WO2017004781A1 - 一种无级变速器 - Google Patents

一种无级变速器 Download PDF

Info

Publication number
WO2017004781A1
WO2017004781A1 PCT/CN2015/083417 CN2015083417W WO2017004781A1 WO 2017004781 A1 WO2017004781 A1 WO 2017004781A1 CN 2015083417 W CN2015083417 W CN 2015083417W WO 2017004781 A1 WO2017004781 A1 WO 2017004781A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
output
speed
shaft
coupled
Prior art date
Application number
PCT/CN2015/083417
Other languages
English (en)
French (fr)
Inventor
吴志强
Original Assignee
吴志强
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴志强 filed Critical 吴志强
Priority to CN201580081411.0A priority Critical patent/CN107850199B/zh
Priority to PCT/CN2015/083417 priority patent/WO2017004781A1/zh
Publication of WO2017004781A1 publication Critical patent/WO2017004781A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H47/00Combinations of mechanical gearing with fluid clutches or fluid gearing
    • F16H47/06Combinations of mechanical gearing with fluid clutches or fluid gearing the fluid gearing being of the hydrokinetic type

Definitions

  • the invention belongs to the field of hydraulic transmission, and more specifically, it is a stepless classification for various ground vehicles, ships, railway locomotives, engineering machinery, various aerospace, lifting and transporting machinery, machine tools, robots and military workers. transmission.
  • the commonly used hydraulic transmission can transmit little power and is not efficient; in addition, these torque converters have a small shift range.
  • the invention overcomes the deficiencies of the prior art, and provides a continuously variable transmission which prolongs the service life of the engine and the transmission system, has a simple structure, is convenient to operate, has low cost, and is energy-saving and high-efficiency.
  • a continuously variable transmission including an input shaft (1), a speed unit (2), a hydraulic transmission (3), an output shaft (6), a shifting shaft (7), and a shifting unit (9) a transfer speed unit (2), a hydraulic transmission (3), a shifting shaft (7) and a shifting unit (9) are provided between the input shaft (1) and the output shaft (6).
  • the speed unit (2) comprises an input element (21), an output element (22) and a speed increasing element (23), the speed unit (2) working in cooperation with the respective required elements, the shifting unit (9) comprising the first An input member (91), a second input member (92), and a speed-up member (93).
  • the shifting unit (9) cooperates with the respective required components, the input shaft (1) and the input member (21) and the first The input member (91) is coupled, the output member (22) is coupled to the shifting shaft (7), and the shifting shaft (7) is coupled to the input end (31) of the hydraulic actuator (3) and the second input member (92), respectively.
  • the output end (32) of the hydraulic actuator (3) is coupled to the speed increasing element (23), and the speed adjusting element (93) is coupled to the output shaft (6).
  • a continuously variable transmission including an input shaft (1), a speed unit (2), a hydraulic transmission (3), an output shaft (6), a shifting shaft (7), and a shifting unit (9) a transfer speed unit (2), a hydraulic transmission (3), a shifting shaft (7) and a shifting unit (9) are provided between the input shaft (1) and the output shaft (6).
  • the speed unit (2) comprises an input element (21), an output element (22) and a speed increasing element (23), the speed unit (2) working in cooperation with the respective required elements, the shifting unit (9) comprising the first An input member (91), a second input member (92), and a speed-up member (93).
  • the shifting unit (9) cooperates with the respective required components, the input shaft (1) and the input member (21) and the first The input member (91) is coupled, and the output member (22) is coupled to the shifting shaft (7) and the input end (31) of the hydraulic actuator (3), respectively, and the output end (32) and the lift of the hydraulic actuator (3)
  • the speed element (23) is coupled, the shift shaft (7) is coupled to the second input member (92), and the speed member (93) is coupled to the output shaft (6).
  • a continuously variable transmission including an input shaft (1), a speeding unit (2), a hydraulic transmission (3), an output shaft (6), a shifting shaft (7), and a shifting unit (9) ), a first unidirectional element (13) and a second unidirectional element (14), wherein the input shaft (1) and the output shaft (6) are provided with a speed unit (2) and a hydraulic actuator ( 3) a shifting shaft (7), a shifting unit (9), a first unidirectional element (13) and a second unidirectional element (14), the speed unit (2) comprising an input element (21), an output element (22) and the speed increasing element (23), the speed unit (2) works by a respective required component, the shifting unit (9) comprising a first input element (91), a second input element (92) and The speed-up element (93), the shifting unit (9) works by the respective required components, the input shaft (1) and the input element (21), the first input element (91) and the first unidirectional element (13), respectively The input end (131) is coupled, the output member (22) is
  • a continuously variable transmission including an input shaft (1), a speed-changing unit (2), a hydraulic transmission (3), an output shaft (6), a shifting shaft (7), and a shifting unit (9) ), a first unidirectional element (13) and a second unidirectional element (14), wherein the input shaft (1) and the output shaft (6) are provided with a speed unit (2) and a hydraulic actuator ( 3) a shifting shaft (7) shifting unit (9), a first unidirectional element (13) and a second unidirectional element (14), the speed unit (2) comprising an input element (21) and an output element ( 22) and the speed increasing element (23), the speed unit (2) works by the respective required components, the shifting unit (9) comprising a first input element (91), a second input element (92) and sink The speed element (93), the shifting unit (9) works by the respective required components, and the input shaft (1) is respectively associated with the input element (21), the first input element (91) and the first unidirectional element (13) The input end (131) is coupled, the output member (22) is coupled
  • the input path of the present invention means that the input shaft (1) only transmits input power to the input element (21) and the first input element (91) when the engine is started.
  • the output path of the present invention refers to a path through which the power output from the input/output element (22) passes through several elements and finally is outputted through the shifting shaft (7).
  • the reflux accelerating path of the present invention refers to the path through which the power output by the output element (22) passes through several components and finally to the speed increasing element (23).
  • the function of the return accelerating path is to increase the output speed of the output element (22) to the speed increasing element (23), and to increase the speed to a set value, thereby causing the speed increasing element (23) and the input element (21)
  • the rotational speed of the output element (22) can be continuously increased, and the repeated cycles of the shifting are continuously performed between the respective components, thereby causing each of the output path and the return accelerating path.
  • the speed of the component is continuously increased, and finally the stepless and infinitely variable speed is realized externally through the shifting shaft (7) and the output shaft (6).
  • the first input path of the present invention and the second input path of the present invention mean that when the engine is started, the input shaft (1) diverts the power transmitted thereto into two paths, one way to the input element (21). The other way is transmitted to the speed increasing element (23) through the first unidirectional element (13) or several elements.
  • the input path, the output path and the return accelerating path of the present invention should include each component to be coupled, a method of their selective coupling, and thus all components selected; including but not limited to various types of transmission mechanisms , a unidirectional element, a coupling or a coupling element.
  • the shifting shaft (7) and the input shaft (1) of the present invention Due to the speed ratio between the speed increasing element (23) and the output element (22) in the return speed path of the present invention, it will determine the final ratio between the shifting shaft (7) and the input shaft (1) of the present invention.
  • the ratio of the speed ratio when the speed ratio between the speed increasing element (23) and the output element (22) and the power input by the engine are sufficiently large, the shifting shaft (7) and the input shaft (1) of the present invention can be realized.
  • the speed ratio is infinite, that is, the output speed is stepless and infinitely high. Therefore, the ratio of the speed between the output shaft 6 and the drive train to the drive wheel should be set to be large enough to be set to an ultra-low speed. That is to say, the present invention can achieve stepless and infinite shifting.
  • the ratio of the rotational speed between the output element (22) and the input element (21) can be calculated from the above equation according to the actual situation, or can be obtained from practice.
  • the above formula can obtain a certain value; when Z is greater than or equal to 2, the above formula is a negative value or an inequality; Said that when the Z selection is greater than or equal to 2, the ratio of the speed between the output member (22) and the input member (21), that is, the ratio of the speed between the shifting shaft (7) and the input shaft (1), can be continuously infinite Increase to achieve infinite and stepless shifting.
  • the speeding unit (2) and the shifting unit (9) may select a planetary gear transmission mechanism, a small tooth difference transmission mechanism, a cycloidal pinion planetary transmission mechanism or a harmonic gear transmission mechanism, and an input component of the speed-up unit (2) (21), output element
  • the member (22) and the speed increasing member (23) and the first input member (91), the second input member (92) and the speed adjusting member (93) of the shifting unit (9) may constitute the planetary gear transmission mechanism,
  • the basic components of the small tooth difference transmission mechanism, the cycloidal pinion planetary transmission mechanism or the harmonic gear transmission mechanism are selected, and they function as a speed.
  • Each of the components that need to be connected may select a direct connection method, or a method of selecting an indirect connection, or a method of adding a connection
  • the direct connection method refers to: two components that need to be connected, and may be directly selected Connected to connect them together; when they are separated by several other elements, they can be connected together by several other elements in a hollow manner
  • the method of indirect connection means two that need to be joined Components, optionally adding a number of components of the appropriate transmission mechanism, the coupling shaft and the coupling frame to connect them together
  • the method of increasing the connection means two components to be coupled, connected together Thereafter, it is optional to add unidirectional elements that are connected together, the outputs of the unidirectional elements are connected to them, and the input of the unidirectional elements is coupled to the fixed elements.
  • the input shaft (1), the speed unit (2), the hydraulic actuator (3), the output shaft (6), the shifting shaft (7), the shifting unit (9), the first unidirectional element (13), and The second unidirectional elements (14) and the remaining individual elements for connecting them together may be arranged in different spaces, ie they may be on the same central axis or on different central axes, in which case Their location, choose the appropriate connection method.
  • the hydraulic actuator (3) can be selected from a hydraulic torque converter, a fluid coupling, a pressure motor and a hydraulic pump, and various types of electronically controlled or hydraulically controlled clutches.
  • the unidirectional elements ie the unidirectional element (11), the first unidirectional element (13), and the second unidirectional element (14), may select a variety of different types of clutches including, but not limited to, overrunning clutches, one-way Clutch;
  • the function of the unidirectional element (11) is that since the input end (111) of the unidirectional element (11) is coupled to the fixed element, the steering is restricted, so that the steering of the speed increasing element (23) cannot be combined with the input element ( The steering of 21) is reversed;
  • the first unidirectional element (13) and the second unidirectional element (14) function to: when the second unidirectional element transmits (10) the rotational speed is higher than that of the first unidirectional element (13) At the speed, no power is transferred to the hydraulic actuator (3).
  • the present invention When the present invention is applied to a vehicle, the present invention can automatically and steplessly change the gear ratio in accordance with the change in the input power when the vehicle is running and the magnitude of the resistance.
  • the present invention has no other shifting and operating mechanism, and therefore has a simple structure, is advantageous for reducing the manufacturing cost, is easier to maintain, and is easy to handle;
  • the power of the engine of the present invention is mostly transmitted by the high-efficiency and high-speed transmission speed unit (2), the variable pitch and the shifting are automatically completed, and the high-efficiency, high-power continuously variable transmission can be realized, and the like. Compared with the continuously variable transmission, it reduces the manufacturing cost of the engine under the premise of the engine equivalent;
  • the invention realizes the operation of the engine in the economical speed range by the stepless speed change, that is, works in the speed range of very small pollution discharge, and avoids the exhaust of a large amount of exhaust gas when the engine is idle and high speed operation, thereby reducing the exhaust gas. Emissions are conducive to protecting the environment;
  • the invention can utilize the effect of internal speed difference to buffer and overload protection, which is beneficial to prolonging the service life of the engine and the transmission system.
  • the vehicle when the driving resistance is increased, the vehicle can be automatically decelerated, and vice versa. Conducive to improving the driving performance of the vehicle;
  • the invention realizes uninterrupted input power through stepless speed change, can ensure good acceleration of the vehicle and high average speed, reduce wear of the engine, prolong the interval of overhaul interval, and improve the exit rate. Conducive to improving productivity.
  • the present invention is a continuously variable transmission that can also be used in various ground vehicles, ships, railway locomotives, construction machinery, various aerospace, hoisting and transporting machinery, machine tools, robots, and military workers.
  • FIG. 1 is a schematic structural view of Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of Embodiment 2 of the present invention
  • FIG. 3 is a schematic structural view of Embodiment 3 of the present invention
  • FIG. 5 is a schematic structural view of Embodiment 6 of the present invention
  • FIG. 7 is a schematic structural view of Embodiment 7 of the present invention
  • FIG. 8 is a schematic structural view of Embodiment 8 of the present invention
  • FIG. 9 is a schematic structural view of Embodiment 9 of the present invention
  • FIG. 10 is a schematic structural view of Embodiment 10 of the present invention.
  • both the speed-changing unit 2 and the shifting unit 9 are selected from planetary gears; the hydraulic actuators 3 all use a torque converter; the input shaft 1 is coupled to the input member 21.
  • the direct connection method is selected to connect them together to form an input path or a first input path of each embodiment; the input shaft 1 is coupled with the input end 131 of the first unidirectional element 13, and a direct connection method is selected. That is, the input shaft 1 is selected to pass through other components directly or in a hollow manner, so that they are connected together; the output end 142 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3, and is directly used. Connection methods to connect them together; the speed element 93 and the input The shafts 6 are connected and the direct connection method is used to connect them together.
  • Embodiment 1, Embodiment 2, Embodiment 3 As shown in FIG. 1 to FIG. 3, the first technical solution is selected: a continuously variable transmission, which includes an input shaft 1, a speed unit 2, and a hydraulic actuator 3. An output shaft 6, a shifting shaft 7 and a shifting unit 9, between the input shaft 1 and the output shaft 6, a speed-increasing unit 2, a hydraulic actuator 3, a shifting shaft 7 and a shifting unit 9 are provided. 2 includes an input member 21, an output member 22, and a speed-up member 23, which are operated by respective required components, the shifting unit 9 including a first input member 91, a second input member 92, and a speed-up member 93.
  • a continuously variable transmission which includes an input shaft 1, a speed unit 2, and a hydraulic actuator 3.
  • An output shaft 6, a shifting shaft 7 and a shifting unit 9, between the input shaft 1 and the output shaft 6, a speed-increasing unit 2, a hydraulic actuator 3, a shifting shaft 7 and a shifting unit 9 are provided. 2 includes an input member 21,
  • the shifting unit 9 is operated by the respective required components, the input shaft 1 is coupled to the input member 21 and the first input member 91, respectively, the output member 22 is coupled to the shifting shaft 7, and the shifting shaft 7 is respectively coupled to the input of the hydraulic actuator 3.
  • the end 31 and the second input member 92 are coupled, the output 32 of the hydrodynamic actuator 3 is coupled to the speed increasing member 23, and the speed member 93 is coupled to the output shaft 6.
  • Embodiment 1 As shown in FIG. 1 , according to the first technical solution, the input shaft 1 is coupled with the first input element 91, and the direct connection method is selected, that is, the input shaft 1 is selected to pass through other components through a hollow manner. Connect them together.
  • the output member 22 is coupled to the shifting shaft 7, and the indirect connection method is selected, that is, the input gear transmission mechanism 4 and the coupling frame 8 are selected to be connected together to constitute an output path of the embodiment; and the input gear transmission mechanism is included. 4 and a coupling frame 8; wherein the output member 22 is connected to the coupling frame 8, the coupling frame 8 is connected to the input end 41 of the input gear transmission mechanism 4, and the output end 42 of the input gear transmission mechanism 4 is coupled to the shifting shaft 7.
  • the shifting shaft 7 is coupled to the second input member 92, and the indirect connection method is selected, that is, the output gear 10 is selected to be connected thereto; wherein the output gear 10 is coupled to the shifting shaft 7, and the output gear 10 and the second input member are connected. 92 meshing.
  • the shifting shaft 7 is coupled to the input end 31 of the hydraulic actuator 3, and the indirect connection method is selected, that is, the output gear transmission mechanism 5 is selected to connect them together; wherein the input of the shifting shaft 7 and the output gear transmission mechanism 5
  • the end 51 is connected and the output 52 of the output gearing 5 is connected to the input 31 of the hydrodynamic actuator 3.
  • the output end 32 of the hydraulic actuator 3 is coupled to the speed increasing element 23, and the method of increasing the connection is selected, that is, the unidirectional element 11 is selected to be connected together; wherein the output end 32 of the hydraulic actuator 3 is liter
  • the speed element 23 and the output end 112 of the unidirectional element 11 are coupled, and the input end 111 of the unidirectional element 11 is coupled to the fixed element.
  • the output member 22 is coupled to the shifting shaft 7, the shifting shaft 7 is coupled to the input end 31 of the hydrodynamic actuator 3, and the output end 32 of the hydrodynamic actuator 3 is coupled to the speed increasing member 23 to constitute the return rise of the present embodiment.
  • Speed path includes an input gear transmission 4, an output gear transmission 5, a coupling 8 and a unidirectional element 11.
  • the input power of the engine is input to the input shaft 1, and the power transmitted thereto is divided into two paths, one way to the first input.
  • Element 91 the other pass is passed to input element 21, i.e., to the input path of the present embodiment; power is then transmitted to the output element 22 via the planet gears on the speed unit 2, and the output element 22 shunts the power delivered thereto
  • Two paths one way is transmitted to the shifting shaft 7 through the coupling frame 8 and the input gear transmission mechanism 4, that is, to the output path of the embodiment; the shifting shaft 7 is transmitted to the output gear 10 and transmitted to the second input member 92; All the way is transmitted to the shifting shaft 7 through the coupling frame 8 and the input gear transmission mechanism 4.
  • the shifting shaft 7 is transmitted to the hydraulic transmission 3 through the output gear transmission mechanism 5, and the hydraulic transmission 3 is transmitted to the speed increasing element 23, that is, The return to the ascending speed path to the present embodiment; the power transmitted to the return accelerating path and the power transmitted to the input path are transmitted to the output element 22 through the planetary gears on the speed unit 2, and the output element 22 repeats the above process.
  • the rotation speeds transmitted to the speed increasing element 23 and the output element 22 are continuously steplessly changed with changes in input power and running resistance, and are transmitted to the shifting shaft 7, thereby transmitting
  • the rotational speed of the second input member 92 changes accordingly; at this time, the power transmitted to the first input member 91 and the power transmitted to the second input member 92 are transmitted to the speed-increasing member 93 through the planetary gears on the shifting unit 9, And transmitted to the output shaft 6 of the present embodiment, thereby realizing the external output of the engine power through the output shaft 6.
  • Embodiment 2 As shown in FIG. 2, the first embodiment is selected, and the working principle of the first embodiment is the same as the input path of the first embodiment and the output path constituting the embodiment. In the return accelerating path, there is no option to increase the use of the unidirectional element 11, i.e., the output 32 of the hydrodynamic actuator 3 is coupled to the speed increasing element 23, and a direct connection is used to connect them together.
  • the unidirectional element 11 i.e., the output 32 of the hydrodynamic actuator 3 is coupled to the speed increasing element 23, and a direct connection is used to connect them together.
  • the output member 22 is coupled to the shifting shaft 7, the shifting shaft 7 is coupled to the input end 31 of the hydrodynamic actuator 3, and the output end 32 of the hydrodynamic actuator 3 is coupled to the speed increasing member 23 to constitute the return rise of the present embodiment.
  • the speed path includes an input gear transmission mechanism 4, an output gear transmission mechanism 5, and a coupling frame 8.
  • Embodiment 3 As shown in FIG. 3, according to the first technical solution, the input shaft 1 is coupled with the first input element 91, and the indirect connection method is selected, that is, the output gear transmission mechanism 5 and the output gear 10 are selected to connect them. Together, the input shaft 1 is coupled to the input 51 of the output gearing mechanism 5, the output 52 of the output gearing mechanism 5 is coupled to the output gear 10, and the output gear 10 is meshed with the first input member 91.
  • the output member 22 is coupled to the shifting shaft 7, and a direct connection method is employed to connect them together to constitute the output path of the present embodiment.
  • the shifting shaft 7 is coupled to the second input member 92, and a direct connection is used to connect them together.
  • the shifting shaft 7 is coupled to the input end 31 of the hydrodynamic actuator 3, and the indirect connection method is selected, that is, the input planetary gear transmission mechanism 12 is used to connect them together; wherein the shifting shaft 7 and the input planetary gear transmission mechanism 12 are The input end 121 is connected, and the output end 122 of the input planetary gear mechanism 12 is connected to the input end 31 of the hydrodynamic actuator 3.
  • the output end 32 of the hydraulic actuator 3 is coupled to the speed increasing element 23, and the method of increasing the connection is selected, that is, the unidirectional element 11 is selected to be connected together; wherein the output end 32 of the hydraulic actuator 3 is liter
  • the speed element 23 and the output end 112 of the unidirectional element 11 are coupled, and the input end 111 of the unidirectional element 11 is coupled to the fixed element.
  • the output member 22 is coupled to the shifting shaft 7, the shifting shaft 7 is coupled to the input end 31 of the hydrodynamic actuator 3, and the output end 32 of the hydrodynamic actuator 3 is coupled to the speed increasing member 23 to constitute the return rise of the present embodiment.
  • the input power of the engine passes through the input shaft 1, and the power transmitted thereto is divided into two paths, one through the output gear transmission mechanism 5 and the transmission to the output gear 10, and then to the first input member 91; the other is transmitted to the input member 21 That is, to the input path of the embodiment; the power is transmitted to the output element 22 through the planetary gears on the speed-up unit 2, and the output element 22 shunts the power transmitted thereto into two paths, one way to the shifting shaft 7, That is, it is transmitted to the output path of the embodiment; the shifting shaft 7 is transmitted to the second input member 92; the other is transmitted to the shifting shaft 7, and the shifting shaft 7 is transmitted to the hydraulic actuator 3 through the input planetary gear transmission 12, The hydraulic actuator 3 is again transmitted to the speed increasing element 23, i.e., to the return speed path of the present embodiment; the power transmitted to the return speed path and the power transmitted to the input path are both passed through the planet on the speed unit 2.
  • the gear is transmitted to the output member 22, and the output member 22 repeats the above process so that the rotational speeds transmitted to the speed increasing member 23 and the output member 22 continuously change with the input power and the running resistance.
  • the gear is shifted in stages and transmitted to the shifting shaft 7 such that the rotational speed transmitted to the second input member 92 changes; at this time, the power transmitted to the first input member 91 and the power transmitted to the second input member 92 are both
  • the planetary gears on the shifting unit 9 are transmitted to the speed-increasing element 93 and transmitted to the output shaft 6 of the present embodiment, thereby realizing the external output of the engine power through the output shaft 6.
  • Embodiment 4 As shown in FIG. 4, a second embodiment is selected, which is a continuously variable transmission including an input shaft 1, a speed unit 2, a hydraulic actuator 3, an output shaft 6, a shifting shaft 7, and a shifting unit 9.
  • the input shaft 1 and the output shaft 6 are provided with a speed unit 2, a hydraulic actuator 3, a shifting shaft 7 and a shifting unit 9, and the speed unit 2 includes an input member 21, an output member 22 and a lift unit.
  • the speed element 23, the speed unit 2 cooperates by means of the respective required elements, the speed change unit 9 comprising a first input element 91, a second input element 92 and a speed-up element 93, the shifting unit 9 being matched by the respective required components Working, the input shaft 1 is coupled to the input member 21 and the first input member 91, respectively, and the output member 22 is coupled to the shifting shaft 7 and the input end 31 of the hydrodynamic actuator 3, respectively, and the output end 32 of the hydrodynamic actuator 3 is accelerated.
  • the element 23 is coupled, the shifting shaft 7 is coupled to the second input member 92, and the speed-up member 93 is coupled to the output shaft 6.
  • the input shaft 1 is coupled to the first input member 91, and a direct connection method is selected, that is, the input shaft 1 is selected to pass through the other members in a hollow manner to connect them together.
  • the output member 22 is coupled to the shifting shaft 7 and is connected in a direct connection.
  • the shifting shaft 7 is coupled to the second input member 92, and a direct connection is used to connect them together.
  • the speed-up element 93 is coupled to the output shaft 6 and a direct connection method is selected to connect them together.
  • the output member 22 is coupled to the input end 31 of the hydrodynamic actuator 3, and the indirect connection method is selected, that is, the coupling frame 8 and the input planetary gear transmission mechanism 12 are used to connect them together; wherein the output member 22 and the coupling frame 8 is connected, the coupling 8 is connected to the input 121 of the input planetary gear 12, and the output 122 of the input planetary gear 12 is connected to the input 31 of the hydrodynamic actuator 3.
  • the output end 32 of the hydraulic actuator 3 is coupled to the speed increasing element 23, and the method of increasing the connection is selected, that is, the unidirectional element 11 is selectively added to connect them together; wherein the output end 32 of the hydraulic actuator 3 In connection with the speed increasing element 23 and the output end 112 of the unidirectional element 11, the input end 111 of the unidirectional element 11 is coupled to the fixed element.
  • the output member 22 is coupled to the input end 31 of the hydrodynamic actuator 3, and the output end 32 of the hydrodynamic actuator 3 is coupled to the speed increasing element 23 to form a return accelerating path of the present embodiment;
  • the unidirectional element 11 and the input planetary gear train 12 are also provided.
  • the input power of the engine passes through the input shaft 1, and the power transmitted thereto is shunted into two paths, one way to the first input element 91, and the other way to the input element 21, that is, to the input path of the embodiment;
  • the planetary gears on the speed unit 2 transmit power to the output member 22, and the output member 22 divides the power transmitted thereto into two paths, one way to the shifting shaft 7, that is, to the output path of the embodiment; the shifting shaft 7 Transfer to the second input member 92; the other path is transmitted to the hydraulic actuator 3 through the coupling frame 8 and the input planetary gear transmission 12, and the hydraulic actuator 3 is transferred to the speed increasing member 23, that is, to the embodiment.
  • the rotational speeds of the element 23 and the output member 22 are continuously steplessly changed in accordance with changes in input power and running resistance, and are transmitted to the shifting shaft 7, thereby causing the transfer to the second input member 92.
  • the power transmitted to the first input element 91 and the power transmitted to the second input element 92 are transmitted to the speed-up element 93 through the planetary gears on the shifting unit 9 and transmitted to the present embodiment.
  • the output shaft 6 is output, thereby realizing the external output of the engine power through the output shaft 6.
  • Embodiment 5 Embodiment 6: As shown in FIG. 5 to FIG. 6 , a technical solution 3 is selected, which is a continuously variable transmission, which includes an input shaft 1 , a speed control unit 2 , a hydraulic transmission 3 , an output shaft 6 , a shifting shaft 7, a shifting unit 9, a first unidirectional element 13 and a second unidirectional element 14, between the input shaft 1 and the output shaft 6, a speed sizing unit 2, a hydraulic transmission 3, and a shifting shaft 7 are provided.
  • a technical solution 3 is selected, which is a continuously variable transmission, which includes an input shaft 1 , a speed control unit 2 , a hydraulic transmission 3 , an output shaft 6 , a shifting shaft 7, a shifting unit 9, a first unidirectional element 13 and a second unidirectional element 14, between the input shaft 1 and the output shaft 6, a speed sizing unit 2, a hydraulic transmission 3, and a shifting shaft 7 are provided.
  • the shifting unit 9 includes a first input member 91, a second input member 92, and a speed-up member 93, and the shifting unit 9 passes each desired The components cooperate, the input shaft 1 is coupled to the input member 21, the first input member 91, and the input end 131 of the first unidirectional member 13, respectively.
  • the output member 22 is coupled to the shifting shaft 7, and the shifting shaft 7 and the second input member 92, respectively.
  • the input end 141 of the second unidirectional element 14 is coupled, the output end 132 of the first unidirectional element 13 and the output end 142 of the second unidirectional element 14 are coupled to the input end 31 of the hydrodynamic actuator 3, the hydraulic actuator
  • the output 32 of the 3 is coupled to the speed-up element 23, which is coupled to the output shaft 6.
  • Embodiment 5 As shown in FIG. 5, in the third embodiment, the input shaft 1 is coupled with the first input element 91, and the direct connection method is selected, that is, the input shaft 1 is selected to pass through other components through a hollow manner. Connect them together.
  • the output end 132 of the first unidirectional element 13 is coupled to the input end 31 of the hydrodynamic actuator 3, and a direct connection is used to connect them together.
  • the output 32 of the hydrodynamic actuator 3 is coupled to the speed-up element 23, and a direct connection is used to connect them together.
  • the input shaft 1 is coupled to the input 131 of the first unidirectional element 13, the output 132 of the first unidirectional element 13 is coupled to the input 31 of the hydrodynamic actuator 3, and the output 32 of the hydrodynamic actuator 3 is
  • the speed increasing elements 23 are coupled to form a second input path of the present embodiment.
  • the output member 22 is coupled to the shifting shaft 7, and the indirect connection method is selected, that is, the input gear transmission mechanism 4 and the coupling frame 8 are selected to be connected together to constitute an input path of the embodiment; and the input gear transmission mechanism is included. 4 and a coupling frame 8; wherein the output member 22 is connected to the coupling frame 8, the coupling frame 8 is connected to the input end 41 of the input gear transmission mechanism 4, and the output end 42 of the input gear transmission mechanism 4 is coupled to the shifting shaft 7.
  • the shifting shaft 7 is coupled to the second input member 92, and the indirect connection method is selected, that is, the output gear 10 is selected to be connected thereto; wherein the output gear 10 is coupled to the shifting shaft 7, and the output gear 10 and the second input member are connected. 92 meshing.
  • the shifting shaft 7 is coupled to the input end 141 of the second unidirectional element 14, and the indirect connection method is selected, that is, the output gear transmission mechanism 5 is selected to connect them together; wherein the shifting shaft 7 and the output gear transmission mechanism 5 are The input 51 is connected and the output 52 of the output gearing 5 is connected to the output 142 of the second unidirectional element 14.
  • the output end 142 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3, and a direct connection is used to connect them together.
  • the output member 22 is coupled to the shifting shaft 7, the shifting shaft 7 is coupled to the input end 141 of the second unidirectional element 14, and the output end 142 of the second unidirectional member 14 is coupled to the input end 31 of the hydrodynamic actuator 3,
  • the output end 32 of the force transmission 3 is coupled to the speed increasing element 23 to constitute the return speed increasing path of the present embodiment; it includes an input gear transmission mechanism 4.
  • the input power of the engine is input to the input shaft 1, and the power transmitted thereto is divided into three paths, the first path is transmitted to the first input element 91; the second path is transmitted to the input element 21, that is, to the first input of the embodiment.
  • the third path is transmitted to the hydraulic actuator 3 through the first unidirectional element 13, and the hydraulic actuator 3 is transferred to the speed increasing element 23, that is, to the second input path of the embodiment, the first input path.
  • the power and the power of the second input path then pass power through the planet gears on the speed squaring unit 2 to the output element 22, which splits the power delivered thereto into two paths, one through the coupling 8 and the input gearing mechanism 4 is transmitted to the shifting shaft 7, that is, to the output path of the embodiment; the shifting shaft 7 is transmitted to the output gear 10 and transmitted to the second input member 92; the other is transmitted to the second gear member through the coupling frame 8 and the input gear transmission mechanism 4.
  • the shifting shaft 7 is again transmitted to the hydraulic actuator 3 through the output gear transmission mechanism 5 and the second unidirectional element transmission 14, and the hydraulic transmission 3 is transmitted to the speed increasing element 23, that is, to the return speed of the embodiment. path
  • the power transmitted to the return speed path and the power transmitted to the input path are transmitted to the output element 22 through the planetary gears on the speed unit 2, and the output element 22 repeats the above process to be transmitted to the speed increasing element 23 and the output.
  • the rotational speed of the element 22 is continuously steplessly changed with the change of the input power and the running resistance, and is transmitted to the shifting shaft 7; thereby changing the rotational speed transmitted to the second input member 92; at this time, transmitting to the first input member
  • the power of 91 and the power transmitted to the second input member 92 are transmitted to the speed-increasing element 93 through the planetary gears on the shifting unit 9 and transmitted to the output shaft 6 of the present embodiment, thereby realizing the output of the engine power.
  • the shaft 6 is output to the outside.
  • Embodiment 6 As shown in FIG. 6, the third embodiment is selected, and the working principle of the sixth embodiment and the fifth embodiment are the same as the first input path, the output path and the return speed increasing path, except for their second input.
  • the connection scheme of the path As shown in FIG. 6, the third embodiment is selected, and the working principle of the sixth embodiment and the fifth embodiment are the same as the first input path, the output path and the return speed increasing path, except for their second input.
  • the connection scheme of the path As shown in FIG. 6, the third embodiment is selected, and the working principle of the sixth embodiment and the fifth embodiment are the same as the first input path, the output path and the return speed increasing path, except for their second input.
  • the connection scheme of the path As shown in FIG. 6, the third embodiment is selected, and the working principle of the sixth embodiment and the fifth embodiment are the same as the first input path, the output path and the return speed increasing path, except for their second input.
  • the connection scheme of the path As shown in FIG. 6, the third embodiment is selected, and the working principle of the sixth embodiment and
  • the input shaft 1 is coupled to the input end 131 of the first unidirectional element 13 and is connected in a direct connection.
  • the output end 132 of the first unidirectional element 13 is coupled to the input end 31 of the hydrodynamic actuator 3, and the indirect connection method is selected, that is, the second input gear transmission mechanism 15 and the second output gear transmission mechanism 16 are selected to make them Connected together; wherein the output 132 of the first unidirectional element 13 is coupled to the input 151 of the second input gearing 15, the output 152 of the second input gearing 15 and the second output gearing 16
  • the input 161 is connected and the output 162 of the second output gearing 16 is connected to the input 31 of the hydrodynamic actuator 3.
  • the output 32 of the hydrodynamic actuator 3 is coupled to the speed-up element 23, and a direct connection is used to connect them together.
  • the input shaft 1 is coupled to the input 131 of the first unidirectional element 13, the output 132 of the first unidirectional element 13 is coupled to the input 31 of the hydrodynamic actuator 3, and the output 32 of the hydrodynamic actuator 3 is
  • the speed increasing element 23 is coupled to form A second input path of the cost embodiment; it includes a second input gearing mechanism 15 and a second output gearing mechanism 16.
  • the input power of the engine passes through the input shaft 1, and the power transmitted thereto is shunted into three paths, the first path is transmitted to the first input element 91; the second path is transmitted to the input element 21, that is, to the embodiment. a first input path; the third path is transmitted to the hydraulic actuator 3 through the first unidirectional element 13, the second input gear transmission mechanism 15, and the second output gear transmission mechanism 16, and the hydraulic transmission 3 is transmitted to the liter
  • the speed element 23 is passed to the second input path of the present embodiment.
  • Embodiment 7 and Embodiment 8 and Embodiment 9 and Embodiment 10 Option 4: a continuously variable transmission including an input shaft 1, a speed unit 2, a hydraulic transmission 3, an output shaft 6, and a shifting speed
  • the shaft 7, the shifting unit 9, the first unidirectional element 13 and the second unidirectional element 14, between the input shaft 1 and the output shaft 6, are provided with a speed-changing unit 2, a hydraulic actuator 3, and a shifting shaft 7 a unit 9, a first unidirectional element 13 and a second unidirectional element 14, the sleek unit 2 comprising an input element 21, an output element 22 and a speed increasing element 23, the slewing unit 2 cooperating by means of respective required components
  • the shifting unit 9 includes a first input member 91, a second input member 92, and a speed-up member 93.
  • the shifting unit 9 cooperates with the respective required components, the input shaft 1 and the input member 21, the first input member 91, and The input end 131 of the first unidirectional element 13 is coupled, the output element 22 is coupled to the shifting shaft 7 and the input end 141 of the second unidirectional element 14, respectively, and the shifting shaft 7 is coupled to the second input element 92, the first unidirectional element 13 Output end 132 and output end 142 of second unidirectional element 14 and hydraulic transmission
  • the input end 31 of the actuator 3 is coupled, the output 32 of the hydrodynamic actuator 3 is coupled to the speed-up element 23, and the speed-up element 93 is coupled to the output shaft 6.
  • Embodiment 7 As shown in FIG. 7, the fourth technical solution is selected: a continuously variable transmission including an input shaft 1, a speed unit 2, a hydraulic actuator 3, an output shaft 6, a shifting shaft 7, and a shifting unit 9.
  • the first unidirectional element 13 and the second unidirectional element 14 between the input shaft 1 and the output shaft 6, a speed sizing unit 2, a hydraulic transmission 3, a shifting shaft 7 shifting unit 9, and a first a unidirectional element 13 and a second unidirectional element 14, the sleek unit 2 comprising an input element 21, an output element 22 and a speed increasing element 23, the speed sizing unit 2 cooperating by means of respective required elements, said shifting unit 9
  • the first input element 91, the second input element 92 and the speed-up element 93 are included, and the shifting unit 9 cooperates with the respective required elements, the input shaft 1 and the input element 21, the first input element 91 and the first unidirectional element, respectively.
  • the input end 131 of the 13 is coupled, the output member 22 is coupled to the shifting shaft 7 and the input end 141 of the second unidirectional element 14, respectively, the shifting shaft 7 is coupled to the second input member 92, the output 132 of the first unidirectional element 13 and The output end 142 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3 , The output terminal 3 of the hydraulic actuator 32 and increases the speed coupling element 23, Meeting element 93 and the speed of the output shaft 6 is coupled.
  • the input shaft 1 is coupled to the input end 131 of the first unidirectional element 13, and a direct connection method is selected, that is, the input shaft 1 is selected to pass through a hollow method and pass through other elements to connect them together.
  • the output end 132 of the first unidirectional element 13 is coupled to the input end 31 of the hydrodynamic actuator 3, and a direct connection is used to connect them together.
  • the output 32 of the hydrodynamic actuator 3 is coupled to the speed-up element 23, and a direct connection is used to connect them together.
  • the input shaft 1 is coupled to the input 131 of the first unidirectional element 13, the output 132 of the first unidirectional element 13 is coupled to the input 31 of the hydrodynamic actuator 3, and the output 32 of the hydrodynamic actuator 3 is raised.
  • the elements 23 are coupled to form the second input path of the present embodiment.
  • the input shaft 1 is coupled to the first input member 91, and the method of direct connection is selected, that is, the input shaft 1 is selected to pass through the hollow member and pass through other members to connect them together.
  • the output member 22 is coupled to the shifting shaft 7, and the indirect connection method is selected, that is, the input gear transmission mechanism 4 and the coupling frame 8 are selected to be connected together to constitute an output path of the embodiment; and the input gear transmission mechanism is included. 4 and a coupling frame 8; wherein the output member 22 is connected to the coupling frame 8, the coupling frame 8 is connected to the input end 41 of the input gear transmission mechanism 4, and the output end 42 of the input gear transmission mechanism 4 is coupled to the shifting shaft 7.
  • the output member 22 is coupled to the input end 141 of the second unidirectional element 14 by indirect connection, that is, the coupling frame 8 and the input planetary gear transmission mechanism 12 are used to connect them together; wherein the output member 22 and the coupling are connected
  • the frame 8 is connected, the coupling frame 8 is connected to the input end 121 of the input planetary gear transmission 12, and the output end 122 of the input planetary gear transmission 12 is connected to the input end 141 of the second unidirectional element 14.
  • the output end 142 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3, and a direct connection is used to connect them together.
  • the output member 22 is coupled to the input end 141 of the second unidirectional element 14, the output end 102 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3, and the output 32 of the hydrodynamic actuator 3 is coupled
  • the speed increasing element 23 is coupled to form the return speed increasing path of the present embodiment; it includes a coupling frame 8 and an input planetary gear transmission 12.
  • the shifting shaft 7 is coupled to the second input member 92, and the indirect connection method is selected, that is, the output gear 10 is selected to be connected thereto; wherein the output gear 10 is coupled to the shifting shaft 7, and the output gear 10 and the second input member are connected. 92 meshing.
  • the input power of the engine is input to the input shaft 1, and the power transmitted thereto is divided into three paths, the first path is transmitted to the first input element 91; the second path is transmitted to the input element 21, that is, to the first input of the embodiment.
  • the third path is transmitted to the hydraulic actuator 3 through the first unidirectional element 13, and the hydraulic actuator 3 is transferred to the speed increasing element 23, that is, to the second input path of the embodiment, the first input path.
  • the power and the power of the second input path then pass power through the planet gears on the speed squaring unit 2 to the output element 22, which diverts the power delivered thereto into two paths, one through the connection
  • the frame 8 and the input gear transmission mechanism 4 are transmitted to the shifting shaft 7, i.e., to the output path of the present embodiment; the shifting shaft 7 is again transmitted to the second input member 92 through the output gear 10; the other passes through the coupling frame 8, the input planet The gear transmission mechanism 12 and the second one-way element transmission 14 are transmitted to the hydraulic transmission 3, and the hydraulic transmission 3 is transmitted
  • the power of the path and the power transmitted to the input path are transmitted to the output member 22 through the planetary gears on the speed squaring unit 2, and the output member 22 repeats the above process so that the rotational speeds transmitted to the speed increasing member 23 and the output member 22 are continuously followed.
  • the input power, the change in running resistance are steplessly shifted, and transmitted to the shifting shaft 7; thereby causing the rotational speed transmitted to the second input member 92 to change; at this time, the power transmitted to the first input member 91 is transmitted to The power of the second input member 92 is transmitted to the speed-up member 93 through the planetary gears on the shifting unit 9 and transmitted to the output shaft 6 of the present embodiment, thereby realizing the power of the engine. 6 external output through the output shaft.
  • Embodiment 8 As shown in FIG. 8, the fourth technical solution is selected: the input shaft 1 is coupled with the input end 131 of the first unidirectional element 13, and the direct connection method is selected to connect them together.
  • the output end 132 of the first unidirectional element 13 is coupled to the input end 31 of the hydrodynamic actuator 3, and the indirect connection method is selected, that is, the second input gear transmission mechanism 15 and the second output gear transmission mechanism 16 are selected to make them Connected together; wherein the output 132 of the first unidirectional element 13 is coupled to the input 151 of the second input gearing 15, the output 152 of the second input gearing 15 and the second output gearing 16
  • the input 161 is connected and the output 162 of the second output gearing 16 is connected to the input 31 of the hydrodynamic actuator 3.
  • the output 32 of the hydrodynamic actuator 3 is coupled to the speed-up element 23, and a direct connection is used to connect them together.
  • the input shaft 1 is coupled to the input 131 of the first unidirectional element 13, the output 132 of the first unidirectional element 13 is coupled to the input 31 of the hydrodynamic actuator 3, and the output 32 of the hydrodynamic actuator 3 is raised.
  • the elements 23 are coupled to form a second input path of the present embodiment; they include a second input gear transmission 15 and a second output gear transmission 16.
  • the input shaft 1 is coupled to the first input member 91, and the method of direct connection is selected, that is, the input shaft 1 is selected to pass through the hollow member and pass through other members to connect them together.
  • the output member 22 is coupled to the shifting shaft 7, and the indirect connection method is selected, that is, the input gear transmission mechanism 4 and the coupling frame 8 are selected to be connected together to constitute an output path of the embodiment; and the input gear transmission mechanism is included. 4 and a coupling frame 8; wherein the output member 22 is connected to the coupling frame 8, the coupling frame 8 is connected to the input end 41 of the input gear transmission mechanism 4, and the output end 42 of the input gear transmission mechanism 4 is coupled to the shifting shaft 7.
  • the output member 22 is coupled to the input end 141 of the second unidirectional element 14, and the indirect connection method is selected, that is, the coupling frame 8 and the input planetary gear transmission mechanism 12 are selected to be connected together; wherein the output member 22 is connected
  • the carrier 8 is connected, the coupling 8 is connected to the input 121 of the input planetary gear 12, and the output 122 of the input planetary gear 12 is connected to the input 141 of the second unidirectional element 14.
  • the output end 142 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3, and a direct connection is used to connect them together.
  • the output member 22 is coupled to the input end 141 of the second unidirectional element 14, the output end 142 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3, and the output 32 of the hydrodynamic actuator 3 is coupled to
  • the speed increasing element 23 is coupled to form the return speed increasing path of the present embodiment; it includes a coupling frame 8 and an input planetary gear transmission 12.
  • the shifting shaft 7 is coupled to the second input member 92, and the indirect connection method is selected, that is, the output gear 10 is selected to be connected thereto; wherein the output gear 10 is coupled to the shifting shaft 7, and the output gear 10 and the second input member are connected. 92 meshing.
  • the input power of the engine is input to the input shaft 1, and the power transmitted thereto is divided into three paths, the first path is transmitted to the first input element 91; the second path is transmitted to the input element 21, that is, to the first input of the embodiment.
  • the third path is transmitted to the hydraulic actuator 3 through the first unidirectional element 13, the second input gear transmission 15 and the second output gear transmission mechanism 16, and the hydraulic transmission 3 is transmitted to the speed increasing element 23, ie Passed to the second input path of the present embodiment, the power of the first input path and the power of the second input path are passed through the planet gears on the speed squaring unit 2 to the output element 22, to which the output element 22 is delivered.
  • the power split is two paths, one pass through the input gear transmission mechanism 4, and is transmitted to the shift shaft 7, that is, to the output path of the embodiment; the shift shaft 7 is again transmitted to the second input member 92 through the output gear 10; the other pass
  • the coupling frame 8, the input planetary gear transmission 12 and the second unidirectional element 14 are transmitted to the hydraulic transmission 3, and the hydraulic transmission 3 is transmitted to the speed increasing element 23, that is, to the return speed increasing path of the embodiment;
  • the power delivered to the return speed path and the power delivered to the input path are transmitted to the output element 22 via the planet gears on the speed unit 2, and the output element 22 repeats the above process for transmission to the speed increasing element 23 and the output element.
  • the rotational speed of 22 continuously shifts steplessly with changes in input power and running resistance, and is transmitted to the shifting shaft 7; thereby causing the rotational speed transmitted to the second input member 92 to change; at this time, it is transmitted to the first input member 91.
  • the power and the power transmitted to the second input member 92 are transmitted to the speed-up member 93 through the planetary gears on the shifting unit 9 and transmitted to the output shaft 6 of the present embodiment, thereby realizing the power of the engine through the output shaft. 6 external output.
  • Embodiment 9 As shown in FIG. 9, the fourth technical solution is selected: the input shaft 1 is coupled with the input end 131 of the first unidirectional element 13, and the direct connection method is selected to connect them together.
  • the output end 132 of the first unidirectional element 13 is coupled to the input end 31 of the hydrodynamic actuator 3, and the indirect connection method is selected, that is, the second input gear transmission mechanism 15 and the second output gear transmission mechanism 16 are selected to make them Connected together; wherein the output 132 of the first unidirectional element 13 is connected to the input 151 of the second input gear transmission 15
  • the output 152 of the second input gear transmission 15 is coupled to the input 161 of the second output gear transmission 16 and the output 162 of the second output gear transmission 16 is coupled to the input 31 of the hydrodynamic actuator 3.
  • the output 32 of the hydrodynamic actuator 3 is coupled to the speed-up element 23, and a direct connection is used to connect them together.
  • the input shaft 1 is coupled to the input 131 of the first unidirectional element 13, the output 132 of the first unidirectional element 13 is coupled to the input 31 of the hydrodynamic actuator 3, and the output 32 of the hydrodynamic actuator 3 is raised.
  • the elements 23 are coupled to form a second input path of the present embodiment; they include a second input gear transmission 15 and a second output gear transmission 16.
  • the input shaft 1 is coupled to the first input member 91, and the method of direct connection is selected, that is, the input shaft 1 is selected to pass through the hollow member and pass through other members to connect them together.
  • the output member 22 is coupled to the shifting shaft 7, and the indirect connection method is selected, that is, the input gear transmission mechanism 4 and the coupling frame 8 are selected to be connected together to constitute an output path of the embodiment; and the input gear transmission mechanism is included. 4 and a coupling frame 8; wherein the output member 22 is connected to the coupling frame 8, the coupling frame 8 is connected to the input end 41 of the input gear transmission mechanism 4, and the output end 42 of the input gear transmission mechanism 4 is coupled to the shifting shaft 7.
  • the output member 22 is coupled to the input end 141 of the second unidirectional element 14, and the indirect connection method is selected, that is, the input gear transmission mechanism 4, the coupling frame 8 and the third output gear transmission mechanism 17 are selected to be connected together;
  • the output member 22 is connected to the coupling frame 8, the coupling frame 8 is connected to the input end 41 of the input gear transmission mechanism 4, and the second output end 43 of the input gear transmission mechanism 4 is connected to the input end 171 of the third output gear transmission mechanism 17.
  • the output 172 of the third output gear drive 17 is coupled to the input 141 of the second unidirectional element 14.
  • the output end 142 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3, and a direct connection is used to connect them together.
  • the output member 22 is coupled to the input end 141 of the second unidirectional element 14, the output end 142 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3, and the output 32 of the hydrodynamic actuator 3 is coupled to
  • the speed increasing element 23 is coupled to constitute the return speed increasing path of the present embodiment; it includes an input gear transmission mechanism 4, a coupling frame 8, and a third output gear transmission mechanism 17.
  • the shifting shaft 7 is coupled to the second input member 92, and the indirect connection method is selected, that is, the output gear 10 is selected to be connected thereto; wherein the output gear 10 is coupled to the shifting shaft 7, and the output gear 10 and the second input member are connected. 92 meshing.
  • the input power of the engine is input to the input shaft 1, and the power transmitted thereto is divided into three paths, the first path is transmitted to the first input element 91; the second path is transmitted to the input element 21, that is, to the first input of the embodiment.
  • a third path is transmitted to the hydraulic actuator through the first unidirectional element 13, the second input gear transmission 15 and the second output gear transmission 16 3, the hydraulic actuator 3 is transferred to the speed increasing element 23, that is, to the second input path of the embodiment, the power of the first input path and the power of the second input path are passed through the planetary gears on the speed transmitting unit 2
  • the power is transmitted to the output element 22, and the output element 22 shunts the power transmitted thereto into two paths, one path is transmitted to the shifting shaft 7 through the coupling frame 8 and the input gear transmission mechanism 4, that is, to the output path of the embodiment;
  • the shaft 7 is again transmitted to the second input member 92 through the output gear 10; the other passage is transmitted to the hydraulic actuator 3 through the coupling frame 8, the input gear transmission mechanism 4, the third
  • the hydraulic actuator 3 is again transmitted to the speed increasing element 23, that is, to the return speed increasing path of the present embodiment; the power transmitted to the return speed increasing path and the power transmitted to the input path are all passed through the speed adjusting unit 2
  • the planetary gears are transmitted to the output member 22, and the output member 22 repeats the above process, so that the rotational speeds transmitted to the speed increasing member 23 and the output member 22 are continuously changed step by step with changes in input power and running resistance. And transmitted to the shifting shaft 7; thereby causing the rotational speed transmitted to the second input member 92 to change; at this time, the power transmitted to the first input member 91 and the power transmitted to the second input member 92 are passed through the shifting unit.
  • the planetary gears on 9 are transmitted to the speed-increasing element 93 and transmitted to the output shaft 6 of the present embodiment, thereby realizing the external output of the engine power through the output shaft 6.
  • Embodiment 10 As shown in FIG. 10, the fourth technical solution is selected: the input shaft 1 is coupled with the input end 131 of the first unidirectional element 13, and the direct connection method is selected to connect them together.
  • the output end 132 of the first unidirectional element 13 is coupled to the input end 31 of the hydrodynamic actuator 3, and the indirect connection method is selected, that is, the second input gear transmission mechanism 15 and the second output gear transmission mechanism 16 are selected to make them Connected together; wherein the output 132 of the first unidirectional element 13 is coupled to the input 151 of the second input gearing 15, the output 152 of the second input gearing 15 and the second output gearing 16
  • the input 161 is connected and the output 162 of the second output gearing 16 is connected to the input 31 of the hydrodynamic actuator 3.
  • the output 32 of the hydrodynamic actuator 3 is coupled to the speed-up element 23, and a direct connection is used to connect them together.
  • the input shaft 1 is coupled to the input 131 of the first unidirectional element 13, the output 132 of the first unidirectional element 13 is coupled to the input 31 of the hydrodynamic actuator 3, and the output 32 of the hydrodynamic actuator 3 is
  • the speed increasing element 23 is coupled to form a second input path of the present embodiment; it includes a second input gearing mechanism 15 and a second output gearing mechanism 16.
  • the input shaft 1 is coupled to the first input member 91, and the indirect connection method is selected, that is, the second input gear transmission mechanism 15 and the output gear 10 are selected to be connected together; wherein the input shaft 1 and the second input gear are driven
  • the input end 151 of the mechanism 15 is connected, the output end 152 of the second input gear transmission 15 is coupled to the output gear 10, and the output gear 10 is meshed with the second input member 91.
  • the output member 22 is coupled to the shifting shaft 7 to select a direct connection method to connect them together, thereby The output path of this embodiment is constructed.
  • the output member 22 is coupled to the input end 141 of the second unidirectional element 14 by indirect connection, that is, the coupling frame 8 and the input planetary gear transmission mechanism 12 are used to connect them together; wherein the output member 22 and the coupling are connected
  • the frame 8 is connected, the coupling frame 8 is connected to the input end 121 of the input planetary gear transmission 12, and the output end 122 of the input planetary gear transmission 12 is connected to the input end 141 of the second unidirectional element 14.
  • the output end 142 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3, and a direct connection is used to connect them together.
  • the output member 22 is coupled to the input end 141 of the second unidirectional element 14, the output end 142 of the second unidirectional element 14 is coupled to the input end 31 of the hydrodynamic actuator 3, and the output 32 of the hydrodynamic actuator 3 is coupled to
  • the speed increasing element 23 is coupled to form the return speed increasing path of the present embodiment; it includes a coupling frame 8 and an input planetary gear transmission 12.
  • the shifting shaft 7 is coupled to the second input member 92, and a direct connection is used to connect them together.
  • the input power of the engine is input to the input shaft 1, and the power transmitted thereto is divided into three paths.
  • the first path is transmitted to the first input element 91 through the second input gear transmission mechanism 15 and the output gear 10; the second path is transmitted to the input element. 21, that is, transmitted to the first input path of the embodiment; the third path is transmitted to the hydraulic actuator 3 through the first unidirectional element 13, the second input gear transmission mechanism 15, and the second output gear transmission mechanism 16, the hydraulic force
  • the actuator 3 is again transferred to the speed increasing element 23, i.e.
  • the power of the first input path and the power of the second input path are then transmitted to the power through the planet gears on the speed unit 2
  • the output element 22, the output element 22 shunts the power transmitted thereto into two paths, one way to the shifting shaft 7, that is, to the output path of the embodiment; the shifting shaft 7 is transmitted to the second input element 92; the other pass
  • the coupling frame 8, the input planetary gear transmission 12 and the second unidirectional element 14 are transmitted to the hydraulic transmission 3, and the hydraulic transmission 3 is transmitted to the speed increasing element 23, that is, to the return speed increasing path of the embodiment;
  • the power delivered to the return ramp path and the power delivered to the input path are transmitted to the output member 22 via the planet gears on the speed unit 2, and the output member 22 repeats the above process for transfer to the speed increasing element 23 and the output element.
  • the rotational speed of 22 continuously shifts steplessly with changes in input power and running resistance, and is transmitted to the shifting shaft 7; thereby causing the rotational speed transmitted to the second input member 92 to change; at this time, it is transmitted to the first input member 91.
  • the power and the power transmitted to the second input member 92 are transmitted to the speed-up member 93 through the planetary gears on the shifting unit 9 and transmitted to the output shaft 6 of the present embodiment, thereby realizing the power of the engine through the output shaft. 6 external output.
  • the rotational speeds of the output member 22, the shifting shaft 7, and the output shaft 6 change with the change of the input torque and the resistive torque.
  • the rotational speed to the output member 22, the shifting shaft 7, and the output shaft 6 is larger, and conversely, the smaller the speed is, thereby realizing the continuously variable transmission in which the present invention can steplessly change the speed depending on the input torque and the running resistance of the vehicle.
  • the input power, the input rotational speed and the load of the engine are constant, that is, the rotational speed and torque of the input shaft 1 are constant, and the rotational speed of the output shaft 6 is zero before the vehicle starts, because the output shaft 6 and the transmission system are driven.
  • the speed ratio between the driving wheels is set to be large enough to be set to an ultra-low speed gear.
  • one way is passed directly or through several components to the first input element 91
  • the other way is passed to the input element 21 in the input path of the invention
  • the input element 21 passes the power through the planet gears on the speed squaring unit 2 to Output element 22, output element 22 shunts the power delivered thereto into two paths, one way to the shifting shaft 7 in the output path of the present invention, and then to the second input element 92; at this time, to the first input element
  • the power of 91 and the power transmitted to the second input member 92 are transmitted to the speed-up member 93 through the planetary gears on the shifting unit 9 and transmitted to the output shaft of the present embodiment. 6.
  • the input power of the engine is divided into three paths through the input shaft 1, and the first path is directly or through several components to the first input element 91, and the second path is transmitted to the present invention.
  • the input element 21 in the first input path, the third path is passed to the speed increasing element 23 in the second input path of the present invention, and the input element 21 and the speed increasing element 23 pass the power through the planetary gears on the speed sizing unit 2 Passed to the output element 22, the output element 22 shunts the power delivered thereto into two paths, one way to the shifting shaft 7 in the output path of the present invention, and then to the second input element 92; at this time, it is passed to the first
  • the power of the input member 91 and the power transmitted to the second input member 92 are transmitted to the speed-increasing member 93 through the planetary gears on the shifting unit 9 and transmitted to the output shaft 6 of the embodiment; when transmitted to the output shaft 6, Torque, when the traction generated by the drive train
  • the rotational speed is also continuously increased and transmitted to the shifting shaft 7; thereby causing the rotational speed transmitted to the second input member 92 to change; at this time, the power transmitted to the first input member 91 and the power transmitted to the second input member 92 Both are transmitted to the speed-increasing element 93 through the planetary gears on the shifting unit 9, and transmitted to the output shaft 6 of the present invention, and then transmitted to the driving wheel via the power train, and the vehicle is continuously accelerated, so that the rotational speed of the output shaft 6 is The resistance torque is decreasing and increasing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)

Abstract

一种无级变速器,其中输入轴(1)分别与输入元件(21)以及第一输入元件(91)联接,输出元件(22)与变速轴(7)联接,变速轴(7)分别与液力传动器(3)的输入端(31)以及第二输入元件(92)联接,液力传动器(3)的输出端(32)与升速元件(23)联接,汇速元件(93)与输出轴(6)联接。

Description

一种无级变速器 技术领域
本发明属于液力传动领域,更具体地说,它是一种用于各种地面车辆、船舶、铁道机车、工程机械、各种航天、起重运输机械、机床、机械人以及军工的无级变速器。
背景技术
目前,常用的液力传动所能传递的功率不大,并且效率不高;另外,这些液力变矩器的变速范围不大。
发明内容
本发明克服了现有技术的不足,提供了一种延长发动机和传动系的使用寿命,结构简单,操控方便,低成本,节能高效的无级变速器。
为了实现本发明的目的,本发明采用的技术方案以下:
技术方案之一:一种无级变速器,它包括输入轴(1)、汇速单元(2)、液力传动器(3)、输出轴(6)、变速轴(7)和变速单元(9),所述的输入轴(1)与输出轴(6)之间设有汇速单元(2)、液力传动器(3)、变速轴(7)和变速单元(9),所述汇速单元(2)包括输入元件(21)、输出元件(22)和升速元件(23),汇速单元(2)通过各自所需的元件配合工作,所述变速单元(9)包括第一输入元件(91)、第二输入元件(92)和汇速元件(93),变速单元(9)通过各自所需的元件配合工作,输入轴(1)分别与输入元件(21)以及第一输入元件(91)联接,输出元件(22)与变速轴(7)联接,变速轴(7)分别与液力传动器(3)的输入端(31)以及第二输入元件(92)联接,液力传动器(3)的输出端(32)与升速元件(23)联接,汇速元件(93)与输出轴(6)联接。
技术方案之二:一种无级变速器,它包括输入轴(1)、汇速单元(2)、液力传动器(3)、输出轴(6)、变速轴(7)和变速单元(9),所述的输入轴(1)与输出轴(6)之间设有汇速单元(2)、液力传动器(3)、变速轴(7)和变速单元(9),所述汇速单元(2)包括输入元件(21)、输出元件(22)和升速元件(23),汇速单元(2)通过各自所需的元件配合工作,所述变速单元(9)包括第一输入元件(91)、第二输入元件(92)和汇速元件(93),变速单元(9)通过各自所需的元件配合工作,输入轴(1)分别与输入元件(21)以及第一输入元件(91)联接,输出元件(22)分别与变速轴(7)以及液力传动器(3)的输入端(31)联接,液力传动器(3)的输出端(32)与升速元件(23)联接,变速轴(7)与第二输入元件(92)联接,汇速元件(93)与输出轴(6)联接。
技术方案之三:一种无级变速器,它包括输入轴(1)、汇速单元(2)、液力传动器(3)、输出轴(6)、变速轴(7)、变速单元(9)、第一单向元件(13)和第二单向元件(14),所述的输入轴(1)与输出轴(6)之间设有汇速单元(2)、液力传动器(3)、变速轴(7)、变速单元(9)、第一单向元件(13)和第二单向元件(14),所述汇速单元(2)包括输入元件(21)、输出元件(22)和升速元件(23),汇速单元(2)通过各自所需的元件配合工作,所述变速单元(9)包括第一输入元件(91)、第二输入元件(92)和汇速元件(93),变速单元(9)通过各自所需的元件配合工作,输入轴(1)分别与输入元件(21)、第一输入元件(91)以及第一单向元件(13)的输入端(131)联接,输出元件(22)与变速轴(7)联接,变速轴(7)分别与第二输入元件(92)以及第二单向元件(14)的输入端(141)联接,第一单向元件(13)的输出端(132)以及第二单向元件(14)的输出端(142)与液力传动器(3)的输入端(31)联接,液力传动器(3)的输出端(32)与升速元件(23)联接,汇速元件(93)与输出轴(6)联接。
技术方案之四:一种无级变速器,它包括输入轴(1)、汇速单元(2)、液力传动器(3)、输出轴(6)、变速轴(7)、变速单元(9)、第一单向元件(13)和第二单向元件(14),所述的输入轴(1)与输出轴(6)之间设有汇速单元(2)、液力传动器(3)、变速轴(7)变速单元(9)、第一单向元件(13)和第二单向元件(14),所述汇速单元(2)包括输入元件(21)、输出元件(22)和升速元件(23),汇速单元(2)通过各自所需的元件配合工作,所述变速单元(9)包括第一输入元件(91)、第二输入元件(92)和汇速元件(93),变速单元(9)通过各自所需的元件配合工作,输入轴(1)分别与输入元件(21)、第一输入元件(91)以及第一单向元件(13)的输入端(131)联接,输出元件(22)分别与变速轴(7)以及第二单向元件(14)的输入端(141)联接,变速轴(7)与第二输入元件(92)联接,第一单向元件(13)的输出端(132)以及第二单向元件(14)的输出端(142)与液力传动器(3)的输入端(31)联接,液力传动器(3)的输出端(32)与升速元件(23)联接,汇速元件(93)与输出轴(6)联接。
所述本发明的输入路径,指的是:发动机启动时,输入轴(1)只是把输入功率传递到输入元件(21)以及第一输入元件(91)。
所述本发明的输出路径,指的是:由输入输出元件(22)输出的功率经若干元件,最后通过变速轴(7)对外输出的路径。
所述本发明的回流升速路径,指的是:由输出元件(22)输出的功率通过若干元件,最后传递到升速元件(23)的路径。
回流升速路径的作用是:使输出元件(22)的输出转速传递到升速元件(23)时,能升速至设定值,从而使升速元件(23)和输入元件(21)的输入转速汇速于输出元件(22)时,输出元件(22)的转速能够不断地升高,并在各个元件之间不断地进行变速的反复循环,从而使输出路径以及回流升速路径上各个元件的转速不断升高,最终通过变速轴(7)以及输出轴(6)对外实现无级以及无限变速。
所述本发明的第一输入路径和本发明的第二输入路径,指的是:由发动机启动时,输入轴(1)把传递到此的功率分流为两路,一路传递到输入元件(21);另一路通过第一单向元件(13)或者以及若干元件传递到升速元件(23)。
所述本发明的输入路径、输出路径和回流升速路径,应该包括各个需要联接的元件,它们所选择联接的方法,从而选用的所有元件;其中,包括但不限于各种不同类型的传动机构、单向元件、联接架或联接轴之中的若干个元件。
由于本发明的回流升速路径中,升速元件(23)与输出元件(22)之间的转速比,将决定本发明的最终传动比变速轴(7)与输入轴(1)之间的转速比的大小,当升速元件(23)与输出元件(22)之间的转速比以及发动机输入的功率足够大,就能实现本发明的变速轴(7)与输入轴(1)之间的转速比无穷大,即输出的转速无级以及无限的高,因此,输出轴6与传动系传动到驱动轮之间的转速比,应该设置成足够的大,即设置成超低速的挡,也就是说,本发明能实现无级以及无限变速。
W=(W1Z+Q)/(1+K);W---表示输出元件(22)与输入元件(21)之间的转速比,W=n22/n21;W1---表示输出元件(22)与输入元件(21)之间的瞬时转速比,W1=n22/n21;Z---表示升速元件(23)与输出元件(22)之间的转速比,Z=n23/n22,即所述的设定值;K---表示齿圈或者齿轮O23与太阳轮O21之间的齿数比,K=O23/O21;Q---表示当输入元件(21)为太阳轮时,其值是1;否则,其值是K。
输出元件(22)与输入元件(21)之间的转速比,可以根据实情况从上式中计算获得,也可以从实践中获得,从上式中可知,当汇速单元(2)选择差速器时,即Q=1,K=1,此时,当Z小于2时,上式则可获得确定值;当Z大于或者等于2时,上式则为负值或者是不等式;也就是说,当Z选择大于或者等于2时,输出元件(22)与输入元件(21)之间的转速比,即变速轴(7)与输入轴(1)之间的转速比,可以不断地无穷增大,从而实现无限以及无级地变速。
所述汇速单元(2)以及变速单元(9)可以选择行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或谐波齿轮传动机构,汇速单元(2)的输入元件(21)、输出元 件(22)和升速元件(23)以及变速单元(9)的第一输入元件(91)、第二输入元件(92)和汇速元件(93),可以从构成上述行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或谐波齿轮传动机构的基本元件中选用,它们起到汇速的作用。
所述各个需要联接的元件,可以选择直接连接的方法,或者选择间接连接的方法,或者选择增加连接的方法;所述直接连接的方法,指的是:需要联接的两个元件,可以选择直接连接,使它们连接在一起;当它们被其它若干元件分隔时,可以通过中空的方式,穿过其它若干元件,使它们连接在一起;所述间接连接的方法,指的是:需要联接的两个元件,可以选择增加合适的传动机构、联接轴以及联接架之中的若干个元件,使它们连接在一起;所述增加连接的方法,指的是:需要联接的两个元件,连接在一起后,可以选择增加使用单向元件,使它们连接在一起,单向元件的输出端与它们连接在一起,单向元件的输入端与固定元件联接。
所述输入轴(1)、汇速单元(2)、液力传动器(3)、输出轴(6)、变速轴(7)、变速单元(9)、第一单向元件(13)和第二单向元件(14)以及为了使它们连接在一起的其余各个元件,可以布置在不同的空间,即它们可以是在同一中心轴线,或者是在不同的中心轴线上,此时,应当根据它们的位置,选择合适的联接方法。
所述液力传动器(3)可以选用液力变矩器、液力偶合器、压马达和液压泵以及各种不同类型的电控或液控离合器。
所述单向元件,即单向元件(11)、第一单向元件(13)以及第二单向元件(14)可以选择各种不同类型的离合器,其包括但不限于超越离合器、单向离合器;单向元件(11)的作用是:由于单向元件(11)的输入端(111)与固定元件联接,起限制转向的作用,使升速元件(23)的转向不能与输入元件(21)的转向相反;第一单向元件(13)以及第二单向元件(14)的作用是:当第二单向元件传(10)的转速高于第一单向元件(13)的转速时,没有功率传递到液力传动器(3)。
由于构成汇速单元(2)、液力传动器(3)、变速单元(9)、第一单向元件(13)和第二单向元件(14)都具有上述多种不同选择,并且本发明各个元件之间的联接方法,都具有上述多种不同选择,所以能组合出多种不同的实施方式,因此,它们必然都在权利要求的保护范围,而下述的具体实施方式只是其中的一部份,也就是说,本发明的权利要求的保护范围包括但不限于下述的具体实施方式。
本发明应用于车辆时,本发明能够根据车辆行驶时输入功率的变化以及受到阻力大小,自动地、无级地改变传动比。
本发明具有以下的优点:
(1)本发明没有其它换档和操纵机构,因此结构简单,有利于降低制造的成本,更易于维修,并且操控方便;
(2)本发明发动机的功率大部分由高效率以及能传递大功率的汇速单元(2)传递,变距和变速是自动完成,能实现高效率、大功率的无级变速传动,与其它无级变速器相比,在发动机等效的前提下,它降低了发动机的制造成本;
(3)本发明通过无级变速,使发动机处于经济转速区域内运转,也就是在非常小污染排放的转速范围内工作,避免了发动机在怠速和高速运行时,排放大量废气,从而减少了废气的排放,有利于保护环境;
(4)本发明能利用内部转速差起缓冲和过载保护的作用,有利于延长发动机和传动系的使用寿命,另外,当行驶阻力增大,则能使车辆自动降速,反之则升速,有利于提高车辆的行驶性能;
(5)本发明通过无级变速,使输入功率不间断,可保证车辆有良好的加速性和较高的平均车速,使发动机的磨损减少,延长了大修间隔里程,提高了出车率,有利于提高生产率。
另外,本发明是一种还可用于各种地面车辆、船舶、铁道机车、工程机械、各种航天、起重运输机械、机床、机械人以及军工的无级变速器。
附图说明
在附图中,图1为本发明实施例一的结构示意图;图2为本发明实施例二的结构示意图;图3为本发明实施例三的结构示意图;图4为本发明实施例四的结构示意图;图5为本发明实施例五的结构示意图;图6为本发明实施例六的结构示意图;图7为本发明实施例七的结构示意图;图8为本发明实施例八的结构示意图;图9为本发明实施例九的结构示意图;图10为本发明实施例十的结构示意图。
具体实施方式
下面结合附图与具体实施方式对本发明作进一步的详细说明:
本发明各个实施中,所述的汇速单元2和变速单元9都选用行星齿轮传动机构;所述的液力传动器3都选用液力变矩器;所述输入轴1与输入元件21联接,选用直接连接的方法,使它们连接在一起,从而构成各个实施例的输入路径或者第一输入路径;所述输入轴1与第一单向元件13的输入端131联接,选用直接连接的方法,即输入轴1选择直接或者通过中空的方式,穿过其它元件,使它们连接在一起;所述第二单向元件14的输出端142与液力传动器3的输入端31联接,选用直接连接的方法,使它们连接在一起;所述汇速元件93与输 出轴6联接,选用直接连接的方法,使它们连接在一起。
实施例一、实施例二、实施例三:如图1至图3中所示,选用技术方案一:一种无级变速器,它包括输入轴1、汇速单元2、液力传动器3、输出轴6、变速轴7和变速单元9,所述的输入轴1与输出轴6之间设有汇速单元2、液力传动器3、变速轴7和变速单元9,所述汇速单元2包括输入元件21、输出元件22和升速元件23,汇速单元2通过各自所需的元件配合工作,所述变速单元9包括第一输入元件91、第二输入元件92和汇速元件93,变速单元9通过各自所需的元件配合工作,输入轴1分别与输入元件21以及第一输入元件91联接,输出元件22与变速轴7联接,变速轴7分别与液力传动器3的输入端31以及第二输入元件92联接,液力传动器3的输出端32与升速元件23联接,汇速元件93与输出轴6联接。
实施例一:如图1中所示,选用技术方案一,所述输入轴1与第一输入元件91联接,选用直接连接的方法,即输入轴1选择通过中空的方式,穿过其它元件,使它们连接在一起。
所述输出元件22与变速轴7联接,选用间接连接的方法,即选用输入齿轮传动机构4以及联接架8,使它们连接在一起,从而构成本实施例的输出路径;其包括输入齿轮传动机构4以及联接架8;其中,输出元件22与联接架8连接,联接架8与输入齿轮传动机构4的输入端41连接,输入齿轮传动机构4的输出端42与变速轴7连接。
所述变速轴7与第二输入元件92联接,选用间接连接的方法,即选用输出齿轮10,使它们连接在一起;其中,输出齿轮10与变速轴7连接,输出齿轮10与第二输入元件92啮合。
所述变速轴7与液力传动器3的输入端31联接,选用间接连接的方法,即选用输出齿轮传动机构5,使它们连接在一起;其中,变速轴7与输出齿轮传动机构5的输入端51连接,输出齿轮传动机构5的输出端52与液力传动器3的输入端31连接。
所述液力传动器3的输出端32与升速元件23联接,选用增加连接的方法,即选用单向元件11,使它们连接在一起;其中,液力传动器3的输出端32与升速元件23以及单向元件11的输出端112联接,单向元件11的输入端111与固定元件联接。
所述输出元件22与变速轴7联接,变速轴7与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的回流升速路径;其包括输入齿轮传动机构4、输出齿轮传动机构5、联接架8以及单向元件11。
发动机的输入功率经输入轴1,把传递到此的功率分流为两路,一路传递到第一输入 元件91,另一路传递到输入元件21,即传递到本实施例的输入路径;再通过汇速单元2上的行星齿轮把功率传递到输出元件22,输出元件22把传递到此的功率分流为两路,一路通过联接架8以及输入齿轮传动机构4传递到变速轴7,即传递到本实施例的输出路径;变速轴7再通过传递到输出齿轮10,传递到第二输入元件92;另一路通过联接架8以及输入齿轮传动机构4传递到变速轴7,变速轴7再通过输出齿轮传动机构5,传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的回流升速路径;传递到回流升速路径的功率以及传递到输入路径的功率,都通过汇速单元2上的行星齿轮传递到输出元件22,输出元件22再重复上述过程,使传递到升速元件23以及输出元件22的转速不断随输入功率、行驶阻力的变化而无级地变速,并传递到变速轴7,从而使传递到第二输入元件92的转速随之变化;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递至本实施例的输出轴6,从而实现了把发动机的功率通过输出轴6对外输出。
实施例二:如图2中所示,选用技术方案一,本实施例与实施例一的工作原理、构成本实施例的输入路径和构成本实施例的输出路径相同,不同在于本实施例二的回流升速路径中,没有选择增加使用单向元件11,即所述液力传动器3的输出端32与升速元件23联接,选用直接连接的方法,使它们连接在一起。
所述输出元件22与变速轴7联接,变速轴7与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的回流升速路径;其包括输入齿轮传动机构4、输出齿轮传动机构5以及联接架8。
实施例三:如图3中所示,选用技术方案一,所述输入轴1与第一输入元件91联接,选用间接连接的方法,即选用输出齿轮传动机构5以及输出齿轮10,使它们连接在一起;其中,输入轴1与输出齿轮传动机构5的输入端51连接,输出齿轮传动机构5的输出端52与输出齿轮10连接,输出齿轮10与第一输入元件91啮合。
所述输出元件22与变速轴7联接,选用直接连接的方法,使它们连接在一起,从而构成本实施例的输出路径。
所述变速轴7与第二输入元件92联接,选用直接连接的方法,使它们连接在一起。
所述变速轴7与液力传动器3的输入端31联接,选用间接连接的方法,即选用输入行星齿轮传动机构12,使它们连接在一起;其中,变速轴7与输入行星齿轮传动机构12的输入端121连接,输入行星齿轮传动机构12的输出端122与液力传动器3的输入端31连接。
所述液力传动器3的输出端32与升速元件23联接,选用增加连接的方法,即选用单向元件11,使它们连接在一起;其中,液力传动器3的输出端32与升速元件23以及单向元件11的输出端112联接,单向元件11的输入端111与固定元件联接。
所述输出元件22与变速轴7联接,变速轴7与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的回流升速路径;其包括单向元件11以及输入行星齿轮传动机构12。
发动机的输入功率经输入轴1,把传递到此的功率分流为两路,一路通过输出齿轮传动机构5以及传递到输出齿轮10,再传递到第一输入元件91;另一路传递到输入元件21,即传递到本实施例的输入路径;再通过汇速单元2上的行星齿轮把功率传递到输出元件22,输出元件22把传递到此的功率分流为两路,一路传递到变速轴7,即传递到本实施例的输出路径;变速轴7再传递到第二输入元件92;另一路传递到变速轴7,变速轴7再通过输入行星齿轮传动机构12,传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的回流升速路径;传递到回流升速路径的功率以及传递到输入路径的功率,都通过汇速单元2上的行星齿轮传递到输出元件22,输出元件22再重复上述过程,使传递到升速元件23以及输出元件22的转速不断随输入功率、行驶阻力的变化而无级地变速,并传递到变速轴7,从而使传递到第二输入元件92的转速随之变化;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递至本实施例的输出轴6,从而实现了把发动机的功率通过输出轴6对外输出。
实施例四:如图4中所示,选用技术方案二,一种无级变速器,它包括输入轴1、汇速单元2、液力传动器3、输出轴6、变速轴7和变速单元9,所述的输入轴1与输出轴6之间设有汇速单元2、液力传动器3、变速轴7和变速单元9,所述汇速单元2包括输入元件21、输出元件22和升速元件23,汇速单元2通过各自所需的元件配合工作,所述变速单元9包括第一输入元件91、第二输入元件92和汇速元件93,变速单元9通过各自所需的元件配合工作,输入轴1分别与输入元件21以及第一输入元件91联接,输出元件22分别与变速轴7以及液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,变速轴7与第二输入元件92联接,汇速元件93与输出轴6联接。
所述输入轴1与第一输入元件91联接,选用直接连接的方法,即输入轴1选择通过中空的方式,穿过其它元件,使它们连接在一起。
所述输出元件22与变速轴7联接,选用直接连接的方法,使它们连接在一起。
所述变速轴7与第二输入元件92联接,选用直接连接的方法,使它们连接在一起。
所述汇速元件93与输出轴6联接,选择直接连接的方法,使它们连接在一起。
所述输出元件22与液力传动器3的输入端31联接,选用间接连接的方法,即选用联接架8以及输入行星齿轮传动机构12,使它们连接在一起;其中,输出元件22与联接架8连接,联接架8与输入行星齿轮传动机构12的输入端121连接,输入行星齿轮传动机构12的输出端122与液力传动器3的输入端31连接。
所述液力传动器3的输出端32与升速元件23联接,选用增加连接的方法,即选择增加使用单向元件11,使它们连接在一起;其中,液力传动器3的输出端32与升速元件23以及单向元件11的输出端112联接,单向元件11的输入端111与固定元件联接。
所述输出元件22与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的回流升速路径;其包括联接架8、单向元件11以及输入行星齿轮传动机构12。
发动机的输入功率经输入轴1,把传递到此的功率分流为两路,一路传递到第一输入元件91,另一路传递到输入元件21,即传递到本实施例的输入路径;再通过汇速单元2上的行星齿轮把功率传递到输出元件22,输出元件22把传递到此的功率分流为两路,一路传递到变速轴7,即传递到本实施例的输出路径;变速轴7再传递到第二输入元件92;另一路通过联接架8以及输入行星齿轮传动机构12,传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的回流升速路径;传递到回流升速路径的功率以及传递到输入路径的功率,都通过汇速单元2上的行星齿轮传递到输出元件22,输出元件22再重复上述过程,使传递到升速元件23以及输出元件22的转速不断随输入功率、行驶阻力的变化而无级地变速,并传递到变速轴7,从而使传递到第二输入元件92的转速随之变化;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递至本实施例的输出轴6,从而实现了把发动机的功率通过输出轴6对外输出。
实施例五、实施例六:如图5至图6中所示,选用技术方案三,一种无级变速器,它包括输入轴1、汇速单元2、液力传动器3、输出轴6、变速轴7、变速单元9、第一单向元件13和第二单向元件14,所述的输入轴1与输出轴6之间设有汇速单元2、液力传动器3、变速轴7、变速单元9、第一单向元件13和第二单向元件14,所述汇速单元2包括输入元件21、输出元件22和升速元件23,汇速单元2通过各自所需的元件配合工作,所述变速单元9包括第一输入元件91、第二输入元件92和汇速元件93,变速单元9通过各自所需的 元件配合工作,输入轴1分别与输入元件21、第一输入元件91以及第一单向元件13的输入端131联接,输出元件22与变速轴7联接,变速轴7分别与第二输入元件92以及第二单向元件14的输入端141联接,第一单向元件13的输出端132以及第二单向元件14的输出端142与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,汇速元件93与输出轴6联接。
实施例五:如图5中所示,选用技术方案三,所述输入轴1与第一输入元件91联接,选用直接连接的方法,即输入轴1选择通过中空的方式,穿过其它元件,使它们连接在一起。
所述第一单向元件13的输出端132与液力传动器3的输入端31联接,选用直接连接的方法,使它们连接在一起。
所述液力传动器3的输出端32与升速元件23联接,选用直接连接的方法,使它们连接在一起。
所述输入轴1与第一单向元件13的输入端131联接,第一单向元件13的输出端132与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的第二输入路径。
所述输出元件22与变速轴7联接,选用间接连接的方法,即选用输入齿轮传动机构4以及联接架8,使它们连接在一起,从而构成本实施例的输入路径;其包括输入齿轮传动机构4以及联接架8;其中,输出元件22与联接架8连接,联接架8与输入齿轮传动机构4的输入端41连接,输入齿轮传动机构4的输出端42与变速轴7连接。
所述变速轴7与第二输入元件92联接,选用间接连接的方法,即选用输出齿轮10,使它们连接在一起;其中,输出齿轮10与变速轴7连接,输出齿轮10与第二输入元件92啮合。
所述变速轴7与第二单向元件14的输入端141联接,选用间接连接的方法,即选用输出齿轮传动机构5,使它们连接在一起;其中,变速轴7与输出齿轮传动机构5的输入端51连接,输出齿轮传动机构5的输出端52与第二单向元件14的输出端142连接。
所述第二单向元件14的输出端142与液力传动器3的输入端31联接,选用直接连接的方法,使它们连接在一起。
所述输出元件22与变速轴7联接,变速轴7与第二单向元件14的输入端141联接,第二单向元件14的输出端142与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的回流升速路径;其包括输入齿轮传动机构 4、输出齿轮传动机构5以及联接架8。
发动机的输入功率经输入轴1,把传递到此的功率分流为三路,第一路传递到第一输入元件91;第二路传递到输入元件21,即传递到本实施例的第一输入路径;第三路通过第一单向元件13传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的第二输入路径,第一输入路径的功率和第二输入路径的功率再通过汇速单元2上的行星齿轮把功率传递到输出元件22,输出元件22把传递到此的功率分流为两路,一路通过联接架8以及输入齿轮传动机构4传递到变速轴7,即传递到本实施例的输出路径;变速轴7再通过传递到输出齿轮10,传递到第二输入元件92;另一路通过联接架8以及输入齿轮传动机构4传递到变速轴7,再通过输出齿轮传动机构5以及第二单向元件传14递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的回流升速路径,传递到回流升速路径的功率以及传递到输入路径的功率,都通过汇速单元2上的行星齿轮传递到输出元件22,输出元件22再重复上述过程,使传递到升速元件23以及输出元件22的转速不断随输入功率、行驶阻力的变化而无级地变速,并传递到变速轴7;从而使传递到第二输入元件92的转速随之变化;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递至本实施例的输出轴6,从而实现了把发动机的功率通过输出轴6对外输出。
实施例六:如图6中所示,选用技术方案三,实施例六与实施例五的工作原理以及构成的第一输入路径、输出路径和回流升速路径相同,不同在于它们的第二输入路径的联接方案。
所述输入轴1与第一单向元件13的输入端131联接,选用直接连接的方法,使它们连接在一起。
所述第一单向元件13的输出端132与液力传动器3的输入端31联接,选用间接连接的方法,即选用第二输入齿轮传动机构15和第二输出齿轮传动机构16,使它们连接在一起;其中,第一单向元件13的输出端132与第二输入齿轮传动机构15的输入端151连接,第二输入齿轮传动机构15的输出端152与第二输出齿轮传动机构16的输入端161连接,第二输出齿轮传动机构16的输出端162与液力传动器3的输入端31连接。
所述液力传动器3的输出端32与升速元件23联接,选用直接连接的方法,使它们连接在一起。
所述输入轴1与第一单向元件13的输入端131联接,第一单向元件13的输出端132与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构 成本实施例的第二输入路径;其包括第二输入齿轮传动机构15和第二输出齿轮传动机构16。
也就是说,发动机的输入功率经输入轴1,把传递到此的功率分流为三路,第一路传递到第一输入元件91;第二路传递到输入元件21,即传递到本实施例的第一输入路径;第三路通过第一单向元件13、第二输入齿轮传动机构15和第二输出齿轮传动机构16,传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的第二输入路径。
实施例七、实施例八、实施例九、实施例十:选用技术方案之四:一种无级变速器,它包括输入轴1、汇速单元2、液力传动器3、输出轴6、变速轴7、变速单元9、第一单向元件13和第二单向元件14,所述的输入轴1与输出轴6之间设有汇速单元2、液力传动器3、变速轴7变速单元9、第一单向元件13和第二单向元件14,所述汇速单元2包括输入元件21、输出元件22和升速元件23,汇速单元2通过各自所需的元件配合工作,所述变速单元9包括第一输入元件91、第二输入元件92和汇速元件93,变速单元9通过各自所需的元件配合工作,输入轴1分别与输入元件21、第一输入元件91以及第一单向元件13的输入端131联接,输出元件22分别与变速轴7以及第二单向元件14的输入端141联接,变速轴7与第二输入元件92联接,第一单向元件13的输出端132以及第二单向元件14的输出端142与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,汇速元件93与输出轴6联接。
实施例七:如图7中所示,选用技术方案之四:一种无级变速器,它包括输入轴1、汇速单元2、液力传动器3、输出轴6、变速轴7、变速单元9、第一单向元件13和第二单向元件14,所述的输入轴1与输出轴6之间设有汇速单元2、液力传动器3、变速轴7变速单元9、第一单向元件13和第二单向元件14,所述汇速单元2包括输入元件21、输出元件22和升速元件23,汇速单元2通过各自所需的元件配合工作,所述变速单元9包括第一输入元件91、第二输入元件92和汇速元件93,变速单元9通过各自所需的元件配合工作,输入轴1分别与输入元件21、第一输入元件91以及第一单向元件13的输入端131联接,输出元件22分别与变速轴7以及第二单向元件14的输入端141联接,变速轴7与第二输入元件92联接,第一单向元件13的输出端132以及第二单向元件14的输出端142与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,汇速元件93与输出轴6联接。
所述输入轴1与第一单向元件13的输入端131联接,选用直接连接的方法,即输入轴1选择通过中空的方法,穿过其它元件,使它们连接在一起。
所述第一单向元件13的输出端132与液力传动器3的输入端31联接,选用直接连接的方法,使它们连接在一起。
所述液力传动器3的输出端32与升速元件23联接,选用直接连接的方法,使它们连接在一起。
输入轴1与第一单向元件13的输入端131联接,第一单向元件13的输出端132与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的第二输入路径。
所述输入轴1与第一输入元件91联接,选择直接连接的方法,即输入轴1选择通过中空的方法,穿过其它元件,使它们连接在一起。
所述输出元件22与变速轴7联接,选用间接连接的方法,即选用输入齿轮传动机构4以及联接架8,使它们连接在一起,从而构成本实施例的输出路径;其包括输入齿轮传动机构4以及联接架8;其中,输出元件22与联接架8连接,联接架8与输入齿轮传动机构4的输入端41连接,输入齿轮传动机构4的输出端42与变速轴7连接。
所述输出元件22与第二单向元件14的输入端141联接,选用间接连接的方法,即选用联接架8以及输入行星齿轮传动机构12,使它们连接在一起;其中,输出元件22与联接架8连接,联接架8与输入行星齿轮传动机构12的输入端121连接,输入行星齿轮传动机构12的输出端122与第二单向元件14的输入端141连接。
所述第二单向元件14的输出端142与液力传动器3的输入端31联接,选用直接连接的方法,使它们连接在一起。
所述输出元件22与第二单向元件14的输入端141联接,第二单向元件14的输出端102与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的回流升速路径;其包括联接架8以及输入行星齿轮传动机构12。
所述变速轴7与第二输入元件92联接,选用间接连接的方法,即选用输出齿轮10,使它们连接在一起;其中,输出齿轮10与变速轴7连接,输出齿轮10与第二输入元件92啮合。
发动机的输入功率经输入轴1,把传递到此的功率分流为三路,第一路传递到第一输入元件91;第二路传递到输入元件21,即传递到本实施例的第一输入路径;第三路通过第一单向元件13传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的第二输入路径,第一输入路径的功率和第二输入路径的功率再通过汇速单元2上的行星齿轮把功率传递到输出元件22,输出元件22把传递到此的功率分流为两路,一路通过联接 架8以及输入齿轮传动机构4传递到变速轴7,即传递到本实施例的输出路径;变速轴7再通过输出齿轮10,传递到第二输入元件92;另一路通过联接架8、输入行星齿轮传动机构12以及第二单向元件传14传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的回流升速路径,传递到回流升速路径的功率以及传递到输入路径的功率,都通过汇速单元2上的行星齿轮传递到输出元件22,输出元件22再重复上述过程,使传递到升速元件23以及输出元件22的转速不断随输入功率、行驶阻力的变化而无级地变速,并传递到变速轴7;从而使传递到第二输入元件92的转速随之变化;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递至本实施例的输出轴6,从而实现了把发动机的功率通过输出轴6对外输出。
实施例八:如图8中所示,选用技术方案四:所述输入轴1与第一单向元件13的输入端131联接,选择直接连接的方法,使它们连接在一起。
所述第一单向元件13的输出端132与液力传动器3的输入端31联接,选用间接连接的方法,即选用第二输入齿轮传动机构15和第二输出齿轮传动机构16,使它们连接在一起;其中,第一单向元件13的输出端132与第二输入齿轮传动机构15的输入端151连接,第二输入齿轮传动机构15的输出端152与第二输出齿轮传动机构16的输入端161连接,第二输出齿轮传动机构16的输出端162与液力传动器3的输入端31连接。
所述液力传动器3的输出端32与升速元件23联接,选用直接连接的方法,使它们连接在一起。
输入轴1与第一单向元件13的输入端131联接,第一单向元件13的输出端132与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的第二输入路径;其包括第二输入齿轮传动机构15和第二输出齿轮传动机构16。
所述输入轴1与第一输入元件91联接,选择直接连接的方法,即输入轴1选择通过中空的方法,穿过其它元件,使它们连接在一起。
所述输出元件22与变速轴7联接,选用间接连接的方法,即选用输入齿轮传动机构4以及联接架8,使它们连接在一起,从而构成本实施例的输出路径;其包括输入齿轮传动机构4以及联接架8;其中,输出元件22与联接架8连接,联接架8与输入齿轮传动机构4的输入端41连接,输入齿轮传动机构4的输出端42与变速轴7连接。
所述输出元件22与第二单向元件14的输入端141联接,选用间接连接的方法,即选用联接架8以及输入行星齿轮传动机构12,使它们连接在一起;其中,输出元件22与联 接架8连接,联接架8与输入行星齿轮传动机构12的输入端121连接,输入行星齿轮传动机构12的输出端122与第二单向元件14的输入端141连接。
所述第二单向元件14的输出端142与液力传动器3的输入端31联接,选用直接连接的方法,使它们连接在一起。
所述输出元件22与第二单向元件14的输入端141联接,第二单向元件14的输出端142与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的回流升速路径;其包括联接架8以及输入行星齿轮传动机构12。
所述变速轴7与第二输入元件92联接,选用间接连接的方法,即选用输出齿轮10,使它们连接在一起;其中,输出齿轮10与变速轴7连接,输出齿轮10与第二输入元件92啮合。
发动机的输入功率经输入轴1,把传递到此的功率分流为三路,第一路传递到第一输入元件91;第二路传递到输入元件21,即传递到本实施例的第一输入路径;第三路通过第一单向元件13、第二输入齿轮传动机构15和第二输出齿轮传动机构16传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的第二输入路径,第一输入路径的功率和第二输入路径的功率再通过汇速单元2上的行星齿轮把功率传递到输出元件22,输出元件22把传递到此的功率分流为两路,一路通过输入齿轮传动机构4,传递到变速轴7,即传递到本实施例的输出路径;变速轴7再通过输出齿轮10,传递到第二输入元件92;另一路通过联接架8、输入行星齿轮传动机构12以及第二单向元件14传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的回流升速路径;传递到回流升速路径的功率以及传递到输入路径的功率,都通过汇速单元2上的行星齿轮传递到输出元件22,输出元件22再重复上述过程,使传递到升速元件23以及输出元件22的转速不断随输入功率、行驶阻力的变化而无级地变速,并传递到变速轴7;从而使传递到第二输入元件92的转速随之变化;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递至本实施例的输出轴6,从而实现了把发动机的功率通过输出轴6对外输出。
实施例九:如图9中所示,选用技术方案四:所述输入轴1与第一单向元件13的输入端131联接,选择直接连接的方法,使它们连接在一起。
所述第一单向元件13的输出端132与液力传动器3的输入端31联接,选用间接连接的方法,即选用第二输入齿轮传动机构15和第二输出齿轮传动机构16,使它们连接在一起;其中,第一单向元件13的输出端132与第二输入齿轮传动机构15的输入端151连接, 第二输入齿轮传动机构15的输出端152与第二输出齿轮传动机构16的输入端161连接,第二输出齿轮传动机构16的输出端162与液力传动器3的输入端31连接。
所述液力传动器3的输出端32与升速元件23联接,选用直接连接的方法,使它们连接在一起。
输入轴1与第一单向元件13的输入端131联接,第一单向元件13的输出端132与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的第二输入路径;其包括第二输入齿轮传动机构15和第二输出齿轮传动机构16。
所述输入轴1与第一输入元件91联接,选择直接连接的方法,即输入轴1选择通过中空的方法,穿过其它元件,使它们连接在一起。
所述输出元件22与变速轴7联接,选用间接连接的方法,即选用输入齿轮传动机构4以及联接架8,使它们连接在一起,从而构成本实施例的输出路径;其包括输入齿轮传动机构4以及联接架8;其中,输出元件22与联接架8连接,联接架8与输入齿轮传动机构4的输入端41连接,输入齿轮传动机构4的输出端42与变速轴7连接。
所述输出元件22与第二单向元件14的输入端141联接,选用间接连接的方法,即选用输入齿轮传动机构4、联接架8以及第三输出齿轮传动机构17,使它们连接在一起;其中,输出元件22与联接架8连接,联接架8与输入齿轮传动机构4的输入端41连接,输入齿轮传动机构4的第二输出端43与第三输出齿轮传动机构17的输入端171连接,第三输出齿轮传动机构17的输出端172与第二单向元件14的输入端141连接。
所述第二单向元件14的输出端142与液力传动器3的输入端31联接,选用直接连接的方法,使它们连接在一起。
所述输出元件22与第二单向元件14的输入端141联接,第二单向元件14的输出端142与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的回流升速路径;其包括输入齿轮传动机构4、联接架8以及第三输出齿轮传动机构17。
所述变速轴7与第二输入元件92联接,选用间接连接的方法,即选用输出齿轮10,使它们连接在一起;其中,输出齿轮10与变速轴7连接,输出齿轮10与第二输入元件92啮合。
发动机的输入功率经输入轴1,把传递到此的功率分流为三路,第一路传递到第一输入元件91;第二路传递到输入元件21,即传递到本实施例的第一输入路径;第三路通过第一单向元件13、第二输入齿轮传动机构15和第二输出齿轮传动机构16传递到液力传动器 3,液力传动器3再传递到升速元件23,即传递到本实施例的第二输入路径,第一输入路径的功率和第二输入路径的功率再通过汇速单元2上的行星齿轮把功率传递到输出元件22,输出元件22把传递到此的功率分流为两路,一路通过联接架8以及输入齿轮传动机构4传递到变速轴7,即传递到本实施例的输出路径;变速轴7再通过输出齿轮10,传递到第二输入元件92;另一路通过联接架8、输入齿轮传动机构4、第三输出齿轮传动机构17以及第二单向元件14传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的回流升速路径;传递到回流升速路径的功率以及传递到输入路径的功率,都通过汇速单元2上的行星齿轮传递到输出元件22,输出元件22再重复上述过程,使传递到升速元件23以及输出元件22的转速不断随输入功率、行驶阻力的变化而无级地变速,并传递到变速轴7;从而使传递到第二输入元件92的转速随之变化;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递至本实施例的输出轴6,从而实现了把发动机的功率通过输出轴6对外输出。
实施例十:如图10中所示,选用技术方案四:所述输入轴1与第一单向元件13的输入端131联接,选择直接连接的方法,使它们连接在一起。
所述第一单向元件13的输出端132与液力传动器3的输入端31联接,选用间接连接的方法,即选用第二输入齿轮传动机构15和第二输出齿轮传动机构16,使它们连接在一起;其中,第一单向元件13的输出端132与第二输入齿轮传动机构15的输入端151连接,第二输入齿轮传动机构15的输出端152与第二输出齿轮传动机构16的输入端161连接,第二输出齿轮传动机构16的输出端162与液力传动器3的输入端31连接。
所述液力传动器3的输出端32与升速元件23联接,选用直接连接的方法,使它们连接在一起。
所述输入轴1与第一单向元件13的输入端131联接,第一单向元件13的输出端132与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的第二输入路径;其包括第二输入齿轮传动机构15和第二输出齿轮传动机构16。
所述输入轴1与第一输入元件91联接,选用间接连接的方法,即选用第二输入齿轮传动机构15以及输出齿轮10,使它们连接在一起;其中,输入轴1与第二输入齿轮传动机构15的输入端151连接,第二输入齿轮传动机构15的输出端152与输出齿轮10连接,输出齿轮10与第二输入元件91啮合。
所述输出元件22与变速轴7联接,选择直接连接的方法,使它们连接在一起,从而 构成本实施例的输出路径。
所述输出元件22与第二单向元件14的输入端141联接,选用间接连接的方法,即选用联接架8以及输入行星齿轮传动机构12,使它们连接在一起;其中,输出元件22与联接架8连接,联接架8与输入行星齿轮传动机构12的输入端121连接,输入行星齿轮传动机构12的输出端122与第二单向元件14的输入端141连接。
所述第二单向元件14的输出端142与液力传动器3的输入端31联接,选用直接连接的方法,使它们连接在一起。
所述输出元件22与第二单向元件14的输入端141联接,第二单向元件14的输出端142与液力传动器3的输入端31联接,液力传动器3的输出端32与升速元件23联接,从而构成本实施例的回流升速路径;其包括联接架8以及输入行星齿轮传动机构12。
所述变速轴7与第二输入元件92联接,选用直接连接的方法,使它们连接在一起。
发动机的输入功率经输入轴1,把传递到此的功率分流为三路,第一路通过第二输入齿轮传动机构15以及输出齿轮10传递到第一输入元件91;第二路传递到输入元件21,即传递到本实施例的第一输入路径;第三路通过第一单向元件13、第二输入齿轮传动机构15和第二输出齿轮传动机构16传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的第二输入路径,第一输入路径的功率和第二输入路径的功率再通过汇速单元2上的行星齿轮把功率传递到输出元件22,输出元件22把传递到此的功率分流为两路,一路传递到变速轴7,即传递到本实施例的输出路径;变速轴7再传递到第二输入元件92;另一路通过联接架8、输入行星齿轮传动机构12以及第二单向元件14传递到液力传动器3,液力传动器3再传递到升速元件23,即传递到本实施例的回流升速路径;传递到回流升速路径的功率以及传递到输入路径的功率,都通过汇速单元2上的行星齿轮传递到输出元件22,输出元件22再重复上述过程,使传递到升速元件23以及输出元件22的转速不断随输入功率、行驶阻力的变化而无级地变速,并传递到变速轴7;从而使传递到第二输入元件92的转速随之变化;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递至本实施例的输出轴6,从而实现了把发动机的功率通过输出轴6对外输出。
对于本发明,当输入轴1的转速不变,输出元件22、变速轴7以及输出轴6的转速,随其输入扭矩、阻力矩的变化而变化,输入扭矩越大、阻力矩越低,传递到输出元件22、变速轴7以及输出轴6上的转速就越大,反之,则越小,从而实现本发明能随输入扭矩、车辆行驶阻力的不同而无级地改变速度的无级变速器。
本发明使用时,设发动机的输入功率、输入转速及其负荷不变,即输入轴1的转速与扭矩为常数,汽车起步前,输出轴6的转速为零,由于输出轴6与传动系传动到驱动轮之间的转速比,设置得足够的大,可以设置成超低速的挡位,当本发明选用技术方案一或者技术方案二时;汽车启动,发动机的输入功率经输入轴1,分流为两路,一路直接或者通过若干元件传递到第一输入元件91,另一路传递到本发明的输入路径中的输入元件21,输入元件21再通过汇速单元2上的行星齿轮把功率传递到输出元件22,输出元件22把传递到此的功率分流为两路,一路传递到本发明的输出路径中的变速轴7,再传递到第二输入元件92;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递到本实施例的输出轴6,当传递到输出轴6上的扭矩,经传动系传动到驱动轮上产生的牵引力足以克服汽车起步阻力时,汽车则起步并开始加速,与之相联的输出元件22、变速轴7以及输出轴6的转速也从零逐渐增加;另一路传递到本发明的回流升速路径。
当本发明选用技术方案三或者技术方案四时;发动机的输入功率经输入轴1,分流为三路,第一路直接或者通过若干元件传递到第一输入元件91,第二路传递到本发明的第一输入路径中的输入元件21,第三路传递到本发明的第二输入路径中的升速元件23,输入元件21和升速元件23再通过汇速单元2上的行星齿轮把功率传递到输出元件22,输出元件22把传递到此的功率分流为两路,一路传递到本发明的输出路径中的变速轴7,再传递到第二输入元件92;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递到本实施例的输出轴6;当传递到输出轴6上的扭矩,经传动系传动到驱动轮上产生的牵引力足以克服汽车起步阻力时,汽车则起步并开始加速,与之相联的输出元件22、变速轴7以及输出轴6的转速也从零逐渐增加;另一路传递到本发明的回流升速路径。
当回流升速路径的功率传递到升速元件23时,此路功率则与传递到输入元件21的功率,全部通过汇速单元2上的行星齿轮传递到输出元件22,输出元件22再重复上述过程,在各个元件之间不断地进行分矩、变矩以及汇矩的反复循环,从而使回流升速路径中的液力传动器3的输出转速不断升高,进而使传递到输出元件22的转速也不断升高,并传递到变速轴7;从而使传递到第二输入元件92的转速随之变化;此时,传递到第一输入元件91的功率以及传递到第二输入元件92的功率,都通过变速单元9上的行星齿轮传递到汇速元件93,并传递至本发明的输出轴6,再经传动系传动到驱动轮上,汽车则不断加速,从而使输出轴6的转速随着阻力矩的减少而不断升高。

Claims (8)

  1. 一种无级变速器,它包括输入轴(1)、汇速单元(2)、液力传动器(3)、输出轴(6)、变速轴(7)和变速单元(9),其特征在于:所述的输入轴(1)与输出轴(6)之间设有汇速单元(2)、液力传动器(3)、变速轴(7)和变速单元(9),所述汇速单元(2)包括输入元件(21)、输出元件(22)和升速元件(23),汇速单元(2)通过各自所需的元件配合工作,所述变速单元(9)包括第一输入元件(91)、第二输入元件(92)和汇速元件(93),变速单元(9)通过各自所需的元件配合工作,输入轴(1)分别与输入元件(21)以及第一输入元件(91)联接,输出元件(22)与变速轴(7)联接,变速轴(7)分别与液力传动器(3)的输入端(31)以及第二输入元件(92)联接,液力传动器(3)的输出端(32)与升速元件(23)联接,汇速元件(93)与输出轴(6)联接。
  2. 一种无级变速器,它包括输入轴(1)、汇速单元(2)、液力传动器(3)、输出轴(6)、变速轴(7)和变速单元(9),其特征在于:所述的输入轴(1)与输出轴(6)之间设有汇速单元(2)、液力传动器(3)、变速轴(7)和变速单元(9),所述汇速单元(2)包括输入元件(21)、输出元件(22)和升速元件(23),汇速单元(2)通过各自所需的元件配合工作,所述变速单元(9)包括第一输入元件(91)、第二输入元件(92)和汇速元件(93),变速单元(9)通过各自所需的元件配合工作,输入轴(1)分别与输入元件(21)以及第一输入元件(91)联接,输出元件(22)分别与变速轴(7)以及液力传动器(3)的输入端(31)联接,液力传动器(3)的输出端(32)与升速元件(23)联接,变速轴(7)与第二输入元件(92)联接,汇速元件(93)与输出轴(6)联接。
  3. 一种无级变速器,它包括输入轴(1)、汇速单元(2)、液力传动器(3)、输出轴(6)、变速轴(7)、变速单元(9)、第一单向元件(13)和第二单向元件(14),其特征在于:所述的输入轴(1)与输出轴(6)之间设有汇速单元(2)、液力传动器(3)、变速轴(7)、变速单元(9)、第一单向元件(13)和第二单向元件(14),所述汇速单元(2)包括输入元件(21)、输出元件(22)和升速元件(23),汇速单元(2)通过各自所需的元件配合工作,所述变速单元(9)包括第一输入元件(91)、第二输入元件(92)和汇速元件(93),变速单元(9)通过各自所需的元件配合工作,输入轴(1)分别与输入元件(21)、第一输入元件(91)以及第一单向元件(13)的输入端(131)联接,输出元件(22)与变速轴(7)联接,变速轴(7)分别与第二输入元件(92)以及第二单向元件(14)的输入端(141)联接,第一单向元件(13)的输出端(132)以及第二单向元件(14)的输出端(142)与液力传动器(3)的输入端(31)联接,液力传动器(3)的输出端(32)与升速元件(23)联接,汇速元件(93)与输出轴(6)联接。
  4. 一种无级变速器,它包括输入轴(1)、汇速单元(2)、液力传动器(3)、输出轴(6)、变速轴(7)、变速单元(9)、第一单向元件(13)和第二单向元件(14),其特征在于:所述的输入轴(1)与输出轴(6)之间设有汇速单元(2)、液力传动器(3)、变速轴(7)变速单元(9)、第一单向元件(13)和第二单向元件(14),所述汇速单元(2)包括输入元件(21)、输出元件(22)和升速元件(23),汇速单元(2)通过各自所需的元件配合工作,所述变速单元(9)包括第一输入元件(91)、第二输入元件(92)和汇速元件(93),变速单元(9)通过各自所需的元件配合工作,输入轴(1)分别与输入元件(21)、第一输入元件(91)以及第一单向元件(13)的输入端(131)联接,输出元件(22)分别与变速轴(7)以及第二单向元件(14)的输入端(141)联接,变速轴(7)与第二输入元件(92)联接,第一单向元件(13)的输出端(132)以及第二单向元件(14)的输出端(142)与液力传动器(3)的输入端(31)联接,液力传动器(3)的输出端(32)与升速元件(23)联接,汇速元件(93)与输出轴(6)联接。
  5. 根据权利要求1至4所述的无级变速器,其特征在于:所述汇速单元(2)以及变速单元(9)可以选择行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或谐波齿轮传动机构,汇速单元(2)的输入元件(21)、输出元件(22)和升速元件(23)以及变速单元(9)的第一输入元件(91)、第二输入元件(92)和汇速元件(93),可以从构成上述行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或谐波齿轮传动机构的基本元件中选用,它们起到汇速的作用。
  6. 根据权利要求1至4所述的无级变速器,其特征在于:所述各个需要联接的元件,可以选择直接连接的方法,或者选择间接连接的方法,或者选择增加连接的方法;所述直接连接的方法,指的是:需要联接的两个元件,可以选择直接连接,使它们连接在一起;当它们被其它若干元件分隔时,可以通过中空的方式,穿过其它若干元件,使它们连接在一起;所述间接连接的方法,指的是:需要联接的两个元件,可以选择增加合适的传动机构、联接轴以及联接架之中的若干个元件,使它们连接在一起;所述增加连接的方法,指的是:需要联接的两个元件,连接在一起后,可以选择增加使用单向元件,使它们连接在一起。
  7. 根据权利要求1至4所述的无级变速器,其特征在于:所述传动机构可以选择行星齿轮传动机构、少齿差传动机构、摆线针轮行星传动机构或谐波齿轮传动机构,也可以选择各种齿轮传动机构、链轮传动机构以及带轮传动机构。
  8. 根据权利要求1至4所述的无级变速器,其特征在于:所述液力传动器(3)可以选用液力变矩器、液力偶合器、压马达和液压泵以及各种不同类型的电控或液控离合器。
PCT/CN2015/083417 2015-07-07 2015-07-07 一种无级变速器 WO2017004781A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580081411.0A CN107850199B (zh) 2015-07-07 2015-07-07 一种无级变速器
PCT/CN2015/083417 WO2017004781A1 (zh) 2015-07-07 2015-07-07 一种无级变速器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083417 WO2017004781A1 (zh) 2015-07-07 2015-07-07 一种无级变速器

Publications (1)

Publication Number Publication Date
WO2017004781A1 true WO2017004781A1 (zh) 2017-01-12

Family

ID=57684781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083417 WO2017004781A1 (zh) 2015-07-07 2015-07-07 一种无级变速器

Country Status (2)

Country Link
CN (1) CN107850199B (zh)
WO (1) WO2017004781A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2230183A5 (en) * 1973-05-17 1974-12-13 Leboine Pierre Composite three stage vehicle transmission - has hydraulic or electrical stage and mechanical stage
CN101131203A (zh) * 2007-09-21 2008-02-27 黄兴隆 液力差动无级变速器
CN102003513A (zh) * 2010-12-21 2011-04-06 四川大学 一种液力机械复合传动系统
CN102312967A (zh) * 2010-07-07 2012-01-11 吴志强 一种无级变速器
CN103953705A (zh) * 2014-05-07 2014-07-30 吴志强 一种无级变速器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0004412A1 (en) * 1978-01-21 1979-10-03 GKN Transmissions Limited Continuously variable transmission mechanisms
JP2001271899A (ja) * 2000-03-24 2001-10-05 Mitsubishi Heavy Ind Ltd 差動機構式無段変速システム
DE10358114A1 (de) * 2002-12-23 2004-07-01 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Getriebe mit stufenlos verstellbarer Übersetzung, mit oder ohne Leistungsverzweigung sowie mit und ohne E-Maschine
CN104696453A (zh) * 2010-07-07 2015-06-10 吴志强 一种复合行星传动的无级变速器
CN104595437A (zh) * 2010-07-07 2015-05-06 吴志强 一种复合型无级变速器
CN102943859B (zh) * 2012-11-23 2015-07-08 天津工程机械研究院 一种装载机用液压机械无级变速器
CN103307248B (zh) * 2013-06-26 2015-11-25 重庆大学 回流式液力机械自动变速传动装置
CN103939559A (zh) * 2014-05-07 2014-07-23 吴志强 一种复合型液力传动器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2230183A5 (en) * 1973-05-17 1974-12-13 Leboine Pierre Composite three stage vehicle transmission - has hydraulic or electrical stage and mechanical stage
CN101131203A (zh) * 2007-09-21 2008-02-27 黄兴隆 液力差动无级变速器
CN102312967A (zh) * 2010-07-07 2012-01-11 吴志强 一种无级变速器
CN102003513A (zh) * 2010-12-21 2011-04-06 四川大学 一种液力机械复合传动系统
CN103953705A (zh) * 2014-05-07 2014-07-30 吴志强 一种无级变速器

Also Published As

Publication number Publication date
CN107850199B (zh) 2023-09-29
CN107850199A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
CN101235877B (zh) 一种无级变速器
CN101598197B (zh) 一种多档同时啮合变速器
CN1793702B (zh) 一种无级变速器
CN102022491B (zh) 一种无级变速器
WO2017005184A1 (zh) 一种复合式限矩型水介质液力偶合器以及起动器
CN106246859A (zh) 一种复合液力变矩器的无级变速器
WO2017004782A1 (zh) 一种复合型液力传动器
WO2017004781A1 (zh) 一种无级变速器
WO2016112804A1 (zh) 一种复合型轴流式液力变矩器以及无级变速器
WO2017005187A1 (zh) 一种复合式调速型液力偶合器以及起动器
CN104595437A (zh) 一种复合型无级变速器
WO2017005180A1 (zh) 一种复合型后置齿轮箱体式液力偶合器以及起动器
WO2017005182A1 (zh) 一种复合式液力异型偶合器以及起动器
WO2017005183A1 (zh) 一种复合型后辅室延长式限矩型液力偶合器以及起动器
WO2016112806A1 (zh) 一种复合型溢流阀外置式液力变矩器以及无级变速器
WO2017005186A1 (zh) 一种复合型阀控充液式液力偶合器以及起动器
WO2017005185A1 (zh) 一种复合型恒充式液力偶合器以及起动器
CN107110320B (zh) 一种复合型液力传动器
WO2016112809A1 (zh) 一种复合型双泵轮液力变矩器以及无级变速器
WO2016112805A1 (zh) 一种复合型双涡轮液力变矩器以及无级变速器
WO2016112807A1 (zh) 一种复合型向心涡轮式液力变矩器以及无级变速器
WO2017005176A1 (zh) 一种复合型箱磨式液力偶合器以及起动器
WO2017005179A1 (zh) 一种复合型双腔液力偶合器以及起动器
WO2016112808A1 (zh) 一种复合型向心式液力变矩器以及无级变速器
WO2016112811A1 (zh) 一种复合型双导轮式液力变矩器以及无级变速器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 201580081411.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897437

Country of ref document: EP

Kind code of ref document: A1