JP2013133517A - High temperature resistant three-layered brazing sheet - Google Patents

High temperature resistant three-layered brazing sheet Download PDF

Info

Publication number
JP2013133517A
JP2013133517A JP2011285540A JP2011285540A JP2013133517A JP 2013133517 A JP2013133517 A JP 2013133517A JP 2011285540 A JP2011285540 A JP 2011285540A JP 2011285540 A JP2011285540 A JP 2011285540A JP 2013133517 A JP2013133517 A JP 2013133517A
Authority
JP
Japan
Prior art keywords
brazing
core material
potential
heat treatment
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011285540A
Other languages
Japanese (ja)
Inventor
Atsushi Tsuruta
淳 鶴田
Michihide Yoshino
路英 吉野
Shu Kuroda
周 黒田
Shohei Iwao
祥平 岩尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2011285540A priority Critical patent/JP2013133517A/en
Publication of JP2013133517A publication Critical patent/JP2013133517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a three-layered brazing sheet exhibiting both a high strength at a high temperature and an excellent pitting corrosion resistance to various strong acids.SOLUTION: The three-layered brazing sheet excellent in corrosion resistance under strong acid circumstances is formed by cladding a core material containing 1.0 to 1.8% Mn, 0.3 to 1.2% Si, 0.1 to 1.0% Cu, and the balance containing Al and inevitable impurities, with a first brazing material formed on one side of the core material, and containing 5.0 to 9.5% Si, 1.0 to 5.0% Zn, and the balance containing Al and inevitable impurities, and with a second brazing material formed on the other side of the core material, and made of an Al-Si based alloy.

Description

本発明は、耐高温3層ブレージングシートに関し、特に強酸環境下での耐食性に優れるブレージングシートに関する。   The present invention relates to a high temperature resistant three-layer brazing sheet, and particularly to a brazing sheet excellent in corrosion resistance under a strong acid environment.

ろう付処理によって構成される自動車用各種部材ではEGR(Exhaust Gas Recirculation:排気ガス再循環)クーラ用部材, CAC(Charged Air Cooler)用部材、マフラー部材など高温環境に曝されるとともに、内部が排ガス成分である強酸環境に曝されるケースが増加している。これら部材では排気ガスの濃縮水が部材内部に付着することになる。この排気濃縮水は塩酸や硝酸、硫酸などの各種強酸を含むために、各部材には高温での耐圧強度に加え、各種強酸環境下における耐食性も要求されるようになってきている。   Various automotive parts constructed by brazing are exposed to high-temperature environments such as EGR (Exhaust Gas Recirculation) cooler, CAC (Charged Air Cooler), muffler, etc. Increasing cases are exposed to a strong acid environment as a component. In these members, exhaust gas concentrated water adheres inside the members. Since this exhaust concentrated water contains various strong acids such as hydrochloric acid, nitric acid and sulfuric acid, each member is required to have corrosion resistance under various strong acid environments in addition to pressure resistance at high temperature.

特開2009−108761号公報JP 2009-108761 A

例えば、従来のCAC用チューブ材としては、特許文献1に記載されているようにアルミニウム合金が用いられる。一般的にAl-Mn-Cu系合金からなる芯材の片面、あるいは両面にAl-Si系合金ろう材をクラッドしたアルミニウム合金が使用されている。Al-Si系ろう材は他部材との一体ろう付接合のために貼り合わされており、ろう付は通常不活性ガス雰囲気中でフッ化物系フラックスを用いて行なわれる。
従来のCAC用チューブ材では、芯材にCuを加えることにより、芯材-ろう材間で一定の電位差を確保することで、耐孔食性を向上させている。しかし、上記の排気ガス濃縮水のような各種強酸環境下での耐孔食性は十分でなく、ごく短期間で貫通孔が発生する可能性が考えられる。
そこで本発明は、各種強酸環境下で耐孔食性に優れるアルミ合金を検討し、高温での高強度と各種強酸に対する耐孔食性を両立できるブレージングシートを提供することを目的とする。
For example, as a conventional CAC tube material, an aluminum alloy is used as described in Patent Document 1. In general, an aluminum alloy in which an Al—Si alloy brazing material is clad on one surface or both surfaces of a core material made of an Al—Mn—Cu alloy is used. The Al—Si brazing material is bonded for integral brazing joining with other members, and brazing is usually performed using a fluoride flux in an inert gas atmosphere.
In a conventional CAC tube material, pitting corrosion resistance is improved by ensuring a certain potential difference between the core material and the brazing material by adding Cu to the core material. However, the pitting corrosion resistance under various strong acid environments such as the above-mentioned exhaust gas concentrated water is not sufficient, and it is possible that through holes are generated in a very short period of time.
Accordingly, the present invention aims to provide a brazing sheet capable of satisfying both high strength at high temperature and pitting corrosion resistance against various strong acids by examining an aluminum alloy having excellent pitting corrosion resistance under various strong acid environments.

本発明の強酸環境下での耐食性に優れる3層ブレージングシート(以下、単にブレージングシートということがある)は、以下の構成を備えている。
すなわち、Mn:1.0〜1.8%、Si:0.3〜1.2%、Cu:0.1〜1.0%を含有し、残部がAlおよび不可避不純物からなる芯材と、芯材の一方の面に形成され、Si:5.0〜9.5%、Zn:1.0〜5.0%含有し、残部がAlおよび不可避不純物からなる第1ろう材と、芯材の他方の面に形成され、Al-Si系合金からなる第2ろう材と、がクラッドされている。
なお、本発明において、断りがない限り、元素の量は質量%である。
The three-layer brazing sheet (hereinafter sometimes simply referred to as a brazing sheet) having excellent corrosion resistance in a strong acid environment of the present invention has the following constitution.
That is, Mn: 1.0-1.8%, Si: 0.3-1.2%, Cu: 0.1-1.0% are contained, and the balance is formed on one surface of the core material composed of Al and inevitable impurities, Si: A first brazing material containing 5.0 to 9.5%, Zn: 1.0 to 5.0%, the balance being made of Al and inevitable impurities, and a second brazing material made of an Al—Si alloy formed on the other surface of the core material, , Is clad.
In the present invention, unless otherwise specified, the amount of element is mass%.

本発明のブレージングシートにおける芯材は、上記元素に加えて、Mg:0.1〜0.3%、Zr:0.05〜0.20%のうち1種または2種をさらに含有することが、強酸環境下での耐食性にとって望ましい。   In addition to the above elements, the core material in the brazing sheet of the present invention further contains one or two of Mg: 0.1 to 0.3% and Zr: 0.05 to 0.20% for corrosion resistance in a strong acid environment. desirable.

本発明のブレージングシートにおいて、ろう付熱処理後の第1ろう材の電位が芯材の電位より100-200mV卑であり、且つ、ろう付熱処理に引き続いて、200℃,10hの熱処理をさらに施した後に、第1ろう材の電位が芯材の電位より100-200mV卑であることが、強酸環境下での耐食性にとって望ましい。
また、本発明のブレージングシートにおいて、ろう付熱処理後の芯材における結晶粒内と結晶粒界の電位差(粒内−粒界)が20mV未満であり、且つ、ろう付熱処理に引き続いて、200℃,10hの熱処理をさらに施した後に、芯材における結晶粒内と結晶粒界の電位差(粒内−粒界)が20mV未満であることが、強酸環境下での耐食性にとって望ましい。
In the brazing sheet of the present invention, the potential of the first brazing material after the brazing heat treatment is 100-200 mV lower than the potential of the core material, and the brazing heat treatment was further subjected to a heat treatment at 200 ° C. for 10 hours. Later, it is desirable for the corrosion resistance in a strong acid environment that the potential of the first brazing material is 100-200 mV lower than the potential of the core material.
Further, in the brazing sheet of the present invention, the potential difference between the crystal grains and the crystal grain boundary (intra-grain boundary) in the core material after brazing heat treatment is less than 20 mV, and following the brazing heat treatment, 200 ° C. After the heat treatment for 10 hours, it is desirable for the corrosion resistance in a strong acid environment that the potential difference between the crystal grains and the crystal grain boundaries (intra-grain boundary) in the core material is less than 20 mV.

本発明によれば、高温で高強度であるとともに各種強酸に対する耐孔食性を両立できるブレージングシートが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the brazing sheet | seat which is compatible with the pitting corrosion resistance with respect to various strong acids while being high intensity | strength at high temperature is provided.

以下、本発明のブレージングシートを詳細に説明する。
(1)芯材の成分
[Mn:1.0〜1.8%]
Mnはマトリックス中にAl-Mn-Si系の金属間化合物を微細に形成し、芯材の強度を高める効果がある。
しかし、Mn量が1.0%未満ではその効果が充分に発揮されず、1.8%を超えると鋳造性が劣り、また、鋳造時に巨大な金属間化合物を生成するためその後の圧延性が劣る。したがって、本発明の芯材のMn量は、1.0〜1.8%とする。なお、同様の理由から下限を1.15%、上限を1.75%とすることが望ましく、さらには下限を1.5%、上限を1.7%にすることがより望ましい。
Hereinafter, the brazing sheet of the present invention will be described in detail.
(1) Core component [Mn: 1.0-1.8%]
Mn has the effect of increasing the strength of the core material by finely forming an Al—Mn—Si intermetallic compound in the matrix.
However, if the amount of Mn is less than 1.0%, the effect is not sufficiently exhibited, and if it exceeds 1.8%, the castability is inferior, and since a huge intermetallic compound is produced during casting, the subsequent rollability is inferior. Therefore, the Mn content of the core material of the present invention is set to 1.0 to 1.8%. For the same reason, the lower limit is preferably 1.15% and the upper limit is 1.75%, more preferably the lower limit is 1.5% and the upper limit is 1.7%.

[Si:0.3〜1.2%]
Siはマトリックス中にAl-Mn-Si系の金属間化合物を微細に形成し、芯材の強度を高める効果がある。
しかし、Si量が0.3%未満ではその効果が充分に発揮されず、1.2%を超えると材料の融点が低下してろう付け性が劣る。したがって、本発明の芯材のSi量は、0.3〜1.2%とする。なお同様の理由から下限を0.4%、上限を1.2%とすることが望ましく、さらには下限を0.8%、上限を1.2%にすることがより望ましい。
[Si: 0.3-1.2%]
Si has the effect of increasing the strength of the core material by finely forming an Al-Mn-Si intermetallic compound in the matrix.
However, if the amount of Si is less than 0.3%, the effect is not sufficiently exhibited, and if it exceeds 1.2%, the melting point of the material is lowered and the brazing property is inferior. Therefore, the Si content of the core material of the present invention is set to 0.3 to 1.2%. For the same reason, it is desirable to set the lower limit to 0.4% and the upper limit to 1.2%, and more preferably to set the lower limit to 0.8% and the upper limit to 1.2%.

[Cu:0.1〜1.0%]
Cuはマトリックス中に固溶し、材料の強度を高める効果や、芯材に添加した場合、芯材の電位を貴として第1ろう材との電位差が大きくなるため、耐食性を向上させる効果がある。
しかし、Cu量が0.1%未満ではその効果が充分に発揮されず、1.0%を超えると材料の融点が低下するとともに、鋳造性が劣る。したがって、本発明の芯材のCu量は、0.1〜1.0%とする。なお、同様の理由により下限を0.2%、上限を0.5%とすることが望ましく、さらには、下限を0.2%、上限を0.4%とすることがより望ましい。
[Cu: 0.1-1.0%]
Cu dissolves in the matrix to increase the strength of the material, and when added to the core, the potential difference between the first brazing material and the potential of the core is noble, increasing the corrosion resistance. .
However, if the amount of Cu is less than 0.1%, the effect is not sufficiently exhibited, and if it exceeds 1.0%, the melting point of the material is lowered and the castability is inferior. Therefore, the Cu content of the core material of the present invention is 0.1 to 1.0%. For the same reason, it is desirable to set the lower limit to 0.2% and the upper limit to 0.5%, and it is more desirable to set the lower limit to 0.2% and the upper limit to 0.4%.

以下のMg及びZrは本発明の芯材に含有させることが好ましい元素である。
[Mg:0.1〜0.3%]
Mgはマトリックス中に固溶し、材料の強度を高める効果や、芯材に添加した場合、芯材の電位を貴として第1ろう材との電位差が大きくなるため、耐食性を向上させる効果がある。
しかし、Mg量が0.1%未満ではその効果が充分に発揮されず、0.3%を超えると材料の融点が低下しろう付け性を悪くする。したがって、本発明の芯材のMg量は、0.1〜0.3%とする。
The following Mg and Zr are elements that are preferably contained in the core material of the present invention.
[Mg: 0.1-0.3%]
Mg dissolves in the matrix and increases the strength of the material. When added to the core material, Mg increases the potential difference from the first brazing material with the potential of the core material being noble, thus improving the corrosion resistance. .
However, if the amount of Mg is less than 0.1%, the effect is not sufficiently exhibited, and if it exceeds 0.3%, the melting point of the material is lowered and the brazing property is deteriorated. Therefore, the Mg content of the core material of the present invention is 0.1 to 0.3%.

[Zr:0.05〜0.20%]
Zrはマトリックス中に固溶し、材料の強度を高める効果がある。
しかし、Zr量が0.05%未満ではその効果が充分に発揮されず、0.20%を超えると鋳造性が劣り、また、鋳造時に巨大な金属間化合物を生成するためその後の圧延性が劣る。したがって、本発明の芯材のZr量は、0.05〜0.20%とする。
なお、芯材における上記元素以外は、Al及び不可避不純物である。
[Zr: 0.05 to 0.20%]
Zr dissolves in the matrix and has the effect of increasing the strength of the material.
However, if the amount of Zr is less than 0.05%, the effect is not sufficiently exhibited, and if it exceeds 0.20%, the castability is inferior, and since a huge intermetallic compound is produced during casting, the subsequent rollability is inferior. Therefore, the Zr content of the core material of the present invention is set to 0.05 to 0.20%.
Other than the above elements in the core material, Al and unavoidable impurities.

(2)第1ろう材
[Si:5.0〜9.5%]
Siはろう付け性を向上させる作用がある。しかし、Si量が5.0%未満ではろう付け性を向上させる作用が不十分である一方、9.5%を超えるとろう付け性が低下してしまう。したがって、本発明の第1ろう材のSi量は、5.0〜9.5%とする。なお、同様の理由により、下限を6.0%、上限を9.0%とすることが望ましく、さらには下限を6.0%、上限を8.0%とすることがより望ましい。
(2) First brazing material [Si: 5.0-9.5%]
Si has the effect of improving brazing properties. However, when the Si content is less than 5.0%, the effect of improving the brazing property is insufficient, while when it exceeds 9.5%, the brazing property is lowered. Therefore, the Si content of the first brazing material of the present invention is set to 5.0 to 9.5%. For the same reason, it is desirable that the lower limit is 6.0% and the upper limit is 9.0%, and it is more desirable that the lower limit is 6.0% and the upper limit is 8.0%.

[Zn:1.0〜5.0%]
Znは電位を卑にする作用があり、第1ろう材に添加した場合、芯材との電位差が大きくなり、耐食性に有効な電位勾配ができることで、ブレージングシートの耐食性を向上させ、腐食減量を低減する効果がある。しかし、Zn量が1.0%未満ではその効果が充分に発揮されず、5.0%を超えると腐食速度が速くなり腐食減量が増加する。したがって、本発明の第1ろう材のZn量は、1.0〜5.0%とする。なお、同様の理由により、下限を1.0%、上限を4.0%とすることが望ましく、さらには下限を1.5%、上限を3.5%とすることがより望ましい。
なお、第1ろう材における上記元素以外は、Al及び不可避不純物である。
[Zn: 1.0-5.0%]
Zn has the effect of lowering the potential.When added to the first brazing filler metal, the potential difference from the core material increases, creating a potential gradient effective for corrosion resistance, improving the corrosion resistance of the brazing sheet and reducing the corrosion weight. There is a reduction effect. However, if the Zn content is less than 1.0%, the effect is not sufficiently exhibited. If the Zn content exceeds 5.0%, the corrosion rate increases and the corrosion weight loss increases. Therefore, the Zn content of the first brazing material of the present invention is 1.0 to 5.0%. For the same reason, the lower limit is preferably 1.0% and the upper limit is 4.0%, more preferably the lower limit is 1.5% and the upper limit is 3.5%.
In addition, other than the above elements in the first brazing filler metal are Al and inevitable impurities.

(3)第2ろう材
本発明におけるろう材は、Al-Si合金(JIS 4045合金,4343合金を含む)からなる。このAl-Si合金としては、Siを5.0〜9.5%含有することが好ましい。Siが5.0%未満では含有量が少ないためにろう付け不良を招き、Siが9.5%を超えるとろう付け時に溶融してしまう。Siの好ましい量は5.5〜9.0%、より好ましい量は6.0〜8.0%である。
(3) Second brazing material The brazing material in the present invention is made of an Al-Si alloy (including JIS 4045 alloy and 4343 alloy). This Al—Si alloy preferably contains 5.0 to 9.5% of Si. If the Si content is less than 5.0%, the content is small, which leads to poor brazing. If the Si content exceeds 9.5%, melting occurs during brazing. A preferable amount of Si is 5.5 to 9.0%, and a more preferable amount is 6.0 to 8.0%.

(4)芯材と第1ろう材の電位について
本発明のブレージングシートにおいて、ろう付熱処理後の第1ろう材の電位が芯材の電位より100-200mV卑であり、且つ、ろう付熱処理に引き続いて、200℃,10h(10時間)の熱処理をさらに施した後に、第1ろう材の電位が芯材の電位より100-200mV卑であることが、強酸環境下での耐食性にとって望ましい。
ここで、ろう付け後の電位差を特定するのは、本発明のブレージングシートがろう付けに供されるからである。また、ろう付け後に施す200℃,10hの熱処理は以下の意味を有する。本発明が志向する各種自動車部材の使用温度が最大200℃位であること、実際の自動車でこの最高温度に晒されるのは数100時間であるものの、10時間以上この温度に保持されても電位への影響が小さいこと、に基づいて規定されている。
3層のブレージングシートにおける芯材の電位は、ろう付け後に第1ろう材及び第2ろう材をエッチングで溶かして、芯材面を露出させてから測定する。一方、第1ろう材はブレージングシートの表面にもともと露出しているので、芯材のようなエッチングをすることなく測定できる。ただし、第1ろう材と芯材の界面近傍はろう付加熱で互いに合金成分が拡散しあい、正確な電位が測れないので、界面からなるべく離れている第1ろう材の表面で電位を測定する。これに対して芯材の場合は、板厚中央の電位を測定することになる。後述する実施例は、以上の手順に従って、芯材、犠牲材の電位を測定した。
(5)芯材の結晶粒内と結晶粒界の電位について
本発明者らの検討によると、ブレージングシートを構成する芯材の結晶粒内と結晶粒界の電位差を特定することにより、強酸環境下での耐食性に優れる。つまり、ろう付熱処理後の前記芯材における結晶粒内と結晶粒界の電位差(粒内−粒界)が20mV未満であり、且つ、ろう付熱処理に引き続いて、200℃,10hの熱処理をさらに施した後に、芯材における結晶粒内と結晶粒界の電位差(粒内−粒界)が20mV未満であることが強酸環境下での耐食性にとって望ましい。粒内と粒界の電位差が20mV以上であると、電位的に卑な粒界が優先的に腐食する粒界腐食が発生し、比較的早期に貫通に至る。
結晶粒内および粒界の電位測定は、アノード分極曲線において、電流密度が増大するピーク電位が一点のみ現れた場合は「粒内電位=粒界電位」とし、二点現れた場合には、電位が卑なものを粒界電位、貴なものを粒内電位とした。
なお、「粒界」とは結晶粒界を含む幅±5μmの範囲とし、粒界から5μmを超えて離れた箇所を「粒内」と定義した。
(4) Potential of core material and first brazing material In the brazing sheet of the present invention, the potential of the first brazing material after brazing heat treatment is 100-200 mV lower than the potential of the core material, and brazing heat treatment Subsequently, after further heat treatment at 200 ° C. for 10 hours (10 hours), it is desirable for the corrosion resistance in a strong acid environment that the potential of the first brazing material is 100-200 mV lower than the potential of the core material.
Here, the potential difference after brazing is specified because the brazing sheet of the present invention is used for brazing. Further, the heat treatment at 200 ° C. for 10 hours performed after brazing has the following meaning. The maximum working temperature of various automobile parts intended by the present invention is about 200 ° C. In actual automobiles, it is exposed to this maximum temperature for several hundred hours. It is stipulated based on the fact that the impact on
The potential of the core material in the three-layer brazing sheet is measured after the first brazing material and the second brazing material are melted by etching after brazing and the core material surface is exposed. On the other hand, since the first brazing material is originally exposed on the surface of the brazing sheet, it can be measured without etching as in the core material. However, in the vicinity of the interface between the first brazing material and the core material, alloy components diffuse to each other due to the brazing heat, and an accurate potential cannot be measured. Therefore, the potential is measured on the surface of the first brazing material as far as possible from the interface. On the other hand, in the case of the core material, the potential at the center of the plate thickness is measured. In Examples described later, the potentials of the core material and the sacrificial material were measured according to the above procedure.
(5) Regarding the potentials in the crystal grains of the core material and the crystal grain boundaries According to the study by the present inventors, by identifying the potential difference between the crystal grains of the core material constituting the brazing sheet and the crystal grain boundaries, a strong acid environment Excellent corrosion resistance below. That is, the potential difference between the crystal grains and the grain boundaries in the core material after brazing heat treatment (intragrain-grain boundaries) is less than 20 mV, and the heat treatment at 200 ° C. for 10 hours is further performed following the brazing heat treatment. After application, it is desirable for the corrosion resistance in a strong acid environment that the potential difference between the crystal grains and the crystal grain boundaries (intra-grain boundary) in the core is less than 20 mV. When the potential difference between the grain boundaries and the grain boundaries is 20 mV or more, grain boundary corrosion occurs in which the potential grain boundaries preferentially corrode, leading to penetration at a relatively early stage.
The potential measurement within the crystal grain and the grain boundary is determined as “intragranular potential = grain boundary potential” when only one peak potential at which the current density increases appears in the anodic polarization curve, and when two points appear, the potential is Is the grain boundary potential, and the noble is the intragranular potential.
The term “grain boundary” was defined as a range of ± 5 μm in width including the crystal grain boundary, and a location away from the grain boundary by more than 5 μm was defined as “inside grain”.

本発明のブレージングシートは、第1ろう材の側を内側にして使用される。外面となる第2ろう材は被接合体とのろう付接合に用いられる。   The brazing sheet of the present invention is used with the first brazing material side inside. The second brazing material serving as the outer surface is used for brazing and joining to the object to be joined.

[実施例]
以上説明した本発明のブレージングシートの効果確認するために行った具体的な例を説明する。
[材料の製造工程]
半連続鋳造により芯材用アルミニウム合金、第1ろう材用アルミニウム合金、および第2ろう材用合金(JIS A4045合金)を鋳造した。なお、各合金の化学組成は表1に示されている通りである。
得られた芯材用合金、およびろう材用合金は、いずれも500℃×6hrの均質化処理を行なった。この均質化処理の条件は一例である。
均質化処理の後に、芯材用合金の一方の面に第1ろう材用合金を、さらに他方の面に第2ろう材用合金を組み合わせて熱間圧延し、クラッド材とした。
このクラッド材を所定の厚さまで冷間圧延を行った後、中間焼鈍を400℃で3hr行い、最終の冷間圧延により厚さ0.4mmのH14調質の3層構造ブレージングシート(試料)を作製した。クラッド材における各要素のクラッド率は、第1ろう材:芯材:第2ろう材(厚さ)=15%:75%:10%である。ただし、このクラッド率はあくまで一例であり、第1ろう材のクラッド率を17%や20%にしてもよい。また、中間焼鈍についても上記は一例であり、温度:200〜400℃、保持時間:1〜6hの範囲から選択することができる。
なお、表1の比較例2は、Mn量が多すぎるため、鋳造時に巨大晶が発生し、これが起点となって圧延時に破断が頻発し、健全なクラッド材を製造できなかった。
[Example]
The specific example performed in order to confirm the effect of the brazing sheet of this invention demonstrated above is demonstrated.
[Material manufacturing process]
Aluminum alloy for core material, aluminum alloy for first brazing material, and alloy for second brazing material (JIS A4045 alloy) were cast by semi-continuous casting. The chemical composition of each alloy is as shown in Table 1.
Both the obtained core material alloy and brazing material alloy were subjected to a homogenization treatment at 500 ° C. for 6 hours. The conditions for this homogenization treatment are an example.
After the homogenization treatment, the first brazing material alloy was combined on one surface of the core material alloy and the second brazing material alloy was combined on the other surface and hot rolled to obtain a clad material.
This clad material is cold-rolled to a specified thickness, then subjected to intermediate annealing for 3 hours at 400 ° C, and the final cold-rolling produces a 0.4mm-thick H14 tempered three-layer brazing sheet (sample) did. The clad rate of each element in the clad material is: first brazing material: core material: second brazing material (thickness) = 15%: 75%: 10%. However, this cladding ratio is merely an example, and the cladding ratio of the first brazing material may be 17% or 20%. Moreover, the above is also an example for the intermediate annealing, and the temperature can be selected from the range of 200 to 400 ° C. and the holding time of 1 to 6 hours.
In Comparative Example 2 in Table 1, since the amount of Mn was too large, giant crystals were generated during casting, and this was the starting point, causing frequent breaks during rolling, and a sound clad material could not be produced.

以上のようにして得た試料について、以下の評価を行った。
[電位(mV)]
芯材、第1ろう材について以下の電位A〜Dを測定した。
電位A;ろう付後の芯材の電位
電位B;ろう付後の第1ろう材の電位
電位C;ろう付後に、200℃で10h保持する熱処理を行った後の芯材の電位
電位D;ろう付後に、200℃で10h保持する熱処理を行った後の第1ろう材の電位
電位E;ろう付後の芯材の粒内電位
電位F;ろう付後の芯材の粒界電位
電位G;ろう付後に、200℃で10h保持する熱処理を行った後の芯材の粒内電位
電位H;ろう付後に、200℃で10h保持する熱処理を行った後の芯材の粒界電位
測定方法;ろう付相当熱処理を行った後の各試料を用いて、アノード分極を実施。アノード分極には照合電極として飽和カロメル電極を用い、窒素ガスの吹き込みにより脱気した40℃の2.67%AlCl3溶液中で電位掃引速度0.5mV/sで測定。
The following evaluation was performed about the sample obtained as mentioned above.
[Potential (mV)]
The following potentials A to D were measured for the core material and the first brazing material.
Potential A: Potential of core material after brazing Potential B: Potential of first brazing material after brazing Potential C: Potential of core material after brazing and heat treatment held at 200 ° C. for 10 hours Potential D; After brazing, the potential E of the first brazing material after heat treatment is maintained at 200 ° C. for 10 hours; the intragranular potential of the core material after brazing; the potential F; the grain boundary potential of the core material after brazing; ; Intragranular potential H of core material after brazing and heat treatment held at 200 ° C. for 10 hours; Grain boundary potential measurement method of core material after brazing and heat treatment held at 200 ° C. for 10 hours Anodic polarization was performed using each sample after brazing equivalent heat treatment. For anodic polarization, a saturated calomel electrode was used as a reference electrode, and measured at a potential sweep rate of 0.5 mV / s in a 2.67% AlCl3 solution at 40 ° C deaerated by blowing nitrogen gas.

[強度]
ろう付相当熱処理を行った各試料(クラッド材)からJIS H 4000に基づいて引張試験片を作製し、これら試験片を用いて引張試験を行うことによりろう付後の強度(引張強さ)を得た。結果を表1に示す。
引張強さは、130MPa以上を○、130MPa未満を×と判断して結果を表1に示した
[Strength]
Tensile test pieces are prepared from each sample (clad material) subjected to brazing equivalent heat treatment based on JIS H 4000, and the strength (tensile strength) after brazing is obtained by performing a tensile test using these test pieces. Obtained. The results are shown in Table 1.
Tensile strength was judged as ○ when 130 MPa or higher, and × when less than 130 MPa, and the results are shown in Table 1.

[耐食性]
ろう付相当熱処理を行った各試料を用いて、各種強酸混合液(塩酸200ppm、硝酸200ppm、硫酸200ppm、酢酸200ppmの混合液)中での浸漬試験を実施した。強酸浸漬試験における評価は「腐食深さ」と「腐食減量」とした。結果を表1に示す。
腐食深さに関して、貫通寿命が浸漬試験100日以上である場合を「◎」、50日以上100日未満を「○」、25日以上50日未満を「△」、25日未満を「×」として評価した。
また、腐食減量に関して、腐食試験1日当たりの腐食減量が15mg/dm2未満のものを「◎」、15mg/dm2以上25mg/dm2未満のものを「○」、25mg/dm2以上30mg/dm2未満のものを「△」、30mg/dm2以上のものを「×」として評価した。
[Corrosion resistance]
Each sample subjected to brazing equivalent heat treatment was subjected to an immersion test in various strong acid mixtures (mixtures of hydrochloric acid 200 ppm, nitric acid 200 ppm, sulfuric acid 200 ppm, and acetic acid 200 ppm). Evaluation in the strong acid immersion test was “corrosion depth” and “corrosion weight loss”. The results are shown in Table 1.
Concerning the corrosion depth, “◎” when the penetration life is 100 days or more, “○” when 50 days or more and less than 100 days, “△” when 25 days or more and less than 50 days, “×” when less than 25 days. As evaluated.
Also, regarding corrosion weight loss, those with a weight loss per day of corrosion test of less than 15 mg / dm2 are `` ◎ '', those with 15 mg / dm2 or more and less than 25 mg / dm2 are `` ○ '', those with 25 mg / dm2 or more and less than 30 mg / dm2 Was evaluated as “Δ”, and those with 30 mg / dm 2 or more as “×”.

[ろう付性]
得られたブレージングシートとフィン材(JIS A3003)でミニコアを作製し、窒素ガス雰囲気で600℃、3minの熱処理を実施。ろう付性の評価は「接合率」と「ろう侵食性」とした。接合率については、ろう付後のミニコアを解体し、ブレージングシート/フィン接合部の接合率を求めた。接合率=接合部の長さ/全体の長さ×100とし、接合率が95%以上の場合を「◎」、80%以上95%未満を「○」、80%未満を「×」として評価した。ろう侵食性については、ブレージングシート/フィン接合部の断面観察を行い評価した。ろう侵食がほぼ見られない場合を「◎」、ろう侵食が見られたがフィンを貫通していないものを「○」、フィンを貫通しているものを「×」とした。

Figure 2013133517
[Brassability]
A mini-core was made with the brazing sheet and fin material (JIS A3003) obtained and heat-treated at 600 ° C for 3 minutes in a nitrogen gas atmosphere. Brazing properties were evaluated as “joining rate” and “brazing erosion”. As for the joining rate, the mini-core after brazing was disassembled and the joining rate of the brazing sheet / fin joint was determined. Joining rate = Joined length / Overall length x 100. When the joining rate is 95% or more, it is evaluated as “◎”, 80% or more and less than 95% as “◯”, and less than 80% as “×”. did. The brazing erosion property was evaluated by observing the cross section of the brazing sheet / fin joint. The case where almost no wax erosion was observed was indicated as “◎”, the case where wax erosion was observed but not penetrating through the fin was indicated as “◯”, and the case where the fin penetrated was indicated as “×”.
Figure 2013133517

Claims (4)

Mn:1.0〜1.8%、Si:0.3〜1.2%、Cu:0.1〜1.0%を含有し、残部がAlおよび不可避不純物からなる芯材と、
前記芯材の一方の面に形成され、Si:5.0〜9.5%、Zn:1.0〜5.0%含有し、残部がAlおよび不可避不純物からなる第1ろう材と、
前記芯材の他方の面に形成され、Al-Si系合金からなる第2ろう材と、
がクラッドされ、強酸環境下での耐食性に優れることを特徴とする3層ブレージングシート。
Mn: 1.0 to 1.8%, Si: 0.3 to 1.2%, Cu: 0.1 to 1.0%, the balance is made of Al and unavoidable impurities,
Formed on one surface of the core material, Si: 5.0-9.5%, Zn: 1.0-5.0% containing, the first brazing material consisting of Al and inevitable impurities,
A second brazing material formed on the other surface of the core material and made of an Al-Si alloy;
Is a three-layer brazing sheet characterized in that it is clad and has excellent corrosion resistance in a strong acid environment.
前記芯材は、Mg:0.1〜0.3%、Zr:0.05〜0.20%のうち1種または2種をさらに含有する、
請求項1に記載の強酸環境下での耐食性に優れる3層ブレージングシート。
The core material further contains one or two of Mg: 0.1 to 0.3% and Zr: 0.05 to 0.20%.
The three-layer brazing sheet excellent in corrosion resistance under a strong acid environment according to claim 1.
ろう付熱処理後の前記第1ろう材表面の電位が前記芯材の電位より100-200mV卑であり、且つ、
ろう付熱処理に引き続いて、200℃,10hの熱処理をさらに施した後に、前記第1ろう材表面の電位が前記芯材の電位より100-200mV卑である、
請求項1又は2に記載の強酸環境下での耐食性に優れる3層ブレージングシート。
The potential of the surface of the first brazing material after brazing heat treatment is 100-200 mV lower than the potential of the core material, and
Following the brazing heat treatment, after further heat treatment at 200 ° C. for 10 hours, the potential of the surface of the first brazing material is 100-200 mV lower than the potential of the core material,
A three-layer brazing sheet excellent in corrosion resistance in a strong acid environment according to claim 1 or 2.
ろう付熱処理後の前記芯材における結晶粒界と結晶粒内の電位差(粒内−粒界)が20mV未満であり、且つ、ろう付熱処理に引き続いて、200℃,10hの熱処理をさらに施した後に、前記芯材における結晶粒界と結晶粒内の電位差(粒内−粒界)が20mV未満である、
請求項1〜3のいずれか一項に記載の強酸環境下での耐食性に優れる3層ブレージングシート。
The potential difference between the crystal grain boundary and the crystal grain (intra-grain boundary) in the core material after the brazing heat treatment was less than 20 mV, and the heat treatment at 200 ° C. for 10 hours was further performed following the brazing heat treatment. Later, the potential difference between the crystal grain boundary and the crystal grain in the core material (intra-grain boundary) is less than 20 mV,
A three-layer brazing sheet excellent in corrosion resistance under a strong acid environment according to any one of claims 1 to 3.
JP2011285540A 2011-12-27 2011-12-27 High temperature resistant three-layered brazing sheet Pending JP2013133517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285540A JP2013133517A (en) 2011-12-27 2011-12-27 High temperature resistant three-layered brazing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285540A JP2013133517A (en) 2011-12-27 2011-12-27 High temperature resistant three-layered brazing sheet

Publications (1)

Publication Number Publication Date
JP2013133517A true JP2013133517A (en) 2013-07-08

Family

ID=48910419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285540A Pending JP2013133517A (en) 2011-12-27 2011-12-27 High temperature resistant three-layered brazing sheet

Country Status (1)

Country Link
JP (1) JP2013133517A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016080433A1 (en) * 2014-11-21 2016-05-26 株式会社デンソー Aluminum alloy cladding material for heat exchanger
WO2016080434A1 (en) * 2014-11-21 2016-05-26 株式会社Uacj Aluminum alloy cladding material for heat exchanger
WO2017007019A1 (en) * 2015-07-08 2017-01-12 株式会社Uacj Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material
JP2017020108A (en) * 2015-07-08 2017-01-26 株式会社デンソー Aluminum alloy clad material and manufacturing method therefor and heat exchanger using the aluminum alloy clad material
JP2019210512A (en) * 2018-06-05 2019-12-12 三菱アルミニウム株式会社 Aluminum alloy brazing sheet for heat exchanger, and manufacturing method of heat exchanger

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107075621A (en) * 2014-11-21 2017-08-18 株式会社电装 Heat exchanger aluminium, Al alloy clad material
WO2016080434A1 (en) * 2014-11-21 2016-05-26 株式会社Uacj Aluminum alloy cladding material for heat exchanger
JP2016098405A (en) * 2014-11-21 2016-05-30 株式会社Uacj Aluminum alloy clad material for heat exchanger
JP2016098404A (en) * 2014-11-21 2016-05-30 株式会社デンソー Aluminum alloy clad material for heat exchanger
WO2016080433A1 (en) * 2014-11-21 2016-05-26 株式会社デンソー Aluminum alloy cladding material for heat exchanger
US10788275B2 (en) 2014-11-21 2020-09-29 Denso Corporation Aluminum alloy cladding material for heat exchanger
US11015234B2 (en) 2014-11-21 2021-05-25 Uacj Corporation Aluminum alloy cladding material for heat exchanger
WO2017007019A1 (en) * 2015-07-08 2017-01-12 株式会社Uacj Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material
JP2017020108A (en) * 2015-07-08 2017-01-26 株式会社デンソー Aluminum alloy clad material and manufacturing method therefor and heat exchanger using the aluminum alloy clad material
CN107849645A (en) * 2015-07-08 2018-03-27 株式会社Uacj Aluminum alloy clad sheet and its manufacture method and the heat exchanger using the aluminum alloy clad sheet
US10625379B2 (en) 2015-07-08 2020-04-21 Uacj Corporation Aluminum alloy cladding material, manufacturing method therefor, and heat exchanger using said aluminum alloy cladding material
JP2019210512A (en) * 2018-06-05 2019-12-12 三菱アルミニウム株式会社 Aluminum alloy brazing sheet for heat exchanger, and manufacturing method of heat exchanger
JP7157561B2 (en) 2018-06-05 2022-10-20 Maアルミニウム株式会社 Aluminum alloy brazing sheet for heat exchanger and method for manufacturing heat exchanger

Similar Documents

Publication Publication Date Title
JP2019131890A (en) Strip having excellent corrosion resistance after blazing
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
JP5230231B2 (en) Aluminum alloy brazing sheet, heat exchanger and method for producing the same
JP2011026681A (en) Aluminum alloy clad material
CZ201654A3 (en) Aluminium alloy sheet for brazing and process for producing thereof
JP2013023748A (en) Aluminum alloy brazing sheet and method for manufacturing the same
JP2014177694A (en) Aluminum alloy heat exchanger excellent in corrosion resistance in strongly acidic environment
JP2013133517A (en) High temperature resistant three-layered brazing sheet
JP2014077179A (en) High strength aluminum alloy brazing sheet and its manufacturing method
JP2011068933A (en) Aluminum alloy clad material for heat exchanger
WO2018110320A1 (en) Aluminum alloy brazing sheet and method for manufacturing same
JP2013194244A (en) Aluminum alloy laminate
JP6399438B2 (en) Heat exchanger
JP5844411B2 (en) Aluminum clad material for heat exchanger
JP5506280B2 (en) Aluminum clad material for heat exchanger
JPWO2015141192A1 (en) Aluminum alloy clad material excellent in corrosion resistance and brazing and method for producing the same
JP2014178101A (en) Aluminum alloy heat exchanger excellent in corrosion resistance in strong acid environment
JP5118984B2 (en) Brazing sheet for heat exchanger, heat exchanger and method for producing the same
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP2005298913A (en) Brazing sheet and heat exchanger
JP2009149936A (en) Aluminum alloy clad material for heat-exchanger for brazed-making pipe excellent in strength and brazing property, and aluminum alloy tube for heat-exchanger
JP5019797B2 (en) Sacrificial anode material and aluminum alloy composite
JP2013204076A (en) Fin material for air-conditioning heat exchanger and air-conditioning heat exchanger
JP2013133516A (en) High-temperature resistant three-layer brazing sheet
JP2000087164A (en) Aluminum alloy clad material for heat exchanger excellent in corrosion resistance