WO2017005153A1 - 抗眩光匀光光源及具该光源的影像撷取装置 - Google Patents
抗眩光匀光光源及具该光源的影像撷取装置 Download PDFInfo
- Publication number
- WO2017005153A1 WO2017005153A1 PCT/CN2016/088319 CN2016088319W WO2017005153A1 WO 2017005153 A1 WO2017005153 A1 WO 2017005153A1 CN 2016088319 W CN2016088319 W CN 2016088319W WO 2017005153 A1 WO2017005153 A1 WO 2017005153A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- angle
- emitting
- glare
- shielding
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/06—Means for illuminating specimens
Definitions
- An anti-glare uniform light source for detecting the field and avoiding uneven illumination brightness.
- Microscope is an essential tool for observing the study of tiny objects. It uses optical lenses to magnify and image tiny objects that cannot be clearly distinguished by the human eye, providing image information that people can clearly observe and analyze.
- Common optical microscopes typically include a susceptor, a stage, a light source assembly, an objective lens, an eyepiece, and a focusing assembly that adjusts the distance between the objective lens and the eyepiece.
- the slide carrying the sample to be observed is first placed on the stage, and the focusing component is manipulated to enable the sample to be clearly imaged for the purpose of observation and research.
- fluorescence microscopy is currently not only used for practical applications such as industrial inspection, counterfeit identification, and criminal identification. In recent years, it has extended to cell analysis and tracking in biological research, making fluorescence microscopic image acquisition important.
- the gradual improvement of the nature, the commonly used fluorescence microscope mainly to illuminate a high-frequency excitation light on the object to be observed with fluorescent properties, for example, after coating the surface of the metal material with a fluorescent dye, and then scraping it, if it is invisible to the naked eye. Fine cracks leave fluorescent dyes, fluorescent dyes emit lower-frequency fluorescence, and can be easily observed with appropriate filters.
- many studies are aimed at gene transfer, for easy observation, implantation. Genes often link fluorescent proteins as markers, and the presence or absence of fluorescence reaction of the analytes confirms the success or failure of gene implantation, and further studies on successful transgenic organisms.
- a camera or a camera may be used instead of a microscope as the image capturing device.
- the aforementioned camera, camera, general optical microscope, and fluorescence microscope are generally referred to as image capturing devices for convenience of explanation.
- the object to be observed is a fingerprint or a blood stain, a semen, or the like remaining on a reflective object such as a mirror surface or a smooth metal surface
- the illumination light or the excitation light is directly projected to the target area
- the reflected light directly returns to the image.
- the light entrance of the device will cause strong glare, and the signal-to-noise ratio of the image data will be greatly reduced.
- the image to be observed is therefore difficult to observe and record. Therefore, the use of dark field illumination can theoretically reduce the glare generated by direct illumination of the object to be observed.
- the dark field illumination mode only a small part of the direct light in the light source directly illuminates the object to be observed, so that the uniformity and brightness of the object to be observed are not ideal, and the illumination efficiency still has room for improvement, not to mention
- a fixed amount of excitation beam is generally required to be irradiated on the object to be observed to generate sufficient fluorescence image information, but if the previous structural configuration is adopted, only A small part of the excitation light source will directly illuminate the object to be observed, which will limit the fluorescence that can be excited, thus making the fluorescence image observation and recording more difficult.
- the projection angle of the light source is different with respect to different positions of the object to be observed, and the illuminance decreases inversely with the square of the distance, so that the image of the object to be observed is obviously uneven in brightness.
- An object of the present invention is to provide an anti-glare light-homogenizing light source, which is used together with an image capturing device to completely block the light-emitting beam of the light source from directly entering the light-injecting port of the image capturing device by the light-shielding light-collecting element to avoid direct glare.
- Increasing the signal noise (S/N) ratio increases the success rate and reliability of acquiring optical images.
- Another object of the present invention is to provide an anti-glare uniform light source, which allows the light beam in the main illumination angle to be uniformed by reflection and then irradiates the object to be observed, thereby improving the uniformity of the image to be observed.
- a further object of the present invention is to provide an anti-glare uniform light source, which is used as a full-illumination angle direct-illumination beam as a dark field illumination to improve image information brightness under reduced glare conditions.
- Another object of the present invention is to provide an image system in which the light beam irradiated to an object to be observed is uniform and the illuminance is improved by the anti-glare light-homogenizing light source, so that the success rate and reliability of acquiring the optical image are increased.
- the present invention provides an anti-glare light-homogenizing light source, which is mounted on an image capturing device, wherein the image capturing device further includes a body and an optical lens, and the anti-glare uniform light source includes: a detachably The surrounding shielding wall is assembled to the image capturing device, and the surrounding shielding wall has a bonding edge, a working edge opposite to the bonding edge, and a lighting channel extending through the bonding edge and the working edge; and a setting is formed in the lighting channel.
- a light-shielding light-receiving element of the light-transmitting hole a plurality of light-emitting elements each having a main light-emitting angle and a full light-emitting angle, wherein the light-emitting element is disposed in the lighting channel, and the main light-emitting angle It is blocked by the light-shielding and homogenizing element and cannot be directly incident into the optical port; and at least part of the total illumination angle of the light-emitting element is directly irradiated to the plane to be tested.
- the image capturing device with an anti-glare light source is included in the invention, and the image capturing device having an anti-glare light source is integrated with the common image capturing device.
- An optical lens disposed on the body along an optical axis; and an anti-glare uniform light source, comprising a surrounding shielding wall detachably assembled to the image capturing device, the surrounding shielding wall having a bonding edge and a reverse coupling a working edge of the edge, and a light collecting passage penetrating between the bonding edge and the edge of the action; a light-shielding light-collecting element disposed in the lighting channel to form a light-transmitting hole; and the plurality of light-emitting elements each having a main light-emitting angle and a full light-emitting angle
- the illuminating element is disposed in the lighting channel, and the main illuminating angle is blocked by the opaque shimming element and cannot be directly incident into the optical port; and at least part of the total illuminating
- the anti-glare light-homogenizing light source disclosed by the present invention prevents the light-emitting beam of the light source from directly entering the light-injecting port of the image capturing device to form direct glare by the light-shielding light-splitting element; the light beam in the main light-emitting angle of the light-emitting element is After being homogenized by reflection, it is irradiated to the object to be observed, so that the illumination beam is uniform; and the direct beam matching in the full illumination angle of the illuminating element not only makes the illumination of the object to be observed uniform, the illuminance is improved, but also greatly reduces the probability of occurrence of various glare. Effectively improve the signal noise (S/N) ratio, so that the success rate and reliability of capturing optical images are simultaneously improved.
- S/N signal noise
- FIG. 1 is a schematic view showing a first preferred embodiment of the present invention, illustrating a coupling relationship between an image capturing device and an anti-glare uniform light source.
- FIG. 2 is a side cross-sectional view of the anti-glare uniform light source of FIG. 1 , the external stray light is blocked by surrounding the shielding wall, and the light beam of the light-emitting element is uniformly reflected by the light-shielding light-blocking element to illuminate the sample to be tested.
- Fig. 3 is a schematic view showing the light-emitting angle of the light-emitting element of the present invention, whereby the main light-emitting angle and the full light-emitting angle of the present invention are understood.
- FIG. 4 is a side cross-sectional view of the anti-glare light source of FIG. 1 showing that the light beam passing through the light transmission hole is completely absorbed by the light absorbing element layer and cannot enter the light entrance of the image capturing device.
- Figure 5 is a schematic view of a second preferred embodiment of the present invention for showing that the present invention can be used in the field of fluorescent cell detection.
- the forensic personnel can carry the search and identification of the image system of the present invention, and the image system includes, for example, a set of anti-glare light-homed light sources, and an image capturing device exemplified as an optical camera.
- the image capturing device 1 has a camera body 2 and an optical lens 3 disposed on the camera body 2 along the optical axis 30.
- the optical lens 3 captures and retains the image of the traces of blood, body fluids and the like remaining on the site as evidence for future appearance.
- the micro-track evidence is compared to the sample to be tested 4, and contaminated or
- the surface of the smooth object remaining in the sample 4 to be tested is referred to as the plane 40 to be tested in this example.
- the forensic personnel will gradually find a small sample 4 to be tested.
- the anti-glare uniform light source 5 of this example and the image capturing device 1 can be connected to each other, and the combination between the two.
- the method can be a detachable means such as snapping, screwing or magnetic attraction, and there is no mandatory specification.
- the connecting edge 510 of the anti-glare light source 5 surrounding the shielding wall 51 will be combined with the light entrance 6 of the image capturing device 1.
- the forensic person will be located at the other end of the bonding edge 510.
- the action edge 511 abuts against the plane 40 to be tested, and blocks the external stray light from invading the sample 4 to be tested by surrounding the shielding wall 51, so that the optical image information can pass through the light-passing channel 512 through the bonding edge 510 and the action edge 511.
- the light entrance port 6 of the image capturing device 1 presents the captured optical image.
- two light-emitting elements 53 are disposed in the inner side of the shielding wall 51, that is, the lighting channel 512, and the light-emitting element 53 in this example is interpreted as a wide-angle LED.
- One set is a single white light emitting diode to provide general illumination; the other set is, for example, eight ultraviolet light emitting diodes disposed around the periphery of the shielding wall 51, each of the foregoing light emitting elements 53 having a main light emitting angle 530, And the divergence angle is greater than the full illumination angle 531 of the primary illumination angle 530.
- the main illumination angle 530 in this example refers to a luminous element.
- the maximum luminous intensity of the piece 53 is an angular range of half the maximum luminous intensity, and the luminous angle other than the aforementioned angle is the total luminous angle 531 in this example.
- the light-emitting element 53 of the present example is a vertical surface facing the optical axis 30 in the direction toward the light-in port 6.
- the angle is set to 3 to 15 degrees, so that the main illumination angle 530 is slightly upward, and no main light is directly irradiated to the sample 4 to be tested when the image is captured.
- such an elevation-illuminated structure may cause the light beam of the light-emitting element 53 to directly illuminate into the optical port 6, resulting in more intense direct glare. Therefore, in the lighting channel 512, the light-shielding light-collecting element 55 between the light-in port 6 and the light-emitting element 53 is further disposed, and a light-transmitting hole 550 is formed at a position corresponding to the optical axis 30 to effectively block The light-emitting element 53 emits a light beam directly into the optical port 6; and in order to make the field of view of the optical lens 3 unrestricted, the field of view of the optical lens 3 is defined as the viewing angle 31, and in this example, the aperture 551 of the light-transmitting hole 550 is Designed to be larger than the projection size 310 of the viewing angle 31 at the light-shielding light-receiving element 55, that is, according to the aperture 551 design in this example, the field of view of the optical lens 3 is not obstruc
- the light beam in the main light-emitting angle 530 of the light-emitting element 53 is partially contacted to the bottom surface 552 of the light-shielding light-blocking elements 55 on both sides, and is formed by the concentric circle step formed on the bottom surface 552 with the optical axis 30 as the axis.
- the microstructure 553 changes the optical path of each photon, so that each of the main illuminating angles 530 will be reflected and diffused along the respective exit angles into a uniform scattered beam to be irradiated onto the plane 40 to be tested.
- Sample 4 even if the plane 40 to be tested is a glass or metal surface with a high reflection coefficient, it is not easy to produce over-exposure spots and glare, so that the forensic person can easily capture clear optical images.
- the light-emitting element 53 is disposed at a specific angle, and the light-emitting intensity of the light beam at the full light-emitting angle 531 is weaker than that of the main light-emitting angle 530, so that the light beam in the full-light-emitting angle 531 is directly exposed to the sample to be tested. 4, it is also difficult to have obvious glare generation, thereby further reinforcing the illuminance of the sample to be tested, and retaining the dark field optical characteristics commonly seen in the art, effectively pulling up the signal noise ratio captured by the optical image.
- the light-shielding light-receiving element 55 which blocks the light-emitting beam of the light-emitting element 53 from entering the light-emitting port 6 is provided in this example, a slight light beam can pass through the light-transmitting hole 550 and is irradiated to the light after one or more reflections.
- the surrounding shielding wall 51 of this example forms an absorption rate of 90% or more on the inner side wall between the bonding edge 510 and the light-shielding light-receiving element 55.
- the light absorbing element layer 513 is provided in this example, a slight light beam can pass through the light-transmitting hole 550 and is irradiated to the light after one or more reflections.
- the surface is composed of a plurality of carbon nanotubes, which are passed through the light-transmitting holes 550 of the light-shielding light-receiving element 55 and then contacted with photons of the light-absorbing element layer 513 to be absorbed, thereby ensuring the quality of the optical image pickup.
- a light shielding piece may be attached to the light emitting element at a specific illuminating angle to block stray light, and the simple replacement here is Does not affect the technical implementation of this example.
- the storage element for enabling the light-emitting element in this example is exemplified as a battery. Since the energy consumption of the light-emitting element in this example is low, the energy storage element can be used as an energy source, and the overall weight of the anti-glare light-homogenizing light source can be reduced. And the volume, improve the portability of the anti-glare uniform light source; in addition, the forensic personnel usually need at least two images taken at the same angle during the detection process, and one is the fluorescence emitted by the sample to be tested after being excited by the excitation beam. The image is captured directly by white light, thereby ensuring the image as the credibility of the evidence.
- the illumination unit of this example can be activated by the mechanical selection of the switch, and is close to the shooting behavior of the forensic personnel. This is in line with the usage habits of the forensic personnel.
- the light-emitting elements of this example may also all adopt white light diodes, also by shading
- the shimming element provides sufficient brightness and uniform illumination, and suppresses the formation of over-exposure bright spots to hinder the image capturing, and effectively satisfies quality inspections including fine defects of semiconductor components and defects of metal surfaces, and those skilled in the art can freely use them. It does not hinder the use of this technical feature.
- the present invention can also be applied to the detection of fluorescent cells.
- the second preferred embodiment of the present invention is shown in FIG. 5.
- the image capturing device of the present example is illustrated as a microscope, and an external imaging unit is used to obtain the obtained image.
- the sample to be tested can be regarded as a zebrafish with transfected fluorescent cells. For the convenience of the operation experiment, even if there is a gap between the action edge of the surrounding shielding wall 51' and the plane to be tested, there is no hindrance to Implementation of the invention.
- the light-emitting element in this example includes a set of light-emitting elements 53' which are exemplified as infrared light-emitting diodes, which first illuminate the sample to be tested 4', and the tester It can be confirmed from the display screen of the image capturing device 1'. Then, the light-emitting element is switched, the infrared light is stopped, and the excitation light beam is emitted from the light-emitting element 53' that emits blue light on the other side of the light-receiving channel 512'.
- the light beam is, as in the previous embodiment, exemplified as a flat frosted glass.
- the anti-glare uniform light source disclosed by the present invention adjusts the illumination angle of the light beam in the main illumination angle of the light-emitting element by the light-shielding and homogenizing element, so that the light beam irradiated to the object to be observed is not concentrated and overexposed.
- the device pulling the signal noise (S/N) ratio, makes the acquired optical image have higher reliability.
- the beam outside the main illuminating angle can be straight from the parallel angle. It is irradiated to the object to be observed to ensure the clarity of the optical image and improve the convenience during the detection process.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
一种抗眩光匀光光源(5),装设于影像撷取装置(1、1')上,其中该影像撷取装置(1、1')还包括本体(2)及光学镜头(3),抗眩光匀光光源(5)包括:一个可拆卸地组设至影像撷取装置(1、1')的环绕遮挡壁(51、51'),环绕遮挡壁(51、51')具有一个结合缘(510)、一个相反于结合缘(510)的作用缘(511)、及贯穿结合缘(510)和作用缘(511)间的采光通道(512、512');一个设置于采光通道(512、512')中形成有一个透光孔(550)的遮光匀光元件(55、55');及复数个发光元件(53、53')均具有一个主要发光角度(530)及全发光角度(531),发光元件(53、53')是设置于采光通道(512、512')中,且主要发光角度(530)是被遮光匀光元件(55、55')所阻挡而无法直接入射入光口(6、6');以及发光元件(53、53')中至少部分的全发光角度(531)是直接照射至待测平面(40)。
Description
一种用于检测领域、且能避免光照亮度不均的抗眩光匀光光源。
显微镜是观察研究微小物体必备的工具,利用光学透镜将人眼所不能清晰分辨的微小物体放大成像,提供人们清楚观察及分析的影像资讯。常见的光学显微镜通常包括有基座、载物台、光源组件、物镜、目镜以及调整物镜与目镜距离的调焦组件。操作时,会先将承载待观测样本的玻片放置于载物台上,并操控调焦组件,使样本能够清晰成像,藉以达到观察研究的目的。
除一般的光学显微镜外,荧光显微技术目前不仅可用于工业检测、伪钞辨识以及刑事鉴定等实质应用,近年来更延伸至生物研究中的细胞分析与追踪,使得荧光显微影像撷取的重要性逐渐提升,常用的荧光显微镜,主要是将一个高频的激发光照射在具有荧光特性的待观测物上,例如以荧光染料涂布在金属材料表面后再刮除,若有肉眼不可见的细微裂痕让荧光染料残留,荧光染料就会发出较低频的荧光,加上适当的滤镜便可轻易观察记录;在生物科学领域,许多研究是针对基因转殖,为便于观察,植入的基因常会连结荧光蛋白作为标记,藉由待观测物的荧光反应有无,确认基因植入的表现成败,并且可以对转殖成功的生物进一步深入研究。
当然,对于较大尺寸的待观测物,如钞票的防伪线,或者刑案现场疑似血迹的位置,则可以利用照相机或摄影机而不是显微镜作为影像撷取装置。但在本发明中,为便于说明解释,将前述照相机、摄影机、一般光学显微镜、和荧光显微镜,一律称为影像撷取装置。
在前述领域中,已经发现当待观测物是残留于镜面或光滑金属表面等易反光物体上之指纹或血迹、精液等,一旦直接将照明光或激发光投射至目标区域,反射光直接返回影像撷取装置的入光口,将导致强烈的眩光,影像资料的讯号杂讯比随之大幅降低,待观测物影像因此不易观察和记录。因此运用暗场照明,理论上可以减少光线直接照射待观测物所产生的眩光。然而,暗场照明方式中,光源中的直射光仅有少部分直射光有直接照射到待观测物,使得待观测物的均匀度及亮度皆不够理想,照明效率仍有改善空间,何况若是要观察荧光影像时,为激发出足够可供观察和记录的荧光影像,一般需要固定量的激发光束照射在待观测物上才可产生足够的荧光影像资讯,但若采用过往的结构配置,仅会有少部分激发光源的光束会直接照射到待观测物上,造成能够被激发出的荧光受到局限,因此使得荧光影像观察和纪录的难度提升。加以,光源相对于待观测物的不同位置投射角度不一,照度又会随距离平方反比下降,而使待观测物影像明显地亮度不均。
即使目前已经有人提出,可以采用光源出光再经一次或多次反射的光进行照明和作为激发光,但矛盾在于:如果要让匀光效果好,反射面就不可以是光滑平坦的反射材料,这也使得反射过程中,光能被大幅衰减,要是再经多次反射,光强度将衰减更迅速;相反地,如果反射面太过平坦光滑,光强度虽然增加,但是匀光效果不足,仍然会在待观测物表面产生眩光的亮点。尤其,此种结构将难以避免光源所发出的光束直接入射进影像撷取装置,变成观测或记录影像时干扰更强的直接眩光,因此并没有真正解决现有技术的困难。
为此,如何一方面提升照明光或激发光的亮度,同时提升光的均匀度,尤其是大幅压抑眩光的发生机率,并藉由遮光匀光元件完全阻止光源所发光束直
接进入影像撷取装置的入光口,藉以大幅提升所撷取影像资料的讯号杂讯(S/N)比,使撷取光学影像有较高的成功率和可靠度;进一步,可以藉由扩大遮光匀光元件的透光孔的孔径,提供影像撷取装置良好的视角,保持影像撷取装置的视野,即为本发明所要达到的目标。
发明内容
本发明之一目的在于提供一种抗眩光匀光光源,搭配一影像撷取装置使用,藉由遮光匀光元件,完全阻止光源所发光束直接进入影像撷取装置入光口,以避免直接眩光而提升讯号杂讯(S/N)比,使获取光学影像的成功率和可靠度增加。
本发明另一目的在于提供一种抗眩光匀光光源,让主发光角度内的光束是经由反射均匀化后照射待观测物,提升待观测物影像的均匀度。
本发明再一目的在于提供一种抗眩光匀光光源,搭配作为暗场照明的全发光角度直照光束,在降低眩光条件下,提高影像资讯亮度。
本发明又一目的在于提供一种影像系统,藉由抗眩光匀光光源,使照射至待观测物的光束均匀,且照度获得提升,使获取光学影像的成功率和可靠度增加。
为达上述目的,本发明提供一种抗眩光匀光光源,是装设于影像撷取装置上,其中该影像撷取装置还包括本体及光学镜头,抗眩光匀光光源包括:一个可拆卸地组设至影像撷取装置的环绕遮挡壁,环绕遮挡壁具有一个结合缘、一个相反于结合缘的作用缘、及贯穿结合缘和作用缘间的采光通道;一个设置于采光通道中形成有一个透光孔的遮光匀光元件;及复数个发光元件均具有一个主要发光角度及全发光角度,发光元件是设置于采光通道中,且主要发光角度
是被遮光匀光元件所阻挡而无法直接入射入光口;以及发光元件中至少部分的全发光角度系直接照射至待测平面。
将前述的抗眩光匀光光源与常见的影像撷取装置相互组接后,即成为本发明所指一种具有抗眩光匀光光源的影像撷取装置,包括:一个形成有一入光口的本体;一个沿一光轴设置于该本体的光学镜头;及抗眩光匀光光源,包括一个可拆卸地组设至影像撷取装置的环绕遮挡壁,环绕遮挡壁具有一个结合缘、一个相反于结合缘的作用缘、及贯穿结合缘和作用缘间的采光通道;一个设置于采光通道中形成有一个透光孔的遮光匀光元件;及复数个发光元件均具有一个主要发光角度及全发光角度,发光元件是设置于采光通道中,且主要发光角度是被遮光匀光元件所阻挡而无法直接入射入光口;以及发光元件中至少部分的全发光角度是直接照射至待测平面。
由此,本发明所揭示的一种抗眩光匀光光源,通过遮光匀光元件阻止光源所发光束直接进入影像撷取装置的入光口形成直接眩光;发光元件主发光角度内的光束则是经由反射匀光后,照射至待观测物,使得照射光束均匀;且以发光元件全发光角度内的直接光束搭配,不仅让待观测物的光照均匀,照度提高,也大幅降低各种眩光发生机率,有效提升讯号杂讯(S/N)比,使撷取光学影像的成功率及可靠度同步提高。
图1为本发明第一较佳实施例示意图,说明影像撷取装置与抗眩光匀光光源间的结合关系。
图2为图1中抗眩光匀光光源的侧面剖视图,表达藉由环绕遮挡壁阻绝外在杂光,且发光元件的光束会经由遮光匀光元件均匀反射后照射待测样品。
图3为本发明中发光元件的发光角度示意图,藉此理解本发明的主要发光角度及全发光角度。
图4为图1中抗眩光匀光光源的侧面部分剖视图,显示穿过透光孔的光束会被吸光元件层完整吸收,无法进入影像撷取装置的入光口。
图5为本发明第二较佳实施例示意图,用于显示本发明可转用于荧光细胞检测领域。
符号说明
1、1’…影像撷取装置 2…照相机本体
3…光学镜头 30…光轴
31…可视角度 310…投影尺寸
4、4’…待测样品 40…待测平面
5…抗眩光匀光光源 51、51’…环绕遮挡壁
510…结合缘 511…作用缘
512、512’…采光通道 513…吸光元件层
53、53’…发光元件 530…主要发光角度
531…全发光角度 55、55’…遮光匀光元件
550…透光孔 551…孔径
552…底面 553…微结构
6、6’…入光口
有关本发明的前述及其他技术内容、特点与功效,在以下配合说明书附图的较佳实施例的详细说明中,将可清楚呈现;此外,在各实施例中,相同的元
件将以相似的标号表示。
刑案现场,鉴识人员可携带本发明的影像系统进行搜证鉴识,此影像系统包括例如一组抗眩光匀光光源、及例释为光学相机的影像撷取装置。本发明的第一较佳实施例请一并参考图1至图4,前述影像撷取装置1具有一个照相机本体2以及沿着光轴30设置于照相机本体2上的光学镜头3,鉴识人员藉由光学镜头3针对残留于现场的血迹、体液等微迹物证进行影像撷取并留存以此作为将来的呈堂证据,本例中将前述微迹物证比喻为待测样品4,而沾染或者残留待测样品4的平滑物体表面于本例中被称为待测平面40。
在侦检的过程中,鉴识人员会逐步寻获些许的待测样品4,此时即可将本例的抗眩光匀光光源5与影像撷取装置1相互连结组装,两者间的结合方式可为卡扣、螺接抑或者磁吸等可拆卸的手段,于此并无强制规范。组装时,抗眩光匀光光源5的环绕遮挡壁51的结合缘510将对应影像撷取装置1的入光口6进行组接,安装完毕后,鉴识人员将位于结合缘510另一端缘的作用缘511抵靠待测平面40,并通过环绕遮挡壁51阻绝外在杂光侵扰待测样品4,使其光学影像资讯能完整地经贯通结合缘510与作用缘511的采光通道512,进入影像撷取装置1的入光口6呈现出撷取后的光学影像。
本例为提升光学影像撷取的清晰度,在环绕遮挡壁51的两内侧面,意即采光通道512中还设置有两组发光元件53,本例中的发光元件53例释为广角发光二极管,其中一组是单独一个白光发光二极管,以提供一般照明;另一组则为例如设置在环绕遮挡壁51周缘的八个紫外发光二极管,每一前述发光元件53分别具有一个主要发光角度530、和发散角度大于主要发光角度530的全发光角度531。为便于理解,请参考图3,本例中的主要发光角度530是指发光元
件53的最大发光强度至最大发光强度一半的角度范围,前述角度以外的发光角度即是本例中的全发光角度531。
为避免发光元件53所发的光束集中照射至待测样品4,并且形成反射眩光而影响光学影像的品质,本例的发光元件53是以朝向入光口6的方向与光轴30的垂直面夹角3~15度的方式进行组设,使得主要发光角度530略微偏上,在撷取影像时不会有主光线直接照射至待测样品4。
但另方面,此种仰角发光的结构,又可能导致发光元件53的光束直接照射入光口6,造成更强烈的直接眩光。因此,本发明在采光通道512中,进一步设置有介于入光口6和发光元件53之间的遮光匀光元件55,并在对应光轴30的位置形成一个透光孔550,以有效阻挡发光元件53所发光束直射入光口6;且为使光学镜头3的视野不受局限,定义光学镜头3的视野范围为可视角度31,而本例中透光孔550的孔径551会被设计成大于可视角度31在遮光匀光元件55处的投影尺寸310,亦即,依照本例中的孔径551设计,光学镜头3的视野不会受到透光孔550的阻碍,由此保持影像撷取装置1原有的影像撷取范围。当然,熟悉本技术领域人士也可以轻易了解,此处的孔径设计并非必要限制,在部分光学设计中,即使刻意采用较小的透光孔孔径,也无碍于本发明的实施。
发光元件53的主要发光角度530中的光束,部分的光子会接触至两侧的遮光匀光元件55的底面552,并藉由形成于底面552上、以光轴30为轴心的同心圆阶梯状的微结构553,改变每一光子行进的光程,使得主要发光角度530的每一道光束,将分别沿着各自的出光角反射扩散成均匀的散射光束照射至待测平面40上的待测样品4,即使待测平面40是高反射系数的玻璃或金属表面,也不易产生过曝亮点和眩光,让鉴识人员能便捷地撷取清晰的光学影像。
另方面,藉由发光元件53是以特定角度设置的技术手段,且全发光角度531中光束的发光强度较主要发光角度530的光强度弱,使得全发光角度531中的光束即使直射待测样品4,也不易有明显的眩光产生,藉此进一步补强待测样品的照度,并且保有本领域常见的暗场光学特性,有效拉升光学影像撷取的讯号杂讯比。
即便本例已设置阻绝发光元件53所发光束直射入光口6的遮光匀光元件55,但仍旧会有些许的光束可以经透光孔550,在经过一次或者多次反射后,照射至入光口6处,为大幅降低杂光侵扰,请检视图4,本例的环绕遮挡壁51在结合缘510与遮光匀光元件55之间的内侧壁上,形成一层吸光率达90%以上的吸光元件层513。在本例中,其表面是由多根奈米碳管组成,将穿过遮光匀光元件55的透光孔550后接触到吸光元件层513的光子加以吸收,确保光学影像撷取的品质。当然,如熟知本技术领域者所能轻易理解,除使用吸光元件层防范前述疑虑外,亦可针对发光元件在特定发光角度处贴附设置遮光挡片来阻绝杂光,此处的简单替换并不影响本例的技术施行。
此外,本例用于致能发光元件的蓄电元件例释为电池,由于本例中发光元件的耗能低,因而可以凭借蓄电元件作为能量来源,同时减少抗眩光匀光光源的整体重量及体积,提升抗眩光匀光光源的携带便利性;再者,鉴识人员在侦检过程通常都需要至少两张同角度拍摄的影像,一张为待测样品受激发光束激发后发出的荧光影像,另一则是以白光直接拍摄取得的影像,由此确保影像作为证据的可信度,本例的发光单元能藉由切换开关的机械式选择致能,贴近鉴识人员拍摄行为,藉此符合鉴识人员的使用习惯。
进一步来说,本例的发光元件也可以全部采用白光二极管,同样藉由遮光
匀光元件提供亮度充足且均匀的光照,并抑制过曝亮点形成妨碍影像的撷取,有效应对涵括半导体元件的细微瑕疵以及金属表面的缺陷等品质检测,熟悉本技术者可自由转用,不会阻碍本技术特征的运用。
另一方面,本发明亦可应用于荧光细胞检测,本发明第二较佳实施例如图5所示,本例的影像撷取装置例释为显微镜,并外接一摄影单元而将所获得的影像呈现在另一外接显示屏幕(图未示)上。待测样品则可视为带有转殖荧光细胞的斑马鱼,为让操作实验方便,即使在环绕遮挡壁51’的作用缘和待测平面之间留有双手进入的间隙,仍无碍于本发明的实施。且为确保在显微镜的观测范围内确实存在有待测样品4’,本例中的发光元件包括一组例释为红外光发光二极管的发光元件53’先行照射待测样品4’,检测人员即可从影像撷取装置1’的显示屏幕中进行确认。接着切换发光元件,停止红外光照射,改由采光通道512’另一侧发散蓝光的发光元件53’发出激发光束,光束则如前一实施例经本例中例释为平坦毛玻璃的遮光匀光元件55’均匀反射后照明待测样品4’,即使待测样品4’上残留少许体液仍能有效回避过曝的眩光情形,使得受激发后而产生的荧光将由采光通道512’进入影像撷取装置1’的入光口6’,通过其目镜呈现欲观测且清晰的荧光影像。
综上所述,本发明所揭示的一种抗眩光匀光光源,通过遮光匀光元件调整发光元件的主要发光角度中光束的光照角度,使得照射至待观测物的光束不会集中而过度曝光形成过曝亮点,局限光学影像撷取的便利性,同时将主要发光角度中的光束加以阻挡,防范光束直接射入影像撷取装置,并抑制激发光束在遮罩内部经反射而进入影像撷取装置,拉升讯号杂讯(S/N)比,使获取的光学影像有较高的可靠性,此外,主要发光角度外的光束能由趋近平行的角度直
接照射至待观测物,确保光学影像的清晰度,提升侦检过程中的便利性。
惟以上所述者,仅为本发明的较佳实施例而已,不能以此限定本发明实施的范围,凡是依本发明申请权利要求书及发明说明书内容所作的简单的等效变化与修饰,皆应仍属本发明专利涵盖的范围内。
Claims (10)
- 一种抗眩光匀光光源,装设于一个具有入光口的影像撷取装置上,其中该影像撷取装置还包括一个本体及一个沿一光轴设置于该本体的光学镜头,以便前述影像撷取装置撷取待测样品的影像,该抗眩光匀光光源包括:一个可拆卸地组设至上述影像撷取装置的环绕遮挡壁,该环绕遮挡壁具有一个对应上述入光口的结合缘、一个相反于该结合缘的作用缘、及贯穿上述结合缘和上述作用缘间的采光通道;一个设置于该采光通道中、并介于上述结合缘和上述作用缘之间的遮光匀光元件,该遮光匀光元件形成有一个对应上述光轴的透光孔;及复数个发光元件,每一前述发光元件均具有一个主要发光角度及角度大于该主要发光角度的全发光角度,前述发光元件系分别以一特定角度设置于该采光通道中,该特定角度使每一前述发光元件的主要发光角度至少部分照射于该遮光匀光元件,并供均匀反射而非直接照射至上述待测样品所处之一待测平面,且上述主要发光角度是被上述遮光匀光元件所阻挡而无法直射进入该入光口;以及前述发光元件中至少部分的上述全发光角度是直接照射至上述待测平面。
- 如权利要求1所述的抗眩光匀光光源,其中上述特定角度是指上述发光元件朝向该入光口的方向、且与该光轴的垂直面夹角为3~15度。
- 如权利要求1或2所述的抗眩光匀光光源,其中该透光孔具有一个孔径以及该光学镜头具有一个可视角度、且该可视角度在上述遮光匀光元件处的投影尺寸系小于该孔径。
- 如权利要求1或2所述的抗眩光匀光光源,其中该遮光匀光元件在面向上述发光元件的一底面,更形成有一组微结构。
- 如权利要求1或2所述的抗眩光匀光光源,其中上述发光元件为广角发光二极管,且当上述影像撷取装置撷取上述待测样品的影像时,上述所有发光元件的主发光角度中,均无发光直射上述待测样品。
- 如权利要求1或2所述的抗眩光匀光光源,其中该环绕遮挡壁在上述结合缘和上述遮光匀光元件之间的内侧壁上,设置有一吸光元件层、且该吸光元件层对上述发光元件所发光束的吸光率达到90%以上。
- 一种具有抗眩光匀光光源的影像系统,包括:一个影像撷取装置,包括一个形成有一入光口的本体;及一个沿一光轴设置于该本体的光学镜头;及一抗眩光匀光光源,包括一个可拆卸地组设至上述影像撷取装置的环绕遮挡壁,该环绕遮挡壁具有一个对应上述入光口的结合缘、一个相反于该结合缘的作用缘、及贯穿上述结合缘和上述作用缘间的采光通道;一个设置于该采光通道中、并介于上述结合缘和上述作用缘之间的遮光匀光元件,该遮光匀光元件形成有一个对应上述光轴的透光孔;及复数个发光元件,每一前述发光元件均具有一个主要发光角度及角度大于该主要发光角度的全发光角度,前述发光元件是分别以一特定角度设置于该采光通道中,该特定角度是使每一前述发光元件的主要发光角度至少部分照射于该遮光匀光元件,并供均匀反射而非直接照射至上述待测样品所处之一待测平面,且上述主要发光角度是被上述遮光匀光元件所阻挡而无法直射进入该入光口;以及前述发光元件中至少部分的上述全发光角度是直接照射至上述待测平面。
- 如权利要求7所述具有抗眩光匀光光源的影像系统,其中上述本体是一照相机本体,且上述光学镜头是安装于上述照相机本体。
- 如权利要求7所述具有抗眩光匀光光源的影像系统,其中上述本体是一包括一目镜的显微镜架,且上述光学镜头是安装于上述显微镜架的物镜。
- 如权利要求7、8或9所述具有抗眩光匀光光源的影像系统,其中该特定角度是指上述发光元件朝向该入光口的方向、且与该光轴的垂直面夹角为3~15度;上述透光孔具有一个孔径以及该光学镜头具有一个可视角度、且该可视角度在上述遮光匀光元件处的投影尺寸小于该孔径;以及该环绕遮挡壁在上述结合缘和上述遮光匀光元件之间的内侧壁上,设置有一吸光元件层、且该吸光元件层对上述发光元件所发光束的吸光率达到90%以上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510399121.2A CN106324819B (zh) | 2015-07-09 | 2015-07-09 | 抗眩光匀光光源及具该光源的影像撷取装置 |
CN201510399121.2 | 2015-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017005153A1 true WO2017005153A1 (zh) | 2017-01-12 |
Family
ID=57684882
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/088319 WO2017005153A1 (zh) | 2015-07-09 | 2016-07-04 | 抗眩光匀光光源及具该光源的影像撷取装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106324819B (zh) |
WO (1) | WO2017005153A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107392181A (zh) * | 2017-08-16 | 2017-11-24 | 杭州指安科技股份有限公司 | 一种适配多种外壳结构的半导体指纹模块指示装置 |
CN108152301A (zh) * | 2017-12-26 | 2018-06-12 | 东莞市科佳电路有限公司 | 一种线路板的检测打标设备及其检测打标方法 |
CN114264662A (zh) * | 2021-12-10 | 2022-04-01 | 上海市东方海事工程技术有限公司 | 一种钢轨表面视觉检测方法和装置 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108363260B (zh) * | 2017-01-26 | 2020-10-13 | 捷微科技股份有限公司 | 低对照眩光的荧光粉led光源及具该光源的摄像装置 |
CN109781743A (zh) * | 2017-11-14 | 2019-05-21 | 鹤立精工股份有限公司 | 光学检测方法 |
DE102018114162B4 (de) * | 2018-06-13 | 2023-01-19 | Solarius Asia Ltd. | Lochscheibe zum Selektieren von Licht für eine optische Abbildung, optisches Abbildungssystem |
TWI702384B (zh) * | 2019-07-04 | 2020-08-21 | 和碩聯合科技股份有限公司 | 光學檢測裝置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10221271A (ja) * | 1997-02-07 | 1998-08-21 | Nippon Avionics Co Ltd | 鏡面対象物の撮像方式 |
CN101000400A (zh) * | 2006-01-11 | 2007-07-18 | 承奕科技股份有限公司 | 数码相机的微距显微摄影转接装置 |
CN101320421A (zh) * | 2008-07-23 | 2008-12-10 | 凌阳多媒体股份有限公司 | 一种光学读取头 |
CN202631917U (zh) * | 2012-03-29 | 2012-12-26 | 李卫伟 | 成像照明装置及光学辨识设备 |
CN102981348A (zh) * | 2011-09-07 | 2013-03-20 | 承奕科技股份有限公司 | 光学影像撷取装置用滤镜光源模组及该影像撷取装置 |
WO2015066126A1 (en) * | 2013-10-29 | 2015-05-07 | Microscan Systems, Inc. | Illumination system |
-
2015
- 2015-07-09 CN CN201510399121.2A patent/CN106324819B/zh not_active Expired - Fee Related
-
2016
- 2016-07-04 WO PCT/CN2016/088319 patent/WO2017005153A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10221271A (ja) * | 1997-02-07 | 1998-08-21 | Nippon Avionics Co Ltd | 鏡面対象物の撮像方式 |
CN101000400A (zh) * | 2006-01-11 | 2007-07-18 | 承奕科技股份有限公司 | 数码相机的微距显微摄影转接装置 |
CN101320421A (zh) * | 2008-07-23 | 2008-12-10 | 凌阳多媒体股份有限公司 | 一种光学读取头 |
CN102981348A (zh) * | 2011-09-07 | 2013-03-20 | 承奕科技股份有限公司 | 光学影像撷取装置用滤镜光源模组及该影像撷取装置 |
CN202631917U (zh) * | 2012-03-29 | 2012-12-26 | 李卫伟 | 成像照明装置及光学辨识设备 |
WO2015066126A1 (en) * | 2013-10-29 | 2015-05-07 | Microscan Systems, Inc. | Illumination system |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107392181A (zh) * | 2017-08-16 | 2017-11-24 | 杭州指安科技股份有限公司 | 一种适配多种外壳结构的半导体指纹模块指示装置 |
CN107392181B (zh) * | 2017-08-16 | 2023-06-23 | 杭州指安科技股份有限公司 | 一种适配多种外壳结构的半导体指纹模块指示装置 |
CN108152301A (zh) * | 2017-12-26 | 2018-06-12 | 东莞市科佳电路有限公司 | 一种线路板的检测打标设备及其检测打标方法 |
CN114264662A (zh) * | 2021-12-10 | 2022-04-01 | 上海市东方海事工程技术有限公司 | 一种钢轨表面视觉检测方法和装置 |
CN114264662B (zh) * | 2021-12-10 | 2024-03-08 | 上海市东方海事工程技术有限公司 | 一种钢轨表面视觉检测方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN106324819A (zh) | 2017-01-11 |
CN106324819B (zh) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017005153A1 (zh) | 抗眩光匀光光源及具该光源的影像撷取装置 | |
US10983305B2 (en) | Methods for correctly orienting a substrate in a microscope | |
US10649186B2 (en) | Mobile microscope | |
KR101857539B1 (ko) | 검사용 조명 장치 및 검사 시스템 | |
JP2006201465A5 (zh) | ||
JP2008502929A (ja) | 反射または透過赤外光による微細構造の検査装置または検査方法 | |
CN109073875B (zh) | 用于可选择角度地照明的照明模块 | |
CN103959046B (zh) | 检查用照明装置 | |
TW201312192A (zh) | 光學影像擷取裝置用濾鏡光源模組及該影像擷取裝置 | |
EP3423881B1 (en) | Imaging system and method with scattering to reduce source auto-fluorescence and improve uniformity | |
CN102981348B (zh) | 光学影像撷取装置用滤镜光源模组及该影像撷取装置 | |
JP6688190B2 (ja) | 顕微鏡 | |
JP2009109788A (ja) | レーザー走査型顕微鏡 | |
US20200191706A1 (en) | Multimodal Imaging System | |
CN105849615B (zh) | 用于渐逝照明和点状扫描照明的显微镜 | |
JP2007333563A (ja) | 光透過性シートの検査装置および検査方法 | |
CN104204771A (zh) | 用于活检检查的数字成像系统 | |
JP2009009139A (ja) | 波長特異的位相顕微鏡検査法 | |
US6940641B2 (en) | Fluorescence observation apparatus | |
JP2007298310A (ja) | 光学装置 | |
US20160018631A1 (en) | High versatile combinable microscope base and microscope having the same | |
US20200201014A1 (en) | Microscope and microscope illumination method | |
EP1486812A2 (en) | Dark field illumination device | |
US11533392B1 (en) | Solid-state illumination system for compact microscopy | |
TWI569037B (zh) | A fluorescent vehicle for fluorescent microscopes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16820804 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16820804 Country of ref document: EP Kind code of ref document: A1 |