面积之和,并且S=S1+S2+S3+S4。

Description

制冷系统及其旋转式压缩机 技术领域
本发明涉及制冷领域,尤其是涉及一种旋转式压缩机和应用该旋转式压缩机的制冷系统。
背景技术
相关技术中,旋转式压缩机的气缸内由活塞在气缸内的转动来对制冷剂进行压缩。其中由活塞、气缸和上下轴承围成的压缩腔的壁面对制冷剂的加热效应会影响压缩机的制冷量、功耗等,最终影响制冷系统的性能系数(COP)。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明需要提出一种旋转式压缩机,该旋转式压缩机通过将压缩腔的气体接触面积之和S控制在一定的范围内,从而可以获得最优的性能系数。
本发明还需提出一种具有该旋转式压缩机的制冷系统。
根据本发明第一方面实施例的旋转式压缩机,包括:气缸,所述气缸内限定出气缸腔;活塞,所述活塞设在所述气缸腔内;上轴承,所述上轴承设在所述气缸的上端面;下轴承,所述下轴承设在所述气缸的下端面;所述活塞的外周面的面积为S1,所述气缸的内壁面的面积为S2,所述气缸和所述活塞围成的月牙形压缩腔与所述上轴承的接触面积为S3,所述气缸和所述活塞围成的月牙形压缩腔与所述下轴承的接触面积为S4,所述气缸腔的容积为V,所述旋转式压缩机满足如下关系式:0.37mm-1≤S/V≤0.51mm-1,其中S为所述压缩腔的气体接触面积之和并且S=S1+S2+S3+S4。
根据本发明实施例的旋转式压缩机,通过将压缩腔的气体接触面积之和S与气缸腔的容积V的比值S/V设定在如下范围内,即当0.37mm-1≤S/V≤0.51mm-1时,制冷系统的损失小,制冷系统的性能系数COP高,可以使制冷系统的性能系数COP保持在最优的范围内。
另外,根据本发明的旋转式压缩机还可具有如下附加技术特征:
优选地,所述旋转式压缩机满足如下关系式:0.37mm-1≤S/V≤0.40mm-1
优选地,所述旋转式压缩机满足如下关系式:0.48mm-1≤S/V≤0.51mm-1
根据本发明第二方面实施例的制冷系统,包括根据本发明第一方面所述的旋转式压缩机。
由于根据本发明第一方面实施例的旋转式压缩机具有上述优点,因此,通过应用该旋转式压缩机,从而可以提高制冷系统的性能系数COP。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的旋转式压缩机的结构示意图;
图2是图1所示的气缸和活塞的俯视图;
图3是压缩腔的气体接触面积之和S与气缸腔的容积之比与制冷系统的性能系数的关系图。
附图标记:
旋转式压缩机100;
气缸1;气缸腔11;
活塞2;上轴承3;下轴承4;
壳体5;主壳体51;上壳体52;下壳体53;
电机6;转子61;定子62
曲轴7;主轴部71;偏轴部72;
压缩腔8;滑片9。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者 更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考图1和图2描述根据本发明第一方面实施例的旋转式压缩机100。根据本发明实施例的旋转式压缩机100,包括:气缸1、活塞2、上轴承3和下轴承4。
具体地,如图1所示,旋转式压缩机100还包括壳体5,壳体5包括主壳体51、上壳体52和下壳体53,主壳体51构造成上下均敞开的环形桶状结构,上壳体52设在主壳体51上端以封闭主壳体51的上端开口,下壳体53设在主壳体51的下端以封闭主壳体51的下端开口,由此可以使壳体5内限定出相对外界封闭的空腔。
气缸1设在壳体5内部,气缸1内限定出气缸腔11,活塞2设在气缸腔11内且在气缸腔11内可转动,通过活塞2在气缸腔11内的转动,可以对吸入到气缸腔11内的制冷剂进行压缩。其中需要说明的是,气缸1构造成上下均敞开的环形结构,气缸腔11为气缸1内壁所环绕形成的空间,气缸腔11的高度为气缸1的高度。
当然,旋转式压缩机100还包括电机6、曲轴7,电机6设在气缸1上方,曲轴7与电机6的转子61固定连接,转子61相对于电机6的定子62转动过程中带动曲轴7旋转。曲轴7具有主轴部71和偏轴部72,活塞2套设在偏轴部72上,曲轴7转动的过程中进而可以带动活塞2在气缸腔11内转动。
如图1所示,上轴承3设在气缸1的上端面,下轴承4设在气缸1的下端面,上轴承3的下端面封堵气缸1的上端开口,下轴承4的上端面封堵气缸1的下端开口。
制冷剂气体从气缸1的进气口进入到气缸腔11内,会与活塞2的外周面、气缸1的内壁面、上轴承3的下端面和下轴承4的上端面接触,当工作一定时间后,活塞2的外周面、气缸1的内壁面、上轴承3的下端面和下轴承4的上端面的温度升高,此时会对制冷剂产生加热效应,会使得制冷剂气体的温度升高,当制冷剂气体的排气温度过高时,会影响压缩机的制冷量、功耗等,最终影响制冷系统的性能系数(COP)。
首先需要解释的是,上述的活塞2的外周面、气缸1的内壁面、上轴承3的下端面和下轴承4的上端面与制冷剂气体的接触面积之和称为压缩腔的气体接触面积之和S。
具体地,活塞2的外周面的面积为S1,气缸1的内壁面的面积为S2,气缸1和活塞2围成的月牙形压缩腔8与上轴承3的接触面积为S3,气缸1和活塞2围成的月牙 形压缩腔8与下轴承4的接触面积为S4,S=S1+S2+S3+S4。
需要说明的是,“月牙形的压缩腔8”是指气缸1的内壁面、活塞2的外周面、上轴承3的下端面和下轴承4的上端面共同围成的压缩空间,该空间随着活塞2的转动而变化,但是该压缩腔8的水平投影的面积不会改变,即气缸1和活塞2围成的月牙形压缩腔8与上轴承3的接触面积S3为气缸1的内壁面的水平投影面积减去活塞2外周缘所在圆的面积,气缸1和活塞2围成的月牙形压缩腔8与下轴承4的接触面积S4与S3相等。
本申请的发明人在研究过程中发现,在旋转式压缩机100的排量一定的情况下,如果压缩腔的气体接触面积之和S过小,即当活塞2外径、气缸1高度或者气缸1的内径等尺寸过小时,会使得曲轴7的偏心量增大,活塞2壁厚变薄。曲轴7的偏心量增大会导致滑片9侧面受力增大,并且滑片9行程增大,从而会导致滑片9侧面摩擦损失增大,同时滑片9端面泄露增大。而且当活塞2外径过小时,活塞2壁厚变薄,增加了活塞2端面的泄漏损失,最终使得制冷系统的性能系数COP恶化。
在旋转式压缩机100的排量一定的情况下,如果压缩腔的气体接触面积之和S过大,即当活塞2外径、气缸1高度或者气缸1的内径等尺寸过大时,会增大气缸1内制冷剂的受热的效应,制冷剂气体的吸气过热度会增加,且压缩腔8压力上升,冷量降低;而且若气缸1的内径过大时,会导致活塞2的径向受力增大,曲轴7的偏心部摩擦损失增大,最终导致月牙形的压缩腔8在相同压缩角度下更狭长,排气阻力增大。
为了解决上述问题,本申请的发明人通过不断的实验和研究,发现当压缩腔的气体接触面积之和S与气缸1的气缸腔11的容积V的比值S/V控制在一定的范围内时,会使得压缩机的制冷量和功耗控制在最优的范围内,从而可以提高制冷系统的性能系数COP。
需要解释的是,气缸腔11是指气缸1的内壁面、上轴承3的下端面和下轴承4的上端面共同围成的空间,气缸腔11的容积V是指气缸1的内壁面、上轴承3的下端面和下轴承4的上端面共同围成的空间的容积。
参见图3,根据本发明实施例的旋转式压缩机100,通过将压缩腔的气体接触面积之和S与气缸腔11的容积V的比值S/V设定在如下范围内,即当0.37mm-1≤S/V≤0.51mm-1时,制冷系统的损失小,制冷系统的性能系数COP高,可以使制冷系统的性能系数COP保持在最优的范围内。例如图3所示,当0.37mm-1≤S/V≤0.51mm-1时,COP>310。这种结构设计将压缩腔8在气体接触面对冷媒的加热效应、运动部件的受力、压缩阻力、泄漏等各因素间获得了最佳的平衡点,从而达到了最优的能效。
参见图3,根据本发明的一个优选实施例,当0.37mm-1≤S/V≤0.40mm-1,可以进一 步使制冷系统的性能系数COP保持在最优的范围内,即当0.37mm-1≤S/V≤0.40mm-1时,COP>315。
参见图3,根据本发明的另一个优选实施例,当0.48mm-1≤S/V≤0.51mm-1,可以进一步使制冷系统的性能系数COP保持在最优的范围内,即当0.48mm-1≤S/V≤0.51mm-1时,COP>315。
结合图3,进一步举例解释压缩腔的气体接触面积之和S与气缸腔11的容积V的比值S/V对应的制冷系统的性能系数COP的关系。
例如当气缸腔11的容积V为17400mm3、气体接触面积之和S为8891mm2时,S/V值为0.51,这时制冷系统的性能系数COP为316;当气缸腔11的容积V为17400mm3、气体接触面积之和S为9980mm3时,S/V值为0.57,这时制冷系统的性能系数COP为288。相比之下,当气缸腔11的容积一定时,压缩腔的气体接触面积之和S过大时,制冷系统的性能系数COP下降显著。这是由于压缩腔的气体接触面积之和S过大,即当活塞2外径、气缸1高度或者气缸1的内径等尺寸过大时,会增大气缸1内制冷剂的受热的效应,制冷剂气体的吸气过热度会增加,且压缩腔8压力上升,冷量降低;而且若气缸1的内径过大时,会导致活塞2的径向受力增大,曲轴7的偏心部摩擦损失增大,最终导致月牙形的压缩腔8在相同压缩角度下更狭长,排气阻力增大,最终制冷系统的性能系数COP恶化。
例如当气缸腔11的容积V为43800mm3、气体接触面积之和S为16200mm2时,S/V值为0.37,这时制冷系统的性能系数COP为317;当气缸腔11的容积V为43800mm3、气体接触面积之和S为15330mm2时,S/V值为0.35,这时制冷系统的性能系数COP为290。相比之下,当气缸腔11的容积一定时,压缩腔的气体接触面积之和S过小时,制冷系统的性能系数COP下降显著。
这是由于压缩腔的气体接触面积之和S过小,即当活塞2外径、气缸1高度或者气缸1的内径等尺寸过小时,会使得曲轴7的偏心量增大,活塞2壁厚变薄。曲轴7的偏心量增大会导致滑片9侧面受力增大,并且滑片9行程增大,从而会导致滑片9侧面摩擦损失增大,同时滑片9端面泄露增大。而且当活塞2外径过小时,活塞2壁厚变薄,增加了活塞2端面的泄漏损失,最终使得制冷系统的性能系数COP恶化。
本发明还提出了一种制冷系统,该制冷系统包括根据本发明第二方面实施例的旋转式压缩机100。具体地,制冷系统还包括蒸发器、冷凝器和节流装置,冷凝器的入口与旋转式压缩机100的出口相连,冷凝器的出口与节流装置的入口相连,节流装置的出口与蒸发器的入口相连,蒸发器的出口与旋转式压缩机100的入口相连。
由于根据本发明第一方面实施例的旋转式压缩机100具有上述优点,因此,通过应 用该旋转式压缩机100,从而可以提高制冷系统的性能系数COP。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (4)

  1. 一种旋转式压缩机,其特征在于,包括:
    气缸,所述气缸内限定出气缸腔;
    活塞,所述活塞设在所述气缸腔内;
    上轴承,所述上轴承设在所述气缸的上端面;
    下轴承,所述下轴承设在所述气缸的下端面;
    所述活塞的外周面的面积为S1,所述气缸的内壁面的面积为S2,所述气缸和所述活塞围成的月牙形压缩腔与所述上轴承的接触面积为S3,所述气缸和所述活塞围成的月牙形压缩腔与所述下轴承的接触面积为S4,所述气缸腔的容积为V,
    所述旋转式压缩机满足如下关系式:0.37mm-1≤S/V≤0.51mm-1,其中S为所述压缩腔的气体接触面积之和并且S=S1+S2+S3+S4。
  2. 根据权利要求1所述的旋转式压缩机,其特征在于,所述旋转式压缩机满足如下关系式:0.37mm-1≤S/V≤0.40mm-1
  3. 根据权利要求1或2所述的旋转式压缩机,其特征在于,所述旋转式压缩机满足如下关系式:0.48mm-1≤S/V≤0.51mm-1
  4. 一种制冷系统,其特征在于,包括根据权利要求1-3中任一项所述的旋转式压缩机。
PCT/CN2015/072247 2015-02-04 2015-02-04 制冷系统及其旋转式压缩机 WO2016123765A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072247 WO2016123765A1 (zh) 2015-02-04 2015-02-04 制冷系统及其旋转式压缩机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072247 WO2016123765A1 (zh) 2015-02-04 2015-02-04 制冷系统及其旋转式压缩机

Publications (1)

Publication Number Publication Date
WO2016123765A1 true WO2016123765A1 (zh) 2016-08-11

Family

ID=56563313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072247 WO2016123765A1 (zh) 2015-02-04 2015-02-04 制冷系统及其旋转式压缩机

Country Status (1)

Country Link
WO (1) WO2016123765A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102000A1 (en) * 2003-05-13 2004-11-25 Lg Electronics Inc. Rotary compressor
CN101230857A (zh) * 2003-09-12 2008-07-30 三洋电机株式会社 旋转式压缩机的制造方法
JP2009197645A (ja) * 2008-02-20 2009-09-03 Mitsubishi Electric Corp 密閉型圧縮機
CN104100525A (zh) * 2014-07-02 2014-10-15 广东美芝制冷设备有限公司 制冷循环装置及其旋转式压缩机
CN104632621A (zh) * 2015-02-04 2015-05-20 广东美芝制冷设备有限公司 制冷系统及其旋转式压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004102000A1 (en) * 2003-05-13 2004-11-25 Lg Electronics Inc. Rotary compressor
CN101230857A (zh) * 2003-09-12 2008-07-30 三洋电机株式会社 旋转式压缩机的制造方法
JP2009197645A (ja) * 2008-02-20 2009-09-03 Mitsubishi Electric Corp 密閉型圧縮機
CN104100525A (zh) * 2014-07-02 2014-10-15 广东美芝制冷设备有限公司 制冷循环装置及其旋转式压缩机
CN104632621A (zh) * 2015-02-04 2015-05-20 广东美芝制冷设备有限公司 制冷系统及其旋转式压缩机

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AN, JIGE.: "Pump Body Design of Rotary Compressor for Air Conditioner.", CHINA APPLIANCE TECHNOLOGY., no. 3, 1 March 2014 (2014-03-01), pages 64 - 66 *
YAN, GANG ET AL.: "Investigation of the Radial Clearance Leakage in Rolling Piston Compressor.", FLUID MACHINERY., vol. 33, no. 9, 30 September 2005 (2005-09-30), pages 72 - 75 *
ZHAO, DAOYI.: "Trial-Manufacture of GZ2-Type Rotary Refrigerating Compressor.", FLUID MACHINERY., no. 3, 31 March 1984 (1984-03-31), pages 11 - 15 *

Similar Documents

Publication Publication Date Title
US8353693B2 (en) Fluid machine
WO2006006297A1 (ja) 回転式流体機械
US20080120985A1 (en) Rotary compressor, control method thereof, and air conditioner using the same
JPS6331677B2 (zh)
EP3078859B1 (en) Rotary compressor and compression unit thereof, and air conditioner
JP5758221B2 (ja) スクロール圧縮機
CN108071590B (zh) 气缸、压缩机构及压缩机
CN107387412B (zh) 旋转式压缩机及温度调节装置
WO2022116577A1 (zh) 泵体组件及具有其的流体机械
JPH02140486A (ja) 回転式圧縮機
JPS6135391B2 (zh)
JPS6135392B2 (zh)
WO2012090345A1 (ja) 冷媒圧縮機
JP2015014250A (ja) アキシャルベーン型圧縮機
WO2016123765A1 (zh) 制冷系统及其旋转式压缩机
JP2010156244A (ja) 圧縮機および冷凍装置
JP2006177227A (ja) ロータリ式2段圧縮機
KR102339600B1 (ko) 로터리 압축기
CN104632621B (zh) 制冷系统及其旋转式压缩机
WO2016179813A1 (zh) 旋转式压缩机及具有其的冷冻装置
JP2012052426A (ja) 過給式圧縮機
JP5363486B2 (ja) ロータリ圧縮機
WO2017008229A1 (zh) 多气缸旋转压缩机及具有其的制冷循环装置
CN218376911U (zh) 一种双气缸压缩机泵体以及双气缸压缩机
JP6350916B2 (ja) ロータリ圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15880721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15880721

Country of ref document: EP

Kind code of ref document: A1