WO2017007019A1 - Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material - Google Patents

Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material Download PDF

Info

Publication number
WO2017007019A1
WO2017007019A1 PCT/JP2016/070277 JP2016070277W WO2017007019A1 WO 2017007019 A1 WO2017007019 A1 WO 2017007019A1 JP 2016070277 W JP2016070277 W JP 2016070277W WO 2017007019 A1 WO2017007019 A1 WO 2017007019A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
aluminum alloy
brazing
clad
brazing material
Prior art date
Application number
PCT/JP2016/070277
Other languages
French (fr)
Japanese (ja)
Inventor
太一 浅野
真樹 原田
手島 聖英
安藤 誠
渉 成田
尚希 山下
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016132727A external-priority patent/JP6713861B2/en
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to EP16821487.2A priority Critical patent/EP3321384B1/en
Priority to US15/742,418 priority patent/US10625379B2/en
Priority to CN201680035541.5A priority patent/CN107849645B/en
Publication of WO2017007019A1 publication Critical patent/WO2017007019A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal

Definitions

  • the present invention relates to a highly corrosion-resistant aluminum alloy clad material suitably used as a refrigerant or high-temperature compressed air passage component in a heat exchanger such as a radiator, and a method for producing the same. Furthermore, the present invention relates to a heat exchanger for an automobile or the like provided with a flow path forming component using the highly corrosion-resistant aluminum alloy clad material.
  • Aluminum alloy is lightweight and has high thermal conductivity, and high corrosion resistance can be realized by appropriate treatment, so it is used for heat exchangers for automobiles, such as radiators, condensers, evaporators, heaters, intercoolers, oil coolers, etc. It has been.
  • a tube material for an automotive heat exchanger an Al—Mn alloy such as 3003 alloy is used as a core material, and an Al—Si alloy brazing material or an Al—Zn alloy sacrificial anode material is provided on one side of the tube material.
  • a two-layer clad material clad with an Al—Si alloy brazing material on the other surface is used.
  • the heat exchanger is usually joined by combining such a clad material and a corrugated fin material and brazing at a high temperature of about 600 ° C.
  • FIG. 1 As a means for forming a cooling water flow path in the heat exchanger, as shown in FIG. 1, a method of laminating a plate 1 that forms a cooling water flow path through a corrugated fin 2 by forming a clad material. There is.
  • This method has an advantage that the degree of freedom in design is high because the size of the heat exchanger can be changed simply by changing the number of stacks.
  • it is necessary to supply the brazing from the plate material itself during brazing.
  • the brazing is supplied to the inner surface of the flow path of the material used for the flow path forming component at the time of brazing, and the holes It is necessary to clad a layer having a plurality of functions such as having a sacrificial anticorrosion function against corrosion and preventing the occurrence of corrosion due to local strong alkalinization.
  • Patent Documents 1 and 2 describe a technique for supplying brazing at the time of brazing and imparting a sacrificial anticorrosion function to pitting corrosion.
  • a liquid phase brazing is formed at the time of brazing to enable bonding, and a part of the cladding layer is made of a solid phase.
  • the solidified structure generated after brazing due to melting of the clad layer becomes a primary phase and a eutectic phase.
  • JP 2010-255013 A International Publication No. 2011/034102
  • brazing is supplied at the time of brazing addition heat, and after sacrificial heating, it has a sacrificial anticorrosion function and is also localized It has been difficult to provide an aluminum alloy clad material that prevents corrosion due to alkalinization by conventional techniques.
  • the present invention has been completed to solve such problems, and in an aluminum alloy clad material, brazing is supplied at the time of brazing addition heat, and after sacrificial heating, it has a sacrificial anticorrosion function, and is also localized.
  • An object of the present invention is to provide a highly corrosion-resistant aluminum alloy clad material that prevents corrosion due to alkalinization, and a flow path forming part for a heat exchanger such as an automobile using the same.
  • the present inventors prepared a core material, a brazing material (first and second), and a sacrificial anode material each having a specific alloy composition and metal structure, and one or both of the core materials.
  • the above-mentioned problem is solved by a clad material in which a first brazing material is clad on one surface and a clad material in which a first brazing material is clad on one surface of a core material and a sacrificial anode material or a second brazing material is clad on the other surface.
  • the present invention has been completed.
  • the core material comprises Si: 0.05 to 1 .50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 0.5 to 2.0 mass%, the balance being made of an aluminum alloy composed of Al and inevitable impurities, wherein the first brazing material is Si : 2.5 to 7.0 mass%, Fe: 0.05 to 1.20 mass%, Zn: 0.5 to 8.0 mass%, Mn: 0.3 to 2.0 mass%, balance Al and inevitable
  • the presence density of the Al—Mn intermetallic compound having an equivalent circle diameter of 0.1 ⁇ m or more in the first brazing filler metal is 1.0 ⁇ .
  • the presence density of Al—Mn intermetallic compounds having an equivalent circle diameter of 2 ⁇ m or more in the first brazing material after the brazing heat is 300 pieces / mm 2 or more. It was set as the characteristic aluminum alloy clad material.
  • the first brazing material is Cu: 0.05 to 0.60 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass. %, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%, and an aluminum alloy further containing one or more selected from Cr.
  • the first brazing material is one or two selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. It was made of an aluminum alloy further containing seeds.
  • the core material according to any one of the first to third aspects includes Mg: 0.05 to 0.50 mass%, Cu: 0.05 to 1.50 mass%, and Ti: 0.05.
  • Mg 0.05 to 0.50 mass%
  • Cu 0.05 to 1.50 mass%
  • Ti 0.05.
  • the aluminum alloy contained was used.
  • the present invention provides the method for producing an aluminum alloy clad material according to any one of claims 1 to 4, wherein the aluminum alloy for the core material and the first brazing material are respectively casted.
  • a hot rolling process in which the ingot of the cast first brazing material is hot-rolled to a predetermined thickness, and one or both surfaces of the core material ingot are clad with the first brazing material having a predetermined thickness by hot rolling.
  • One or more annealing steps for annealing the clad material in one or both after the rolling step, and the hot rolling step of the first brazing material includes a heating step, a holding step, and a hot rolling step, and heating In stage 4,
  • the temperature rising rate until reaching 0 ° C. is 30 ° C./h or more, the temperature rising rate from reaching 400 ° C. to reaching the holding temperature in the holding stage is 60 ° C./h or less, and the holding temperature in the holding stage is 450.degree. C.
  • the holding time is 1 hour or longer
  • the time during which the temperature of the first brazing material is 400.degree. C. or higher is 5 minutes or longer during the hot rolling stage.
  • a method for producing a clad material was adopted.
  • the present invention provides, in claim 6, an aluminum alloy clad comprising an aluminum alloy core material, a first brazing material clad on one surface of the core material, and a second brazing material clad on the other surface of the core material.
  • the core material contains Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 0.5 to 2.0 mass%, and the remainder from Al and inevitable impurities
  • the first brazing filler metal is made of an aluminum alloy having the following composition: Si: 2.5 to 7.0 mass%, Fe: 0.05 to 1.20 mass%, Zn: 0.5 to 8.0 mass%, Mn: 0.00.
  • the second brazing filler metal is Si: 2.5 to 13.0 mass%
  • Fe 0.05 to 1.20 m
  • the first brazing material is Cu: 0.05 to 0.60 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass. %, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%, and an aluminum alloy further containing one or more selected from Cr.
  • the first brazing material is one or two selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. It was made of an aluminum alloy further containing seeds.
  • the core material according to any one of the sixth to eighth aspects includes: Mg: 0.05 to 0.50 mass%, Cu: 0.05 to 1.50 mass%, Ti: 0.05. One or more selected from ⁇ 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass% The aluminum alloy contained was used.
  • the second brazing material is Mn: 0.05 to 2.00 mass%, Cu: 0.05 to 1.50 mass%, Ti: One or two selected from 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%
  • the aluminum alloy further contains the above.
  • the second brazing material is selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. It was made of an aluminum alloy further containing one or two kinds.
  • the present invention provides the method for producing an aluminum alloy clad material according to any one of claims 6 to 11, wherein the aluminum alloy for the core material, the first brazing material, and the second brazing material is defined in claim 12. , A hot rolling process in which the cast ingots of the first brazing material and the second brazing material are each hot-rolled to a predetermined thickness, and one surface of the core material ingot is predetermined by hot rolling.
  • a clad process in which the first brazing material having a thickness is clad with a second brazing material having a predetermined thickness by hot rolling on the other surface, and a hot clad rolling process in which the clad material is hot-rolled A cold rolling step of cold rolling the clad material that has been hot-clad rolled, and one or more annealing steps of annealing the clad material in one or both of the middle of the cold rolling step and after the cold rolling step;
  • the hot rolling process of the first brazing filler metal includes a heating stage, a holding stage, and a hot rolling stage, and in the heating stage, the rate of temperature rise until reaching 400 ° C. is 30 ° C./h or more, reaching 400 ° C.
  • the heating rate from the time until reaching the holding temperature in the holding stage is 60 ° C./h or less, the holding temperature in the holding stage is 450 ° C. or more and 560 ° C. or less, the holding time is 1 hour or more, and the hot rolling stage
  • the method for producing an aluminum alloy clad material characterized in that the time during which the temperature of the first brazing material is 400 ° C. or higher is 5 minutes or longer.
  • an aluminum alloy clad material comprising: an aluminum alloy core material; a first brazing material clad on one surface of the core material; and a sacrificial anode material clad on the other surface of the core material.
  • the core material contains Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 0.5 to 2.0 mass%, and the balance is Al and inevitable impurities.
  • the first brazing material is Si: 2.5-7.0 mass%, Fe: 0.05-1.20 mass%, Zn: 0.5-8.0 mass%, Mn: 0.3
  • the sacrificial anode material contains Zn: 0.5 to 8.0 mass%, Si: 0.05 to 1.50 m.
  • Al—Mn-based metal having an abundance density of Al—Mn-based intermetallic compound of 1.0 ⁇ 10 5 pieces / mm 2 or more and having an equivalent circle diameter of 2 ⁇ m or more in the first brazing material after the heat of brazing addition
  • An aluminum alloy clad material characterized in that the density of intermetallic compounds is 300 / mm 2 or more.
  • the first brazing material is Cu: 0.05 to 0.60 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass. %, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%, and an aluminum alloy further containing one or more selected from Cr.
  • the first brazing material is one or two selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. It was made of an aluminum alloy further containing seeds.
  • the core material is Mg: 0.05 to 0.50 mass%, Cu: 0.05 to 1.50 mass%, Ti: 0.05.
  • the aluminum alloy contained was used.
  • the sacrificial anode material includes Ni: 0.05 to 2.00 mass%, Mn: 0.05 to 2.00 mass%, and Mg: 0. .05 to 3.00 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass
  • the aluminum alloy further contains one or more selected from%.
  • the present invention according to claim 18, wherein the aluminum alloy for the core material, the first brazing material, and the sacrificial anode material are respectively casted, and the ingots of the cast first brazing material and sacrificial anode material are each set to a predetermined thickness.
  • One or more annealing steps for annealing the clad material in one or both after the cold rolling step, and the hot rolling step of the first brazing material includes a heating step, a holding step, and a hot rolling step.
  • the rate of temperature rise until reaching 400 ° C. is 30 ° C./h or more, and the rate of temperature rise from reaching 400 ° C. to reaching the holding temperature in the holding stage is 60 ° C./h or less.
  • the temperature is 450 ° C. or more and 560 ° C.
  • the holding time is 1 hour or more
  • the time that the temperature of the first brazing material is 400 ° C. or more is 5 minutes or more.
  • the present invention provides a heat exchanger according to claim 19, wherein the aluminum alloy clad material according to any one of claims 1 to 4 is used for at least a flow path forming component, wherein at least one of the first brazing material surfaces
  • the heat exchanger was characterized by being exposed to a solution having a chloride ion concentration of 1200 ppm or less.
  • the present invention provides a heat exchanger according to claim 20, wherein the aluminum alloy clad material according to any one of claims 6 to 11 and 13 to 17 is used for at least a flow path forming component, wherein the first brazing material
  • the heat exchanger is characterized in that the surface is exposed to a solution having a chloride ion concentration of 1200 ppm or less.
  • an aluminum alloy clad material that supplies brazing at the time of brazing addition heat, has a sacrificial anticorrosion function after brazing heat addition, and prevents corrosion due to local alkalinization, and an automobile using the same
  • a heat exchanger flow path forming component is provided.
  • This clad material is excellent in brazing properties such as erosion resistance, and is suitably used as a flow path forming component material for heat exchangers for automobiles and the like from the viewpoint of light weight and good thermal conductivity.
  • the aluminum alloy clad material of the present invention has brazing properties by appropriately controlling the alloy composition and metal structure of the first brazing material that has both brazing and sacrificial corrosion resistance. In addition, it has excellent corrosion resistance.
  • the first brazing material may be clad on one surface of the core material to form a two-layer clad material, or may be clad on both surfaces of the core material to form a three-layer clad material.
  • a three-layer clad material in which a second brazing material, which is a normal Al—Si alloy brazing material, is clad on the other surface of the core material not clad with the first brazing material may be used.
  • a three-layer clad material clad with an Al—Zn alloy sacrificial anode material may be used.
  • the first brazing material includes: Si: 2.5 to 7.0 mass% (hereinafter simply referred to as “%”), Fe: 0.05 to 1.20%, Zn: 0.5 to 8 An aluminum alloy containing 0.0%, Mn: 0.3 to 2.0% as an essential element, and the balance being Al and inevitable impurities is used.
  • the first brazing filler metal is Cu: 0.05-0.60%, Ti: 0.05-0.30%, Zr: 0.05-0.30%, Cr: 0.05-0.30. % And V: One or more selected from 0.05 to 0.30% may be further contained as the first selective additive element. Furthermore, the first brazing material contains one or two selected from Na: 0.001 to 0.050% and Sr: 0.001 to 0.050% as a second selective additive element. Also good. In addition to the essential elements and the first and second selective additive elements, unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total. Below, each component is demonstrated.
  • Si By adding Si, the melting point of the brazing material is lowered to form a liquid phase, thereby enabling brazing.
  • a general alloy for brazing filler metals allows an upper limit of up to about 11% if it is a 4045 alloy, but by keeping this low, a certain proportion remains in the solid phase at the time of brazing, and excellent sacrificial corrosion protection Functions can be added.
  • the Si content is 2.5 to 7.0%. If it is less than 2.5%, the resulting liquid phase is small and it becomes difficult to obtain a brazing function. On the other hand, if it exceeds 7.0%, for example, the amount of Si diffused into the counterpart material such as fins becomes excessive, and the counterpart material will melt.
  • a preferable content of Si is 3.5 to 6.0%.
  • Fe Fe easily forms intermetallic compounds of Al-Fe, Al-Fe-Si, Al-Fe-Mn, and Al-Fe-Mn-Si, reducing the amount of Si effective for brazing. Causing a reduction in brazability.
  • the Fe content is 0.05 to 1.20%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 1.20%, the amount of Si effective for brazing is reduced and brazing becomes insufficient.
  • a preferable content of Fe is 0.1 to 0.5%.
  • Zn can lower the pitting corrosion potential, and can improve the corrosion resistance due to the sacrificial anticorrosion effect by forming a potential difference with the core material.
  • the Zn content is 0.5 to 8.0%. If it is less than 0.5%, the effect of improving the corrosion resistance due to the sacrificial anticorrosive effect cannot be sufficiently obtained. On the other hand, if it exceeds 8.0%, the corrosion rate increases, the sacrificial anticorrosion layer disappears early, and the corrosion resistance decreases.
  • a preferable content of Zn is 1.0 to 6.0%.
  • Mn forms Al—Mn, Al—Fe—Mn, and Al—Fe—Mn—Si intermetallic compounds (hereinafter, simply referred to as “Al—Mn intermetallic compounds”).
  • Al—Mn intermetallic compounds By activating the cathode reaction, the corrosion potential can be made noble and pitting corrosion can be easily generated.
  • Mn has the effect of preventing local alkalization and improving corrosion resistance.
  • the Mn content is 0.3 to 2.0%. If it is less than 0.3%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.0%, a giant intermetallic compound is likely to be formed during casting, and the plastic workability is lowered.
  • the Mn content is preferably 0.4 to 1.8%.
  • Cu Since Cu improves strength by solid solution strengthening, Cu may be contained.
  • the Cu content is 0.05 to 0.60%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 0.60%, the pitting potential becomes noble, and the sacrificial anticorrosive effect by Zn is lost.
  • the Cu content is preferably 0.10 to 0.50%.
  • Ti may be contained because it improves strength and improves corrosion resistance by solid solution strengthening.
  • the Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Ti content is preferably 0.10 to 0.20%.
  • Zr may be contained because it has the effect of improving the strength by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after the heat of brazing addition.
  • the Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Zr content is preferably 0.10 to 0.20%.
  • Cr Cr may be contained because it has the effect of improving strength by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen crystal grains after brazing addition heat.
  • the Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Cr content is preferably 0.10 to 0.20%.
  • V may be contained because it improves the strength by solid solution strengthening and also improves the corrosion resistance.
  • the V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the V content is preferably 0.10 to 0.20%.
  • Na, Sr Na and Sr exhibit the effect of refining the Si particles in the first brazing material.
  • the contents of Na and Sr are 0.001 to 0.050%, respectively. If the respective contents are less than 0.001%, the above effects cannot be obtained sufficiently. On the other hand, when each content exceeds 0.050%, an oxide film becomes thick and brazeability is reduced. Each preferable content is 0.003 to 0.020%.
  • Core material contains Si: 0.05 to 1.50%, Fe: 0.05 to 2.00%, Mn: 0.5 to 2.0% as essential elements, the balance Al and inevitable impurities An aluminum alloy is used.
  • the core material is Mg: 0.05 to 0.50%, Cu: 0.05 to 1.50%, Ti: 0.05 to 0.30%, Zr: 0.05 to 0.30%, Cr
  • One or more selected from: 0.05 to 0.30% and V: 0.05 to 0.30% may be further contained as a selective additive element.
  • unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total.
  • a JIS 3000 series alloy for example, an Al—Mn series alloy such as JIS 3003 alloy is preferably used.
  • JIS 3003 alloy a JIS 3000 series alloy
  • each component is demonstrated in detail.
  • Si forms an Al-Fe-Mn-Si intermetallic compound together with Fe and Mn and improves strength by dispersion strengthening, or improves strength by solid solution strengthening by solid solution in an aluminum matrix. .
  • the Si content is 0.05 to 1.50%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. If it exceeds 1.50%, the melting point of the core material is lowered and the possibility of melting is increased.
  • a preferable content of Si is 0.10 to 1.20%.
  • Fe forms an Al—Fe—Mn—Si intermetallic compound together with Si and Mn, and improves the strength by dispersion strengthening.
  • the amount of Fe added is 0.05 to 2.00%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
  • a preferable content of Fe is 0.10 to 1.50%.
  • Mn forms an Al—Mn—Si intermetallic compound together with Si, and an Al—Mn—Fe—Si intermetallic compound together with Si and Fe to improve strength by dispersion strengthening, or an aluminum matrix. Strengthened by solid solution in the phase and solid solution strengthening.
  • the Mn content is 0.5 to 2.0%. If the content is less than 0.5%, the above effect is insufficient. If the content exceeds 2.0%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
  • a preferable content of Mn is 0.8 to 1.8%.
  • Mg may be contained because the strength is improved by precipitation of Mg 2 Si.
  • the Mg content is 0.05 to 0.50%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 0.50%, brazing becomes difficult.
  • the Mg content is preferably 0.10 to 0.40%.
  • Cu Since Cu improves strength by solid solution strengthening, Cu may be contained.
  • the Cu content is 0.05 to 1.50%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 1.50%, there is a high risk of cracking of the aluminum alloy during casting.
  • the Cu content is preferably 0.30 to 1.00%.
  • Ti may be contained because it improves the strength by solid solution strengthening.
  • the Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect is insufficient. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Ti content is preferably 0.10 to 0.20%.
  • Zr may be contained because it has the effect of improving the strength by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after the heat of brazing addition.
  • the Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Zr content is preferably 0.10 to 0.20%.
  • Cr Cr may be contained because it has the effect of improving strength by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen crystal grains after brazing addition heat.
  • the Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Cr content is preferably 0.10 to 0.20%.
  • V may be contained because it improves the strength by solid solution strengthening and also improves the corrosion resistance.
  • the V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the V content is preferably 0.10 to 0.20%.
  • Mg, Cu, Ti, Zr, Cr, and V may be added to the core material if necessary.
  • Sacrificial anode material contains Zn: 0.5 to 8.0%, Si: 0.05 to 1.50%, Fe: 0.05 to 2.00% as essential elements, and the balance Al In addition, an aluminum alloy made of inevitable impurities is used.
  • Sacrificial anode materials are Ni: 0.05 to 2.00%, Mn: 0.05 to 2.00%, Mg: 0.05 to 3.00%, Ti: 0.05 to 0.30%
  • One or more selected from Zr: 0.05 to 0.30%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass% are further added as selective additive elements. You may contain. Furthermore, in addition to the above essential elements and selective additive elements, 0.05% or less each of unavoidable impurities may be contained in total, and 0.15% in total. Below, each component is demonstrated.
  • Zn can lower the pitting corrosion potential, and can improve the corrosion resistance due to the sacrificial anticorrosion effect by forming a potential difference with the core material.
  • the Zn content is 0.5 to 8.0%. If it is less than 0.5%, the effect of improving the corrosion resistance due to the sacrificial anticorrosive effect cannot be sufficiently obtained. On the other hand, if it exceeds 8.0%, the corrosion rate increases, the sacrificial anticorrosion layer disappears early, and the corrosion resistance decreases.
  • a preferable content of Zn is 1.0 to 6.0%.
  • Si forms an Al—Fe—Si based intermetallic compound with Fe, and when it contains Mn at the same time, forms an Al—Fe—Mn—Si based intermetallic compound with Fe and Mn,
  • the strength is improved by dispersion strengthening, or the solid strength is improved by solid solution strengthening in the aluminum matrix.
  • Si makes the potential of the sacrificial anode layer noble, the sacrificial anticorrosive effect is hindered and the corrosion resistance is lowered.
  • the Si content is 0.05 to 1.50%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs.
  • a preferable content of Si is 0.10 to 1.20%.
  • Fe forms an Al—Fe—Si intermetallic compound together with Si, and if it contains Mn simultaneously, forms an Al—Fe—Mn—Si intermetallic compound together with Si and Mn, Strength is improved by dispersion strengthening.
  • the amount of Fe added is 0.05 to 2.00%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
  • a preferable content of Fe is 0.10 to 1.50%.
  • Ni forms an Al-Ni-based or Al-Fe-Ni-based intermetallic compound together with Fe. Since these intermetallic compounds have a higher corrosion potential than aluminum matrix and are noble, they act as corrosion cathode sites. Therefore, when these intermetallic compounds are dispersed in the sacrificial anode material, the starting point of corrosion is dispersed. As a result, corrosion in the depth direction is difficult to proceed, and the corrosion resistance is improved.
  • the Ni content is 0.05 to 2.00%. If the content is less than 0.05%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered.
  • the Ni content is preferably 0.10 to 1.50%.
  • Mn may be contained because it improves strength and corrosion resistance.
  • the Mn content is 0.05 to 2.00%. If it exceeds 2.00%, a huge intermetallic compound is likely to be formed during casting, and the plastic workability is lowered. On the other hand, if it is less than 0.05%, the effect cannot be sufficiently obtained.
  • the Mn content is preferably 0.05 to 1.80%.
  • Mg Since Mg improves the strength of the sacrificial anode material by precipitation of Mg 2 Si, it may be contained. In addition to improving the strength of the sacrificial anode material itself, brazing causes Mg to diffuse from the sacrificial anode material to the core material, thereby improving the strength of the core material. For these reasons, Mg may be included.
  • the Mg content is 0.05 to 3.00%. If it is less than 0.05%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 3.00%, it becomes difficult to press the sacrificial anode material and the core material in the hot clad rolling process.
  • a preferable content of Mg is 0.10 to 2.00%.
  • Ti may be contained because it improves strength and improves corrosion resistance by solid solution strengthening.
  • the Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Ti content is preferably 0.05 to 0.20%.
  • Zr may be contained because it has the effect of improving the strength by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after the heat of brazing addition.
  • the Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Zr content is preferably 0.10 to 0.20%.
  • Cr Cr may be contained because it has the effect of improving strength by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen crystal grains after brazing addition heat.
  • the Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Cr content is preferably 0.10 to 0.20%.
  • V may be contained because it improves the strength by solid solution strengthening and also improves the corrosion resistance.
  • the V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the V content is preferably 0.05 to 0.20%.
  • Ni, Mn, Mg, Ti, Zr, Cr, and V may be added to the sacrificial anode material as required, if necessary.
  • Second brazing material contains Si: 2.5 to 13.0%, Fe: 0.05 to 1.20% as essential elements, the balance being Al and unavoidable impurities Is used.
  • the second brazing filler metal is Mn: 0.05 to 2.00%, Cu: 0.05 to 1.50%, Ti: 0.05 to 0.30%, Zr: 0.05 to 0.30. %, Cr: 0.05 to 0.30% and V: 0.05 to 0.30% may be further included as a first selective additive element. Further, the second brazing material contains one or two selected from Na: 0.001 to 0.050% and Sr: 0.001 to 0.050% as a second selective additive element. Also good. In addition to the essential elements and the first and second selective additive elements, unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total. Below, each component is demonstrated.
  • Si By adding Si, the melting point of the second brazing material is lowered to form a liquid phase, thereby enabling brazing.
  • the Si content is 2.5 to 13.0%. If it is less than 2.5%, the resulting liquid phase is small and it becomes difficult to obtain a brazing function. On the other hand, if it exceeds 13.0%, for example, when this second brazing material is used as a tube material, the amount of Si diffusing into the mating material such as fins becomes excessive, and the mating material will melt.
  • a preferable content of Si is 3.5 to 12.0%.
  • Fe Fe easily forms an Al-Fe-based or Al-Fe-Si-based intermetallic compound, and when it contains Mn at the same time, Al-Fe-Mn-based or Al-Fe-Mn-Si-based Since it is easy to form an intermetallic compound, the amount of Si that is effective for brazing is reduced and brazing properties are reduced.
  • the Fe content is 0.05 to 1.20%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 1.20%, the amount of Si effective for brazing is reduced and brazing becomes insufficient.
  • a preferable content of Fe is 0.10 to 0.50%.
  • Mn may be contained because it improves the strength and corrosion resistance of the brazing material.
  • the Mn content is 0.05 to 2.00%. If it exceeds 2.00%, a huge intermetallic compound is likely to be formed during casting, and the plastic workability is lowered. On the other hand, if it is less than 0.05%, the effect cannot be sufficiently obtained.
  • the Mn content is preferably 0.05 to 1.80%.
  • Cu may be included because it improves the strength of the second brazing filler metal by solid solution strengthening.
  • the Cu content is 0.05 to 1.50%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 1.50%, there is a high risk of cracking of the aluminum alloy during casting.
  • the Cu content is preferably 0.30 to 1.00%.
  • Ti may be contained because it improves the strength of the second brazing filler metal by solid solution strengthening and also improves the corrosion resistance.
  • the Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Ti content is preferably 0.10 to 0.20%.
  • Zr may be contained because it has the effect of improving the strength of the second brazing filler metal by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after brazing addition heat. .
  • the Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Zr content is preferably 0.10 to 0.20%.
  • Cr Cr may be contained because it has the effect of improving the strength of the second brazing filler metal by solid solution strengthening and precipitating Al—Cr intermetallic compounds to coarsen the crystal grains after brazing addition heat. .
  • the Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the Cr content is preferably 0.10 to 0.20%.
  • V may be contained because it improves the strength of the second brazing filler metal by solid solution strengthening and also improves the corrosion resistance.
  • the V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered.
  • the V content is preferably 0.10 to 0.20%.
  • Na, Sr Na and Sr exhibit the effect of refining the Si particles in the second brazing material.
  • the contents of Na and Sr are 0.001 to 0.050%, respectively. If the respective contents are less than 0.001%, the above effects cannot be obtained sufficiently. On the other hand, when each content exceeds 0.050%, an oxide film becomes thick and brazeability is reduced. Each preferable content is 0.003 to 0.020%.
  • These Mn, Cu, Ti, Zr, Cr, V, Na, and Sr may be added in the second brazing material as required.
  • the aluminum alloy clad material according to the present invention has a density of Al-Mn intermetallic compounds having a circle equivalent diameter of 0.1 ⁇ m or more before the brazing heat of the first brazing material is 1.0.
  • the existence density of the Al—Mn intermetallic compound having a circle equivalent diameter of 2 ⁇ m or more after the heat of brazing addition of the first brazing material is limited to 300 pieces / mm 2 or more to ⁇ 10 5 pieces / mm 2 or more. These limitations are intended to improve the corrosion resistance of the surface on the first brazing material side after the brazing heat.
  • the existence density here refers to the number density per unit area when an arbitrary cross section in the first brazing filler metal layer is observed. The reason for this limitation will be described below.
  • a part of the first brazing material is melted at the time of brazing so that the brazing is supplied and joining is possible, and the first brazing material itself is preferentially corroded to cause the corrosion to progress into a plane, thereby forming a tube.
  • the core material is clad for the purpose of exerting a sacrificial anti-corrosion function for preventing perforation corrosion.
  • a sacrificial anti-corrosion function for preventing perforation corrosion.
  • the present inventors have investigated the cathode during corrosion by dispersing an Al—Mn intermetallic compound in an appropriate size (equivalent circle diameter) and density in the first brazing material after brazing. It was found that the reaction was activated to facilitate pitting corrosion and corrosion penetration due to local alkalinization could be prevented.
  • an Al—Mn-based intermetallic compound having a circle-equivalent diameter of 2 ⁇ m or more has an effect of activating the cathode reaction, and those less than 2 ⁇ m have an insufficient effect. Therefore, in the present invention, Al—Mn intermetallic compounds having an equivalent circle diameter of less than 2 ⁇ m after brazing are excluded. Further, if the existence density of Al—Mn intermetallic compounds having an equivalent circle diameter of 2 ⁇ m or more after brazing is 300 pieces / mm 2 or more, there is a sufficient cathode reaction activation effect, 300 pieces If it is less than / mm 2, the effect is insufficient.
  • the equivalent circle diameter of the Al—Mn intermetallic compound after brazing is preferably 3 ⁇ m or more, and its density is preferably 1000 / mm 2 or more.
  • the upper limit of the equivalent circle diameter of the Al—Mn intermetallic compound after brazing is not limited. However, if a compound exceeding 200 ⁇ m is present, composition workability is reduced and rolling is in progress. There is a risk of breaking. Therefore, the upper limit of the equivalent circle diameter is preferably 200 ⁇ m.
  • the upper limit of the density of Al—Mn intermetallic compounds is not limited, but exceeds 5.0 ⁇ 10 5 pieces / mm 2 from the alloy composition and production method of the present invention. It is difficult to exist. Therefore, the upper limit of the existence density is 5.0 ⁇ 10 5 pieces / mm 2 .
  • Al-Mn intermetallic compounds with an equivalent circle diameter of 0.1 ⁇ m or more before brazing do not dissolve in the matrix during brazing, and form an Al—Mn compound with an equivalent circle diameter of 2 ⁇ m or more after brazing.
  • An Al—Mn intermetallic compound having an equivalent circle diameter of less than 0.1 ⁇ m before brazing is dissolved in the matrix at the time of brazing, or its size is reduced, and after the brazing, an equivalent circle diameter of 2 ⁇ m or more.
  • An Al—Mn intermetallic compound cannot be formed. Therefore, in the present invention, Al—Mn intermetallic compounds having an equivalent circle diameter of less than 0.1 ⁇ m before brazing are excluded.
  • the equivalent circle diameter of the Al—Mn intermetallic compound existing before brazing is preferably 0.2 ⁇ m or more.
  • the density of Al—Mn intermetallic compounds having an equivalent circle diameter of 0.1 ⁇ m or more before brazing is 1 ⁇ 10 5 pieces / mm 2 or more
  • Al—Mn with an equivalent circle diameter of 2 ⁇ m or more after brazing is used.
  • the density of Mn-based intermetallic compounds can be 300 / mm 2 or more.
  • Al— The density of Mn-based intermetallic compounds cannot be 300 / mm 2 or more.
  • the density of Al—Mn compounds having an equivalent circle diameter of 0.1 ⁇ m or more before brazing is preferably 3.0 ⁇ 10 5 pieces / mm 2 or more.
  • the upper limit of the equivalent circle diameter of the Al—Mn intermetallic compound before brazing is not limited. However, if a compound exceeding 200 ⁇ m is present, the composition workability deteriorates and rolling There is a risk of breaking inside. Therefore, the upper limit of the equivalent circle diameter is preferably 200 ⁇ m.
  • the upper limit of the density of Al—Mn compound is not limited, but it exists in excess of 5.0 ⁇ 10 7 / mm 2 from the alloy composition and production method of the present invention. It is difficult to make it. Therefore, the upper limit of the existence density is 5.0 ⁇ 10 7 pieces / mm 2 .
  • the manufacturing method of the aluminum alloy clad material according to the present invention includes a step of casting an aluminum alloy for the core material and the first brazing material, and hot casting the ingot of the cast first brazing material to a predetermined thickness.
  • a rolling step, a cladding step of cladding a first brazing material having a predetermined thickness by hot rolling on one or both surfaces of the core ingot, and a hot cladding rolling step of hot rolling the cladding material A cold rolling process for cold rolling the clad material that has been hot clad rolled, and one or more annealing processes for annealing the clad material in one or both of the cold rolling process and after the cold rolling process. Including. When the first brazing material is clad only on one surface of the core material, the second brazing material or the sacrificial anode material hot-rolled to a predetermined thickness is clad on the other surface of the core material.
  • the aluminum alloy clad material of the present invention realizes excellent corrosion resistance by controlling the structure of the first brazing material.
  • the present inventors have found that the greatest influence on the structure control during the manufacturing process is the hot rolling process of the cast first brazing filler metal. Below, the control method of the hot rolling process of this 1st brazing material is demonstrated.
  • Hot-rolling process of first brazing material In the method for producing an aluminum alloy clad material according to the present invention, after casting the first brazing material, the first brazing material is cast to a predetermined thickness in order to obtain a desired cladding rate. It is characterized by a hot rolling process in which the ingot is hot rolled.
  • the hot rolling process includes a heating stage for heating the ingot, a holding stage following the heating stage, and a hot rolling stage for rolling the heated and held ingot.
  • the rate of temperature rise until reaching 400 ° C. is defined as 30 ° C./h or more
  • the rate of temperature rise from reaching 400 ° C. to reaching the holding temperature in the holding stage is defined as 60 ° C./h or less. .
  • the holding temperature is set to 450 ° C. or more and 560 ° C. or less, and the holding time is set to 1 hour or more. Furthermore, in the hot rolling stage, the time during which the temperature of the rolled material is 400 ° C. or higher is defined as 5 minutes or longer.
  • the aluminum alloy clad material according to the present invention can be obtained between the Al—Mn-based metals defined in the present invention before and after brazing. The distribution of the compound can be obtained, and excellent corrosion resistance can be exhibited after brazing. The reason for this will be described below.
  • the equivalent circle diameter of the Al—Mn intermetallic compound before brazing is 0.1 ⁇ m or more. It needs to be.
  • the holding temperature in the holding stage is lower than 450 ° C.
  • the formation of a relatively large Al—Mn intermetallic compound precipitate is small, and the desired Al—Mn intermetallic compound precipitate distribution is obtained. I can't.
  • the holding time is less than 1 hour, a relatively large Al—Mn-based intermetallic compound precipitate is generated, and the target Al—Mn-based intermetallic compound precipitate distribution cannot be obtained.
  • the heating rate until reaching 400 ° C. is preferably 40 ° C./h or more, and the heating rate from reaching 400 ° C. to reaching the holding temperature in the holding stage is preferably 50 ° C./h or less.
  • the holding temperature in the holding stage is preferably 460 ° C. or more, and the holding time is preferably 2 hours or more.
  • the upper limit of the heating rate until reaching 400 ° C. is not particularly limited, but exceeding 100 ° C./h is difficult in terms of the heat capacity of the ingot. Therefore, in this invention, the upper limit of this temperature increase rate shall be 100 degrees C / h.
  • the lower limit of the rate of temperature rise from the time when reaching 400 ° C. to the time when the holding temperature in the holding stage is reached is not particularly limited. It takes a long time and the economic efficiency is significantly impaired. Therefore, in the present invention, the lower limit of the temperature increase rate is set to 20 ° C./h.
  • the upper limit of the holding temperature is 560 ° C.
  • the upper limit of the holding time is not particularly limited, but if it exceeds 20 hours, the economy is significantly impaired. Therefore, the upper limit of the holding time is preferably 20 hours.
  • the time required for the hot rolling stage is shorter than that of the heating stage and the holding stage, which are the previous stages, but during the hot rolling stage, precipitation of intermetallic compounds is promoted by the introduced strain. Therefore, in this hot rolling stage, a relatively large Al—Mn intermetallic compound precipitate is formed even if the rolling time is short.
  • the temperature of the first brazing filler metal is 400 ° C. or higher during the hot rolling stage is less than 5 minutes, the formation of relatively large Al—Mn intermetallic compound precipitates is small, and the target A distribution of precipitates of the Al—Mn intermetallic compound cannot be obtained.
  • the time during which the temperature of the first brazing material is 400 ° C. or higher is preferably 7 minutes or longer.
  • the upper limit of this time is not particularly limited, but it is difficult to maintain 400 ° C. or more over 30 minutes from the viewpoint of the heat capacity of the ingot. Therefore, in the present invention, the upper limit of this time is 30 minutes.
  • the hot rolling stage in the temperature range where the temperature of the first brazing material is less than 400 ° C., precipitation hardly occurs, and it is not necessary to control the time required during that time.
  • the conditions in the casting process of the first brazing material, core material, second brazing material and sacrificial anode material are not particularly limited, but a water-cooled semi-continuous casting method is usually used.
  • the hot rolling process in which the second brazing material and the sacrificial anode material are each hot-rolled to a predetermined thickness includes a heating and holding stage and a hot rolling stage.
  • the heating conditions in the heating and holding stage are usually 400 to 560.
  • the reaction is preferably carried out at a temperature of 0.5 to 10 hours, more preferably at a temperature of 420 to 540 ° C. for 0.5 to 8 hours.
  • the ingot obtained by casting the core material may be subjected to a homogenization process before the hot clad rolling process.
  • the homogenization treatment step is usually preferably performed at 450 to 620 ° C. for 1 to 24 hours, more preferably at 480 to 620 ° C. for 1 to 20 hours. If the temperature is less than 450 ° C. or the time is less than 1 hour, the homogenization effect may not be sufficient, and if it exceeds 620 ° C., the core material ingot may be melted. Further, if the time exceeds 24 hours, the economic efficiency is remarkably impaired.
  • Hot clad rolling process In the hot clad rolling process, the clad material is heated in the heating stage before the clad rolling stage.
  • the heating temperature is usually preferably 400 to 560 ° C. for 0.5 to 10 hours, more preferably 420 to 540 ° C. for 0.5 to 8 hours. If the temperature is less than 400 ° C., the plastic workability is poor, and cracking may occur during clad rolling. When it exceeds 560 ° C., the ingot may be melted during heating. If the time is less than 0.5 hours, the temperature of the clad material may not be uniform, and if it exceeds 10 hours, the economic efficiency is remarkably impaired.
  • the hot clad rolling process may be divided into a rough rolling process with a rolling reduction of 70 to 95% and a finish rolling process with a subsequent rolling reduction of 70 to 95%.
  • annealing process is performed once or more in the middle of the cold rolling process and one or both after the cold rolling process for the purpose of improving formability. Specifically, (1) one or more intermediate annealings are performed during the cold rolling process, (2) the final annealing process is performed once after the cold rolling process, or (3) (1 ) And (2) are implemented.
  • the clad material is preferably held at 200 to 560 ° C. for 1 to 10 hours. When the temperature is less than 200 ° C. and the holding time is less than 1 hour, the above effect may not be sufficient.
  • the clad material may be melted during heating, and if the holding time exceeds 10 hours, the economical efficiency is remarkably impaired.
  • More preferable annealing conditions are a temperature of 230 to 500 ° C. and a holding time of 1 to 8 hours.
  • count of an annealing process is not specifically limited, In order to avoid the cost increase by the increase in the number of processes, it is preferable to set it as 3 times.
  • Clad rate and plate thickness In the aluminum alloy clad material according to the present invention, the clad rate (one side) of the first brazing material, the second brazing material and the sacrificial anode material is preferably 3 to 25%. If each of these cladding ratios is less than 3%, the material to be clad is too thin, so that it may not be possible to cover the entire core material during hot clad rolling. If each of these cladding ratios exceeds 25%, warpage may occur during hot cladding rolling, and the cladding material may not be manufactured. Each of these cladding rates is more preferably 5 to 20%.
  • the thickness of the aluminum alloy clad material according to the present invention is not particularly limited.
  • a thickness of 0.15 to 0.6 mm is usually used. It is done. It is also possible to use it for a header plate or the like with a plate thickness of about 0.6 to 3 mm.
  • the aluminum alloy clad material according to the present invention is suitably used as a heat exchanger member such as a flow path forming component, a header plate, and a fin material, particularly as a flow path forming component.
  • a heat exchanger member such as a flow path forming component, a header plate, and a fin material, particularly as a flow path forming component.
  • the aluminum alloy clad material is bent, and the overlapping portions at both ends thereof are brazed and joined to produce a flow path forming component for flowing a medium such as cooling water.
  • the heat exchanger according to the present invention has a structure in which, for example, the above-mentioned flow path forming component is combined with a fin material and a header plate, and these are brazed at once.
  • the heat exchanger is assembled by disposing fin materials on the outer surface of the flow path forming component with both end portions attached to the header plate. Next, the overlapping portions on both ends of the flow path forming component, the fin material and the outer surface of the flow path forming component, and both ends of the flow path forming component and the header plate are simultaneously joined by one brazing heating.
  • a flux-free brazing method, a nocolok brazing method, or a vacuum brazing method is used, but the nocolock brazing method is preferable.
  • the brazing is usually performed by heating at a temperature of 590 to 610 ° C. for 2 to 10 minutes, preferably at a temperature of 590 to 610 ° C. for 2 to 6 minutes.
  • the brazed one is usually cooled at a cooling rate of 20 to 500 ° C./min.
  • the aluminum alloy clad material according to the present invention is used as at least a flow path forming component of a heat exchanger.
  • a description will be given of a corrosive environment in which the superiority in terms of corrosion resistance can be exhibited when used as a flow path forming component of a heat exchanger.
  • the superiority of the present invention is exhibited.
  • the corrosion form remains pitting even at high temperatures, and sacrificial corrosion protection continues to act.
  • the superiority of the present invention is not sufficiently exhibited.
  • the chloride ion concentration is less than 5 ppm, corrosion holes are not generated in the first place, so the advantage of the present invention is not particularly exhibited.
  • the aluminum alloy clad material according to the present invention can exhibit superiority in corrosion resistance in an environment where chloride ions are 1200 ppm or less, but as a corrosive environment in which the superiority of the present invention is exhibited, the chloride ion concentration is 5 -1000 ppm is preferable, and 10-800 ppm is more preferable.
  • the aluminum alloy clad material according to the present invention is used at least for the flow path forming component.
  • the first brazing material is used on both surfaces of the core material, at least one surface of the first brazing material surface is used in a state where it is exposed to a solution having a chloride ion concentration of 1200 ppm or less.
  • the surface of the first brazing material is used in a state where it is exposed to a solution having a chloride ion concentration of 1200 ppm or less.
  • the first brazing alloy having the alloy composition shown in Table 1 The first brazing alloy having the alloy composition shown in Table 1, the core alloy having the alloy composition shown in Table 2, the second brazing alloy having the alloy composition shown in Table 3, and the sacrificial anode material having the alloy composition shown in Table 4.
  • Each alloy was cast by DC casting and each side was chamfered and finished.
  • the thickness of the ingot after chamfering was 400 mm in all cases.
  • For the first brazing filler metal, the second brazing filler metal, and the sacrificial anode material calculate the clad ratio to be the desired thickness by the final thickness, and heat at 480 ° C. for 3 hours so as to obtain the required thickness at the time of matching. And then subjected to a hot rolling step to a predetermined thickness.
  • Table 5 shows the conditions for the hot rolling process of the first brazing filler metal.
  • the second brazing material and the sacrificial anode material were both hot-rolled under the conditions of E1 in Table 5.
  • the first brazing material in Table 1 is combined with one side of the core alloy and nothing is combined with the other side of the core material, or the first brazing material in Table 1 or the first brazing material in Table 3 is used.
  • Two brazing materials or sacrificial anode materials from Table 4 were combined.
  • Tables 6 to 9 show combinations of the first brazing material, the core material, the second brazing material, and the sacrificial anode material in each sample.
  • the cladding rates of the first brazing material, the second brazing material, and the sacrificial anode material were all 10% (one side).
  • the clad material was heated and held at 500 ° C. for 3 hours, and then the clad rolling stage was performed to produce a 2-layer or 3-layer clad material having a thickness of 3 mm. Then, after cold rolling in Table 5, (1) cold rolling ⁇ intermediate annealing ⁇ final cold rolling, (2) cold rolling ⁇ final annealing, (3) cold rolling ⁇ intermediate annealing A final clad material sample having a final thickness of 0.4 mm was prepared in any of the order of final cold rolling and final annealing. The conditions for intermediate annealing and final annealing were both 2 hours at 370 ° C., and the rolling ratio in final cold rolling after intermediate annealing was 30%. Table 5 shows the process combinations.
  • the manufacturability is set to “ ⁇ ”, and cracking occurs during casting or rolling to roll to a final thickness of 0.4 mm. If the clad material could not be manufactured due to melting during the heating stage or intermediate annealing process before the hot clad rolling process, or poor crimping during the hot clad rolling stage, It is shown in Tables 6 to 9 as “x”.
  • Tables 6 to 9 show the results obtained by subjecting the above clad material samples to the following evaluations. In addition, since the samples could not be manufactured for those with the productivity “x” in Tables 7 to 9, the following evaluation could not be performed.
  • a fin material having a thickness of 0.07 mm, a tempered H14, and an alloy component of 3003 alloy with 1.0% Zn added thereto was corrugated to obtain a heat exchanger fin material.
  • This fin material is placed on the first brazing filler metal surface or the second brazing filler metal surface of the clad material sample, immersed in a 5% fluoride flux aqueous solution, and subjected to brazing addition heat at 600 ° C. for 3 minutes.
  • a sample was prepared. When the fin joint rate of this mini-core sample is 95% or more and the clad material sample and the fin are not melted, the brazing property is passed (O), while (1) the fin joint rate is 95%. Less than (1) and (2), or (1) or (2) in the case where melting occurs in at least one of the clad material sample and the fin. (X).
  • the L-LT surface of the first brazing filler metal part is ground by polishing, and EPMA is used to determine the Mn element distribution. It was examined by performing mapping. By observing five fields of 500 ⁇ m ⁇ 500 ⁇ m for each sample and analyzing the mapping of Mn in each field, the distribution of Al—Mn intermetallic compounds having an equivalent circle diameter of 2 ⁇ m or more was obtained.
  • the brazing equivalent heating condition in the present invention is that the ultimate temperature is 600 ° C. and the holding time of 580 ° C. or more is 5 minutes.
  • the clad material sample was heated corresponding to the above brazing, then cut into 50 mm ⁇ 50 mm, and the opposite surface of the test surface was masked with resin.
  • the first brazing material surface was used as a test surface
  • the sacrificial anode material surface was also used as a test surface.
  • the test using the second brazing filler metal surface as a test surface was not performed.
  • the test solution when the test surface is the first brazing filler metal is a NaCl aqueous solution (pure water) having a chloride ion concentration of 3 ppm (solution A), 5 ppm (solution B), 1000 ppm (solution C), and 1200 ppm (solution D), respectively.
  • a NaCl aqueous solution pure water having a chloride ion concentration of 3 ppm (solution A), 5 ppm (solution B), 1000 ppm (solution C), and 1200 ppm (solution D), respectively.
  • Each test sample was immersed in these solutions, and a cycle immersion test was performed for 3 hours in 88 ° C high-temperature water for 8 hours and then at room temperature for 16 hours. ( ⁇ ) and the resulting product was rejected ( ⁇ ).
  • test surface is a sacrificial anode material
  • ASTM-G85 SWAAT test based on ASTM-G85
  • Example 1 to 20 and 55 to 59 of the present invention the conditions specified in the present invention were satisfied, and all of the manufacturability, brazing property, tensile strength after brazing, and corrosion resistance were acceptable.
  • Comparative Example 49 there were too many Ti, Zr, Cr and V components in the sacrificial anode material, so that cracking occurred during rolling, and the clad material could not be produced, resulting in rejected productivity.
  • Comparative Example 61 since the temperature increase rate from reaching 400 ° C. in the heating stage of the hot rolling process of the first brazing filler metal to reaching the holding temperature in the holding stage was too high, an appropriate Al—Mn system after the brazing addition heat was used. The distribution of intermetallic compounds could not be obtained, and the corrosion resistance in solutions A and B was unacceptable.
  • the aluminum alloy clad material according to the present invention is excellent in corrosion resistance and excellent in brazing properties such as fin joint ratio and erosion resistance, and therefore is particularly suitably used as a flow path forming part of an automotive heat exchanger.

Abstract

Provided is an aluminum alloy cladding material having an aluminum alloy core material and a first filler metal cladded to one surface or both surfaces of the core material, wherein the core material and the first filler metal are made from an aluminum alloy having a predetermined composition, the existence density of Al-Mn intermetallic compounds having a circle-equivalent diameter of at least 0.1 μm in the first filler metal before brazing heating is at least 1.0×105 compounds/mm2, and the existence density of Al-Mn intermetallic compounds having a circle-equivalent diameter of at least 2 μm in the first filler metal after brazing heating is at least 300 compounds/mm2. Further provided are a manufacturing method for the aluminum alloy cladding material, and a heat exchanger using the aluminum alloy cladding material.

Description

アルミニウム合金クラッド材及びその製造方法、ならびに、当該アルミニウム合金クラッド材を用いた熱交換器Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material
 本発明は、ラジエータなどの熱交換器における冷媒や高温圧縮空気の通路構成材として好適に使用される高耐食性のアルミニウム合金クラッド材及びその製造方法に関する。更に本発明は、前記高耐食性のアルミニウム合金クラッド材を用いた流路形成部品を備える自動車用などの熱交換器に関する。 The present invention relates to a highly corrosion-resistant aluminum alloy clad material suitably used as a refrigerant or high-temperature compressed air passage component in a heat exchanger such as a radiator, and a method for producing the same. Furthermore, the present invention relates to a heat exchanger for an automobile or the like provided with a flow path forming component using the highly corrosion-resistant aluminum alloy clad material.
 アルミニウム合金は軽量かつ高熱伝導性を備えており、適切な処理により高耐食性が実現できるため、自動車用などの熱交換器、例えば、ラジエータ、コンデンサ、エバポレータ、ヒータ、インタークーラ、オイルクーラなどに用いられている。自動車用熱交換器のチューブ材としては、3003合金などのAl-Mn系合金を芯材として、その一方の面に、Al-Si系合金のろう材や、Al-Zn系合金の犠牲陽極材をクラッドした2層クラッド材、更に他方の面にAl-Si系合金のろう材をクラッドした3層クラッド材などが使用されている。熱交換器は、通常、このようなクラッド材とコルゲート成形したフィン材を組み合わせ、600℃程度の高温でろう付することによって接合される。 Aluminum alloy is lightweight and has high thermal conductivity, and high corrosion resistance can be realized by appropriate treatment, so it is used for heat exchangers for automobiles, such as radiators, condensers, evaporators, heaters, intercoolers, oil coolers, etc. It has been. As a tube material for an automotive heat exchanger, an Al—Mn alloy such as 3003 alloy is used as a core material, and an Al—Si alloy brazing material or an Al—Zn alloy sacrificial anode material is provided on one side of the tube material. A two-layer clad material clad with an Al—Si alloy brazing material on the other surface is used. The heat exchanger is usually joined by combining such a clad material and a corrugated fin material and brazing at a high temperature of about 600 ° C.
 例えばオイルクーラにおいては、エンジンオイルと冷却水とを熱交換させ、エンジンオイルを冷却する、水冷式を採用するのが一般的である。近年では、インタークーラにも水冷式を採用するタイプのものが見られる。この冷却水には、本来は防錆剤を添加したLLCを用いるが、発展途上国などにおいては水道水や井戸水を使用する場合がある。水道水や井戸水には塩化物イオンが含まれている場合があるため、アルミニウムの酸化被膜を破壊して孔食を発生させ、冷却水の流路に腐食貫通を発生させるおそれがある。 For example, in an oil cooler, it is common to adopt a water cooling type in which engine oil and cooling water are subjected to heat exchange to cool the engine oil. In recent years, intercoolers of a type that employs a water-cooling type have been seen. For this cooling water, LLC to which a rust inhibitor is added is originally used, but tap water or well water may be used in developing countries. Since tap water and well water may contain chloride ions, the aluminum oxide film may be destroyed to cause pitting corrosion, which may cause corrosion penetration in the cooling water flow path.
 この対策としては、Al-Zn系合金の犠牲陽極材をクラッドすることにより犠牲防食効果を付与し、腐食の進行を横広がりにすることで孔食による腐食貫通を防ぐのが一般的である。しかしながら、水道水や井戸水に含まれる塩化物イオンは通常1200ppm程度以下の低濃度であるため、冷却水が室温近くの低温であるときは孔食が発生し易く、高温であるときにはアルミニウムの酸化被膜が厚く形成されるため、孔食が発生し難くなるが、室温で発生した孔食内と孔食外との間に水酸化アルミニウムなどの腐食生成物が形成され、孔食内部が閉塞されることにより、孔食内部で局部的なアルカリ化が進行しやすくなる。閉塞された孔食内部が強アルカリ性になると腐食速度が大きい全面腐食となり犠牲陽極効果が十分に機能しなくなるため、横広がりにならない深い腐食貫通が発生してしまう。 As a countermeasure, it is common to provide a sacrificial anticorrosive effect by cladding a sacrificial anode material made of an Al—Zn alloy, and to prevent corrosion penetration due to pitting corrosion by spreading the progress of corrosion laterally. However, since chloride ions contained in tap water and well water are usually at a low concentration of about 1200 ppm or less, pitting corrosion is likely to occur when the cooling water is at a low temperature near room temperature, and an aluminum oxide film is formed at a high temperature. Since pitting corrosion is difficult to occur, corrosion products such as aluminum hydroxide are formed between pitting corrosion outside and pitting corrosion occurring at room temperature, and the inside of the pitting corrosion is blocked. This facilitates local alkalinization inside the pitting corrosion. When the inside of the closed pitting corrosion becomes strong alkalinity, the corrosion rate is large and the sacrificial anode effect does not function sufficiently, so that deep corrosion penetration that does not spread laterally occurs.
 また、熱交換器において冷却水の流路を形成する手段として、図1に示すように、クラッド材を成形して冷却水の流路となるプレート1を、コルゲートフィン2を介して積層する方法がある。この方法は、積層の段数を変更するだけで熱交換器のサイズを変えられるため、設計の自由度が高いという利点がある。しかしながら、プレート同士を接合するためには、ろう付時にプレートの材料自身からろうが供給される必要がある。 As a means for forming a cooling water flow path in the heat exchanger, as shown in FIG. 1, a method of laminating a plate 1 that forms a cooling water flow path through a corrugated fin 2 by forming a clad material. There is. This method has an advantage that the degree of freedom in design is high because the size of the heat exchanger can be changed simply by changing the number of stacks. However, in order to join the plates together, it is necessary to supply the brazing from the plate material itself during brazing.
 以上のことを踏まえると、水冷式の熱交換器に、積層タイプを適用する場合には、流路形成部品に用いられる材料の流路内面側には、ろう付時にろうを供給し、なおかつ孔食に対して犠牲防食機能を有し、しかも局部的な強アルカリ化による腐食の発生を防止するといった、複数の機能を兼ね備えた層をクラッドすることが必要となる。 In consideration of the above, when a laminated type is applied to a water-cooled heat exchanger, the brazing is supplied to the inner surface of the flow path of the material used for the flow path forming component at the time of brazing, and the holes It is necessary to clad a layer having a plurality of functions such as having a sacrificial anticorrosion function against corrosion and preventing the occurrence of corrosion due to local strong alkalinization.
 ろう付時にろうを供給して、なおかつ孔食に対して犠牲防食機能を付与するための技術については、特許文献1と2に記載されている。これらの特許文献においては、クラッド層にZnと低濃度のSiを含有させることにより、ろう付時に液相のろうを形成して接合を可能にすると共に、当該クラッド層の一部を固相のまま残存させ、高い犠牲防食機能を持たせる方法が提案されている。また、この技術においては、クラッド層の溶融によりろう付け後に生じる凝固組織が初晶と共晶の2相となる。そして、共晶の電位が初晶に比べて卑となることに起因して共晶部の優先腐食が生じ、犠牲陽極材として作用すべき初晶部の早期脱落が発生して耐食性が低下するという問題と、その解決手段も開示されている。しかしながら、これらの特許文献においては、局部的な強アルカリ化による腐食の発生という課題は認識されておらず、それを防止するための手段については何等記載されていない。 Patent Documents 1 and 2 describe a technique for supplying brazing at the time of brazing and imparting a sacrificial anticorrosion function to pitting corrosion. In these patent documents, by adding Zn and low-concentration Si to the cladding layer, a liquid phase brazing is formed at the time of brazing to enable bonding, and a part of the cladding layer is made of a solid phase. There has been proposed a method of leaving it as it is and having a high sacrificial anticorrosive function. In this technique, the solidified structure generated after brazing due to melting of the clad layer becomes a primary phase and a eutectic phase. And, due to the fact that the potential of the eutectic is lower than that of the primary crystal, preferential corrosion of the eutectic portion occurs, and the primary crystal portion that should act as a sacrificial anode material is dropped early, resulting in a decrease in corrosion resistance. The problem and its solution are also disclosed. However, these patent documents do not recognize the problem of occurrence of corrosion due to local strong alkalinization, and do not describe any means for preventing it.
特開2010-255013号公報JP 2010-255013 A 国際公開第2011/034102号International Publication No. 2011/034102
 上述のように、アルミニウム合金クラッド材を例えば熱交換器の流路形成部品用材として用いる際に、ろう付加熱時にろうを供給し、ろう付加熱後には犠牲防食機能を有し、しかも局部的なアルカリ化による腐食を防止するアルミニウム合金クラッド材を提供することは、従来の技術では困難であった。 As described above, when an aluminum alloy clad material is used, for example, as a material for a flow path forming part of a heat exchanger, brazing is supplied at the time of brazing addition heat, and after sacrificial heating, it has a sacrificial anticorrosion function and is also localized It has been difficult to provide an aluminum alloy clad material that prevents corrosion due to alkalinization by conventional techniques.
 本発明は、斯かる問題点を解消するべく完成されたものであって、アルミニウム合金クラッド材において、ろう付加熱時にろうを供給し、ろう付加熱後には犠牲防食機能を有し、しかも局部的なアルカリ化による腐食を防止する高耐食性アルミニウム合金クラッド材、ならびに、これを用いた自動車用などの熱交換器の流路形成部品を提供することを目的とする。 The present invention has been completed to solve such problems, and in an aluminum alloy clad material, brazing is supplied at the time of brazing addition heat, and after sacrificial heating, it has a sacrificial anticorrosion function, and is also localized. An object of the present invention is to provide a highly corrosion-resistant aluminum alloy clad material that prevents corrosion due to alkalinization, and a flow path forming part for a heat exchanger such as an automobile using the same.
 本発明者らは上記課題について鋭意研究を重ねた結果、それぞれが特定の合金組成及び金属組織を有する心材、ろう材(第一、第二)、犠牲陽極材を用意し、心材の一方又は両方の面に第一ろう材をクラッドしたクラッド材、ならびに、心材の一方の面に第一ろう材を他方の面に犠牲陽極材又は第二ろう材をクラッドしたクラッド材によって、上記課題を解決することができることを見出し、本発明を完成させるに至った。 As a result of intensive research on the above problems, the present inventors prepared a core material, a brazing material (first and second), and a sacrificial anode material each having a specific alloy composition and metal structure, and one or both of the core materials. The above-mentioned problem is solved by a clad material in which a first brazing material is clad on one surface and a clad material in which a first brazing material is clad on one surface of a core material and a sacrificial anode material or a second brazing material is clad on the other surface. As a result, the present invention has been completed.
 本発明は請求項1では、アルミニウム合金の心材と、前記心材の一方又は両方の面にクラッドされた第一ろう材とを備えるアルミニウム合金クラッド材において、前記心材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Mn:0.5~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記第一ろう材が、Si:2.5~7.0mass%、Fe:0.05~1.20mass%、Zn:0.5~8.0mass%、Mn:0.3~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、ろう付加熱前において前記第一ろう材における0.1μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が1.0×10個/mm以上であり、ろう付加熱後において前記第一ろう材における2μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が300個/mm以上であることを特徴とするアルミニウム合金クラッド材とした。 According to a first aspect of the present invention, in the aluminum alloy clad material comprising an aluminum alloy core material and a first brazing material clad on one or both surfaces of the core material, the core material comprises Si: 0.05 to 1 .50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 0.5 to 2.0 mass%, the balance being made of an aluminum alloy composed of Al and inevitable impurities, wherein the first brazing material is Si : 2.5 to 7.0 mass%, Fe: 0.05 to 1.20 mass%, Zn: 0.5 to 8.0 mass%, Mn: 0.3 to 2.0 mass%, balance Al and inevitable The presence density of the Al—Mn intermetallic compound having an equivalent circle diameter of 0.1 μm or more in the first brazing filler metal is 1.0 ×. 10 5 pieces / mm 2 or more, and the presence density of Al—Mn intermetallic compounds having an equivalent circle diameter of 2 μm or more in the first brazing material after the brazing heat is 300 pieces / mm 2 or more. It was set as the characteristic aluminum alloy clad material.
 本発明は請求項2では請求項1において、前記第一ろう材が、Cu:0.05~0.60mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなるものとした。 According to a second aspect of the present invention, in the first aspect, the first brazing material is Cu: 0.05 to 0.60 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass. %, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%, and an aluminum alloy further containing one or more selected from Cr.
 本発明は請求項3では請求項1又は2において、前記第一ろう材が、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種を更に含有するアルミニウム合金からなるものとした。 According to a third aspect of the present invention, in the first or second aspect, the first brazing material is one or two selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. It was made of an aluminum alloy further containing seeds.
 本発明は請求項4では請求項1~3のいずれか一項において、前記心材が、Mg:0.05~0.50mass%、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなるものとした。 According to a fourth aspect of the present invention, the core material according to any one of the first to third aspects includes Mg: 0.05 to 0.50 mass%, Cu: 0.05 to 1.50 mass%, and Ti: 0.05. One or more selected from ˜0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass% The aluminum alloy contained was used.
 本発明は請求項5において、請求項1~4のいずれか一項に記載のアルミニウム合金クラッド材の製造方法であって、前記心材用及び第一ろう材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した第一ろう材の鋳塊を所定の厚さまで熱間圧延する熱間圧延工程と、心材鋳塊の一方又は両方の面に熱間圧延により所定厚さとした第一ろう材をクラッドしてクラッド材とするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間クラッド圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含み、前記第一ろう材の熱間圧延工程が加熱段階と保持段階と熱間圧延段階とを含み、加熱段階において、400℃到達時までの昇温速度が30℃/h以上であり、400℃到達時から保持段階の保持温度到達時までの昇温速度が60℃/h以下であり、保持段階における保持温度が450℃以上560℃以下であり保持時間が1時間以上であり、熱間圧延段階中において、第一ろう材の温度が400℃以上である時間が5分以上であることを特徴とするアルミニウム合金クラッド材の製造方法とした。 The present invention provides the method for producing an aluminum alloy clad material according to any one of claims 1 to 4, wherein the aluminum alloy for the core material and the first brazing material are respectively casted. A hot rolling process in which the ingot of the cast first brazing material is hot-rolled to a predetermined thickness, and one or both surfaces of the core material ingot are clad with the first brazing material having a predetermined thickness by hot rolling. A clad process for forming a clad material, a hot clad roll process for hot rolling the clad material, a cold roll process for cold rolling the clad material that has been hot clad rolled, One or more annealing steps for annealing the clad material in one or both after the rolling step, and the hot rolling step of the first brazing material includes a heating step, a holding step, and a hot rolling step, and heating In stage 4, The temperature rising rate until reaching 0 ° C. is 30 ° C./h or more, the temperature rising rate from reaching 400 ° C. to reaching the holding temperature in the holding stage is 60 ° C./h or less, and the holding temperature in the holding stage is 450.degree. C. or higher and 560.degree. C. or lower, the holding time is 1 hour or longer, and the time during which the temperature of the first brazing material is 400.degree. C. or higher is 5 minutes or longer during the hot rolling stage. A method for producing a clad material was adopted.
 本発明は請求項6では、アルミニウム合金の心材と、前記心材の一方の面にクラッドされた第一ろう材と、前記心材の他方の面にクラッドされた第二ろう材とを備えるアルミニウム合金クラッド材において、前記心材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Mn:0.5~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記第一ろう材が、Si:2.5~7.0mass%、Fe:0.05~1.20mass%、Zn:0.5~8.0mass%、Mn:0.3~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記第二ろう材が、Si:2.5~13.0mass%、Fe:0.05~1.20mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、ろう付加熱前において前記第一ろう材における0.1μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が1.0×10個/mm以上であり、ろう付加熱後において前記第一ろう材における2μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が300個/mm以上であることを特徴とするアルミニウム合金クラッド材とした。 The present invention provides, in claim 6, an aluminum alloy clad comprising an aluminum alloy core material, a first brazing material clad on one surface of the core material, and a second brazing material clad on the other surface of the core material. In the material, the core material contains Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 0.5 to 2.0 mass%, and the remainder from Al and inevitable impurities The first brazing filler metal is made of an aluminum alloy having the following composition: Si: 2.5 to 7.0 mass%, Fe: 0.05 to 1.20 mass%, Zn: 0.5 to 8.0 mass%, Mn: 0.00. Containing 3 to 2.0 mass%, the balance being made of an aluminum alloy consisting of Al and inevitable impurities, the second brazing filler metal is Si: 2.5 to 13.0 mass%, Fe: 0.05 to 1.20 m An abundance density of an Al—Mn intermetallic compound having an equivalent circle diameter of 0.1 μm or more in the first brazing filler metal, which is made of an aluminum alloy containing ss%, the balance being Al and inevitable impurities, and before the brazing heat Is 1.0 × 10 5 pieces / mm 2 or more, and the presence density of Al—Mn intermetallic compounds having a circle-equivalent diameter of 2 μm or more in the first brazing material after the brazing heat is 300 pieces / mm 2. It was set as the aluminum alloy clad material characterized by the above.
 本発明は請求項7では請求項6において、前記第一ろう材が、Cu:0.05~0.60mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなるものとした。 According to a seventh aspect of the present invention, in the sixth aspect, the first brazing material is Cu: 0.05 to 0.60 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass. %, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%, and an aluminum alloy further containing one or more selected from Cr.
 本発明は請求項8では請求項6又は7において、前記第一ろう材が、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種を更に含有するアルミニウム合金からなるものとした。 According to the present invention, in claim 8, in claim 6 or 7, the first brazing material is one or two selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. It was made of an aluminum alloy further containing seeds.
 本発明は請求項9では請求項6~8のいずれか一項において、前記心材が、Mg:0.05~0.50mass%、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなるものとした。 In the ninth aspect of the present invention, the core material according to any one of the sixth to eighth aspects includes: Mg: 0.05 to 0.50 mass%, Cu: 0.05 to 1.50 mass%, Ti: 0.05. One or more selected from ˜0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass% The aluminum alloy contained was used.
 本発明は請求項10では請求項6~9のいずれか一項において、前記第二ろう材が、Mn:0.05~2.00mass%、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなるものとした。 According to a tenth aspect of the present invention, there is provided the method according to any one of the sixth to ninth aspects, wherein the second brazing material is Mn: 0.05 to 2.00 mass%, Cu: 0.05 to 1.50 mass%, Ti: One or two selected from 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass% The aluminum alloy further contains the above.
 本発明は請求項11では請求項6~10のいずれか一項において、前記第二ろう材が、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種を更に含有するアルミニウム合金からなるものとした。 In the eleventh aspect of the present invention, in the eleventh aspect, the second brazing material is selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. It was made of an aluminum alloy further containing one or two kinds.
 本発明は請求項12において、請求項6~11のいずれか一項に記載のアルミニウム合金クラッド材の製造方法であって、前記心材用、第一ろう材用及び第二ろう材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した第一ろう材及び第二ろう材の鋳塊をそれぞれ所定の厚さまで熱間圧延する熱間圧延工程と、心材鋳塊の一方の面に熱間圧延により所定厚さとした第一ろう材を、他方の面に熱間圧延により所定厚さとした第二ろう材をそれぞれクラッドしてクラッド材とするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間クラッド圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含み、前記第一ろう材の熱間圧延工程が加熱段階と保持段階と熱間圧延段階とを含み、加熱段階において、400℃到達時までの昇温速度が30℃/h以上であり、400℃到達時から保持段階の保持温度到達時までの昇温速度が60℃/h以下であり、保持段階における保持温度が450℃以上560℃以下であり保持時間が1時間以上であり、熱間圧延段階において、第一ろう材の温度が400℃以上である時間が5分以上であることを特徴とするアルミニウム合金クラッド材の製造方法とした。 The present invention provides the method for producing an aluminum alloy clad material according to any one of claims 6 to 11, wherein the aluminum alloy for the core material, the first brazing material, and the second brazing material is defined in claim 12. , A hot rolling process in which the cast ingots of the first brazing material and the second brazing material are each hot-rolled to a predetermined thickness, and one surface of the core material ingot is predetermined by hot rolling. A clad process in which the first brazing material having a thickness is clad with a second brazing material having a predetermined thickness by hot rolling on the other surface, and a hot clad rolling process in which the clad material is hot-rolled A cold rolling step of cold rolling the clad material that has been hot-clad rolled, and one or more annealing steps of annealing the clad material in one or both of the middle of the cold rolling step and after the cold rolling step; Including The hot rolling process of the first brazing filler metal includes a heating stage, a holding stage, and a hot rolling stage, and in the heating stage, the rate of temperature rise until reaching 400 ° C. is 30 ° C./h or more, reaching 400 ° C. The heating rate from the time until reaching the holding temperature in the holding stage is 60 ° C./h or less, the holding temperature in the holding stage is 450 ° C. or more and 560 ° C. or less, the holding time is 1 hour or more, and the hot rolling stage The method for producing an aluminum alloy clad material characterized in that the time during which the temperature of the first brazing material is 400 ° C. or higher is 5 minutes or longer.
 本発明は請求項13では、アルミニウム合金の心材と、前記心材の一方の面にクラッドされた第一ろう材と、前記心材の他方の面にクラッドされた犠牲陽極材とを備えるアルミニウム合金クラッド材において、前記心材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Mn:0.5~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記第一ろう材が、Si:2.5~7.0mass%、Fe:0.05~1.20mass%、Zn:0.5~8.0mass%、Mn:0.3~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材が、Zn:0.5~8.0mass%、Si:0.05~1.50mass%、Fe:0.05~2.00mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、ろう付加熱前において前記第一ろう材における0.1μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が1.0×10個/mm以上であり、ろう付加熱後において前記第一ろう材における2μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が300個/mm以上であることを特徴とするアルミニウム合金クラッド材とした。 According to a thirteenth aspect of the present invention, an aluminum alloy clad material comprising: an aluminum alloy core material; a first brazing material clad on one surface of the core material; and a sacrificial anode material clad on the other surface of the core material. The core material contains Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 0.5 to 2.0 mass%, and the balance is Al and inevitable impurities. It is made of an aluminum alloy, and the first brazing material is Si: 2.5-7.0 mass%, Fe: 0.05-1.20 mass%, Zn: 0.5-8.0 mass%, Mn: 0.3 The sacrificial anode material contains Zn: 0.5 to 8.0 mass%, Si: 0.05 to 1.50 m. ss%, Fe: 0.05 to 2.00 mass%, consisting of an aluminum alloy composed of the balance Al and inevitable impurities, and having an equivalent circle diameter of 0.1 μm or more in the first brazing material before the heat of brazing The Al—Mn-based metal having an abundance density of Al—Mn-based intermetallic compound of 1.0 × 10 5 pieces / mm 2 or more and having an equivalent circle diameter of 2 μm or more in the first brazing material after the heat of brazing addition An aluminum alloy clad material characterized in that the density of intermetallic compounds is 300 / mm 2 or more.
 本発明は請求項14では請求項13において、前記第一ろう材が、Cu:0.05~0.60mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなるものとした。 According to a fourteenth aspect of the present invention, in the fourteenth aspect, the first brazing material is Cu: 0.05 to 0.60 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass. %, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%, and an aluminum alloy further containing one or more selected from Cr.
 本発明は請求項15では請求項13又は14において、前記第一ろう材が、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種を更に含有するアルミニウム合金からなるものとした。 According to a fifteenth aspect of the present invention, in the fifteenth or fourteenth aspect, the first brazing material is one or two selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. It was made of an aluminum alloy further containing seeds.
 本発明は請求項16では請求項13~15のいずれか一項において、前記心材が、Mg:0.05~0.50mass%、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなるものとした。 According to a sixteenth aspect of the present invention, in the sixteenth aspect, the core material is Mg: 0.05 to 0.50 mass%, Cu: 0.05 to 1.50 mass%, Ti: 0.05. One or more selected from ˜0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass% The aluminum alloy contained was used.
 本発明は請求項17では請求項13~16のいずれか一項において、前記犠牲陽極材が、Ni:0.05~2.00mass%、Mn:0.05~2.00mass%、Mg:0.05~3.00mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなるものとした。 In the seventeenth aspect of the present invention, the sacrificial anode material according to any one of the thirteenth to sixteenth aspects includes Ni: 0.05 to 2.00 mass%, Mn: 0.05 to 2.00 mass%, and Mg: 0. .05 to 3.00 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass The aluminum alloy further contains one or more selected from%.
 本発明は請求項18において、前記心材用、第一ろう材用及び犠牲陽極材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した第一ろう材及び犠牲陽極材の鋳塊をそれぞれ所定の厚さまで熱間圧延する熱間圧延工程と、心材鋳塊の一方の面に熱間圧延により所定厚さとした第一ろう材を、他方の面に熱間圧延により所定厚さとした犠牲陽極材をそれぞれクラッドしてクラッド材とするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間クラッド圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含み、前記第一ろう材の熱間圧延工程が加熱段階と保持段階と熱間圧延段階とを含み、加熱段階において、400℃到達時までの昇温速度が30℃/h以上であり、400℃到達時から保持段階の保持温度到達時までの昇温速度が60℃/h以下であり、保持段階における保持温度が450℃以上560℃以下であり保持時間が1時間以上であり、熱間圧延段階において、第一ろう材の温度が400℃以上である時間が5分以上であることを請求項13~17のいずれか一項に記載のアルミニウム合金クラッド材の製造方法であって、特徴とするアルミニウム合金クラッド材の製造方法とした。 The present invention according to claim 18, wherein the aluminum alloy for the core material, the first brazing material, and the sacrificial anode material are respectively casted, and the ingots of the cast first brazing material and sacrificial anode material are each set to a predetermined thickness. A hot rolling step for hot rolling, a first brazing material having a predetermined thickness by hot rolling on one surface of the core ingot, and a sacrificial anode material having a predetermined thickness by hot rolling on the other surface, respectively. A clad process for clad and clad material; a hot clad roll process for hot rolling the clad material; a cold roll process for cold rolling the clad material that has been hot clad rolled; One or more annealing steps for annealing the clad material in one or both after the cold rolling step, and the hot rolling step of the first brazing material includes a heating step, a holding step, and a hot rolling step. In the heating stage The rate of temperature rise until reaching 400 ° C. is 30 ° C./h or more, and the rate of temperature rise from reaching 400 ° C. to reaching the holding temperature in the holding stage is 60 ° C./h or less. The temperature is 450 ° C. or more and 560 ° C. or less, the holding time is 1 hour or more, and in the hot rolling step, the time that the temperature of the first brazing material is 400 ° C. or more is 5 minutes or more. The method for producing an aluminum alloy clad material according to any one of 17, wherein the aluminum alloy clad material is produced by a characteristic method.
 本発明は請求項19において、請求項1~4のいずれか一項に記載のアルミニウム合金クラッド材を少なくとも流路形成部品に用いた熱交換器であって、前記第一ろう材面の少なくとも一方の面が、塩化物イオン濃度1200ppm以下の溶液に晒されていることを特徴とする熱交換器とした。 The present invention provides a heat exchanger according to claim 19, wherein the aluminum alloy clad material according to any one of claims 1 to 4 is used for at least a flow path forming component, wherein at least one of the first brazing material surfaces The heat exchanger was characterized by being exposed to a solution having a chloride ion concentration of 1200 ppm or less.
 本発明は請求項20において、請求項6~11及び13~17のいずれか一項に記載のアルミニウム合金クラッド材を少なくとも流路形成部品に用いた熱交換器であって、前記第一ろう材面が、塩化物イオン濃度1200ppm以下の溶液に晒されていることを特徴とする熱交換器とした。 The present invention provides a heat exchanger according to claim 20, wherein the aluminum alloy clad material according to any one of claims 6 to 11 and 13 to 17 is used for at least a flow path forming component, wherein the first brazing material The heat exchanger is characterized in that the surface is exposed to a solution having a chloride ion concentration of 1200 ppm or less.
 本発明によれば、ろう付加熱時にろうを供給し、ろう付加熱後には犠牲防食機能を有し、しかも局部的なアルカリ化による腐食を防止するアルミニウム合金クラッド材、ならびに、これを用いた自動車用などの熱交換器の流路形成部品が提供される。このクラッド材は、耐エロージョン性などろう付性にも優れ、更に軽量性や良好な熱伝導性の観点から、自動車用などの熱交換器の流路形成部品材として好適に用いられる。 According to the present invention, an aluminum alloy clad material that supplies brazing at the time of brazing addition heat, has a sacrificial anticorrosion function after brazing heat addition, and prevents corrosion due to local alkalinization, and an automobile using the same For example, a heat exchanger flow path forming component is provided. This clad material is excellent in brazing properties such as erosion resistance, and is suitably used as a flow path forming component material for heat exchangers for automobiles and the like from the viewpoint of light weight and good thermal conductivity.
クラッド材を成形した冷却水の流路となるプレートを、コルゲートフィンを介して積層した熱交換器を示す斜視図である。It is a perspective view which shows the heat exchanger which laminated | stacked the plate used as the flow path of the cooling water which shape | molded the clad material through the corrugated fin.
 本発明に係る高耐食性アルミニウム合金クラッド材及びその製造方法の好適な実施態様について、詳細に説明する。 The preferred embodiments of the highly corrosion-resistant aluminum alloy clad material and the method for producing the same according to the present invention will be described in detail.
1.アルミニウム合金クラッド材を構成する層
 本発明のアルミニウム合金クラッド材は、ろう付性と犠牲防食性の両方を兼ね備えた第一ろう材の合金成分と金属組織を適切に制御することにより、ろう付性と共に優れた耐食性を有する。この第一ろう材は、心材の一方の面にクラッドして二層クラッド材としてもよく、或いは、心材の両方の面にクラッドして三層クラッド材としてもよい。
 また、上記二層クラッド材において、第一ろう材がクラッドされていない心材の他方の面に、通常のAl-Si系合金ろう材である第二ろう材をクラッドした三層クラッド材としてもよく、これに替えて、Al-Zn系合金犠牲陽極材をクラッドした三層クラッド材としてもよい。
 以下において、これら第一ろう材、心材、第二ろう材及び犠牲陽極材の成分について説明する
1. Layers constituting the aluminum alloy clad material The aluminum alloy clad material of the present invention has brazing properties by appropriately controlling the alloy composition and metal structure of the first brazing material that has both brazing and sacrificial corrosion resistance. In addition, it has excellent corrosion resistance. The first brazing material may be clad on one surface of the core material to form a two-layer clad material, or may be clad on both surfaces of the core material to form a three-layer clad material.
Further, in the above-mentioned two-layer clad material, a three-layer clad material in which a second brazing material, which is a normal Al—Si alloy brazing material, is clad on the other surface of the core material not clad with the first brazing material may be used. Alternatively, a three-layer clad material clad with an Al—Zn alloy sacrificial anode material may be used.
In the following, the components of these first brazing material, core material, second brazing material and sacrificial anode material will be described.
2.第一ろう材
 第一ろう材には、Si:2.5~7.0mass%(以下、単に「%」と記す)、Fe:0.05~1.20%、Zn:0.5~8.0%、Mn:0.3~2.0%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
2. The first brazing material includes: Si: 2.5 to 7.0 mass% (hereinafter simply referred to as “%”), Fe: 0.05 to 1.20%, Zn: 0.5 to 8 An aluminum alloy containing 0.0%, Mn: 0.3 to 2.0% as an essential element, and the balance being Al and inevitable impurities is used.
 また、第一ろう材は、Cu:0.05~0.60%、Ti:0.05~0.30%、Zr:0.05~0.30%、Cr:0.05~0.30%及びV:0.05~0.30%から選択される1種又は2種以上を第一の選択的添加元素として更に含有してもよい。更に、第一ろう材は、Na:0.001~0.050%及びSr:0.001~0.050%から選択される1種又は2種を第二の選択的添加元素として含有してもよい。なお、上記必須元素及び第一、二の選択的添加元素の他に不可避的不純物を、各々0.05%以下、全体で0.15%含有していてもよい。以下に、各成分について説明する。 The first brazing filler metal is Cu: 0.05-0.60%, Ti: 0.05-0.30%, Zr: 0.05-0.30%, Cr: 0.05-0.30. % And V: One or more selected from 0.05 to 0.30% may be further contained as the first selective additive element. Furthermore, the first brazing material contains one or two selected from Na: 0.001 to 0.050% and Sr: 0.001 to 0.050% as a second selective additive element. Also good. In addition to the essential elements and the first and second selective additive elements, unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total. Below, each component is demonstrated.
Si:
 Siを添加することによりろう材の融点が低下して液相を生じさせ、これによってろう付を可能にする。一般的なろう材用合金は、例えば4045合金であれば上限11%程度までを許容するが、これを低く抑えることにより、ろう付時にある程度の割合を固相のまま残存させ、優れた犠牲防食機能を付与することができる。Si含有量は2.5~7.0%である。2.5%未満では、生じる液相が僅かでありろう付機能が得難くなる。一方、7.0%を超えると、例えばフィンなどの相手材へ拡散するSi量が過剰となり、相手材の溶融が発生してしまう。Siの好ましい含有量は、3.5~6.0%である。
Si:
By adding Si, the melting point of the brazing material is lowered to form a liquid phase, thereby enabling brazing. For example, a general alloy for brazing filler metals allows an upper limit of up to about 11% if it is a 4045 alloy, but by keeping this low, a certain proportion remains in the solid phase at the time of brazing, and excellent sacrificial corrosion protection Functions can be added. The Si content is 2.5 to 7.0%. If it is less than 2.5%, the resulting liquid phase is small and it becomes difficult to obtain a brazing function. On the other hand, if it exceeds 7.0%, for example, the amount of Si diffused into the counterpart material such as fins becomes excessive, and the counterpart material will melt. A preferable content of Si is 3.5 to 6.0%.
Fe:
 FeはAl-Fe系、Al-Fe-Si系、Al-Fe-Mn系、Al-Fe-Mn-Si系の金属間化合物を形成し易いために、ろう付に有効となるSi量を低下させ、ろう付性の低下を招く。Fe含有量は、0.05~1.20%である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高を招く。一方、1.20%を超えると、ろう付に有効となるSi量を低下させてろう付が不十分となる。Feの好ましい含有量は、0.1~0.5%である。
Fe:
Fe easily forms intermetallic compounds of Al-Fe, Al-Fe-Si, Al-Fe-Mn, and Al-Fe-Mn-Si, reducing the amount of Si effective for brazing. Causing a reduction in brazability. The Fe content is 0.05 to 1.20%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 1.20%, the amount of Si effective for brazing is reduced and brazing becomes insufficient. A preferable content of Fe is 0.1 to 0.5%.
Zn:
 Znは孔食電位を卑にすることができ、心材との電位差を形成することで犠牲防食効果により耐食性を向上させることができる。Znの含有量は0.5~8.0%である。0.5%未満では、犠牲防食効果による耐食性向上の効果が十分に得られない。一方、8.0%を超えると、腐食速度が速くなり早期に犠牲防食層が消失して耐食性が低下する。Znの好ましい含有量は、1.0~6.0%である。
Zn:
Zn can lower the pitting corrosion potential, and can improve the corrosion resistance due to the sacrificial anticorrosion effect by forming a potential difference with the core material. The Zn content is 0.5 to 8.0%. If it is less than 0.5%, the effect of improving the corrosion resistance due to the sacrificial anticorrosive effect cannot be sufficiently obtained. On the other hand, if it exceeds 8.0%, the corrosion rate increases, the sacrificial anticorrosion layer disappears early, and the corrosion resistance decreases. A preferable content of Zn is 1.0 to 6.0%.
Mn:
 Mnは、Al-Mn系、Al-Fe-Mn系及びAl-Fe-Mn-Si系の金属間化合物(以下、単に「Al-Mn系金属間化合物」と記す)を形成し、腐食時のカソード反応を活性化させることにより腐食電位を貴にし、孔食を発生し易くすることができる。既に述べたように、腐食形態が孔食であれば、局部的なアルカリ化による腐食は発生しない。すなわち、Mnは、局部的なアルカリ化を防止し、耐食性を向上させる効果を有する。Mnの含有量は、0.3~2.0%である。0.3%未満では、上記効果が十分に得られない。一方、2.0%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Mn含有量は、好ましくは0.4~1.8%である。
Mn:
Mn forms Al—Mn, Al—Fe—Mn, and Al—Fe—Mn—Si intermetallic compounds (hereinafter, simply referred to as “Al—Mn intermetallic compounds”). By activating the cathode reaction, the corrosion potential can be made noble and pitting corrosion can be easily generated. As already described, if the corrosion form is pitting corrosion, corrosion due to local alkalinization does not occur. That is, Mn has the effect of preventing local alkalization and improving corrosion resistance. The Mn content is 0.3 to 2.0%. If it is less than 0.3%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.0%, a giant intermetallic compound is likely to be formed during casting, and the plastic workability is lowered. The Mn content is preferably 0.4 to 1.8%.
Cu:
 Cuは、固溶強化により強度を向上させるので含有させてもよい。Cu含有量は、0.05~0.60%である。0.05%未満では上記効果が不十分となり、0.60%を超えると孔食電位が貴になり、Znによる犠牲防食効果を失わせてしまう。Cu含有量は、好ましくは0.10~0.50%である。
Cu:
Since Cu improves strength by solid solution strengthening, Cu may be contained. The Cu content is 0.05 to 0.60%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 0.60%, the pitting potential becomes noble, and the sacrificial anticorrosive effect by Zn is lost. The Cu content is preferably 0.10 to 0.50%.
Ti:
 Tiは、固溶強化により強度を向上させると共に耐食性も向上させるので含有させてもよい。Ti含有量は、0.05~0.30%である。0.05%未満では、上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Ti含有量は、好ましくは0.10~0.20%である。
Ti:
Ti may be contained because it improves strength and improves corrosion resistance by solid solution strengthening. The Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Ti content is preferably 0.10 to 0.20%.
Zr:
 Zrは、固溶強化により強度を向上させると共にAl-Zr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zr含有量は、好ましくは0.10~0.20%である。
Zr:
Zr may be contained because it has the effect of improving the strength by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after the heat of brazing addition. The Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Zr content is preferably 0.10 to 0.20%.
Cr:
 Crは、固溶強化により強度を向上させると共にAl-Cr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Cr含有量は、好ましくは0.10~0.20%である。
Cr:
Cr may be contained because it has the effect of improving strength by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen crystal grains after brazing addition heat. The Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Cr content is preferably 0.10 to 0.20%.
V:
 Vは、固溶強化により強度を向上させると共に耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。V含有量は、好ましくは0.10~0.20%である。
V:
V may be contained because it improves the strength by solid solution strengthening and also improves the corrosion resistance. The V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The V content is preferably 0.10 to 0.20%.
Na、Sr:
 Na、Srは、第一ろう材中のSi粒子を微細化する効果を発揮する。Na、Srの含有量はそれぞれ、0.001~0.050%である。それぞれの含有量が0.001%未満では、上記効果が十分に得られない。一方、それぞれの含有量が0.050%を超える場合は、酸化被膜が厚くなり、ろう付性を低下させる。それぞれの好ましい含有量は、いずれも0.003~0.020%である。
Na, Sr:
Na and Sr exhibit the effect of refining the Si particles in the first brazing material. The contents of Na and Sr are 0.001 to 0.050%, respectively. If the respective contents are less than 0.001%, the above effects cannot be obtained sufficiently. On the other hand, when each content exceeds 0.050%, an oxide film becomes thick and brazeability is reduced. Each preferable content is 0.003 to 0.020%.
 これらCu、Ti、Zr、Cr、V、Na、Srは、第一ろう材中に必要により少なくとも1種が添加されていればよい。 These Cu, Ti, Zr, Cr, V, Na, and Sr may be added to the first brazing material if necessary.
3.心材
 心材には、Si:0.05~1.50%、Fe:0.05~2.00%、Mn:0.5~2.0%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
3. Core material The core material contains Si: 0.05 to 1.50%, Fe: 0.05 to 2.00%, Mn: 0.5 to 2.0% as essential elements, the balance Al and inevitable impurities An aluminum alloy is used.
 また、心材は、Mg:0.05~0.50%、Cu:0.05~1.50%、Ti:0.05~0.30%、Zr:0.05~0.30%、Cr:0.05~0.30%及びV:0.05~0.30%から選択される1種又は2種以上を選択的添加元素として更に含有してもよい。 The core material is Mg: 0.05 to 0.50%, Cu: 0.05 to 1.50%, Ti: 0.05 to 0.30%, Zr: 0.05 to 0.30%, Cr One or more selected from: 0.05 to 0.30% and V: 0.05 to 0.30% may be further contained as a selective additive element.
 更に、上記必須元素及び選択的添加元素の他に不可避的不純物を、各々0.05%以下、全体で0.15%含有していてもよい。 Furthermore, in addition to the above essential elements and selective additive elements, unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total.
 本発明の心材に用いるアルミニウム合金は、JIS 3000系合金、例えばJIS 3003合金等のAl-Mn系合金が好適に用いられる。以下に、各成分について詳細に説明する。 As the aluminum alloy used for the core material of the present invention, a JIS 3000 series alloy, for example, an Al—Mn series alloy such as JIS 3003 alloy is preferably used. Below, each component is demonstrated in detail.
Si:
 Siは、Fe、Mnと共にAl-Fe―Mn-Si系の金属間化合物を形成し、分散強化により強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる。Si含有量は、0.05~1.50%である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。1.50%を超えると心材の融点が低下して溶融が生じるおそれが高くなる。Siの好ましい含有量は、0.10~1.20%である。
Si:
Si forms an Al-Fe-Mn-Si intermetallic compound together with Fe and Mn and improves strength by dispersion strengthening, or improves strength by solid solution strengthening by solid solution in an aluminum matrix. . The Si content is 0.05 to 1.50%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. If it exceeds 1.50%, the melting point of the core material is lowered and the possibility of melting is increased. A preferable content of Si is 0.10 to 1.20%.
Fe:
 Feは、Si、Mnと共にAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により強度を向上させる。Feの添加量は、0.05~2.00%である。含有量が0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Feの好ましい含有量は、0.10~1.50%である。
Fe:
Fe forms an Al—Fe—Mn—Si intermetallic compound together with Si and Mn, and improves the strength by dispersion strengthening. The amount of Fe added is 0.05 to 2.00%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered. A preferable content of Fe is 0.10 to 1.50%.
Mn:
 Mnは、Siと共にAl-Mn-Si系金属間化合物を、また、Si、Feと共にAl-Mn-Fe-Si系の金属間化合物を形成し、分散強化により強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる。Mn含有量は、0.5~2.0%である。0.5%未満では上記効果が不十分となり、2.0%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Mnの好ましい含有量は、0.8~1.8%である。
Mn:
Mn forms an Al—Mn—Si intermetallic compound together with Si, and an Al—Mn—Fe—Si intermetallic compound together with Si and Fe to improve strength by dispersion strengthening, or an aluminum matrix. Strengthened by solid solution in the phase and solid solution strengthening. The Mn content is 0.5 to 2.0%. If the content is less than 0.5%, the above effect is insufficient. If the content exceeds 2.0%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered. A preferable content of Mn is 0.8 to 1.8%.
Mg:
 Mgは、MgSiの析出により強度を向上させるので含有させてもよい。Mg含有量は、0.05~0.50%である。0.05%未満では上記効果が不十分となり、0.50%を超えるとろう付が困難となる。Mg含有量は、好ましくは0.10~0.40%である。
Mg:
Mg may be contained because the strength is improved by precipitation of Mg 2 Si. The Mg content is 0.05 to 0.50%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 0.50%, brazing becomes difficult. The Mg content is preferably 0.10 to 0.40%.
Cu:
 Cuは、固溶強化により強度を向上させるので含有させてもよい。Cu含有量は、0.05~1.50%である。0.05%未満では上記効果が不十分となり、1.50%を超えると鋳造時におけるアルミニウム合金の割れ発生の虞が高くなる。Cu含有量は、好ましくは0.30~1.00%である。
Cu:
Since Cu improves strength by solid solution strengthening, Cu may be contained. The Cu content is 0.05 to 1.50%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 1.50%, there is a high risk of cracking of the aluminum alloy during casting. The Cu content is preferably 0.30 to 1.00%.
Ti:
 Tiは、固溶強化により強度を向上させるので含有させてもよい。Ti含有量は、0.05~0.30%である。0.05%未満では上記効果が不十分となる。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Ti含有量は、好ましくは0.10~0.20%である。
Ti:
Ti may be contained because it improves the strength by solid solution strengthening. The Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect is insufficient. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Ti content is preferably 0.10 to 0.20%.
Zr:
 Zrは、固溶強化により強度を向上させると共にAl-Zr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zr含有量は、好ましくは0.10~0.20%である。
Zr:
Zr may be contained because it has the effect of improving the strength by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after the heat of brazing addition. The Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Zr content is preferably 0.10 to 0.20%.
Cr:
 Crは、固溶強化により強度を向上させると共にAl-Cr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Cr含有量は、好ましくは0.10~0.20%である。
Cr:
Cr may be contained because it has the effect of improving strength by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen crystal grains after brazing addition heat. The Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Cr content is preferably 0.10 to 0.20%.
V:
 Vは、固溶強化により強度を向上させると共に耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。V含有量は、好ましくは0.10~0.20%である。
V:
V may be contained because it improves the strength by solid solution strengthening and also improves the corrosion resistance. The V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The V content is preferably 0.10 to 0.20%.
 これらMg、Cu、Ti、Zr、Cr及びVは、心材中に必要により少なくとも1種が添加されていればよい。 These Mg, Cu, Ti, Zr, Cr, and V may be added to the core material if necessary.
4.犠牲陽極材
 犠牲陽極材には、Zn:0.5~8.0%、Si:0.05~1.50%、Fe:0.05~2.00%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
4). Sacrificial anode material The sacrificial anode material contains Zn: 0.5 to 8.0%, Si: 0.05 to 1.50%, Fe: 0.05 to 2.00% as essential elements, and the balance Al In addition, an aluminum alloy made of inevitable impurities is used.
 また、犠牲陽極材は、Ni:0.05~2.00%、Mn:0.05~2.00%、Mg:0.05~3.00%、Ti:0.05~0.30%、Zr:0.05~0.30%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を選択的添加元素として更に含有してもよい。更に、上記必須元素及び選択的添加元素の他に不可避的不純物として各々0.05%以下、全体で0.15%含有していてもよい。以下に、各成分について説明する。 Sacrificial anode materials are Ni: 0.05 to 2.00%, Mn: 0.05 to 2.00%, Mg: 0.05 to 3.00%, Ti: 0.05 to 0.30% One or more selected from Zr: 0.05 to 0.30%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass% are further added as selective additive elements. You may contain. Furthermore, in addition to the above essential elements and selective additive elements, 0.05% or less each of unavoidable impurities may be contained in total, and 0.15% in total. Below, each component is demonstrated.
Zn:
 Znは孔食電位を卑にすることができ、心材との電位差を形成することで犠牲防食効果により耐食性を向上することができる。Znの含有量は0.5~8.0%である。0.5%未満では、犠牲防食効果による耐食性向上の効果が十分に得られない。一方、8.0%を超えると、腐食速度が速くなり早期に犠牲防食層が消失して耐食性が低下する。Znの好ましい含有量は、1.0~6.0%である。
Zn:
Zn can lower the pitting corrosion potential, and can improve the corrosion resistance due to the sacrificial anticorrosion effect by forming a potential difference with the core material. The Zn content is 0.5 to 8.0%. If it is less than 0.5%, the effect of improving the corrosion resistance due to the sacrificial anticorrosive effect cannot be sufficiently obtained. On the other hand, if it exceeds 8.0%, the corrosion rate increases, the sacrificial anticorrosion layer disappears early, and the corrosion resistance decreases. A preferable content of Zn is 1.0 to 6.0%.
Si:
 Siは、Feと共にAl-Fe-Si系の金属間化合物を形成し、またMnを同時に含有している場合にはFe、Mnと共にAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により強度を向上させ、或いは、アルミニウム母相中に固溶して固溶強化により強度を向上させる。また、Siは犠牲陽極層の電位を貴にするため、犠牲防食効果を阻害して耐食性を低下させる。Siの含有量は、0.05~1.50%である。含有量が0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、1.50%を超えると犠牲陽極材の孔食電位が貴になって犠牲防食効果を失わせ、耐食性が低下する。Siの好ましい含有量は、0.10~1.20%である。
Si:
Si forms an Al—Fe—Si based intermetallic compound with Fe, and when it contains Mn at the same time, forms an Al—Fe—Mn—Si based intermetallic compound with Fe and Mn, The strength is improved by dispersion strengthening, or the solid strength is improved by solid solution strengthening in the aluminum matrix. Moreover, since Si makes the potential of the sacrificial anode layer noble, the sacrificial anticorrosive effect is hindered and the corrosion resistance is lowered. The Si content is 0.05 to 1.50%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, when it exceeds 1.50%, the pitting corrosion potential of the sacrificial anode material becomes noble and the sacrificial anticorrosive effect is lost, and the corrosion resistance is lowered. A preferable content of Si is 0.10 to 1.20%.
Fe:
 Feは、Siと共にAl-Fe-Si系の金属間化合物を形成し、またMnを同時に含有している場合にはSi、Mnと共にAl-Fe-Mn-Si系の金属間化合物を形成し、分散強化により強度を向上させる。Feの添加量は、0.05~2.00%である。含有量が0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高となる。一方、2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Feの好ましい含有量は、0.10~1.50%である。
Fe:
Fe forms an Al—Fe—Si intermetallic compound together with Si, and if it contains Mn simultaneously, forms an Al—Fe—Mn—Si intermetallic compound together with Si and Mn, Strength is improved by dispersion strengthening. The amount of Fe added is 0.05 to 2.00%. If the content is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered. A preferable content of Fe is 0.10 to 1.50%.
Ni:
 Niは、Al-Ni系、或いは、Feと共にAl-Fe-Ni系の金属間化合物を形成する。これらの金属間化合物はアルミニウムのマトリックスより腐食電位が大きく貴であるため、腐食のカソードサイトとして作用する。そのため、これらの金属間化合物が犠牲陽極材に分散していると、腐食の起点が分散する。その結果、深さ方向への腐食が進行し難くなり、耐食性が向上するので含有させてもよい。Niの含有量は、0.05~2.00%である。含有量が0.05%未満では上記効果が十分に得られない。一方、2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。Ni含有量は、好ましくは0.10~1.50%である。
Ni:
Ni forms an Al-Ni-based or Al-Fe-Ni-based intermetallic compound together with Fe. Since these intermetallic compounds have a higher corrosion potential than aluminum matrix and are noble, they act as corrosion cathode sites. Therefore, when these intermetallic compounds are dispersed in the sacrificial anode material, the starting point of corrosion is dispersed. As a result, corrosion in the depth direction is difficult to proceed, and the corrosion resistance is improved. The Ni content is 0.05 to 2.00%. If the content is less than 0.05%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 2.00%, a giant intermetallic compound is easily formed during casting, and the plastic workability is lowered. The Ni content is preferably 0.10 to 1.50%.
Mn:
 Mnは、強度と耐食性を向上させるので含有させてもよい。Mnの含有量は、0.05~2.00%である。2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。一方、0.05%未満では、その効果が十分得られない。Mn含有量は、好ましくは0.05~1.80%である。
Mn:
Mn may be contained because it improves strength and corrosion resistance. The Mn content is 0.05 to 2.00%. If it exceeds 2.00%, a huge intermetallic compound is likely to be formed during casting, and the plastic workability is lowered. On the other hand, if it is less than 0.05%, the effect cannot be sufficiently obtained. The Mn content is preferably 0.05 to 1.80%.
Mg:
 Mgは、MgSiの析出により犠牲陽極材の強度を向上させるので、含有させてもよい。また、犠牲陽極材自身の強度を向上させるだけでなく、ろう付することにより犠牲陽極材から心材にMgが拡散して心材の強度も向上させる。これらの理由から、Mgを含有させてもよい。Mgの含有量は、0.05~3.00%である。0.05%未満では上記効果が十分得られない。一方、3.00%を超えると熱間クラッド圧延工程において犠牲陽極材と心材との圧着が困難となる。Mgの好ましい含有量は、0.10~2.00%である。なお、Mgはノコロックろう付におけるフラックスを劣化させてろう付性を阻害するため、犠牲陽極材が0.50%以上のMgを含有する場合はチューブ材同士の接合にはノコロックろう付を採用できない。この場合には、例えばチューブ材同士の接合には溶接などの手段を用いる必要がある。
Mg:
Since Mg improves the strength of the sacrificial anode material by precipitation of Mg 2 Si, it may be contained. In addition to improving the strength of the sacrificial anode material itself, brazing causes Mg to diffuse from the sacrificial anode material to the core material, thereby improving the strength of the core material. For these reasons, Mg may be included. The Mg content is 0.05 to 3.00%. If it is less than 0.05%, the above effect cannot be obtained sufficiently. On the other hand, if it exceeds 3.00%, it becomes difficult to press the sacrificial anode material and the core material in the hot clad rolling process. A preferable content of Mg is 0.10 to 2.00%. In addition, since Mg deteriorates the flux in Nocolok brazing and inhibits brazeability, when the sacrificial anode material contains 0.50% or more Mg, Nocolok brazing cannot be used for joining the tube materials. . In this case, it is necessary to use means such as welding for joining the tube materials, for example.
Ti:
 Tiは、固溶強化により強度を向上させると共に耐食性も向上させるので含有させてもよい。Ti含有量は、0.05~0.30%である。0.05%未満では、上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Ti含有量は、好ましくは0.05~0.20%である。
Ti:
Ti may be contained because it improves strength and improves corrosion resistance by solid solution strengthening. The Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Ti content is preferably 0.05 to 0.20%.
Zr:
 Zrは、固溶強化により強度を向上させると共にAl-Zr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zr含有量は、好ましくは0.10~0.20%である。
Zr:
Zr may be contained because it has the effect of improving the strength by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after the heat of brazing addition. The Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Zr content is preferably 0.10 to 0.20%.
Cr:
 Crは、固溶強化により強度を向上させると共にAl-Cr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Cr含有量は、好ましくは0.10~0.20%である。
Cr:
Cr may be contained because it has the effect of improving strength by solid solution strengthening and precipitating Al—Cr-based intermetallic compounds to coarsen crystal grains after brazing addition heat. The Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Cr content is preferably 0.10 to 0.20%.
V:
 Vは、固溶強化により強度を向上させると共に耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。V含有量は、好ましくは0.05~0.20%である。
V:
V may be contained because it improves the strength by solid solution strengthening and also improves the corrosion resistance. The V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The V content is preferably 0.05 to 0.20%.
 これらNi、Mn、Mg、Ti、Zr、Cr及びVは、犠牲陽極材中に必要により少なくとも1種が添加されていればよい。 These Ni, Mn, Mg, Ti, Zr, Cr, and V may be added to the sacrificial anode material as required, if necessary.
5.第二ろう材
 前記第二ろう材には、Si:2.5~13.0%、Fe:0.05~1.20%を必須元素として含有し、残部Al及び不可避的不純物からなるアルミニウム合金が用いられる。
5). Second brazing material The second brazing material contains Si: 2.5 to 13.0%, Fe: 0.05 to 1.20% as essential elements, the balance being Al and unavoidable impurities Is used.
 また、第二ろう材は、Mn:0.05~2.00%、Cu:0.05~1.50%、Ti:0.05~0.30%、Zr:0.05~0.30%、Cr:0.05~0.30%及びV:0.05~0.30%から選択される1種又は2種以上を第一の選択的添加元素として更に含有してもよい。更に、第二ろう材は、Na:0.001~0.050%及びSr:0.001~0.050%から選択される1種又は2種を第二の選択的添加元素として含有してもよい。なお、上記必須元素及び第一、二の選択的添加元素の他に、不可避的不純物を、各々0.05%以下、全体で0.15%含有していてもよい。以下に、各成分について説明する。 The second brazing filler metal is Mn: 0.05 to 2.00%, Cu: 0.05 to 1.50%, Ti: 0.05 to 0.30%, Zr: 0.05 to 0.30. %, Cr: 0.05 to 0.30% and V: 0.05 to 0.30% may be further included as a first selective additive element. Further, the second brazing material contains one or two selected from Na: 0.001 to 0.050% and Sr: 0.001 to 0.050% as a second selective additive element. Also good. In addition to the essential elements and the first and second selective additive elements, unavoidable impurities may be contained in amounts of 0.05% or less, respectively, and 0.15% in total. Below, each component is demonstrated.
Si:
 Siを添加することにより第二ろう材の融点が低下して液相を生じさせ、これによってろう付を可能にする。Si含有量は2.5~13.0%である。2.5%未満では、生じる液相が僅かでありろう付機能が得難くなる。一方、13.0%を超えると、例えばこの第二ろう材をチューブ材に用いた場合に、フィンなどの相手材へ拡散するSi量が過剰となり、相手材の溶融が発生してしまう。Siの好ましい含有量は、3.5~12.0%である。
Si:
By adding Si, the melting point of the second brazing material is lowered to form a liquid phase, thereby enabling brazing. The Si content is 2.5 to 13.0%. If it is less than 2.5%, the resulting liquid phase is small and it becomes difficult to obtain a brazing function. On the other hand, if it exceeds 13.0%, for example, when this second brazing material is used as a tube material, the amount of Si diffusing into the mating material such as fins becomes excessive, and the mating material will melt. A preferable content of Si is 3.5 to 12.0%.
Fe:
 Feは、Al-Fe系やAl-Fe-Si系の金属間化合物を形成し易く、またMnを同時に含有している場合には、Al-Fe-Mn系やAl-Fe-Mn-Si系の金属間化合物を形成し易いために、ろう付に有効となるSi量を低下させてろう付性の低下を招く。Fe含有量は、0.05~1.20%である。0.05%未満では、高純度アルミニウム地金を使用しなければならずコスト高を招く。一方、1.20%を超えると、ろう付に有効となるSi量を低下させてろう付が不十分となる。Feの好ましい含有量は、0.10~0.50%である。
Fe:
Fe easily forms an Al-Fe-based or Al-Fe-Si-based intermetallic compound, and when it contains Mn at the same time, Al-Fe-Mn-based or Al-Fe-Mn-Si-based Since it is easy to form an intermetallic compound, the amount of Si that is effective for brazing is reduced and brazing properties are reduced. The Fe content is 0.05 to 1.20%. If it is less than 0.05%, high-purity aluminum ingots must be used, resulting in high costs. On the other hand, if it exceeds 1.20%, the amount of Si effective for brazing is reduced and brazing becomes insufficient. A preferable content of Fe is 0.10 to 0.50%.
Mn:
 Mnは、ろう材の強度と耐食性を向上させるので含有させてもよい。Mnの含有量は、0.05~2.00%である。2.00%を超えると鋳造時に巨大金属間化合物が形成され易くなり、塑性加工性を低下させる。一方、0.05%未満では、その効果が十分得られない。Mn含有量は、好ましくは0.05~1.80%である。
Mn:
Mn may be contained because it improves the strength and corrosion resistance of the brazing material. The Mn content is 0.05 to 2.00%. If it exceeds 2.00%, a huge intermetallic compound is likely to be formed during casting, and the plastic workability is lowered. On the other hand, if it is less than 0.05%, the effect cannot be sufficiently obtained. The Mn content is preferably 0.05 to 1.80%.
Cu:
 Cuは、固溶強化により第二ろう材の強度を向上させるので含有させてもよい。Cu含有量は、0.05~1.50%である。0.05%未満では上記効果が不十分となり、1.50%を超えると鋳造時におけるアルミニウム合金の割れ発生の虞が高くなる。Cu含有量は、好ましくは0.30~1.00%である。
Cu:
Cu may be included because it improves the strength of the second brazing filler metal by solid solution strengthening. The Cu content is 0.05 to 1.50%. If it is less than 0.05%, the above effect is insufficient, and if it exceeds 1.50%, there is a high risk of cracking of the aluminum alloy during casting. The Cu content is preferably 0.30 to 1.00%.
Ti:
 Tiは、固溶強化により第二ろう材の強度を向上させると共に耐食性も向上させるので含有させてもよい。Ti含有量は、0.05~0.30%である。0.05%未満では、上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Ti含有量は、好ましくは0.10~0.20%である。
Ti:
Ti may be contained because it improves the strength of the second brazing filler metal by solid solution strengthening and also improves the corrosion resistance. The Ti content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Ti content is preferably 0.10 to 0.20%.
Zr:
 Zrは、固溶強化により第二ろう材の強度を向上させると共に、Al-Zr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Zr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Zr含有量は、好ましくは0.10~0.20%である。
Zr:
Zr may be contained because it has the effect of improving the strength of the second brazing filler metal by solid solution strengthening and precipitating Al—Zr-based intermetallic compounds to coarsen the crystal grains after brazing addition heat. . The Zr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Zr content is preferably 0.10 to 0.20%.
Cr:
 Crは、固溶強化により第二ろう材の強度を向上させると共に、Al-Cr系の金属間化合物を析出させてろう付加熱後の結晶粒を粗大化する作用を有するので含有させてもよい。Cr含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。Cr含有量は、好ましくは0.10~0.20%である。
Cr:
Cr may be contained because it has the effect of improving the strength of the second brazing filler metal by solid solution strengthening and precipitating Al—Cr intermetallic compounds to coarsen the crystal grains after brazing addition heat. . The Cr content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The Cr content is preferably 0.10 to 0.20%.
V:
 Vは、固溶強化により第二ろう材の強度を向上させると共に耐食性も向上させるので含有させてもよい。V含有量は、0.05~0.30%である。0.05%未満では上記効果が得られない。0.30%を超えると巨大金属間化合物を形成し易くなり、塑性加工性を低下させる。V含有量は、好ましくは0.10~0.20%である。
V:
V may be contained because it improves the strength of the second brazing filler metal by solid solution strengthening and also improves the corrosion resistance. The V content is 0.05 to 0.30%. If it is less than 0.05%, the above effect cannot be obtained. If it exceeds 0.30%, it becomes easy to form a giant intermetallic compound, and the plastic workability is lowered. The V content is preferably 0.10 to 0.20%.
Na、Sr:
 Na、Srは、第二ろう材中のSi粒子を微細化する効果を発揮する。Na、Srの含有量はそれぞれ、0.001~0.050%である。それぞれの含有量が0.001%未満では、上記効果が十分に得られない。一方、それぞれの含有量が0.050%を超える場合は、酸化被膜が厚くなり、ろう付性を低下させる。それぞれの好ましい含有量は、いずれも0.003~0.020%である。
 これらMn、Cu、Ti、Zr、Cr、V、Na及びSrは、第二ろう材中に必要により少なくとも1種が添加されていればよい。
Na, Sr:
Na and Sr exhibit the effect of refining the Si particles in the second brazing material. The contents of Na and Sr are 0.001 to 0.050%, respectively. If the respective contents are less than 0.001%, the above effects cannot be obtained sufficiently. On the other hand, when each content exceeds 0.050%, an oxide film becomes thick and brazeability is reduced. Each preferable content is 0.003 to 0.020%.
These Mn, Cu, Ti, Zr, Cr, V, Na, and Sr may be added in the second brazing material as required.
6.第一ろう材の組織
 本発明に係るアルミニウム合金クラッド材は、第一ろう材のろう付加熱前における0.1μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度を1.0×10個/mm以上に、前記第一ろう材のろう付加熱後における2μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度を300個/mm以上に限定する。これらの限定事項は、ろう付加熱後における第一ろう材側の面の耐食性向上を図るためのものである。なお、ここでの存在密度とは、第一ろう材層における任意断面を観察した際の単位面積当たり数密度を指す。以下にこの限定理由を説明する。
6). Structure of the first brazing material The aluminum alloy clad material according to the present invention has a density of Al-Mn intermetallic compounds having a circle equivalent diameter of 0.1 μm or more before the brazing heat of the first brazing material is 1.0. The existence density of the Al—Mn intermetallic compound having a circle equivalent diameter of 2 μm or more after the heat of brazing addition of the first brazing material is limited to 300 pieces / mm 2 or more to × 10 5 pieces / mm 2 or more. These limitations are intended to improve the corrosion resistance of the surface on the first brazing material side after the brazing heat. The existence density here refers to the number density per unit area when an arbitrary cross section in the first brazing filler metal layer is observed. The reason for this limitation will be described below.
 第一ろう材は、ろう付時においてその一部を溶融させてろうを供給し接合を可能にすると共に、第一ろう材自体を優先的に腐食させることにより腐食を面状に進行させてチューブの穴空き腐食を防止する犠牲防食機能を発揮させる目的で心材にクラッドされる。しかしながら、既に述べたように、腐食形態が孔食でなくなると局所的なアルカリ化が発生し、犠牲防食機能が発揮されなくなって早期に腐食貫通が発生する。この点について本発明者らは鋭意研究の結果、ろう付け後の第一ろう材にAl-Mn系金属間化合物を適切なサイズ(円相当直径)と密度で分散させることにより、腐食時のカソード反応を活性化させて孔食を起こり易くし、局所的なアルカリ化による腐食貫通を防止できることを見出した。 A part of the first brazing material is melted at the time of brazing so that the brazing is supplied and joining is possible, and the first brazing material itself is preferentially corroded to cause the corrosion to progress into a plane, thereby forming a tube. The core material is clad for the purpose of exerting a sacrificial anti-corrosion function for preventing perforation corrosion. However, as already described, when the corrosion form is not pitting corrosion, local alkalinization occurs, and the sacrificial anticorrosive function is not exhibited, and corrosion penetration occurs early. As a result of diligent research, the present inventors have investigated the cathode during corrosion by dispersing an Al—Mn intermetallic compound in an appropriate size (equivalent circle diameter) and density in the first brazing material after brazing. It was found that the reaction was activated to facilitate pitting corrosion and corrosion penetration due to local alkalinization could be prevented.
 ろう付後において、2μm以上の円相当直径を有するAl-Mn系金属間化合物は、カソード反応活性化の効果を有し、2μm未満のものはその効果が不十分である。従って、本発明では、ろう付後において2μm未満の円相当直径を有するAl-Mn系金属間化合物は対象外とした。また、ろう付後において、2μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が300個/mm以上であれば、十分なカソード反応活性化の効果を有し、300個/mm未満の場合はその効果が不十分である。ろう付け後のAl-Mn系金属間化合物の円相当直径は、好ましくは3μm以上であり、その存在密度は、好ましくは1000個/mm以上である。なお、耐食性の観点からは、ろう付け後のAl-Mn系金属間化合物の円相当直径の上限が限定されるものではないが、200μmを超える化合物が存在すると、組成加工性が低下し圧延中に割れる虞がある。従って、この円相当直径の上限は、200μmとするのが好ましい。また、耐食性の観点からは、Al-Mn系金属間化合物の存在密度の上限が限定されるものではないが、本発明の合金組成及び製造方法から5.0×10個/mmを超えて存在させることは困難である。従って、この存在密度の上限は5.0×10個/mmである。 After brazing, an Al—Mn-based intermetallic compound having a circle-equivalent diameter of 2 μm or more has an effect of activating the cathode reaction, and those less than 2 μm have an insufficient effect. Therefore, in the present invention, Al—Mn intermetallic compounds having an equivalent circle diameter of less than 2 μm after brazing are excluded. Further, if the existence density of Al—Mn intermetallic compounds having an equivalent circle diameter of 2 μm or more after brazing is 300 pieces / mm 2 or more, there is a sufficient cathode reaction activation effect, 300 pieces If it is less than / mm 2, the effect is insufficient. The equivalent circle diameter of the Al—Mn intermetallic compound after brazing is preferably 3 μm or more, and its density is preferably 1000 / mm 2 or more. From the viewpoint of corrosion resistance, the upper limit of the equivalent circle diameter of the Al—Mn intermetallic compound after brazing is not limited. However, if a compound exceeding 200 μm is present, composition workability is reduced and rolling is in progress. There is a risk of breaking. Therefore, the upper limit of the equivalent circle diameter is preferably 200 μm. From the viewpoint of corrosion resistance, the upper limit of the density of Al—Mn intermetallic compounds is not limited, but exceeds 5.0 × 10 5 pieces / mm 2 from the alloy composition and production method of the present invention. It is difficult to exist. Therefore, the upper limit of the existence density is 5.0 × 10 5 pieces / mm 2 .
 ろう付後において、以上述べたようなAl-Mn系金属間化合物の円相当直径と密度分布を得るためには、ろう付前のAl-Mn系金属間化合物の円相当直径と密度分布を制御する必要がある。ろう付前において円相当直径が0.1μm以上のAl-Mn系金属間化合物は、ろう付時にマトリクス中に溶解せず、ろう付後においては円相当直径2μm以上のAl-Mn系化合物を形成し得る。ろう付前に円相当直径が0.1μm未満のAl-Mn系金属間化合物は、ろう付時にマトリクス中に溶解するか、或いは、そのサイズが小さくなり、ろう付後において円相当直径2μm以上のAl-Mn系金属間化合物を形成することができない。従って、本発明では、ろう付前において0.1μm未満の円相当直径を有するAl-Mn系金属間化合物は対象外とした。 To obtain the equivalent circle diameter and density distribution of the Al—Mn intermetallic compound as described above after brazing, the equivalent circle diameter and density distribution of the Al—Mn intermetallic compound before brazing are controlled. There is a need to. Al-Mn intermetallic compounds with an equivalent circle diameter of 0.1 μm or more before brazing do not dissolve in the matrix during brazing, and form an Al—Mn compound with an equivalent circle diameter of 2 μm or more after brazing. Can do. An Al—Mn intermetallic compound having an equivalent circle diameter of less than 0.1 μm before brazing is dissolved in the matrix at the time of brazing, or its size is reduced, and after the brazing, an equivalent circle diameter of 2 μm or more. An Al—Mn intermetallic compound cannot be formed. Therefore, in the present invention, Al—Mn intermetallic compounds having an equivalent circle diameter of less than 0.1 μm before brazing are excluded.
 ここで、ろう付前に存在するAl-Mn系金属間化合物の円相当直径は、好ましくは0.2μm以上である。また、ろう付前の円相当直径0.1μm以上のAl-Mn系金属間化合物の存在密度が1×10個/mm以上であれば、ろう付後の円相当直径2μm以上のAl-Mn系金属間化合物の存在密度を300個/mm以上とすることができる。ろう付前の円相当直径0.1μm以上のAl-Mn系金属間化合物の存在密度が1.0×10個/mm未満であると、ろう付後の円相当直径2μm以上のAl-Mn系金属間化合物の存在密度を300個/mm以上とすることはできない。ろう付前の円相当直径0.1μm以上のAl-Mn系化合物の存在密度は、好ましくは3.0×10個/mm以上である。なお、耐食性の観点からは、ろう付け前のAl-Mn系金属間化合物の円相当径の上限が限定されるものではないが、200μmを超える化合物が存在すると、組成加工性が低下して圧延中に割れる虞がある。従って、この円相当径の上限は200μmとするのが好ましい。また、耐食性の観点からは、Al-Mn系化合物の存在密度の上限が限定されるものではないが、本発明の合金組成及び製造方法から5.0×10個/mmを超えて存在させることは困難である。従って、この存在密度の上限は5.0×10個/mmとする。 Here, the equivalent circle diameter of the Al—Mn intermetallic compound existing before brazing is preferably 0.2 μm or more. In addition, if the density of Al—Mn intermetallic compounds having an equivalent circle diameter of 0.1 μm or more before brazing is 1 × 10 5 pieces / mm 2 or more, Al—Mn with an equivalent circle diameter of 2 μm or more after brazing is used. The density of Mn-based intermetallic compounds can be 300 / mm 2 or more. When the density of Al-Mn intermetallic compounds having an equivalent circle diameter of 0.1 μm or more before brazing is less than 1.0 × 10 5 pieces / mm 2 , Al— The density of Mn-based intermetallic compounds cannot be 300 / mm 2 or more. The density of Al—Mn compounds having an equivalent circle diameter of 0.1 μm or more before brazing is preferably 3.0 × 10 5 pieces / mm 2 or more. From the viewpoint of corrosion resistance, the upper limit of the equivalent circle diameter of the Al—Mn intermetallic compound before brazing is not limited. However, if a compound exceeding 200 μm is present, the composition workability deteriorates and rolling There is a risk of breaking inside. Therefore, the upper limit of the equivalent circle diameter is preferably 200 μm. In addition, from the viewpoint of corrosion resistance, the upper limit of the density of Al—Mn compound is not limited, but it exists in excess of 5.0 × 10 7 / mm 2 from the alloy composition and production method of the present invention. It is difficult to make it. Therefore, the upper limit of the existence density is 5.0 × 10 7 pieces / mm 2 .
7.アルミニウム合金クラッド材の製造方法
7-1.各製造工程
 本発明に係るアルミニウム合金クラッド材の製造方法は、心材用及び第一ろう材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した第一ろう材の鋳塊を所定の厚さまで熱間圧延する工程と、心材鋳塊の一方の面又は両方の面に熱間圧延により所定の厚さとした第一ろう材をクラッドするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間クラッド圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含む。なお、心材の一方の面にのみ第一ろう材をクラッドする場合には、心材の他方の面には、所定厚さに熱間圧延した第二ろう材又は犠牲陽極材がクラッドされる。
7). 7. Production method of aluminum alloy clad material 7-1. Each manufacturing process The manufacturing method of the aluminum alloy clad material according to the present invention includes a step of casting an aluminum alloy for the core material and the first brazing material, and hot casting the ingot of the cast first brazing material to a predetermined thickness. A rolling step, a cladding step of cladding a first brazing material having a predetermined thickness by hot rolling on one or both surfaces of the core ingot, and a hot cladding rolling step of hot rolling the cladding material A cold rolling process for cold rolling the clad material that has been hot clad rolled, and one or more annealing processes for annealing the clad material in one or both of the cold rolling process and after the cold rolling process. Including. When the first brazing material is clad only on one surface of the core material, the second brazing material or the sacrificial anode material hot-rolled to a predetermined thickness is clad on the other surface of the core material.
 本発明のアルミニウム合金クラッド材は、第一ろう材の組織を制御することにより、優れた耐食性を実現している。本発明者らは鋭意研究の結果、製造工程中で組織制御に及ぼす影響が最も大きいのは、鋳造した第一ろう材の熱間圧延工程であることを見出した。以下では、この第一ろう材の熱間圧延工程の制御方法を説明する。 The aluminum alloy clad material of the present invention realizes excellent corrosion resistance by controlling the structure of the first brazing material. As a result of intensive studies, the present inventors have found that the greatest influence on the structure control during the manufacturing process is the hot rolling process of the cast first brazing filler metal. Below, the control method of the hot rolling process of this 1st brazing material is demonstrated.
7-2.第一ろう材の熱間圧延工程
 本発明に係るアルミニウム合金クラッド材の製造方法では、第一ろう材を鋳造した後に、所望のクラッド率を得るために所定の板厚まで第一ろう材の鋳塊を熱間圧延する熱間圧延工程に特徴を有する。この熱間圧延工程は、鋳塊を加熱する加熱段階と、これに続く保持段階と、加熱保持した鋳塊を圧延する熱間圧延段階を含む。そして、加熱段階においては、400℃到達時までの昇温速度を30℃/h以上に、400℃到達時から保持段階の保持温度到達時までの昇温速度を60℃/h以下に規定する。また、保持段階においては、保持温度を450℃以上560℃以下で保持時間を1時間以上に規定する。更に、熱間圧延段階においては、圧延材の温度が400℃以上である時間を5分以上に規定する。このように第一ろう材の熱間圧延工程の条件を規定することにより、本発明に係るアルミニウム合金クラッド材は、ろう付前及びろう付後において、本発明で規定するAl-Mn系金属間化合物の分布を得ることができ、ろう付後に優れた耐食性を発揮することができる。この理由を以下に説明する。
7-2. Hot-rolling process of first brazing material In the method for producing an aluminum alloy clad material according to the present invention, after casting the first brazing material, the first brazing material is cast to a predetermined thickness in order to obtain a desired cladding rate. It is characterized by a hot rolling process in which the ingot is hot rolled. The hot rolling process includes a heating stage for heating the ingot, a holding stage following the heating stage, and a hot rolling stage for rolling the heated and held ingot. In the heating stage, the rate of temperature rise until reaching 400 ° C. is defined as 30 ° C./h or more, and the rate of temperature rise from reaching 400 ° C. to reaching the holding temperature in the holding stage is defined as 60 ° C./h or less. . In the holding stage, the holding temperature is set to 450 ° C. or more and 560 ° C. or less, and the holding time is set to 1 hour or more. Furthermore, in the hot rolling stage, the time during which the temperature of the rolled material is 400 ° C. or higher is defined as 5 minutes or longer. Thus, by defining the conditions for the hot rolling process of the first brazing material, the aluminum alloy clad material according to the present invention can be obtained between the Al—Mn-based metals defined in the present invention before and after brazing. The distribution of the compound can be obtained, and excellent corrosion resistance can be exhibited after brazing. The reason for this will be described below.
 第一ろう材の鋳造工程において、多量のMnが鋳塊のマトリクス中に固溶する。このようにマトリクス中に固溶した多量のMnは、熱間圧延工程における圧延段階の前の加熱段階において、Al-Mn系金属間化合物として多量に析出し、これらがろう付前のアルミニウム合金クラッド材における第一ろう材の組織をほぼ決定する。既に述べたように、ろう付後においてAl-Mn系金属間化合物を耐食性に有効なサイズで残存させるためには、ろう付前のAl-Mn系金属間化合物の円相当直径が0.1μm以上である必要がある。ここで、熱間圧延工程における圧延段階の前の加熱段階において、第一ろう材の鋳塊が400℃に到達するまでは比較的小さなAl-Mn系金属間化合物の析出物が生成し、400℃に達してからは比較的大きなAl-Mn系金属間化合物の析出物が生成する。 In the casting process of the first brazing filler metal, a large amount of Mn is dissolved in the ingot matrix. In this way, a large amount of Mn dissolved in the matrix is precipitated in a large amount as an Al-Mn intermetallic compound in the heating stage before the rolling stage in the hot rolling process, and these are aluminum alloy cladding before brazing. The structure of the first brazing filler metal is almost determined. As described above, in order to leave the Al—Mn intermetallic compound in a size effective for corrosion resistance after brazing, the equivalent circle diameter of the Al—Mn intermetallic compound before brazing is 0.1 μm or more. It needs to be. Here, in the heating stage before the rolling stage in the hot rolling process, a relatively small Al—Mn intermetallic compound precipitate is formed until the ingot of the first brazing material reaches 400 ° C., and 400 A relatively large Al—Mn-based intermetallic compound precipitate is formed after the temperature reaches ℃.
 熱間圧延工程における圧延段階の前の加熱段階における、400℃到達時までの昇温速度が30℃/h未満の場合は、比較的小さなAl-Mn系金属間化合物が析出物として多く生成してしまい、目的とするAl-Mn系金属間化合物の析出物分布を得ることができない。また、400℃到達時から保持段階の保持温度到達時までの昇温速度が60℃/hを超える場合は、比較的大きなAl-Mn系金属間化合物の析出物の生成が少なく、目的とするAl-Mn系金属間化合物の析出物分布を得ることができない。更に、保持段階における保持温度が450℃未満の場合は、比較的大きなAl-Mn系金属間化合物の析出物の生成が少なく、目的とするAl-Mn系金属間化合物の析出物分布を得ることができない。また、保持時間が1時間未満の場合は、比較的大きなAl-Mn系金属間化合物の析出物の生成が少なく、目的とするAl-Mn系金属間化合物の析出物分布を得ることができない。 In the heating stage prior to the rolling stage in the hot rolling process, when the rate of temperature increase until reaching 400 ° C. is less than 30 ° C./h, a relatively small amount of Al—Mn intermetallic compound is generated as a precipitate. As a result, the target Al—Mn intermetallic compound precipitate distribution cannot be obtained. Further, when the rate of temperature increase from reaching 400 ° C. to reaching the holding temperature in the holding stage exceeds 60 ° C./h, the formation of relatively large Al—Mn intermetallic compound precipitates is small, which is the target. The precipitate distribution of the Al—Mn intermetallic compound cannot be obtained. Furthermore, when the holding temperature in the holding stage is lower than 450 ° C., the formation of a relatively large Al—Mn intermetallic compound precipitate is small, and the desired Al—Mn intermetallic compound precipitate distribution is obtained. I can't. In addition, when the holding time is less than 1 hour, a relatively large Al—Mn-based intermetallic compound precipitate is generated, and the target Al—Mn-based intermetallic compound precipitate distribution cannot be obtained.
 上記400℃到達時までの昇温速度は、好ましくは40℃/h以上であり、400℃到達時から保持段階の保持温度到達時までの昇温速度は、好ましくは50℃/h以下である。また、保持段階における保持温度は、好ましくは460℃以上であり、保持時間は好ましくは2時間以上である。 The heating rate until reaching 400 ° C. is preferably 40 ° C./h or more, and the heating rate from reaching 400 ° C. to reaching the holding temperature in the holding stage is preferably 50 ° C./h or less. . Further, the holding temperature in the holding stage is preferably 460 ° C. or more, and the holding time is preferably 2 hours or more.
 耐食性の観点からは、上記400℃到達時までの昇温速度の上限は特に限定されるものではないが、100℃/hを超えることは鋳塊の熱容量の点で困難である。従って、本発明ではこの昇温速度の上限を100℃/hとする。また、耐食性の観点からは、400℃到達時から保持段階の保持温度到達時までの昇温速度の下限は特に限定されるものではないが、20℃/h未満とした場合、昇温に極めて長時間を要してしまい、経済性が著しく損なわれる。従って、本発明ではこの昇温速度の下限を20℃/hとする。保持段階における保持温度が560℃を超える場合は、第一ろう材に溶融が生じてしまい、クラッド材を製造できない虞がある。従って、この保持温度の上限は560℃とする。また、耐食性の観点からは、上記保持時間の上限は特に限定されるものではないが、20時間を超えると経済性が著しく損なわれる。従って、この保持時間の上限は20時間とするのが好ましい。 From the viewpoint of corrosion resistance, the upper limit of the heating rate until reaching 400 ° C. is not particularly limited, but exceeding 100 ° C./h is difficult in terms of the heat capacity of the ingot. Therefore, in this invention, the upper limit of this temperature increase rate shall be 100 degrees C / h. From the viewpoint of corrosion resistance, the lower limit of the rate of temperature rise from the time when reaching 400 ° C. to the time when the holding temperature in the holding stage is reached is not particularly limited. It takes a long time and the economic efficiency is significantly impaired. Therefore, in the present invention, the lower limit of the temperature increase rate is set to 20 ° C./h. When the holding temperature in the holding stage exceeds 560 ° C., the first brazing material is melted, and the clad material may not be manufactured. Therefore, the upper limit of the holding temperature is 560 ° C. In addition, from the viewpoint of corrosion resistance, the upper limit of the holding time is not particularly limited, but if it exceeds 20 hours, the economy is significantly impaired. Therefore, the upper limit of the holding time is preferably 20 hours.
 また、熱間圧延段階に要する時間は、その前段階である加熱段階及び保持段階に比べると短いが、この熱間圧延段階中においては導入されるひずみにより金属間化合物の析出が促進される。従って、この熱間圧延段階においては、圧延時間は短時間であっても比較的大きなAl-Mn系金属間化合物の析出物が生成する。そして、熱間圧延段階中において第一ろう材の温度が400℃以上である時間が5分未満の場合は、比較的大きなAl-Mn系金属間化合物の析出物の生成が少なく、目的とするAl-Mn系金属間化合物の析出物の分布を得ることができない。 In addition, the time required for the hot rolling stage is shorter than that of the heating stage and the holding stage, which are the previous stages, but during the hot rolling stage, precipitation of intermetallic compounds is promoted by the introduced strain. Therefore, in this hot rolling stage, a relatively large Al—Mn intermetallic compound precipitate is formed even if the rolling time is short. When the temperature of the first brazing filler metal is 400 ° C. or higher during the hot rolling stage is less than 5 minutes, the formation of relatively large Al—Mn intermetallic compound precipitates is small, and the target A distribution of precipitates of the Al—Mn intermetallic compound cannot be obtained.
 また、上記熱間圧延段階中において、第一ろう材の温度が400℃以上である時間は、好ましくは7分以上である。耐食性の観点からは、この時間の上限は特に限定されるものではないが、30分間を超えて400℃以上を保つことは、鋳塊の熱容量の観点で困難である。従って、本発明ではこの時間の上限を30分とする。なお、熱間圧延段階中において第一ろう材の温度が400℃未満の温度域においては、析出がほとんど起こらないため、その間に要する時間の制御を行う必要が無い。 Also, during the hot rolling stage, the time during which the temperature of the first brazing material is 400 ° C. or higher is preferably 7 minutes or longer. From the viewpoint of corrosion resistance, the upper limit of this time is not particularly limited, but it is difficult to maintain 400 ° C. or more over 30 minutes from the viewpoint of the heat capacity of the ingot. Therefore, in the present invention, the upper limit of this time is 30 minutes. In the hot rolling stage, in the temperature range where the temperature of the first brazing material is less than 400 ° C., precipitation hardly occurs, and it is not necessary to control the time required during that time.
 耐食性に大きな影響を及ぼす工程は、以上の通りである。以下には、第一ろう材の熱間圧延工程以外の工程における好ましい製造条件について説明する。 The process that greatly affects the corrosion resistance is as described above. Below, the preferable manufacturing conditions in processes other than the hot rolling process of a 1st brazing material are demonstrated.
7-3.鋳造工程、熱間圧延工程
 第一ろう材、心材、第二ろう材及び犠牲陽極材の鋳造工程における条件に特に制限は無いが、通常は水冷式の半連続鋳造法が用いられる。また、第二ろう材及び犠牲陽極材をそれぞれ所定の厚さまで熱間圧延する熱間圧延工程は、加熱保持段階と熱間圧延段階を含むが、加熱保持段階における加熱条件は、通常400~560℃で0.5~10時間行うのが好ましく、420~540℃で0.5~8時間行うのがより好ましい。400℃未満では塑性加工性が乏しいため圧延時にコバ割れなどを生じる場合がある。一方、560℃より高温の場合には、加熱中に鋳塊が溶融する虞がある。また、0.5時間未満では、鋳塊の温度が均一とならない場合があり、10時間を超えると経済性を著しく損なう。
7-3. Casting process, hot rolling process The conditions in the casting process of the first brazing material, core material, second brazing material and sacrificial anode material are not particularly limited, but a water-cooled semi-continuous casting method is usually used. The hot rolling process in which the second brazing material and the sacrificial anode material are each hot-rolled to a predetermined thickness includes a heating and holding stage and a hot rolling stage. The heating conditions in the heating and holding stage are usually 400 to 560. The reaction is preferably carried out at a temperature of 0.5 to 10 hours, more preferably at a temperature of 420 to 540 ° C. for 0.5 to 8 hours. If it is less than 400 ° C., cracking or the like may occur during rolling because of poor plastic workability. On the other hand, when the temperature is higher than 560 ° C., the ingot may be melted during heating. In addition, if the time is less than 0.5 hours, the temperature of the ingot may not be uniform, and if it exceeds 10 hours, the economy is significantly impaired.
7-4.均質化処理工程
 心材を鋳造して得られる鋳塊を、熱間クラッド圧延工程の前に均質化処理工程に供しても良い。均質化処理工程は、通常は450~620℃で1~24時間行うのが好ましく、480~620℃で1~20時間行うのがより好ましい。温度が450℃未満または時間が1時間未満では均質化効果が十分でない場合があり、620℃を超えると心材鋳塊の溶融を生じてしまう虞がある。また、時間が24時間を超えると、経済性を著しく損なう。
7-4. Homogenization process The ingot obtained by casting the core material may be subjected to a homogenization process before the hot clad rolling process. The homogenization treatment step is usually preferably performed at 450 to 620 ° C. for 1 to 24 hours, more preferably at 480 to 620 ° C. for 1 to 20 hours. If the temperature is less than 450 ° C. or the time is less than 1 hour, the homogenization effect may not be sufficient, and if it exceeds 620 ° C., the core material ingot may be melted. Further, if the time exceeds 24 hours, the economic efficiency is remarkably impaired.
7-5.熱間クラッド圧延工程
 熱間クラッド圧延工程では、クラッド材はクラッド圧延段階前の加熱段階で加熱される。加熱温度は、通常は400~560℃で0.5~10時間行うのが好ましく、420~540℃で0.5~8時間行うのがより好ましい。400℃未満では塑性加工性が乏しいためクラッド圧延時にコバ割れなどを生じる場合がある。560℃を超える場合には、加熱中に鋳塊が溶融してしまう虞がある。時間が0.5時間未満ではクラッド材の温度が均一とならない場合があり、10時間を超えると経済性を著しく損なう。熱間クラッド圧延工程は、圧下率70~95%の粗圧延工程と、それに続く圧下率70~95%の仕上圧延工程に分けてもよい。
7-5. Hot clad rolling process In the hot clad rolling process, the clad material is heated in the heating stage before the clad rolling stage. The heating temperature is usually preferably 400 to 560 ° C. for 0.5 to 10 hours, more preferably 420 to 540 ° C. for 0.5 to 8 hours. If the temperature is less than 400 ° C., the plastic workability is poor, and cracking may occur during clad rolling. When it exceeds 560 ° C., the ingot may be melted during heating. If the time is less than 0.5 hours, the temperature of the clad material may not be uniform, and if it exceeds 10 hours, the economic efficiency is remarkably impaired. The hot clad rolling process may be divided into a rough rolling process with a rolling reduction of 70 to 95% and a finish rolling process with a subsequent rolling reduction of 70 to 95%.
7-6.冷間圧延工程、焼鈍工程
 焼鈍工程は、成形性向上などの目的で、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方において1回以上行われる。具体的には、(1)冷間圧延工程の途中において1回以上の中間焼鈍が実施され、(2)冷間圧延工程の後に最終焼鈍工程が1回実施され、或いは、(3)(1)及び(2)が実施されるものである。この焼鈍工程では、クラッド材を200~560℃で1~10時間保持するのが好ましい。温度が200℃未満、保持時間が1時間未満の場合は、上記効果が十分でない場合がある。温度が560℃を超えると、加熱中にクラッド材が溶融してしまう虞があり、保持時間が10時間を超えると経済性を著しく損なう。より好ましい焼鈍条件は、温度230~500℃、保持時間1~8時間である。なお、焼鈍工程の回数の上限は特に限定されるものではないが、工程数の増加によるコスト増加を回避するために、3回とするのが好ましい。
7-6. Cold rolling process, annealing process An annealing process is performed once or more in the middle of the cold rolling process and one or both after the cold rolling process for the purpose of improving formability. Specifically, (1) one or more intermediate annealings are performed during the cold rolling process, (2) the final annealing process is performed once after the cold rolling process, or (3) (1 ) And (2) are implemented. In this annealing step, the clad material is preferably held at 200 to 560 ° C. for 1 to 10 hours. When the temperature is less than 200 ° C. and the holding time is less than 1 hour, the above effect may not be sufficient. If the temperature exceeds 560 ° C., the clad material may be melted during heating, and if the holding time exceeds 10 hours, the economical efficiency is remarkably impaired. More preferable annealing conditions are a temperature of 230 to 500 ° C. and a holding time of 1 to 8 hours. In addition, although the upper limit of the frequency | count of an annealing process is not specifically limited, In order to avoid the cost increase by the increase in the number of processes, it is preferable to set it as 3 times.
8.クラッド率及び板厚
 本発明に係るアルミニウム合金クラッド材では、第一ろう材、第二ろう材、犠牲陽極材のクラッド率(片面)を各々3~25%とするのが好ましい。これら各クラッド率が3%未満ではクラッドされる材料が薄過ぎるため、熱間クラッド圧延中において心材全体にわたって被覆することができない場合がある。これら各クラッド率が25%を超えると、熱間クラッド圧延時に反りが発生じ、クラッド材を製造できない場合がある。これら各クラッド率は、より好ましくは5~20%である。
8). Clad rate and plate thickness In the aluminum alloy clad material according to the present invention, the clad rate (one side) of the first brazing material, the second brazing material and the sacrificial anode material is preferably 3 to 25%. If each of these cladding ratios is less than 3%, the material to be clad is too thin, so that it may not be possible to cover the entire core material during hot clad rolling. If each of these cladding ratios exceeds 25%, warpage may occur during hot cladding rolling, and the cladding material may not be manufactured. Each of these cladding rates is more preferably 5 to 20%.
 本発明に係るアルミニウム合金クラッド材の板厚は特に限定されるものではないが、例えば、後述の熱交換器の流路形成部品として用いられる場合、通常0.15~0.6mmのものが用いられる。また、板厚を0.6~3mm程度として、ヘッダプレートなどに用いることも可能である。 The thickness of the aluminum alloy clad material according to the present invention is not particularly limited. For example, when used as a flow path forming part of a heat exchanger described later, a thickness of 0.15 to 0.6 mm is usually used. It is done. It is also possible to use it for a header plate or the like with a plate thickness of about 0.6 to 3 mm.
9.熱交換器
 本発明に係るアルミニウム合金クラッド材は、流路形成部品、ヘッダープレート、フィン材などの熱交換器用部材として、特に流路形成部品として好適に用いられる。例えば、上記アルミニウム合金クラッド材に曲げ成形を施し、その両端部の重ね合せ部分をろう付け接合して、冷却水などの媒体を流すための流路形成部品が作製される。本発明に係る熱交換器は、例えば、上記の流路形成部品に、フィン材とヘッダープレートを組み合わせ、これらを一度にろう付加工した構造を有する。
9. Heat Exchanger The aluminum alloy clad material according to the present invention is suitably used as a heat exchanger member such as a flow path forming component, a header plate, and a fin material, particularly as a flow path forming component. For example, the aluminum alloy clad material is bent, and the overlapping portions at both ends thereof are brazed and joined to produce a flow path forming component for flowing a medium such as cooling water. The heat exchanger according to the present invention has a structure in which, for example, the above-mentioned flow path forming component is combined with a fin material and a header plate, and these are brazed at once.
 上記熱交換器は、両端部分をヘッダープレートに取り付けた流路形成部品の外面にフィン材を配置して組立てる。次いで、流路形成部品の両端重ね合せ部分、フィン材と流路形成部品の外面、流路形成部品の両端とヘッダープレートを1回のろう付け加熱によって同時に接合する。ろう付け方法としては、フラックス無しろう付法、ノコロックろう付法、真空ろう付法が用いられるが、ノコロックろう付法が好ましい。ろう付けは、通常590~610℃の温度で2~10分間、好ましくは590~610℃の温度で2~6分間の加熱によって行なわれる。ろう付されたものは、通常、20~500℃/分の冷却速度で冷却される。 ¡The heat exchanger is assembled by disposing fin materials on the outer surface of the flow path forming component with both end portions attached to the header plate. Next, the overlapping portions on both ends of the flow path forming component, the fin material and the outer surface of the flow path forming component, and both ends of the flow path forming component and the header plate are simultaneously joined by one brazing heating. As the brazing method, a flux-free brazing method, a nocolok brazing method, or a vacuum brazing method is used, but the nocolock brazing method is preferable. The brazing is usually performed by heating at a temperature of 590 to 610 ° C. for 2 to 10 minutes, preferably at a temperature of 590 to 610 ° C. for 2 to 6 minutes. The brazed one is usually cooled at a cooling rate of 20 to 500 ° C./min.
10.腐食環境
 本発明に係るアルミニウム合金クラッド材は、熱交換器の少なくとも流路形成部品として用いられる。以下においては、熱交換器の流路形成部品として用いられる場合に、耐食面での優位性を最も発揮できる腐食環境について説明する。
10. Corrosive Environment The aluminum alloy clad material according to the present invention is used as at least a flow path forming component of a heat exchanger. In the following, a description will be given of a corrosive environment in which the superiority in terms of corrosion resistance can be exhibited when used as a flow path forming component of a heat exchanger.
 既に述べたように、熱交換器に流入する冷却水として水道水や井戸水が用いられる場合、それに含まれる塩化物イオンは通常1200ppm以下の低濃度である。そのため、高温になると腐食形態が孔食とは異なる形態となり、犠牲防食作用が発揮され難くなる。その結果、腐食部分には酸化アルミニウムや水酸化アルミニウムなどの生成によって局所的なアルカリ化が発生して、激しい腐食が発生する場合がある。本発明に係るアルミニウム合金クラッド材は、このような現象を抑制することを技術課題として開発され、これを達成したものである。すなわち、腐食環境が塩化物イオン濃度1200ppm以下の場合に局所的なアルカリ化が発生し易く、このような場合に本発明の優位性が発揮される。腐食環境が塩化物イオン濃度で1200ppmを超える場合は、高温になっても腐食形態は孔食のままとなり、犠牲防食が作用し続ける。その結果、局所的なアルカリ化が起こり難く、本発明の優位性は十分に発揮されない。なお、塩化物イオン濃度が5ppm未満の場合は、そもそも腐食孔が発生しないため、本発明の優位性が特に発揮されるわけではない。本発明に係るアルミニウム合金クラッド材は、塩化物イオンが1200ppm以下の環境において耐食性に関する優位性を発揮可能とするが、本発明の優位性が発揮される腐食環境としては、塩化物イオン濃度として5~1000ppmが好ましく、10~800ppmがより好ましい。以上のように、本発明に係る熱交換器では、本発明に係るアルミニウム合金クラッド材が少なくとも流路形成部品に用いられている。そして、第一ろう材が心材の両面に用いられている場合には、これら第一ろう材面の少なくとも一方の面が、塩化物イオン濃度1200ppm以下の溶液に晒される状態で用いられる。また、第一ろう材が心材の一方の面に用いられている場合には、この第一ろう材の面が、塩化物イオン濃度1200ppm以下の溶液に晒される状態で用いられる。 As already mentioned, when tap water or well water is used as the cooling water flowing into the heat exchanger, chloride ions contained in it are usually at a low concentration of 1200 ppm or less. Therefore, when the temperature becomes high, the corrosion form becomes different from the pitting corrosion, and the sacrificial anticorrosive action is hardly exhibited. As a result, local corrosion may occur due to generation of aluminum oxide, aluminum hydroxide, or the like in the corroded portion, and severe corrosion may occur. The aluminum alloy clad material according to the present invention has been developed as a technical problem to suppress such a phenomenon, and has achieved this. That is, when the corrosive environment has a chloride ion concentration of 1200 ppm or less, local alkalinization easily occurs. In such a case, the superiority of the present invention is exhibited. When the corrosive environment exceeds 1200 ppm in terms of chloride ion concentration, the corrosion form remains pitting even at high temperatures, and sacrificial corrosion protection continues to act. As a result, local alkalinization hardly occurs, and the superiority of the present invention is not sufficiently exhibited. In addition, when the chloride ion concentration is less than 5 ppm, corrosion holes are not generated in the first place, so the advantage of the present invention is not particularly exhibited. The aluminum alloy clad material according to the present invention can exhibit superiority in corrosion resistance in an environment where chloride ions are 1200 ppm or less, but as a corrosive environment in which the superiority of the present invention is exhibited, the chloride ion concentration is 5 -1000 ppm is preferable, and 10-800 ppm is more preferable. As described above, in the heat exchanger according to the present invention, the aluminum alloy clad material according to the present invention is used at least for the flow path forming component. When the first brazing material is used on both surfaces of the core material, at least one surface of the first brazing material surface is used in a state where it is exposed to a solution having a chloride ion concentration of 1200 ppm or less. When the first brazing material is used on one surface of the core material, the surface of the first brazing material is used in a state where it is exposed to a solution having a chloride ion concentration of 1200 ppm or less.
 次に、本発明例と比較例に基づいて本発明を更に詳細に説明するが、本発明はこれらに制限されるものではない。 Next, the present invention will be described in more detail based on examples of the present invention and comparative examples, but the present invention is not limited to these.
 表1に示す合金組成を有する第一ろう材合金、表2に示す合金組成を有する心材合金、表3に示す合金組成を有する第二ろう材合金、表4に示す合金組成を有する犠牲陽極材合金をそれぞれDC鋳造により鋳造し、各々両面を面削して仕上げた。面削後の鋳塊厚さは、いずれも400mmとした。第一ろう材、第二ろう材及び犠牲陽極材については、最終板厚で所望の厚さとなるクラッド率を計算し、それに必要な合わせ時の厚さとなるよう、480℃で3時間の加熱段階に供した後に所定厚さまで熱間圧延段階に供した。第一ろう材の熱間圧延工程の条件を表5に示す。第二ろう材と犠牲陽極材については、いずれも表5のE1の条件にて熱間圧延を行った。 The first brazing alloy having the alloy composition shown in Table 1, the core alloy having the alloy composition shown in Table 2, the second brazing alloy having the alloy composition shown in Table 3, and the sacrificial anode material having the alloy composition shown in Table 4. Each alloy was cast by DC casting and each side was chamfered and finished. The thickness of the ingot after chamfering was 400 mm in all cases. For the first brazing filler metal, the second brazing filler metal, and the sacrificial anode material, calculate the clad ratio to be the desired thickness by the final thickness, and heat at 480 ° C. for 3 hours so as to obtain the required thickness at the time of matching. And then subjected to a hot rolling step to a predetermined thickness. Table 5 shows the conditions for the hot rolling process of the first brazing filler metal. The second brazing material and the sacrificial anode material were both hot-rolled under the conditions of E1 in Table 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 これらの合金を用い、心材合金の一方の面に表1の第一ろう材を組み合わせ、心材の他方の面には何も組み合わせないか、或いは、表1の第一ろう材又は表3の第二ろう材又は表4の犠牲陽極材を組み合わせた。各試料における第一ろう材、心材、第二ろう材、犠牲陽極材の組み合わせを表6~9に示す。第一ろう材、第二ろう材及び犠牲陽極材のクラッド率は、いずれも10%(片面)とした。これらの合わせ材を、熱間クラッド圧延工程にかけた。すなわち、加熱段階においてクラッド材を500℃にて3時間加熱保持した後に、クラッド圧延段階にかけて、3mm厚さの2層又は3層クラッド材を作製した。その後、表5の冷間圧延以降に示す、(1)冷間圧延→中間焼鈍→最終冷間圧延の順、(2)冷間圧延→最終焼鈍の順、(3)冷間圧延→中間焼鈍→最終冷間圧延→最終焼鈍の順のいずれかで、最終板厚0.4mmのクラッド材試料を作製した。中間焼鈍および最終焼鈍の条件は、いずれも370℃にて2時間とし、中間焼鈍後の最終冷間圧延での圧延率は、いずれも30%とした。工程の組み合わせを表5に示す。 Using these alloys, the first brazing material in Table 1 is combined with one side of the core alloy and nothing is combined with the other side of the core material, or the first brazing material in Table 1 or the first brazing material in Table 3 is used. Two brazing materials or sacrificial anode materials from Table 4 were combined. Tables 6 to 9 show combinations of the first brazing material, the core material, the second brazing material, and the sacrificial anode material in each sample. The cladding rates of the first brazing material, the second brazing material, and the sacrificial anode material were all 10% (one side). These laminated materials were subjected to a hot clad rolling process. That is, in the heating stage, the clad material was heated and held at 500 ° C. for 3 hours, and then the clad rolling stage was performed to produce a 2-layer or 3-layer clad material having a thickness of 3 mm. Then, after cold rolling in Table 5, (1) cold rolling → intermediate annealing → final cold rolling, (2) cold rolling → final annealing, (3) cold rolling → intermediate annealing A final clad material sample having a final thickness of 0.4 mm was prepared in any of the order of final cold rolling and final annealing. The conditions for intermediate annealing and final annealing were both 2 hours at 370 ° C., and the rolling ratio in final cold rolling after intermediate annealing was 30%. Table 5 shows the process combinations.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 以上の製造工程において問題が発生せず、0.4mmの最終板厚まで圧延できた場合は製造性を「○」とし、鋳造時や圧延時に割れが生じて0.4mmの最終板厚まで圧延できなかったり、熱間クラッド圧延工程前の加熱段階や中間焼鈍工程で溶融が生じたり、熱間クラッド圧延段階での圧着不良が生じたりして、クラッド材を製造できなかった場合は製造性を「×」として表6~9に示す。 If no problems occur in the above manufacturing process and the roll can be rolled to a final thickness of 0.4 mm, the manufacturability is set to “◯”, and cracking occurs during casting or rolling to roll to a final thickness of 0.4 mm. If the clad material could not be manufactured due to melting during the heating stage or intermediate annealing process before the hot clad rolling process, or poor crimping during the hot clad rolling stage, It is shown in Tables 6 to 9 as “x”.
 上記クラッド材試料を下記の各評価に供した結果を、表6~9に示す。なお、表7~9における製造性「×」のものについては試料を製造できなかったため、下記評価は行うことができなかった。 Tables 6 to 9 show the results obtained by subjecting the above clad material samples to the following evaluations. In addition, since the samples could not be manufactured for those with the productivity “x” in Tables 7 to 9, the following evaluation could not be performed.
(ろう付性の評価)
 厚さ0.07mm、調質H14、合金成分は3003合金に1.0%のZnを添加したフィン材を用意し、これをコルゲート成形して熱交換器フィン材とした。このフィン材を上記クラッド材試料の第一ろう材面又は第二ろう材面に配置し、5%のフッ化物フラックス水溶液中に浸漬し、600℃で3分のろう付加熱に供して、ミニコア試料を作製した。このミニコア試料のフィン接合率が95%以上であり、かつ、クラッド材試料及びフィンに溶融が生じていない場合をろう付性が合格(○)とし、一方、(1)フィン接合率が95%未満の場合と、(2)クラッド材試料及びフィンの少なくともいずれかに溶融が生じた場合とにおいて、(1)及び(2)、或いは、(1)又は(2)をろう付性が不合格(×)とした。
(Evaluation of brazing)
A fin material having a thickness of 0.07 mm, a tempered H14, and an alloy component of 3003 alloy with 1.0% Zn added thereto was corrugated to obtain a heat exchanger fin material. This fin material is placed on the first brazing filler metal surface or the second brazing filler metal surface of the clad material sample, immersed in a 5% fluoride flux aqueous solution, and subjected to brazing addition heat at 600 ° C. for 3 minutes. A sample was prepared. When the fin joint rate of this mini-core sample is 95% or more and the clad material sample and the fin are not melted, the brazing property is passed (O), while (1) the fin joint rate is 95%. Less than (1) and (2), or (1) or (2) in the case where melting occurs in at least one of the clad material sample and the fin. (X).
(ろう付加熱後における引張強さの測定)
 600℃で3分の熱処理(ろう付加熱に相当)を施したクラッド材試料を、引張速度10mm/分、ゲージ長50mmの条件で、JIS Z2241に従って引張試験に供した。得られた応力-ひずみ曲線から引張強さを読み取った。その結果、引張強さが120MPa以上の場合を合格(○)とし、それ未満を不合格(×)とした。
(Measurement of tensile strength after brazing heat)
A clad material sample subjected to heat treatment at 600 ° C. for 3 minutes (corresponding to brazing additional heat) was subjected to a tensile test in accordance with JIS Z2241 under the conditions of a tensile speed of 10 mm / min and a gauge length of 50 mm. The tensile strength was read from the obtained stress-strain curve. As a result, the case where the tensile strength was 120 MPa or more was determined to be acceptable (O), and the case where the tensile strength was less than that was rejected (X).
(金属間化合物の密度分布の測定)
 ろう付相当加熱前におけるAl-Mn系金属間化合物については、各クラッド材試料の第一ろう材部分についてL-ST面から薄膜サンプルをFIBにて切り出し、この薄膜サンプルについて、走査型透過電子顕微鏡(STEM)にてエネルギー分散形X線分光器(EDS)によりMn元素分布のマッピングを行うことにより調べた。この際、電子分光装置(EELS)を用いて観察部の膜厚を測定し、膜厚が0.10~0.15μmの箇所でのみSTEM観察を行って、各サンプルにつき10μm×10μmの視野を5視野ずつ観察し、それぞれの視野のMnのマッピングを画像解析することによって、0.1μm以上の円相当径を有するAl-Mn系金属間化合物の分布を求めた。
(Measurement of density distribution of intermetallic compounds)
For the Al—Mn intermetallic compound before brazing equivalent heating, a thin film sample was cut out from the L-ST surface of the first brazing material portion of each cladding material sample by FIB, and this thin film sample was subjected to a scanning transmission electron microscope. (STEM) was investigated by mapping the Mn element distribution with an energy dispersive X-ray spectrometer (EDS). At this time, the film thickness of the observation part was measured using an electron spectroscope (EELS), and STEM observation was performed only at a position where the film thickness was 0.10 to 0.15 μm, and a visual field of 10 μm × 10 μm was obtained for each sample. The distribution of Al—Mn intermetallic compounds having a circle-equivalent diameter of 0.1 μm or more was determined by observing 5 fields of view and analyzing the mapping of Mn in each field of view.
 ろう付相当の加熱処理を施したろう付相当加熱後におけるAl-Mn系金属間化合物については、第一ろう材部分についてL-LT面を研磨で面出しし、EPMAを用いてMn元素分布のマッピングを行うことにより調べた。各サンプルにつき500μm×500μmの視野を5視野ずつ観察し、それぞれの視野のMnのマッピングを画像解析することによって、2μm以上の円相当径を有するAl-Mn系金属間化合物の分布を求めた。なお、本発明におけるろう付相当加熱の条件とは、到達温度を600℃とし580℃以上の保持時間を5分とする。 For the Al—Mn intermetallic compound after brazing equivalent heating that has undergone heat treatment equivalent to brazing, the L-LT surface of the first brazing filler metal part is ground by polishing, and EPMA is used to determine the Mn element distribution. It was examined by performing mapping. By observing five fields of 500 μm × 500 μm for each sample and analyzing the mapping of Mn in each field, the distribution of Al—Mn intermetallic compounds having an equivalent circle diameter of 2 μm or more was obtained. Note that the brazing equivalent heating condition in the present invention is that the ultimate temperature is 600 ° C. and the holding time of 580 ° C. or more is 5 minutes.
(腐食深さの測定による耐食性評価)
 クラッド材試料に上記ろう付相当の加熱を施した後、50mm×50mmに切り出し、試験面の反対面を樹脂によってマスキングした。なお、いずれの試料においても第一ろう材面を試験面とし、また、犠牲陽極材がクラッドされている試料については犠牲陽極材面についても試験面とした。第二ろう材面を試験面とした試験は実施しなかった。試験面が第一ろう材の場合の試験溶液は、塩化物イオン濃度がそれぞれ3ppm(溶液A)、5ppm(溶液B)、1000ppm(溶液C)、1200ppm(溶液D)のNaCl水溶液(純水)を用いた。各試験サンプルをこれらの溶液に浸漬し、88℃の高温水中で8時間、次いで、室温放置16時間を1サイクルとするサイクル浸漬試験を3ヶ月間実施し、腐食貫通の生じなかったものを合格(○)とし、生じたものを不合格(×)とした。試験面が犠牲陽極材の場合は、ASTM-G85に基づいてSWAAT試験に供し、1000時間で腐食貫通の生じなかったものを合格(○)とし、腐食貫通の生じたものを不合格(×)とした。
(Evaluation of corrosion resistance by measuring corrosion depth)
The clad material sample was heated corresponding to the above brazing, then cut into 50 mm × 50 mm, and the opposite surface of the test surface was masked with resin. In each sample, the first brazing material surface was used as a test surface, and in the sample in which the sacrificial anode material was clad, the sacrificial anode material surface was also used as a test surface. The test using the second brazing filler metal surface as a test surface was not performed. The test solution when the test surface is the first brazing filler metal is a NaCl aqueous solution (pure water) having a chloride ion concentration of 3 ppm (solution A), 5 ppm (solution B), 1000 ppm (solution C), and 1200 ppm (solution D), respectively. Was used. Each test sample was immersed in these solutions, and a cycle immersion test was performed for 3 hours in 88 ° C high-temperature water for 8 hours and then at room temperature for 16 hours. (○) and the resulting product was rejected (×). When the test surface is a sacrificial anode material, it was subjected to the SWAAT test based on ASTM-G85, and the one that did not cause corrosion penetration in 1000 hours was accepted (○), and the one that caused corrosion penetration was rejected (×) It was.
 本発明例1~20及び55~59では、本発明で規定する条件を満たしており、製造性、ろう付性、ろう付後の引張強さ及び耐食性のいずれも合格であった。 In Examples 1 to 20 and 55 to 59 of the present invention, the conditions specified in the present invention were satisfied, and all of the manufacturability, brazing property, tensile strength after brazing, and corrosion resistance were acceptable.
 これに対して、比較例21では、第一ろう材のSi成分が少な過ぎたため、ろう付性が不合格であった。 In contrast, in Comparative Example 21, the brazing property was rejected because the Si component of the first brazing material was too small.
 比較例22では、第一ろう材のSi成分が多過ぎたため、ろう付性が不合格であった。 In Comparative Example 22, the brazing property was unacceptable because the Si component of the first brazing material was too much.
 比較例23では、第一ろう材のFe成分が多過ぎたため、ろう付性が不合格であった。 In Comparative Example 23, the brazing property was unacceptable because the Fe component of the first brazing material was too much.
 比較例24では、第一ろう材のCu成分が多過ぎたため、溶液A、B及びCにおける耐食性が不合格であった。 In Comparative Example 24, since the Cu component of the first brazing material was too much, the corrosion resistance in the solutions A, B, and C was unacceptable.
 比較例25では、第一ろう材のMn成分が少な過ぎたため、ろう付加熱後に適切なAl-Mn系金属間化合物の分布を得られず、溶液A及びBにおける耐食性が不合格であった。 In Comparative Example 25, since the Mn component of the first brazing material was too small, an appropriate Al—Mn intermetallic compound distribution could not be obtained after the brazing heat, and the corrosion resistance in the solutions A and B was unacceptable.
 比較例26では、第一ろう材のMn成分が多過ぎたため、圧延時に割れが生じ、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 26, since the Mn component of the first brazing material was too much, cracking occurred during rolling, and the clad material could not be produced, resulting in an unacceptable productivity.
 比較例27では、第一ろう材のTi、Zr、Cr及びV成分がそれぞれ多過ぎたため、圧延時に割れが生じ、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 27, since the Ti, Zr, Cr, and V components of the first brazing material were too much, cracks were generated during rolling, and the clad material could not be produced, resulting in an unacceptable productivity.
 比較例28では、第一ろう材のNa成分が多過ぎたため、ろう付性が不合格であった。 In Comparative Example 28, the brazing property was unacceptable because the Na component of the first brazing material was too much.
 比較例29では、第一ろう材のSr成分が多過ぎたため、ろう付性が不合格であった。 In Comparative Example 29, the brazing property was unacceptable because the Sr component of the first brazing material was too much.
 比較例30では、第一ろう材のZn成分が少な過ぎたため、溶液A、B及びCにおける耐食性が不合格であった。 In Comparative Example 30, since the Zn component of the first brazing material was too small, the corrosion resistance in the solutions A, B, and C was unacceptable.
 比較例31では、第一ろう材のZn成分が多過ぎたため、溶液A、B及びCにおける耐食性が不合格であった。 In Comparative Example 31, the corrosion resistance in the solutions A, B, and C was unacceptable because there was too much Zn component in the first brazing filler metal.
 比較例32では、心材のSi成分が多過ぎたため、ろう付性が不合格であった。 In Comparative Example 32, the brazing property was unacceptable because the Si component of the core material was too much.
 比較例33では、心材のMg成分が多過ぎたため、ろう付性が不合格であった。 In Comparative Example 33, since there was too much Mg component of the core material, the brazeability was unacceptable.
 比較例34では、心材のFe成分が多過ぎたため、圧延時に割れが生じ、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 34, since there was too much Fe component in the core material, cracking occurred at the time of rolling, and the clad material could not be produced.
 比較例35では、心材のTi、Zr、Cr及びV成分がそれぞれ多過ぎたため、圧延時に割れが生じ、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 35, since there were too many Ti, Zr, Cr, and V components in the core material, cracks occurred during rolling, and the clad material could not be produced, resulting in an unacceptable manufacturability.
 比較例36では、心材のMn成分が多過ぎたため、圧延時に割れが生じ、ブレージングシートを作製することができず製造性が不合格であった。 In Comparative Example 36, since there was too much Mn component in the core material, cracking occurred during rolling, and a brazing sheet could not be produced, resulting in an unacceptable productivity.
 比較例37では、心材のCu成分が多過ぎたため、鋳造時に割れが生じ、ブレージングシートを作製することができず製造性が不合格であった。
In Comparative Example 37, since there were too many Cu components in the core material, cracks occurred during casting, and a brazing sheet could not be produced, resulting in an unacceptable productivity.
 比較例38では、心材のMn成分が少な過ぎたため、ろう付後の引張強さが不合格であった。 In Comparative Example 38, there was too little Mn component in the core material, so the tensile strength after brazing was unacceptable.
 比較例39では、第二ろう材のSi成分が少な過ぎたため、第二ろう材のろう付性が不合格であった。 In Comparative Example 39, the brazing property of the second brazing material was unacceptable because the Si component of the second brazing material was too small.
 比較例40では、第二ろう材のSi成分が多過ぎたため、第二ろう材のろう付性が不合格であった。 In Comparative Example 40, the brazing property of the second brazing material was unacceptable because the Si component of the second brazing material was excessive.
 比較例41では、第二ろう材のFe成分が多過ぎたため、第二ろう材のろう付性が不合格であった。 In Comparative Example 41, the brazing property of the second brazing material was unacceptable because the Fe component of the second brazing material was too much.
 比較例42では、第二ろう材のCu成分が多過ぎたため、鋳造時に割れが生じ、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 42, since there was too much Cu component in the second brazing material, cracking occurred at the time of casting, and the clad material could not be produced and the productivity was unacceptable.
 比較例43では、第二ろう材のMn成分が多過ぎたため、圧延時に割れが生じ、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 43, since the Mn component of the second brazing material was too much, cracking occurred during rolling, and the clad material could not be produced, resulting in an unacceptable productivity.
 比較例44では、第二ろう材のTi、Zr、Cr及びV成分がそれぞれ多すぎたため、圧延時に割れが生じ、ブレージングシートを作製することができず製造性が不合格であった。 In Comparative Example 44, since the Ti, Zr, Cr, and V components of the second brazing material were too much, cracking occurred during rolling, and the brazing sheet could not be produced, resulting in failure of productivity.
 比較例45では、第二ろう材のNa成分が多過ぎたため、第二ろう材のろう付性が不合格であった。 In Comparative Example 45, the brazing property of the second brazing material was unacceptable because the Na component of the second brazing material was too much.
 比較例46では、第二ろう材のSr成分が多過ぎたため、第二ろう材のろう付性が不合格であった。 In Comparative Example 46, the brazing property of the second brazing material was unacceptable because the Sr component of the second brazing material was too much.
 比較例47では、犠牲陽極材のSi成分が多過ぎたため、犠牲陽極材の耐食性が不合格であった。 In Comparative Example 47, the sacrificial anode material failed in the corrosion resistance because there was too much Si component in the sacrificial anode material.
 比較例48では、犠牲陽極材のFe成分が多過ぎたため、圧延時に割れが生じ、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 48, since there were too many Fe components in the sacrificial anode material, cracking occurred at the time of rolling, and the clad material could not be produced, and the productivity was unacceptable.
 比較例49では、犠牲陽極材のTi、Zr、Cr及びV成分がそれぞれ多過ぎたため、圧延時に割れが生じ、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 49, there were too many Ti, Zr, Cr and V components in the sacrificial anode material, so that cracking occurred during rolling, and the clad material could not be produced, resulting in rejected productivity.
 比較例50では、犠牲陽極材のZn成分が少な過ぎたため、犠牲陽極材の耐食性が不合格であった。 In Comparative Example 50, since the Zn component of the sacrificial anode material was too small, the corrosion resistance of the sacrificial anode material was unacceptable.
 比較例51では、犠牲陽極材のZn成分が多過ぎたため、犠牲陽極材の耐食性が不合格であった。 In Comparative Example 51, since the Zn component of the sacrificial anode material was too much, the corrosion resistance of the sacrificial anode material was unacceptable.
 比較例52では、犠牲陽極材のNi成分が多過ぎたため、圧延時に割れが生じ、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 52, since the Ni component of the sacrificial anode material was too much, cracks occurred during rolling, and the clad material could not be produced, resulting in a failure in manufacturability.
 比較例53では、犠牲陽極材のMn成分が多過ぎたため、圧延時に割れが生じ、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 53, since there were too many Mn components in the sacrificial anode material, cracking occurred during rolling, and the clad material could not be produced, resulting in a failure in productivity.
 比較例54では、犠牲陽極材のMg成分が多過ぎたため、クラッド熱延時に心材と犠牲陽極材が圧着されず、クラッド材を作製することができず製造性が不合格であった。 In Comparative Example 54, since the Mg component of the sacrificial anode material was too much, the core material and the sacrificial anode material were not pressure-bonded during the hot rolling of the clad, and the clad material could not be produced and the manufacturability was rejected.
 比較例60では、第一ろう材の熱間圧延工程の加熱段階における400℃到達時までの昇温速度が遅過ぎたため、ろう付加熱後に適切なAl-Mn系化合物の分布を得られず、溶液A及びBにおける耐食性が不合格であった。 In Comparative Example 60, since the rate of temperature increase until reaching 400 ° C. in the heating stage of the hot rolling process of the first brazing material was too slow, an appropriate Al—Mn compound distribution could not be obtained after the brazing addition heat, The corrosion resistance in solutions A and B was unacceptable.
 比較例61では、第一ろう材の熱間圧延工程の加熱段階における400℃到達時から保持段階の保持温度到達時までの昇温速度が速過ぎたため、ろう付加熱後に適切なAl-Mn系金属間化合物の分布を得られず、溶液A及びBにおける耐食性が不合格であった。 In Comparative Example 61, since the temperature increase rate from reaching 400 ° C. in the heating stage of the hot rolling process of the first brazing filler metal to reaching the holding temperature in the holding stage was too high, an appropriate Al—Mn system after the brazing addition heat was used. The distribution of intermetallic compounds could not be obtained, and the corrosion resistance in solutions A and B was unacceptable.
 比較例62では、第一ろう材の熱間圧延工程の保持段階における保持温度が低過ぎたため、ろう付加熱後に適切なAl-Mn系金属間化合物の分布を得られず、溶液A及びBにおける耐食性が不合格であった。 In Comparative Example 62, since the holding temperature in the holding stage of the hot rolling process of the first brazing material was too low, an appropriate Al—Mn intermetallic compound distribution could not be obtained after the brazing addition heat, and in the solutions A and B Corrosion resistance was unacceptable.
 比較例63では、第一ろう材の熱間圧延工程の保持段階における保持時間が短過ぎたため、ろう付加熱後に適切なAl-Mn系金属間化合物の分布を得られず、溶液A及びBにおける耐食性が不合格であった。 In Comparative Example 63, since the holding time in the holding stage of the hot rolling process of the first brazing material was too short, an appropriate Al—Mn intermetallic compound distribution could not be obtained after the brazing addition heat, and in the solutions A and B Corrosion resistance was unacceptable.
 比較例64では、第一ろう材の熱間圧延中においてクラッド材の温度が400℃以上である時間が短過ぎたため、ろう付加熱後に適切なAl-Mn系金属間化合物の分布を得られず、溶液A及びBにおける耐食性が不合格であった。 In Comparative Example 64, since the time during which the temperature of the clad material was 400 ° C. or higher was too short during hot rolling of the first brazing material, an appropriate Al—Mn intermetallic compound distribution could not be obtained after the brazing addition heat. The corrosion resistance in solutions A and B was unacceptable.
 比較例65では、第一ろう材の熱間圧延工程における保持段階の加熱温度が高過ぎたため、第一ろう材が溶融してしまい、ブレージングシートを作製することができず製造性が不合格であった。 In Comparative Example 65, since the heating temperature in the holding stage in the hot rolling process of the first brazing material was too high, the first brazing material was melted, and a brazing sheet could not be produced, resulting in a failure in productivity. there were.
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. The above-described embodiments are for explaining the present invention and do not limit the scope of the present invention. In other words, the scope of the present invention is shown not by the embodiments but by the claims. Various modifications within the scope of the claims and within the scope of the equivalent invention are considered to be within the scope of the present invention.
 本出願は、2015年7月8日に出願された日本国特許出願特願2015-137331号と、2016年7月4日に出願された日本国特許出願特願2016-132727号に基づく。本明細書中に、日本国特許出願特願2015-137331号と日本国特許出願特願2016-132727号の明細書、特許請求の範囲、及び図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2015-137331 filed on July 8, 2015 and Japanese Patent Application No. 2016-132727 filed on July 4, 2016. In this specification, the specifications, claims, and entire drawings of Japanese Patent Application No. 2015-137331 and Japanese Patent Application No. 2016-132727 are incorporated by reference.
 本発明に係るアルミニウム合金クラッド材は、耐食性に優れ、フィン接合率、耐エロージョン性などのろう付性にも優れるので、特に自動車用熱交換器の流路形成部品として好適に用いられる。 The aluminum alloy clad material according to the present invention is excellent in corrosion resistance and excellent in brazing properties such as fin joint ratio and erosion resistance, and therefore is particularly suitably used as a flow path forming part of an automotive heat exchanger.
 1・・・プレート
 2・・・コルゲートフィン
1 ... Plate 2 ... Corrugated fin

Claims (20)

  1.  アルミニウム合金の心材と、前記心材の一方又は両方の面にクラッドされた第一ろう材とを備えるアルミニウム合金クラッド材において、前記心材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Mn:0.5~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記第一ろう材が、Si:2.5~7.0mass%、Fe:0.05~1.20mass%、Zn:0.5~8.0mass%、Mn:0.3~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、ろう付加熱前において前記第一ろう材における0.1μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が1.0×10個/mm以上であり、ろう付加熱後において前記第一ろう材における2μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が300個/mm以上であることを特徴とするアルミニウム合金クラッド材。 In an aluminum alloy clad material comprising an aluminum alloy core material and a first brazing material clad on one or both surfaces of the core material, the core material comprises Si: 0.05 to 1.50 mass%, Fe:. It is made of an aluminum alloy containing 05 to 2.00 mass%, Mn: 0.5 to 2.0 mass%, the balance being Al and inevitable impurities, and the first brazing material is Si: 2.5 to 7.0 mass. %, Fe: 0.05-1.20 mass%, Zn: 0.5-8.0 mass%, Mn: 0.3-2.0 mass%, and the balance is made of an aluminum alloy composed of Al and inevitable impurities. , the density of the Al-Mn intermetallic compound having a 0.1μm or more circle-equivalent diameter in the first brazing material before heating brazing 1.0 × 10 5 cells / mm 2 or more There, an aluminum alloy clad material, characterized in that the density of the Al-Mn intermetallic compound having a 2μm or more equivalent circle diameter at said first brazing material is 300 / mm 2 or more after heating the brazing.
  2.  前記第一ろう材が、Cu:0.05~0.60mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項1に記載のアルミニウム合金クラッド材。 The first brazing material is Cu: 0.05-0.60 mass%, Ti: 0.05-0.30 mass%, Zr: 0.05-0.30 mass%, Cr: 0.05-0.30 mass%. The aluminum alloy clad material according to claim 1, wherein the clad material is made of an aluminum alloy further containing one or more selected from V: 0.05 to 0.30 mass%.
  3.  前記第一ろう材が、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種を更に含有するアルミニウム合金からなる、請求項1又は2に記載のアルミニウム合金クラッド材。 The first brazing material is made of an aluminum alloy further containing one or two selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. 2. The aluminum alloy clad material according to 2.
  4.  前記心材が、Mg:0.05~0.50mass%、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項1~3のいずれか一項に記載のアルミニウム合金クラッド材。 The core material is Mg: 0.05 to 0.50 mass%, Cu: 0.05 to 1.50 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: The aluminum alloy further comprising one or more selected from 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass%, according to any one of claims 1 to 3. Aluminum alloy clad material.
  5.  請求項1~4のいずれか一項に記載のアルミニウム合金クラッド材の製造方法であって、前記心材用及び第一ろう材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した第一ろう材の鋳塊を所定の厚さまで熱間圧延する熱間圧延工程と、心材鋳塊の一方又は両方の面に熱間圧延により所定厚さとした第一ろう材をクラッドしてクラッド材とするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間クラッド圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含み、前記第一ろう材の熱間圧延工程が加熱段階と保持段階と熱間圧延段階とを含み、加熱段階において、400℃到達時までの昇温速度が30℃/h以上であり、400℃到達時から保持段階の保持温度到達時までの昇温速度が60℃/h以下であり、保持段階における保持温度が450℃以上560℃以下であり保持時間が1時間以上であり、熱間圧延段階中において、第一ろう材の温度が400℃以上である時間が5分以上であることを特徴とするアルミニウム合金クラッド材の製造方法。 A method for producing an aluminum alloy clad material according to any one of claims 1 to 4, comprising the steps of casting the aluminum alloy for the core material and the first brazing material, respectively, A hot rolling process in which the ingot is hot-rolled to a predetermined thickness, and a cladding process in which one or both surfaces of the core ingot are clad with a first brazing material having a predetermined thickness by hot rolling to form a cladding material; One or both of a hot-clad rolling process for hot-rolling the clad material, a cold-rolling process for cold-rolling the clad material that has been hot-clad rolled, and one or both during the cold-rolling process and after the cold-rolling process At least one annealing step of annealing the clad material, and the hot rolling step of the first brazing material includes a heating step, a holding step, and a hot rolling step, and in the heating step, until reaching 400 ° C. Heating rate 30 ° C./h or more, the rate of temperature increase from reaching 400 ° C. to reaching the holding temperature in the holding stage is 60 ° C./h or less, the holding temperature in the holding stage is 450 ° C. or more and 560 ° C. or less, and the holding time Is a method for producing an aluminum alloy clad material characterized in that, during the hot rolling stage, the time during which the temperature of the first brazing material is 400 ° C. or more is 5 minutes or more.
  6.  アルミニウム合金の心材と、前記心材の一方の面にクラッドされた第一ろう材と、前記心材の他方の面にクラッドされた第二ろう材とを備えるアルミニウム合金クラッド材において、前記心材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Mn:0.5~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記第一ろう材が、Si:2.5~7.0mass%、Fe:0.05~1.20mass%、Zn:0.5~8.0mass%、Mn:0.3~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記第二ろう材が、Si:2.5~13.0mass%、Fe:0.05~1.20mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、ろう付加熱前において前記第一ろう材における0.1μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が1.0×10個/mm以上であり、ろう付加熱後において前記第一ろう材における2μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が300個/mm以上であることを特徴とするアルミニウム合金クラッド材。 An aluminum alloy clad material comprising an aluminum alloy core material, a first brazing material clad on one surface of the core material, and a second brazing material clad on the other surface of the core material, wherein the core material is Si : 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 0.5 to 2.0 mass%, the balance being made of an aluminum alloy composed of Al and inevitable impurities, One brazing material contains Si: 2.5-7.0 mass%, Fe: 0.05-1.20 mass%, Zn: 0.5-8.0 mass%, Mn: 0.3-2.0 mass% And the second brazing material contains Si: 2.5 to 13.0 mass%, Fe: 0.05 to 1.20 mass%, and the balance is made of an aluminum alloy composed of the balance Al and inevitable impurities. consists l and aluminum alloys consisting of unavoidable impurities, the density is 1.0 × 10 5 of Al-Mn-based intermetallic compound having a 0.1μm or more circle-equivalent diameter in the first brazing material before heating the brazing and the number / mm 2 or more, and wherein the presence density of the Al-Mn intermetallic compound having a 2μm or more equivalent circle diameter at said first brazing material after heating the brazing of 300 pieces / mm 2 or more Aluminum alloy clad material.
  7.  前記第一ろう材が、Cu:0.05~0.60mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項6に記載のアルミニウム合金クラッド材。 The first brazing material is Cu: 0.05-0.60 mass%, Ti: 0.05-0.30 mass%, Zr: 0.05-0.30 mass%, Cr: 0.05-0.30 mass%. And V: The aluminum alloy clad material according to claim 6, comprising an aluminum alloy further containing one or more selected from 0.05 to 0.30 mass%.
  8.  前記第一ろう材が、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種を更に含有するアルミニウム合金からなる、請求項6又は7に記載のアルミニウム合金クラッド材。 The first brazing material is made of an aluminum alloy further containing one or two selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. The aluminum alloy clad material according to 7.
  9.  前記心材が、Mg:0.05~0.50mass%、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項6~8のいずれか一項に記載のアルミニウム合金クラッド材。 The core material is Mg: 0.05 to 0.50 mass%, Cu: 0.05 to 1.50 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: The aluminum alloy according to any one of claims 6 to 8, further comprising one or more selected from 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass%. Aluminum alloy clad material.
  10.  前記第二ろう材が、Mn:0.05~2.00mass%、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項6~9のいずれか一項に記載のアルミニウム合金クラッド材。 The second brazing material is Mn: 0.05 to 2.00 mass%, Cu: 0.05 to 1.50 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%. 10. An aluminum alloy further comprising one or more selected from Cr: 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass%. The aluminum alloy clad material according to Item.
  11.  前記第二ろう材が、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種を更に含有するアルミニウム合金からなる、請求項6~10のいずれか一項に記載のアルミニウム合金クラッド材。 The second brazing material is made of an aluminum alloy further containing one or two selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. The aluminum alloy clad material according to any one of 10.
  12.  請求項6~11のいずれか一項に記載のアルミニウム合金クラッド材の製造方法であって、前記心材用、第一ろう材用及び第二ろう材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した第一ろう材及び第二ろう材の鋳塊をそれぞれ所定の厚さまで熱間圧延する熱間圧延工程と、心材鋳塊の一方の面に熱間圧延により所定厚さとした第一ろう材を、他方の面に熱間圧延により所定厚さとした第二ろう材をそれぞれクラッドしてクラッド材とするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間クラッド圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含み、前記第一ろう材の熱間圧延工程が加熱段階と保持段階と熱間圧延段階とを含み、加熱段階において、400℃到達時までの昇温速度が30℃/h以上であり、400℃到達時から保持段階の保持温度到達時までの昇温速度が60℃/h以下であり、保持段階における保持温度が450℃以上560℃以下であり保持時間が1時間以上であり、熱間圧延段階において、第一ろう材の温度が400℃以上である時間が5分以上であることを特徴とするアルミニウム合金クラッド材の製造方法。 A method for producing an aluminum alloy clad material according to any one of claims 6 to 11, wherein the aluminum alloy for the core material, the first brazing material and the second brazing material are respectively casted, A hot rolling step in which the ingots of the first brazing material and the second brazing material are each hot-rolled to a predetermined thickness, and a first brazing material having a predetermined thickness by hot rolling on one surface of the core material ingot. The other surface is clad with a second brazing material having a predetermined thickness by hot rolling to make a clad material, the hot clad rolling step for hot rolling the clad material, and the hot clad rolled clad A cold rolling step of cold rolling the material, and one or more annealing steps of annealing the clad material in one or both of the cold rolling step and after the cold rolling step, the first brazing material Hot rolling process Including a heating stage, a holding stage, and a hot rolling stage. In the heating stage, the rate of temperature increase until reaching 400 ° C. is 30 ° C./h or more, and from reaching 400 ° C. to reaching the holding temperature in the holding stage. The heating rate is 60 ° C./h or less, the holding temperature in the holding stage is 450 ° C. or more and 560 ° C. or less, the holding time is 1 hour or more, and the temperature of the first brazing material is 400 ° C. in the hot rolling stage. The method for producing an aluminum alloy clad material characterized in that the above time is 5 minutes or more.
  13.  アルミニウム合金の心材と、前記心材の一方の面にクラッドされた第一ろう材と、前記心材の他方の面にクラッドされた犠牲陽極材とを備えるアルミニウム合金クラッド材において、前記心材が、Si:0.05~1.50mass%、Fe:0.05~2.00mass%、Mn:0.5~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記第一ろう材が、Si:2.5~7.0mass%、Fe:0.05~1.20mass%、Zn:0.5~8.0mass%、Mn:0.3~2.0mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、前記犠牲陽極材が、Zn:0.5~8.0mass%、Si:0.05~1.50mass%、Fe:0.05~2.00mass%を含有し、残部Al及び不可避的不純物からなるアルミニウム合金からなり、ろう付加熱前において前記第一ろう材における0.1μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が1.0×10個/mm以上であり、ろう付加熱後において前記第一ろう材における2μm以上の円相当直径を有するAl-Mn系金属間化合物の存在密度が300個/mm以上であることを特徴とするアルミニウム合金クラッド材。 An aluminum alloy clad material comprising an aluminum alloy core material, a first brazing material clad on one surface of the core material, and a sacrificial anode material clad on the other surface of the core material, wherein the core material is Si: 0.05 to 1.50 mass%, Fe: 0.05 to 2.00 mass%, Mn: 0.5 to 2.0 mass%, the balance being made of an aluminum alloy composed of Al and inevitable impurities, The brazing material contains Si: 2.5 to 7.0 mass%, Fe: 0.05 to 1.20 mass%, Zn: 0.5 to 8.0 mass%, Mn: 0.3 to 2.0 mass%. The sacrificial anode material is made of Zn: 0.5 to 8.0 mass%, Si: 0.05 to 1.50 mass%, Fe: 0.05. An Al—Mn intermetallic compound containing 2.00 mass%, comprising an aluminum alloy composed of the balance Al and inevitable impurities, and having a circle-equivalent diameter of 0.1 μm or more in the first brazing material before heat of brazing. The abundance density is 1.0 × 10 5 pieces / mm 2 or more, and the existence density of Al—Mn-based intermetallic compounds having an equivalent circle diameter of 2 μm or more in the first brazing material after the brazing addition heat is 300 pieces / An aluminum alloy clad material having a thickness of 2 mm or more.
  14.  前記第一ろう材が、Cu:0.05~0.60mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項13に記載のアルミニウム合金クラッド材。 The first brazing material is Cu: 0.05-0.60 mass%, Ti: 0.05-0.30 mass%, Zr: 0.05-0.30 mass%, Cr: 0.05-0.30 mass%. The aluminum alloy clad material according to claim 13, wherein the clad material is made of an aluminum alloy further containing one or more selected from V: 0.05 to 0.30 mass%.
  15.  前記第一ろう材が、Na:0.001~0.050mass%及びSr:0.001~0.050mass%から選択される1種又は2種を更に含有するアルミニウム合金からなる、請求項13又は14に記載のアルミニウム合金クラッド材。 The first brazing material is made of an aluminum alloy further containing one or two selected from Na: 0.001 to 0.050 mass% and Sr: 0.001 to 0.050 mass%. 14. The aluminum alloy clad material according to 14.
  16.  前記心材が、Mg:0.05~0.50mass%、Cu:0.05~1.50mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項13~15のいずれか一項に記載のアルミニウム合金クラッド材。 The core material is Mg: 0.05 to 0.50 mass%, Cu: 0.05 to 1.50 mass%, Ti: 0.05 to 0.30 mass%, Zr: 0.05 to 0.30 mass%, Cr: The aluminum alloy further comprising one or more selected from 0.05 to 0.30 mass% and V: 0.05 to 0.30 mass%, according to any one of claims 13 to 15. Aluminum alloy clad material.
  17.  前記犠牲陽極材が、Ni:0.05~2.00mass%、Mn:0.05~2.00mass%、Mg:0.05~3.00mass%、Ti:0.05~0.30mass%、Zr:0.05~0.30mass%、Cr:0.05~0.30mass%及びV:0.05~0.30mass%から選択される1種又は2種以上を更に含有するアルミニウム合金からなる、請求項13~16のいずれか一項に記載のアルミニウム合金クラッド材。 The sacrificial anode material is Ni: 0.05 to 2.00 mass%, Mn: 0.05 to 2.00 mass%, Mg: 0.05 to 3.00 mass%, Ti: 0.05 to 0.30 mass%, It consists of an aluminum alloy further containing one or more selected from Zr: 0.05 to 0.30 mass%, Cr: 0.05 to 0.30 mass%, and V: 0.05 to 0.30 mass%. The aluminum alloy clad material according to any one of claims 13 to 16.
  18.  請求項13~17のいずれか一項に記載のアルミニウム合金クラッド材の製造方法であって、前記心材用、第一ろう材用及び犠牲陽極材用のアルミニウム合金をそれぞれ鋳造する工程と、鋳造した第一ろう材及び犠牲陽極材の鋳塊をそれぞれ所定の厚さまで熱間圧延する熱間圧延工程と、心材鋳塊の一方の面に熱間圧延により所定厚さとした第一ろう材を、他方の面に熱間圧延により所定厚さとした犠牲陽極材をそれぞれクラッドしてクラッド材とするクラッド工程と、クラッド材を熱間圧延する熱間クラッド圧延工程と、熱間クラッド圧延したクラッド材を冷間圧延する冷間圧延工程と、冷間圧延工程の途中及び冷間圧延工程の後の一方又は両方においてクラッド材を焼鈍する1回以上の焼鈍工程とを含み、前記第一ろう材の熱間圧延工程が加熱段階と保持段階と熱間圧延段階とを含み、加熱段階において、400℃到達時までの昇温速度が30℃/h以上であり、400℃到達時から保持段階の保持温度到達時までの昇温速度が60℃/h以下であり、保持段階における保持温度が450℃以上560℃以下であり保持時間が1時間以上であり、熱間圧延段階において、第一ろう材の温度が400℃以上である時間が5分以上であることを特徴とするアルミニウム合金クラッド材の製造方法。 A method for producing an aluminum alloy clad material according to any one of claims 13 to 17, wherein the aluminum alloy for the core material, the first brazing material and the sacrificial anode material are cast, respectively. A hot rolling process in which the ingots of the first brazing material and the sacrificial anode material are each hot-rolled to a predetermined thickness, and the first brazing material having a predetermined thickness by hot rolling on one surface of the core material ingot, A clad process in which a sacrificial anode material having a predetermined thickness by hot rolling is clad on the surface to form a clad material, a hot clad rolling process in which the clad material is hot rolled, and a hot clad rolled clad material are cooled. Including a cold rolling step for cold rolling, and one or more annealing steps for annealing the clad material in one or both of the cold rolling step and in the middle of the cold rolling step. Rolling mill Includes a heating stage, a holding stage, and a hot rolling stage. In the heating stage, the rate of temperature rise until reaching 400 ° C. is 30 ° C./h or more, and from reaching 400 ° C. to reaching the holding temperature in the holding stage. The heating rate is 60 ° C./h or less, the holding temperature in the holding stage is 450 ° C. or more and 560 ° C. or less, the holding time is 1 hour or more, and the temperature of the first brazing material is 400 in the hot rolling stage. A method for producing an aluminum alloy clad material characterized in that the time at which the temperature is not lower than 5 ° C is 5 minutes or longer.
  19.  請求項1~4のいずれか一項に記載のアルミニウム合金クラッド材を少なくとも流路形成部品に用いた熱交換器であって、前記第一ろう材面の少なくとも一方の面が、塩化物イオン濃度1200ppm以下の溶液に晒されていることを特徴とする熱交換器。 A heat exchanger using the aluminum alloy cladding material according to any one of claims 1 to 4 for at least a flow path forming component, wherein at least one surface of the first brazing material surface has a chloride ion concentration. A heat exchanger which is exposed to a solution of 1200 ppm or less.
  20.  請求項6~11及び13~17のいずれか一項に記載のアルミニウム合金クラッド材を少なくとも流路形成部品に用いた熱交換器であって、前記第一ろう材面が、塩化物イオン濃度1200ppm以下の溶液に晒されていることを特徴とする熱交換器。 A heat exchanger using the aluminum alloy clad material according to any one of claims 6 to 11 and 13 to 17 for at least a flow path forming component, wherein the first brazing material surface has a chloride ion concentration of 1200 ppm. A heat exchanger which is exposed to the following solution.
PCT/JP2016/070277 2015-07-08 2016-07-08 Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material WO2017007019A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16821487.2A EP3321384B1 (en) 2015-07-08 2016-07-08 Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material
US15/742,418 US10625379B2 (en) 2015-07-08 2016-07-08 Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material
CN201680035541.5A CN107849645B (en) 2015-07-08 2016-07-08 Aluminum alloy clad material, method for producing same, and heat exchanger using same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-137331 2015-07-08
JP2015137331 2015-07-08
JP2016-132727 2016-07-04
JP2016132727A JP6713861B2 (en) 2015-07-08 2016-07-04 Aluminum alloy clad material, manufacturing method thereof, and heat exchanger using the aluminum alloy clad material

Publications (1)

Publication Number Publication Date
WO2017007019A1 true WO2017007019A1 (en) 2017-01-12

Family

ID=57685813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070277 WO2017007019A1 (en) 2015-07-08 2016-07-08 Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material

Country Status (1)

Country Link
WO (1) WO2017007019A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188616A (en) * 2007-02-02 2008-08-21 Mitsubishi Alum Co Ltd Aluminum alloy-brazing sheet for heat exchanger having excellent brazability and corrosion resistance, and heat exchanger tube having excellent corrosion resistance
WO2010137649A1 (en) * 2009-05-27 2010-12-02 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchangers and aluminum alloy brazed object for heat exchangers
JP2013133517A (en) * 2011-12-27 2013-07-08 Mitsubishi Alum Co Ltd High temperature resistant three-layered brazing sheet
JP2014055326A (en) * 2012-09-12 2014-03-27 Uacj Corp Aluminum alloy clad material, heat exchanger, and method for producing heat exchanger
WO2016080433A1 (en) * 2014-11-21 2016-05-26 株式会社デンソー Aluminum alloy cladding material for heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008188616A (en) * 2007-02-02 2008-08-21 Mitsubishi Alum Co Ltd Aluminum alloy-brazing sheet for heat exchanger having excellent brazability and corrosion resistance, and heat exchanger tube having excellent corrosion resistance
WO2010137649A1 (en) * 2009-05-27 2010-12-02 株式会社神戸製鋼所 Aluminum alloy brazing sheet for heat exchangers and aluminum alloy brazed object for heat exchangers
JP2013133517A (en) * 2011-12-27 2013-07-08 Mitsubishi Alum Co Ltd High temperature resistant three-layered brazing sheet
JP2014055326A (en) * 2012-09-12 2014-03-27 Uacj Corp Aluminum alloy clad material, heat exchanger, and method for producing heat exchanger
WO2016080433A1 (en) * 2014-11-21 2016-05-26 株式会社デンソー Aluminum alloy cladding material for heat exchanger

Similar Documents

Publication Publication Date Title
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6452627B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP6006421B2 (en) Aluminum alloy clad material, method for producing the same, and heat exchanger using the aluminum alloy clad material
JP6372950B2 (en) Aluminum alloy clad material and manufacturing method thereof
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
WO2017141921A1 (en) Aluminum alloy brazing sheet, manufacturing method therefor, and manufacturing method for vehicle heat exchanger using said brazing sheet
JP2014098185A (en) Aluminum alloy brazing sheet and manufacturing method thereof
WO2011034102A4 (en) Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
JP2014114475A (en) Aluminum alloy brazing sheet, method of producing the same, and heat exchanger employing the aluminum alloy brazing sheet
JP6713861B2 (en) Aluminum alloy clad material, manufacturing method thereof, and heat exchanger using the aluminum alloy clad material
CN111065753B (en) Aluminum alloy brazing sheet for heat exchanger
WO2013024732A1 (en) Aluminum alloy fin material for heat exchanger offering excellent post-brazing strength and corrosion resistance
JP5629113B2 (en) Aluminum alloy brazing sheet excellent in brazing and corrosion resistance, and heat exchanger using the same
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2017066494A (en) Aluminum alloy material for heat exchanger and manufacturing method therefor
JP6351205B2 (en) High corrosion resistance aluminum alloy brazing sheet
JP2017057497A (en) Aluminum alloy fin material for heat exchanger and method for manufacturing same, and heat exchanger using the aluminum alloy fin material
WO2017007019A1 (en) Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material
JP2017110266A (en) Aluminum alloy-made brazing sheet excellent strength after brazing
WO2017007020A1 (en) Aluminum alloy cladding material and manufacturing method therefor
WO2017047514A1 (en) Aluminum alloy fin material for heat exchanger, method for manufacturing same, heat exchanger using said aluminum alloy fin material and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821487

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017027874

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017027874

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171222