WO2017004757A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2017004757A1
WO2017004757A1 PCT/CN2015/083333 CN2015083333W WO2017004757A1 WO 2017004757 A1 WO2017004757 A1 WO 2017004757A1 CN 2015083333 W CN2015083333 W CN 2015083333W WO 2017004757 A1 WO2017004757 A1 WO 2017004757A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
terminal
carriers
different
base station
Prior art date
Application number
PCT/CN2015/083333
Other languages
English (en)
French (fr)
Inventor
贾亮
吕永霞
李小捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/083333 priority Critical patent/WO2017004757A1/zh
Priority to CN201580035397.0A priority patent/CN106560012B/zh
Priority to JP2017568103A priority patent/JP6515210B2/ja
Priority to AU2015401601A priority patent/AU2015401601B2/en
Priority to CN202010308549.2A priority patent/CN111654918B/zh
Priority to EP15897413.9A priority patent/EP3306995B1/en
Publication of WO2017004757A1 publication Critical patent/WO2017004757A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • H04L5/0082Timing of allocation at predetermined intervals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a communication method and apparatus.
  • 3G the 3 rd Generation, third generation mobile communication system
  • 3GPP the 3 rd Generation Partner Project, Third Generation Partnership Project
  • 3GPP LTE Long Term Evolution, Long Term Evolution
  • LTE-Advanced is a technology evolution based on LTE that supports backward compatibility with LTE systems.
  • LTE-Advanced has become a shared concept.
  • LTE-Advanced has new requirements in terms of frequency, bandwidth, peak rate and compatibility.
  • 3GPP proposes carrier aggregation technology as one of the key technologies of the LTE-Advanced system.
  • the terminal can only activate two carriers at the same time.
  • the terminal can only use one secondary carrier for uplink transmission at a time. Therefore, for one transmission.
  • the terminal can only use one secondary carrier for transmission. Therefore, there is a defect of poor flexibility.
  • the terminal activates a primary component carrier (PCC) and a slave component carrier (SCC). In a transmission process including multiple TTIs, the terminal performs only on the same carrier. Uplink transmission will not be transmitted on different carriers. Or, as shown in FIG. 1B, the terminal activates the PCC and the SCC1, and in the transmission process including multiple TTIs, the terminal performs uplink transmission only on the same carrier, and does not transmit on different carriers.
  • PCC primary component carrier
  • SCC slave component carrier
  • the terminal in a transmission process including multiple TTIs, the terminal It can only be transmitted on the same carrier, and there is a defect of poor flexibility.
  • the embodiments of the present invention provide a communication method and a communication device, which are used to solve the defect that a terminal can only transmit on the same carrier in a single transmission process including multiple TTIs.
  • a communication method including:
  • the base station sends carrier configuration information to the terminal, where the carrier configuration information is used to determine a carrier that the terminal can configure;
  • the base station performs uplink reception on different transmission time intervals TTI by using different carriers in the carriers that the terminal can configure.
  • the number of carriers that the terminal can configure is greater than or equal to the number of carriers that the terminal can simultaneously adopt.
  • the method before the sending, by the base station, the carrier configuration information to the terminal, the method further includes:
  • the base station receives the carrier capability of the terminal sent by the terminal, where the carrier capability includes the number of carriers that the terminal can simultaneously adopt.
  • the carrier configuration information includes each carrier in a carrier that can be configured by the terminal.
  • the base station performs uplink receiving on different transmission time intervals TTI by using different carriers in the carrier that can be configured by the terminal, including :
  • the base station For each carrier of the carrier that can be configured by the terminal, the base station starts with a starting TTI corresponding to the carrier, and uses a transmission period corresponding to the carrier, and receives a channel sounding reference sent by the terminal on the carrier.
  • Signal SRS For each carrier of the carrier that can be configured by the terminal, the base station starts with a starting TTI corresponding to the carrier, and uses a transmission period corresponding to the carrier, and receives a channel sounding reference sent by the terminal on the carrier.
  • Signal SRS Signal
  • the corresponding starting TTIs of the carriers that can be configured by the terminal are the same, and the maximum number of carriers that have the same transmission period is the number of carriers that the terminal can simultaneously adopt.
  • the base station Before performing uplink reception on the interval TTI, it also includes:
  • the base station performs uplink reception on different TTIs by using different carriers in the carrier that can be configured by the terminal, including:
  • the base station receives the SRS sent by the terminal according to the SRS sending command on different TTIs by using different carriers that send the SRS sending command.
  • the base station performs uplink on different transmission time intervals TTI by using different carriers in the carrier that can be configured by the terminal After receiving, it also includes:
  • the base station For any received SRS, the base station performs downlink carrier processing on the carrier that sends the SRS according to the any one of the SRSs.
  • the carrier that the terminal can configure includes a carrier used by the base station.
  • the base station adopts different carriers in the carrier that can be configured by the terminal at different transmission times. Before performing uplink reception on the interval TTI, it also includes:
  • the base station performs uplink reception on different transmission time intervals TTI by using different carriers in the carrier that can be configured by the terminal, including:
  • the base station receives uplink data sent by the terminal according to the data sending instruction on different TTIs by using different carriers in the carrier that can be configured by the terminal.
  • the base station adopts different carriers in the carriers that can be configured by the terminal at different transmission time intervals. After uplink reception on the TTI, it also includes:
  • the base station determines that the first carrier that performs uplink data transmission on the first TTI does not meet the preset condition, and when the second carrier satisfies the preset condition, sends a carrier adjustment instruction to the terminal.
  • the determining, by the base station, that the first carrier that performs the uplink data transmission on the first TTI does not meet the preset condition includes:
  • the determining, by the base station, that the second carrier meets the preset condition includes:
  • the base station determines that the load of the second carrier is less than or equal to a load preset threshold and/or a signal quality is greater than a signal quality preset threshold.
  • a method of communication comprising:
  • the terminal receives carrier configuration information sent by the base station
  • the terminal performs uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carriers.
  • the number of carriers that the terminal can configure is greater than or equal to the number of carriers that the terminal can simultaneously adopt.
  • the method before the receiving, by the terminal, the carrier configuration information sent by the base station, the method further includes:
  • the terminal sends the carrier capability of the terminal to the base station, where the carrier capability includes the number of carriers that the terminal can simultaneously adopt.
  • the carrier configuration information includes each carrier in a carrier that the terminal can configure The starting TTI and transmission period of the uplink transmission.
  • the terminal uses different carriers in the configurable carriers to perform on different transmission time intervals TTI.
  • Upstream transmission including:
  • the terminal For each of the carriers that can be configured by the terminal, the terminal starts with a starting TTI corresponding to the carrier, and transmits a channel sounding reference signal SRS on the carrier by using a transmission period corresponding to the carrier.
  • the corresponding start TTI of the carrier that can be configured by the terminal is the same, and the carrier with the same transmission period is the same.
  • the maximum number is the number of carriers that the terminal can simultaneously use.
  • the terminal uses different carriers in the configurable carriers at different transmission time intervals TTI Before performing uplink transmission, it also includes:
  • the terminal performs uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carrier, including:
  • the terminal transmits the SRS on different TTIs by using different carriers that receive the SRS sending command.
  • the carrier that the terminal can configure includes the carrier used by the base station.
  • the terminal uses different carriers in the configurable carriers at different transmission time intervals TTI Before performing uplink transmission, it also includes:
  • the terminal performs uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carrier, including:
  • the method further includes:
  • the terminal receives a carrier adjustment instruction
  • the terminal according to the carrier adjustment command, adjusts uplink data that is transmitted by using the first carrier on the first TTI to be transmitted on the second TTI by using the second carrier.
  • a communication device including:
  • a sending unit configured to send carrier configuration information to the terminal, where the carrier configuration information is used to determine a carrier that the terminal can configure;
  • a receiving unit configured to perform uplink receiving on different transmission time intervals TTI by using different carriers in the carriers that can be configured by the terminal.
  • the number of carriers that the terminal can configure is greater than or equal to the number of carriers that the terminal can simultaneously adopt.
  • the receiving unit is further configured to receive, by the terminal, a carrier capability of the terminal, where The carrier capability includes the number of carriers that the terminal can simultaneously employ.
  • the carrier configuration information includes each carrier in a carrier that can be configured by the terminal.
  • the receiving unit when using different carriers in the carrier that can be configured by the terminal, performing uplink receiving on different transmission time intervals TTI , Specifically:
  • the receiving unit For each of the carriers that can be configured by the terminal, the receiving unit starts from the starting TTI corresponding to the carrier, and uses the transmission period corresponding to the carrier, and receives the channel detection sent by the terminal on the carrier.
  • Reference signal SRS For each of the carriers that can be configured by the terminal, the receiving unit starts from the starting TTI corresponding to the carrier, and uses the transmission period corresponding to the carrier, and receives the channel detection sent by the terminal on the carrier.
  • Reference signal SRS Reference signal
  • the corresponding start TTI of the carrier that can be configured by the terminal is the same, and the carrier with the same transmission period is the same.
  • the maximum number is the number of carriers that the terminal can simultaneously use.
  • the sending unit is further configured to send the SRS to the terminal by using different carriers. Send an instruction;
  • the receiving unit uses the different carriers in the carrier that can be configured by the terminal to perform uplink receiving on different TTIs, specifically:
  • the receiving unit receives the SRS sent by the terminal according to the SRS sending instruction on different TTIs by using different carriers that send the SRS sending command.
  • the processing unit is further configured to: according to any one of the received SRSs, according to the any one of the SRS pairs The carrier of the SRS performs downlink carrier processing.
  • the carrier that the terminal can configure includes the carrier used by the base station.
  • the sending unit is further configured to send a data sending instruction to the terminal;
  • the receiving unit uses the different carriers in the carrier that can be configured by the terminal to perform uplink receiving on different transmission time intervals TTI, specifically:
  • the receiving unit receives uplink data sent by the terminal according to the data sending instruction on different TTIs by using different carriers in the carrier that can be configured by the terminal.
  • the determining unit is further configured to: determine that the first carrier that performs uplink data transmission on the first TTI does not meet the preset condition, The second carrier satisfies the preset condition:
  • the sending unit is further configured to: when the determining unit determines that the first carrier that performs uplink data transmission on the first TTI does not meet the preset condition, and when the second carrier meets the preset condition, send the carrier to the terminal Adjust the instructions.
  • the determining unit determines, when the first carrier that performs uplink data transmission on the first TTI does not meet the preset condition, specifically for:
  • a load of the first carrier that performs uplink data transmission on the first TTI is greater than a load preset threshold and/or a signal quality is less than or equal to a signal quality preset threshold;
  • the determining unit determines that the second carrier meets the preset condition
  • the determining unit is specifically:
  • the determining unit determines that the load of the second carrier is less than or equal to the load preset threshold and/or the signal quality is greater than the signal quality preset threshold.
  • a fourth aspect provides a communication device for communication, including:
  • a receiving unit configured to receive carrier configuration information sent by the base station
  • a determining unit configured to determine, according to the carrier configuration information, a carrier that the terminal can configure
  • a sending unit configured to perform uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carriers.
  • the number of carriers that the terminal can configure is greater than or equal to the number of carriers that the terminal can simultaneously adopt.
  • the sending unit is further configured to send, to the base station, a carrier capability of the terminal,
  • the carrier capability includes the number of carriers that the terminal can simultaneously employ.
  • the carrier configuration information includes each carrier in a carrier that the terminal can configure The starting TTI and transmission period of the uplink transmission.
  • the sending unit uses different carriers in the configurable carrier to perform uplink transmission on different transmission time intervals TTI, specifically :
  • the sending unit For each carrier of the carrier that can be configured by the terminal, the sending unit starts with a starting TTI corresponding to the carrier, and uses a transmission period corresponding to the carrier, and sends a channel sounding reference signal SRS on the carrier.
  • the corresponding start TTI of the carrier that can be configured by the terminal is the same, and the carrier with the same transmission period is the same.
  • the maximum number is the number of carriers that the terminal can simultaneously use.
  • the receiving unit is further configured to: Send SRS sending instructions;
  • the sending unit uses the different carriers in the configurable carrier to perform uplink transmission on different transmission time intervals TTI, specifically:
  • the sending unit sends the SRS on different TTIs by using different carriers that receive the SRS sending command.
  • the carrier that the terminal can configure includes a carrier used by the base station.
  • the receiving unit is further configured to receive a data sending instruction sent by the base station;
  • the sending unit uses the different carriers in the configurable carrier to perform uplink transmission on different transmission time intervals TTI, specifically:
  • the sending unit sends the uplink data on different transmission time intervals TTI by using different carriers in the configurable carriers according to the data sending instruction.
  • the receiving unit is further configured to receive a carrier adjustment instruction
  • the sending unit is specifically configured to: adjust, according to the carrier adjustment command, uplink data that is transmitted by using the first carrier on the first TTI to use the second carrier to perform on the second TTI. transmission.
  • the embodiment of the present invention provides a communication method and a communication device.
  • only the terminal can transmit different carriers on different TTIs, and the base station can use different carriers to perform uplink reception on different TTIs.
  • the effect of using different carriers for uplink transmission at different times is realized within the range allowed by the terminal capability, and the defect of poor flexibility is solved.
  • 1A is a schematic diagram of uplink transmission in the prior art
  • 1B is a schematic diagram of uplink transmission in the prior art
  • 2A is a flowchart of a communication method according to an embodiment of the present invention.
  • 2B is a schematic diagram of using different secondary carrier transmissions on different TTIs according to an embodiment of the present invention.
  • 2C is a schematic diagram of different carriers transmitting on different TTIs according to an embodiment of the present invention.
  • 2D is a schematic diagram of beamforming in an embodiment of the present invention.
  • 2E is another schematic diagram of performing beamforming in an embodiment of the present invention.
  • 2F is a schematic diagram of performing ASFN in an embodiment of the present invention.
  • 2G is another schematic diagram of performing ASFN in an embodiment of the present invention.
  • FIG. 3 is a flowchart of another communication method according to an embodiment of the present invention.
  • FIG. 4A is a schematic diagram of a communication device according to an embodiment of the present invention.
  • 4B is another schematic diagram of a communication device according to an embodiment of the present invention.
  • FIG. 5A is a schematic diagram of another communication device according to an embodiment of the present invention.
  • FIG. 5B is another schematic diagram of another communication device according to an embodiment of the present invention.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and / or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the letter “/” in this article generally indicates that the contextual object is an "or" relationship.
  • a process of communication is as follows:
  • Step 200 The base station sends carrier configuration information to the terminal, where the carrier configuration information is used to determine a carrier that the terminal can configure.
  • Step 210 The base station performs uplink reception on different TTIs by using different carriers in the carriers that the terminal can configure.
  • step 200-step 210 since the terminal can use different carriers for transmission in different TTIs, the base station can use different carriers to perform uplink reception on different TTIs, so that the range of the terminal capability is allowed. The effect of using different carriers for uplink transmission at different times is realized, and the defect of poor flexibility is solved.
  • the PCC is used for uplink reception.
  • the SCC0 is used for uplink reception.
  • the SCC1 is used for uplink reception.
  • the PCC is used for uplink reception.
  • SCC3 is used for uplink reception.
  • TTI5 PCC is used for uplink reception.
  • TTI6 SCC4 is used for uplink reception.
  • SCC2 is used for uplink reception.
  • the secondary carriers that may be used on different TTIs are different.
  • SCC3 is used for uplink reception; on TTI1, SCC0 is used for uplink reception; on TTI2, on TTI2, SCC1 is used for uplink reception; on TTI3, SCC2 is used for uplink reception; on TTI4, SCC3 is used for uplink reception; on TTI5, SCC4 is used for uplink reception; on TTI6, SCC4 is used for uplink reception; on TTI6, SCC4 is used for uplink reception; SCC2 is used for uplink reception.
  • different carriers can be used for receiving on different TTIs, which solves the defect of poor flexibility.
  • the number of carriers that the terminal can configure is greater than or equal to the number of carriers that the terminal can simultaneously adopt.
  • the number of carriers that can be configured by the terminal is greater than or equal to the number of carriers that the terminal can use at the same time. That is, when the base station configures the carrier for the terminal, it needs to refer to the carrier capability of the terminal. Therefore, the base station sends the carrier configuration to the terminal. Before the information, it also includes the following operations:
  • the base station receives the carrier capability of the terminal transmitted by the terminal, and the carrier capability includes the number of carriers that the terminal can simultaneously adopt.
  • the base station sends carrier configuration information to the terminal.
  • the following manner can be adopted:
  • the base station sends carrier configuration information to the terminal according to the carrier capability of the terminal.
  • the carrier configuration information may include a starting TTI and a transmission period of each of the secondary carriers that can be configured by the terminal for performing uplink transmission.
  • the carrier configuration information includes SCC0 for initial transmission TTI0 and transmission period 0, SCC1 for uplink transmission start TTI1, and transmission period 1, SCC2.
  • the base station needs to perform related operations according to SRS (Sounding Reference Signal) on the carrier in some cases.
  • SRS Sounding Reference Signal
  • the base station sends the carrier according to the terminal.
  • the SRS is weighted to obtain beamforming, and the terminal will obtain a higher reception level and obtain gain. After field test, an array gain of about 12% can be obtained.
  • the target RRU Radio Remote Unit
  • the target RRU is identified by the SRS sent by the terminal.
  • RRU1, RR2, RRU3, and RRU5 both send signals to the terminal 1, the reception of other terminals may be affected.
  • the terminal 1 may be selected.
  • the target RRU is RRU3.
  • the target RRU of terminal 2 can be selected as RRU4 and RRU6, as shown in FIG. 2G.
  • the terminal does not transmit the SRS on some carriers. Since the base station cannot obtain the SRS of the carrier, the carrier cannot be weighted, and thus the beamforming cannot be implemented.
  • the SRS can be received by the terminal on the carrier used by the base station. Therefore, in the embodiment of the present invention, the base station is configured by the terminal. Different carriers in the carrier are uplinked on different TTIs When it is received, it can be selected as follows:
  • the base station For each carrier of the carrier that can be configured by the terminal, the base station starts with the starting TTI corresponding to the carrier, and uses the transmission period corresponding to the carrier, and receives the SRS sent by the terminal on the carrier.
  • the starting TTI and the transmission period of the terminal performing uplink transmission on SCC0 are the starting TTI0 and the transmission period 0, respectively, and the starting TTI of the terminal performing uplink transmission on SCC1.
  • the transmission period is the starting TTI1 and the transmission period respectively.
  • the starting TTI and the transmission period of the terminal performing uplink transmission on the SCC2 are the starting TTI2 and the transmission period respectively, and the starting TTI and transmission of the terminal for uplink transmission on the SCC3.
  • the period is the starting TTI3 and the transmission period 3.
  • the starting TTI and the transmission period of the terminal performing uplink transmission on SCC4 are the starting TTI4 and the transmission period 4 respectively, then for SCC0, starting from TTI0, using the transmission period 0 on SCC0.
  • SRS is transmitted.
  • SCC1 starting from TTI1
  • SRS2 is transmitted on SCC1 using transmission cycle 1.
  • SCC2 SRT is transmitted on SCC2 using transmission cycle 2 from TTI2
  • SCC3 is used from STI3, starting from TTI3, using transmission cycle 3 at SCC3.
  • Transfer SRS on In this way, the terminal sends the SRS on the four SCCs.
  • the base station can perform weighting calculation on the carrier according to the corresponding SRS, thereby implementing beamforming.
  • the corresponding starting TTIs of the carriers that can be configured by the terminal are the same, and the maximum number of carriers with the same transmission period is the number of carriers that the terminal can simultaneously adopt, that is, when the terminal can simultaneously adopt
  • the starting TTI and the transmission period corresponding to the maximum of 3 carriers are the same.
  • the starting TTI corresponding to carrier 1 is TTI1
  • the transmission period is transmission period 1
  • the starting TTI corresponding to carrier 2 is also For TTI1
  • the transmission period is also the transmission period 1.
  • the starting TTI corresponding to carrier 3 is also TTI1
  • the transmission period is also transmission period 1, that is, the starting TTI of up to 3 carriers can be TTI1, and the transmission period is Transmission cycle 1.
  • the foregoing is only a method for ensuring that the number of carriers that the terminal actually uses at the same time is less than or equal to the number of carriers that the terminal can simultaneously adopt, but is not limited to the foregoing manner, as long as the initial TTI and the transmission period corresponding to each carrier can be simultaneously guaranteed.
  • the number of carriers used is less than or equal to the carrier capability, including the number of carriers that the terminal can simultaneously use.
  • the base station is The SRS is received when the target TTI arrives.
  • SRS is used to receive SRS in TTI0
  • SCC0 is used to receive SRS in TTI10
  • SCC0 is used to receive SRS in TTI20, and so on.
  • the base station before the base station performs uplink reception on different transmission time intervals TTIs by different carriers in the carrier that can be configured by the terminal, the base station also includes the following operations:
  • the base station sends an SRS transmission instruction to the terminal by using different carriers
  • the base station when the base station uses different carriers in the carrier that can be configured by the terminal to perform uplink receiving on different TTIs, the base station may be configured as follows:
  • the base station uses the different carriers transmitting the SRS transmission command to receive the SRS sent by the terminal according to the SRS transmission command on different TTIs.
  • the SRS transmission command may carry the identifier of the carrier, and the carrier corresponding to the identifier may receive the SRS.
  • the base station before the base station performs uplink reception on different transmission time intervals TTIs by different carriers in the carrier that can be configured by the terminal, the base station also includes the following operations:
  • the base station sends an SRS sending command to the terminal by using different carriers, and the SRS sending command carries identifiers corresponding to different carriers respectively;
  • the base station when the base station uses different carriers in the carrier that can be configured by the terminal to perform uplink receiving on different TTIs, the base station may be configured as follows:
  • the base station receives the SRS sent by the terminal according to the SRS sending command on different TTIs by using different carriers corresponding to different identifiers.
  • the carrier that can be configured by the terminal includes a carrier used by the base station.
  • the base station after the base station uses the different carriers in the carrier that can be configured by the terminal to perform uplink receiving on different transmission time intervals TTI, the base station further includes the following operations:
  • the base station For any received SRS, the base station performs a carrier for transmitting the SRS according to any one of the SRSs. Downlink carrier processing.
  • the downlink carrier processing may be a beam shaping, and may be other operations, which are not described in detail herein.
  • the base station uses the carrier to receive the SRS.
  • the base station can also receive the uplink data by using the carrier.
  • the receiving of the data by the base station is performed by the base station scheduling terminal. Therefore, in the embodiment of the present invention, before the base station uses the different carriers in the carrier that can be configured by the terminal to perform uplink receiving on different TTIs, the following operations are also included:
  • the base station sends a data sending instruction to the terminal
  • the base station when the base station uses different carriers in the carrier that can be configured by the terminal to perform uplink receiving on different TTIs, the base station may be configured as follows:
  • the base station uses different carriers in the carrier that the terminal can configure to receive the uplink data sent by the terminal according to the data sending command on different TTIs.
  • the following operations are also included:
  • the base station determines that the first carrier that performs uplink data transmission on the first TTI does not meet the preset condition, and when the second carrier meets the preset condition, sends a carrier adjustment instruction to the terminal.
  • the base station when the base station determines that the first carrier that performs uplink data transmission on the first TTI does not meet the preset condition, the base station may be configured as follows:
  • the base station may be configured as follows:
  • the base station determines that the load of the second carrier is less than or equal to the load preset threshold and/or the signal quality is greater than the signal quality preset threshold.
  • the above is the communication method described from the base station side, and the communication method is described below from the terminal side.
  • Step 300 The terminal receives carrier configuration information sent by the base station.
  • Step 310 The terminal determines, according to carrier configuration information, a carrier that the terminal can configure.
  • Step 320 The terminal performs uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carriers.
  • step 300-step 320 after the terminal determines the carrier that can be configured, when the uplink transmission is performed, different TTIs may be transmitted by using different carriers, so that the terminal capability is allowed to be implemented.
  • the effect of using different carriers for uplink transmission at different times solves the defect of poor flexibility.
  • the PCC is used for uplink transmission and transmission.
  • the SCC0 is used for uplink transmission.
  • the SCC1 is used for uplink transmission.
  • the PCC is used for uplink transmission.
  • SCC3 is used for uplink transmission.
  • TTI5 PCC is used for uplink transmission.
  • SCC6 is used for uplink transmission.
  • TTI7 SCC2 is used for uplink transmission.
  • the secondary carriers that may be used on different TTIs are different.
  • SCC3 is used for uplink transmission; on TTI1, SCC0 is used for uplink transmission; on TTI2, SCC1 is used for uplink transmission; on TTI3, SCC2 is used for uplink transmission; on TTI4, SCC3 is used for uplink transmission; on TTI5, SCC4 is used for uplink transmission; on TTI6, SCC4 is used for uplink transmission; on TTI7, SCC4 is used for uplink transmission;
  • the SCC2 is used for uplink transmission.
  • different carriers can be used for transmission on different TTIs, which solves the defect of poor flexibility.
  • the number of carriers that the terminal can configure is greater than or equal to the number of carriers that the terminal can simultaneously adopt.
  • the method further includes:
  • the terminal sends the carrier capability of the terminal to the base station, and the carrier capability includes the number of carriers that the terminal can simultaneously adopt.
  • the carrier configuration information includes a starting TTI and a transmission period of each of the carriers that can be configured by the terminal for performing uplink transmission.
  • the carrier configuration information includes SCC0 for the initial TTI0 of the uplink transmission and the transmission period 0, and the starting TTI1 for the uplink transmission of SCC1 and the transmission period 1, SCC2 for uplink.
  • the starting TTI2 and the transmission period of the transmission 2 the starting TTI3 and the transmission period 3 of the uplink transmission of the SCC3, the initial TTI4 and the transmission period 4 of the uplink transmission of the SCC4, and if there are other carriers, the secondary carrier is also determined.
  • the starting TTI and transmission period of the uplink transmission is also determined.
  • the base station needs to perform related operations according to the SRS on the carrier in some cases. For example, as shown in FIG. 2D and FIG. 2E, the base station performs weighting according to the SRS sent by the terminal on the carrier, thereby obtaining beamforming. The terminal will get a higher reception level and gain, and after field test, an array gain of about 12% can be obtained.
  • the target RRU in order to reduce inter-cell interference, for the SFN cell, only the target RRU sends a signal to the terminal, not all RRUs transmit signals to the terminal, and the target RRU is identified by the SRS sent by the terminal, as shown in FIG. 2F. If RRU1, RR2, RRU3, and RRU5 both send signals to the terminal 1, the other terminals may be affected. To avoid interference, the target RRU of the terminal 1 may be selected as the RRU3. Similarly, the target RRU of the terminal 2 may be selected as the RRU4. And RRU6, as shown in Figure 2G.
  • the terminal since the terminal does not transmit the SRS on some carriers, since the base station cannot acquire the SRS of the carrier, the carrier cannot be weighted, and beamforming cannot be implemented.
  • the terminal may perform uplink transmission on different carriers in different transmission time intervals (TTIs).
  • TTIs transmission time intervals
  • the terminal For each carrier of the carrier that can be configured by the terminal, the terminal starts from the starting TTI corresponding to the carrier, and uses the transmission period corresponding to the carrier, and sends the channel sounding reference signal SRS on the carrier.
  • SCC0 there are four SCCs: SCC0, SCC1, SCC2, and SCC3.
  • the starting TTI and the transmission period of the terminal performing uplink transmission on SCC0 are the starting TTI0 and the transmission period 0, respectively, and the starting TTI of the terminal performing uplink transmission on SCC1.
  • the transmission period is the starting TTI1 and the transmission period respectively.
  • the starting TTI and the transmission period of the terminal performing uplink transmission in SCC2 are the starting TTI2 and the transmission period 2, respectively.
  • the initial TTI and the transmission period of the uplink transmission performed by the terminal on the SCC3 are the initial TTI3 and the transmission period 3
  • the initial TTI and the transmission period of the uplink transmission performed by the terminal on the SCC4 are the start TTI4 and the transmission period 4, respectively
  • SCC0 starts from TTI0 and transmits SRS on SCC0 with transmission period 0.
  • SCC1 For SCC1, from STI1, SRS is transmitted on SCC1 with transmission period 1, and for SCC2, SRS is transmitted on SCC2 with transmission period 2 from TTI2.
  • SRS is transmitted on SCC3 using transmission period 3.
  • the terminal transmits the SRS on the four SCCs, and the base station can weight the carrier according to the SRS on each carrier to implement beamforming.
  • the corresponding starting TTIs of the carriers that can be configured by the terminal are the same, and the maximum number of carriers with the same transmission period is the number of carriers that the terminal can simultaneously adopt, that is, when the terminal can simultaneously adopt
  • the starting TTI and the transmission period corresponding to the maximum of 3 carriers are the same.
  • the starting TTI corresponding to carrier 1 is TTI1
  • the transmission period is transmission period 1
  • the starting TTI corresponding to carrier 2 is also For TTI1
  • the transmission period is also the transmission period 1.
  • the starting TTI corresponding to carrier 3 is also TTI1
  • the transmission period is also transmission period 1, that is, the starting TTI of up to 3 carriers can be TTI1, and the transmission period is Transmission cycle 1.
  • the foregoing is only a method for ensuring that the number of carriers that the terminal actually uses at the same time is less than or equal to the number of carriers that the terminal can simultaneously adopt, but is not limited to the foregoing manner, as long as the initial TTI and the transmission period corresponding to each carrier can be simultaneously guaranteed.
  • the number of carriers used is less than or equal to the carrier capability, including the number of carriers that the terminal can simultaneously use.
  • the terminal transmits the SRS when the target TTI arrives.
  • the starting TTI corresponding to SCC0 is TTI0 and the transmission period is 10 ms
  • SRS is used to transmit SRS in TTI0
  • SCC0 is used to transmit SRS in TTI10
  • SCC0 is used to transmit SRS in TTI20, and so on.
  • the SRS may be sent when the terminal receives the SRS sending command, and does not need to wait until the target TTI is sent.
  • the terminal uses different carriers in the configurable carrier to be different. Before the uplink transmission is performed on the transmission time interval TTI, the following operations are also included:
  • the terminal receives an SRS sending command sent by the base station by using different carriers
  • the terminal when the terminal uses the different carriers in the configurable carrier to perform uplink transmission on different transmission time intervals TTI, the terminal may be configured as follows:
  • the terminal transmits the SRS on different TTIs by using different carriers that receive the SRS transmission command.
  • the terminal before the terminal uses the different carriers in the configurable carrier to perform uplink transmission on different transmission time intervals TTI, the terminal further includes the following operations:
  • the terminal receives an SRS sending command sent by the base station by using different carriers, and the SRS sending command carries identifiers corresponding to different carriers respectively;
  • the terminal when the terminal uses the different carriers in the configurable carrier to perform uplink transmission on different transmission time intervals TTI, the terminal may be configured as follows:
  • the terminal transmits the SRS on different TTIs by using different carriers corresponding to different identifiers.
  • the carrier that can be configured by the terminal includes a carrier used by the base station.
  • the terminal transmits the SRS by using the carrier.
  • the terminal can also transmit the uplink data by using the carrier.
  • the terminal when the terminal uses the different carriers in the configurable carrier to perform uplink transmission on different transmission time intervals TTI, the terminal may be configured as follows:
  • the terminal sends the uplink data on different transmission time intervals TTI by using different carriers in the configurable carriers according to the data transmission instruction.
  • the terminal after the terminal performs uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carrier, the terminal also includes the following operations:
  • the terminal receives a carrier adjustment instruction
  • the terminal adjusts the uplink data that is transmitted by using the first carrier on the first TTI according to the carrier adjustment command, and uses the second carrier to transmit on the second TTI.
  • the corresponding carrier is to be transmitted.
  • the channel is closed, and the corresponding channel corresponding to the second carrier is turned on.
  • an embodiment of the present invention provides a communication device, where the communication device includes a sending unit 40 and a receiving unit 41, where:
  • the sending unit 40 is configured to send carrier configuration information to the terminal, where the carrier configuration information is used to determine a carrier that the terminal can configure;
  • the receiving unit 41 is configured to perform uplink receiving on different transmission time intervals TTI by using different carriers in the carrier that the terminal can configure.
  • the number of carriers that the terminal can configure is greater than or equal to the number of carriers that the terminal can simultaneously adopt.
  • the receiving unit 41 is further configured to: receive the carrier capability of the terminal sent by the terminal, where the carrier capability includes the number of carriers that the terminal can simultaneously adopt.
  • the carrier configuration information includes a starting TTI and a transmission period of each of the carriers that the terminal can configure for uplink transmission.
  • the receiving unit 41 performs uplink receiving on different transmission time intervals TTI by using different carriers in the carrier that can be configured by the terminal, specifically:
  • the receiving unit 41 For each carrier in the carrier that can be configured by the terminal, the receiving unit 41 starts from the starting TTI corresponding to the carrier, and uses the transmission period corresponding to the carrier, and receives the channel sounding reference signal SRS sent by the terminal on the carrier.
  • the corresponding starting TTIs of the carriers that can be configured by the terminal are the same, and the maximum number of carriers that have the same transmission period is the number of carriers that the terminal can simultaneously adopt.
  • the sending unit 40 is further configured to send an SRS sending instruction to the terminal by using different carriers;
  • the receiving unit 41 adopts different carriers in the carriers that the terminal can configure on different TTIs.
  • uplink reception it is specifically as follows:
  • the receiving unit 41 receives the SRS transmitted by the terminal according to the SRS transmission command on different TTIs by using different carriers transmitting the SRS transmission command.
  • processing unit 42 is further configured to perform downlink carrier processing on the carrier that sends the SRS according to any one of the SRSs for any one of the received SRSs.
  • the carrier that the terminal can configure includes a carrier used by the base station.
  • the sending unit 40 is further configured to send a data sending instruction to the terminal;
  • the receiving unit 41 uses the different carriers in the carrier that can be configured by the terminal to perform uplink receiving on different transmission time intervals TTI, specifically:
  • the receiving unit 41 receives the uplink data sent by the terminal according to the data sending instruction on different TTIs by using different carriers in the carrier that the terminal can configure.
  • the determining unit 43 is further configured to: determine that the first carrier that performs uplink data transmission on the first TTI does not meet the preset condition, and the second carrier meets the preset condition:
  • the sending unit 40 is further configured to: when the determining unit 43 determines that the first carrier that performs uplink data transmission on the first TTI does not meet the preset condition, and when the second carrier meets the preset condition, send a carrier adjustment instruction to the terminal.
  • the determining unit 43 determines that when the first carrier that performs uplink data transmission on the first TTI does not meet the preset condition, specifically:
  • the determining unit 43 determines that the load of the first carrier that performs uplink data transmission on the first TTI is greater than the load preset threshold and/or the signal quality is less than or equal to the signal quality preset threshold;
  • the determining unit 43 determines that the second carrier satisfies the preset condition, the determining unit 43 specifically:
  • the determining unit 43 determines that the load of the second carrier is less than or equal to the load preset threshold and/or the signal quality is greater than the signal quality preset threshold.
  • the communication device includes a transmitter 400 and a receiver 410, where the communication device includes:
  • the transmitter 400 is configured to send carrier configuration information to the terminal, where the carrier configuration information is used to determine a carrier that the terminal can configure;
  • the receiver 410 is configured to perform uplink reception on different transmission time intervals TTI by using different carriers in the carrier that the terminal can configure.
  • the transmitter 400 is also used to perform other operations performed by the transmitting unit 40 in FIG. 4A; the receiver 410 is also used to perform other operations performed by the receiving unit 41 in FIG. 4A.
  • processor 420 for performing the operations performed by the processing unit 42 and the determining unit 43 of FIG. 4A.
  • the embodiment of the present invention provides a communication device, which includes a receiving unit 50, a determining unit 51, and a sending unit 52, where:
  • the receiving unit 50 is configured to receive carrier configuration information sent by the base station
  • a determining unit 51 configured to determine, according to carrier configuration information, a carrier that the terminal can configure
  • the sending unit 52 is configured to perform uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carriers.
  • the number of carriers that the terminal can configure is greater than or equal to the number of carriers that the terminal can simultaneously adopt.
  • the sending unit 52 is further configured to send the carrier capability of the terminal to the base station, where the carrier capability includes the number of carriers that the terminal can simultaneously adopt.
  • the carrier configuration information includes a starting TTI and a transmission period of each of the carriers that the terminal can configure for uplink transmission.
  • the sending unit 52 performs uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carriers, specifically:
  • the transmitting unit 52 For each of the carriers that the terminal can configure, the transmitting unit 52 starts from the starting TTI corresponding to the carrier, and transmits a channel sounding reference signal SRS on the carrier by using a transmission period corresponding to the carrier.
  • the corresponding starting TTIs of the carriers that can be configured by the terminal are the same, and the maximum number of carriers that have the same transmission period is the number of carriers that the terminal can simultaneously adopt.
  • the receiving unit 50 is further configured to: receive an SRS sending instruction that is sent by the base station by using different carriers;
  • the sending unit 52 performs uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carriers, specifically:
  • the transmitting unit 52 transmits the SRS on different TTIs by using different carriers that receive the SRS transmission command.
  • the carrier that the terminal can configure includes a carrier used by the base station.
  • the receiving unit 50 is further configured to receive a data sending instruction sent by the base station;
  • the sending unit 52 performs uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carriers, specifically:
  • the transmitting unit 52 transmits the uplink data on different transmission time intervals TTI by using different carriers in the configurable carriers according to the data transmission instruction.
  • the receiving unit 50 is further configured to receive a carrier adjustment instruction
  • the sending unit 52 is configured to adjust, according to the carrier adjustment command, the uplink data that is transmitted by using the first carrier on the first TTI to be transmitted on the second TTI by using the second carrier.
  • the embodiment of the present invention provides a communication device, which includes a receiver 500, a processor 510, and a transmitter 520, where:
  • the receiver 500 is configured to receive carrier configuration information sent by the base station.
  • the processor 510 is configured to determine, according to the carrier configuration information, a carrier that the terminal can configure;
  • the transmitter 520 is configured to perform uplink transmission on different transmission time intervals TTI by using different carriers in the configurable carriers.
  • the receiver 500 is further configured to perform other operations performed by the receiving unit 50 in FIG. 5A
  • the processor 510 is further configured to perform other operations performed by the determining unit 51 in FIG. 5A
  • the transmitter 520 also uses Other operations performed by the transmitting unit 52 in FIG. 5A are performed.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the present invention is directed to a method, apparatus (system), and computer program according to an embodiment of the present invention.
  • the flow chart and/or block diagram of the product is described. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine for the execution of instructions for execution by a processor of a computer or other programmable data processing device.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提出一种通信方法及通信设备,在该方案中,终端确定能够配置的载波后,在进行上行传输时,在不同的TTI可以采用不同的载波进行传输,这样在终端能力允许的范围内实现了在不同TTI采用不同载波进行上行传输的效果,解决了灵活性较差的缺陷。

Description

一种通信方法及装置 技术领域
本发明涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
随着移动通信技术的发展,用户业务量和数据吞吐量不断增加,3G(the 3rd Generation,第三代移动通信系统)已不能完全满足用户的求。因此,3GPP(the 3rd Generation Partner Project,第三代合作伙伴计划)致力于研究3GPP LTE(Long Term Evolution,长期演进)作为3G系统的演进。
LTE-Advanced是在LTE基础上的技术演进,其支持与LTE系统的后向兼容性。在2007年召开的会议上LTE-Advanced已成为一个共享的概念。为了提供更高的数据速率,支持更多的用户业务和新的服务,LTE-Advanced在频点、带宽、峰值速率及兼容性等方面都有新的需求。在从LTE到LTE-Advanced系统的演进过程中,更宽频谱的需求将会成为影响演进的重要因素。为此,3GPP提出载波聚合技术作为LTE-Advanced系统的关键技术之一。
但是,目前由于受到最大发射功率等因素的限制,在载波聚合时,终端同时只能激活两个载波,除了主载波之外,终端一次只能采用一个辅载波进行上行传输,因此,针对一次传输过程中,在不同的TTI(Transmission Time Interval,传输时间间隔)上,终端只能使用一个辅载波进行传输,这样,存在灵活性较差的缺陷。
如图1A所示,终端激活的是PCC(Primary component carrier,主载波)和SCC(Slave component carrier,辅载波)0,那么在包括多个TTI的传输过程中,终端只在相同的载波上进行上行传输,不会在不同的载波上进行传输。又或者如图1B所示,终端激活的是PCC和SCC1,那么在包括多个TTI的传输过程中,终端只在相同载波上进行上行传输,不会在不同的载波上进行传输。
综上所述,目前的通信过程中,在包括多个TTI的一次传输过程中,终端 只能在相同的载波上进行传输,存在灵活性较差的缺陷。
发明内容
本发明实施例提供了一种通信方法及通信设备,用以解决在包括多个TTI的一次传输过程中,终端只能在相同的载波上进行传输存在灵活性较差的缺陷。
第一方面,提供一种通信方法,包括:
基站向终端发送载波配置信息,所述载波配置信息用于确定所述终端能够配置的载波;
所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收。
结合第一方面,在第一种可能的实现方式中,所述终端能够配置的载波的数量大于或者等于所述终端能够同时采用的载波的数量。
结合第一方面,及第一方面的第一种可能的实现方式,在第二种可能的实现方式中,所述基站向终端发送载波配置信息之前,还包括:
所述基站接收所述终端发送的所述终端的载波能力,所述载波能力包括所述终端能够同时采用的载波的数量。
结合第一方面,及第一方面的第一至第二种可能的实现方式,在第三种可能的实现方式中,所述载波配置信息包括所述终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
结合第一方面的第三种可能的实现方式,在第四种可能的实现方式中,所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收,包括:
针对所述终端能够配置的载波中的每一个载波,所述基站从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上接收所述终端发送的信道探测参考信号SRS。
结合第一方面的第三或者第四种可能的实现方式,在第五种可能的实现 方式中,所述终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为所述终端能够同时采用的载波的数量。
结合第一方面,及第一方面的第一至第二种可能的实现方式,在第三种可能的实现方式中,所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收之前,还包括:
所述基站采用不同载波向所述终端发送SRS发送指令;
所述基站采用所述终端能够配置的载波中的不同载波在不同TTI上进行上行接收,包括:
所述基站采用发送所述SRS发送指令的不同载波在不同TTI上上接收所述终端根据所述SRS发送指令发送的SRS。
结合第一方面的第二至第六种可能的实现方式,在第七种可能的实现方式中,所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收之后,还包括:
针对接收到的任意一SRS,所述基站根据所述任意一SRS对发送所述SRS的载波进行下行载波处理。
结合第一方面的第二至第七种可能的实现方式,在第八种可能的实现方式中,所述终端能够配置的载波包括所述基站采用的载波。
结合第一方面,及第一方面的第一至第二种可能的实现方式,在第九种可能的实现方式中,所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收之前,还包括:
所述基站向所述终端发送数据发送指令;
所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收,包括:
所述基站采用所述终端能够配置的载波中的不同载波在不同的TTI上接收所述终端根据所述数据发送指令发送的上行数据。
结合第一方面的第九种可能的实现方式,在第十种可能的实现方式中,所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔 TTI上进行上行接收之后,还包括:
所述基站确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,第二载波满足所述预设条件时,向所述终端发送载波调整指令。
结合第一方面的第十种可能的实现方式,在第十一种可能的实现方式中,所述基站确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,包括:
所述基站确定在第一TTI上进行上行数据传输的第一载波的负载大于负载预设门限值和/或信号质量小于或者等于信号质量预设门限值;
所述基站确定第二载波满足所述预设条件,包括:
所述基站确定所述第二载波的负载小于或者等于负载预设门限值和/或信号质量大于信号质量预设门限值。
第二方面,提供一种通信的方法,包括:
终端接收基站发送的载波配置信息;
所述终端根据所述载波配置信息确定所述终端能够配置的载波;
所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送。
结合第二方面,在第一种可能的实现方式中,所述终端能够配置的载波的数量大于或者等于所述终端能够同时采用的载波的数量。
结合第二方面,及第二方面的第一种可能的实现方式,在第二种可能的实现方式中,所述终端接收基站发送的载波配置信息之前,还包括:
所述终端向所述基站发送所述终端的载波能力,所述载波能力包括所述终端能够同时采用的载波的数量。
结合第二方面,及第二方面的第一种至第二种可能的实现方式,在第三种可能的实现方式中,所述载波配置信息包括所述终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行 上行发送,包括:
针对所述终端能够配置的载波中的每一个载波,所述终端从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上发送信道探测参考信号SRS。
结合第二方面的第三种或者第四种可能的实现方式,在第五种可能的实现方式中,所述终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为所述终端能够同时采用的载波的数量。
结合第二方面,及第二方面的第一种至第二种可能的实现方式,在第六种可能的实现方式中,所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送之前,还包括:
所述终端接收所述基站采用不同载波发送的SRS发送指令;
所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送,包括:
所述终端采用接收所述SRS发送指令的不同载波在不同TTI上发送SRS。
结合第二方面的第三种至第六种可能的实现方式,在第七种可能的实现方式中,所述终端能够配置的载波包括所述基站采用的载波。
结合第二方面,及第二方面的第一种至第二种可能的实现方式,在第八种可能的实现方式中,所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送之前,还包括:
所述终端接收所述基站发送的数据发送指令;
所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送,包括:
所述终端根据所述述数据发送指令采用能够配置的载波中的不同载波在不同传输时间间隔TTI上发送上行数据。
结合第二方面第八种可能的实现方式,在第九种可能的实现方式中,所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送之后,还包括:
所述终端接收载波调整指令;
所述终端根据所述载波调整指令,将采用所述第一载波在所述第一TTI上传输的上行数据,调整至采用所述第二载波在所述第二TTI上进行传输。
第三方面,提供一种通信设备,包括:
发送单元,用以向终端发送载波配置信息,所述载波配置信息用于确定所述终端能够配置的载波;
接收单元,用于采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收。
结合第三方面,在第一种可能的实现方式中,所述终端能够配置的载波的数量大于或者等于所述终端能够同时采用的载波的数量。
结合第三方面,及第三方面的第一种可能的实现方式,在第二种可能的实现方式中,所述接收单元还用于,接收所述终端发送的所述终端的载波能力,所述载波能力包括所述终端能够同时采用的载波的数量。
结合第三方面,及第三方面的第一至第二种可能的实现方式,在第三种可能的实现方式中,所述载波配置信息包括所述终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
结合第三方面的第三种可能的实现方式,在第四种可能的实现方式中,所述接收单元采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收时,具体为:
针对所述终端能够配置的载波中的每一个载波,所述接收单元从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上接收所述终端发送的信道探测参考信号SRS。
结合第三方面的第三或者第四种可能的实现方式,在第五种可能的实现方式中,所述终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为所述终端能够同时采用的载波的数量。
结合第三方面,及第三方面的第一至第二种可能的实现方式,在第三种可能的实现方式中,所述发送单元还用于,采用不同载波向所述终端发送SRS 发送指令;
所述接收单元采用所述终端能够配置的载波中的不同载波在不同TTI上进行上行接收时,具体为:
所述接收单元采用发送所述SRS发送指令的不同载波在不同TTI上上接收所述终端根据所述SRS发送指令发送的SRS。
结合第三方面的第二至第六种可能的实现方式,在第七种可能的实现方式中,还包括处理单元,用于针对接收到的任意一SRS,根据所述任意一SRS对发送所述SRS的载波进行下行载波处理。
结合第三方面的第二至第七种可能的实现方式,在第八种可能的实现方式中,所述终端能够配置的载波包括所述基站采用的载波。
结合第三方面,及第三方面的第一至第二种可能的实现方式,在第九种可能的实现方式中,所述发送单元还用于,向所述终端发送数据发送指令;
所述接收单元采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收时,具体为:
所述接收单元采用所述终端能够配置的载波中的不同载波在不同的TTI上接收所述终端根据所述数据发送指令发送的上行数据。
结合第三方面的第九种可能的实现方式,在第十种可能的实现方式中,还包括确定单元,用于确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,第二载波满足所述预设条件:
所述发送单元还用于,在所述确定单元确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,第二载波满足所述预设条件时,向所述终端发送载波调整指令。
结合第三方面的第十种可能的实现方式,在第十一种可能的实现方式中,所述确定单元确定在第一TTI上进行上行数据传输的第一载波不满足预设条件时,具体为:
所述确定单元确定在第一TTI上进行上行数据传输的第一载波的负载大于负载预设门限值和/或信号质量小于或者等于信号质量预设门限值;
所述确定单元确定第二载波满足所述预设条件时,具体为:
所述确定单元确定所述第二载波的负载小于或者等于负载预设门限值和/或信号质量大于信号质量预设门限值。
第四方面,提供一种通信的通信设备,包括:
接收单元,用于接收基站发送的载波配置信息;
确定单元,用于根据所述载波配置信息确定所述终端能够配置的载波;
发送单元,用于采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送。
结合第四方面,在第一种可能的实现方式中,所述终端能够配置的载波的数量大于或者等于所述终端能够同时采用的载波的数量。
结合第四方面,及第四方面的第一种可能的实现方式,在第二种可能的实现方式中,所述发送单元还用于,向所述基站发送所述终端的载波能力,所述载波能力包括所述终端能够同时采用的载波的数量。
结合第四方面,及第四方面的第一种至第二种可能的实现方式,在第三种可能的实现方式中,所述载波配置信息包括所述终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
结合第四方面的第三种可能的实现方式,在第四种可能的实现方式中,所述发送单元采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,具体为:
针对所述终端能够配置的载波中的每一个载波,所述发送单元从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上发送信道探测参考信号SRS。
结合第四方面的第三种或者第四种可能的实现方式,在第五种可能的实现方式中,所述终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为所述终端能够同时采用的载波的数量。
结合第四方面,及第四方面的第一种至第二种可能的实现方式,在第六种可能的实现方式中,所述接收单元还用于,接收所述基站采用不同载波发 送的SRS发送指令;
所述发送单元采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,具体为:
所述发送单元采用接收所述SRS发送指令的不同载波在不同TTI上发送SRS。
结合第四方面的第三种至第六种可能的实现方式,在第七种可能的实现方式中,所述终端能够配置的载波包括所述基站采用的载波。
结合第四方面,及第四方面的第一种至第二种可能的实现方式,在第八种可能的实现方式中,所述接收单元还用于,接收所述基站发送的数据发送指令;
所述发送单元采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,具体为:
所述发送单元根据所述述数据发送指令采用能够配置的载波中的不同载波在不同传输时间间隔TTI上发送上行数据。
结合第四方面第八种可能的实现方式,在第九种可能的实现方式中,所述接收单元还用于,接收载波调整指令;
所述发送单元具体用于,根据所述载波调整指令,将采用所述第一载波在所述第一TTI上传输的上行数据,调整至采用所述第二载波在所述第二TTI上进行传输。
本发明实施例提出一种通信方法及通信设备,在该方案只能够,由于终端在不同的TTI可以采用不同的载波进行传输,进而基站可以采用不同载波在不同的TTI上进行上行接收,这样,在终端能力允许的范围内实现了在不同时刻采用不同载波进行上行传输的效果,解决了灵活性较差的缺陷。
附图说明
图1A为现有技术中上行传输的示意图;
图1B为现有技术中上行传输的示意图;
图2A为本发明实施例提供的一种通信方法的流程图;
图2B为本发明实施例中不同TTI上采用不同辅载波传输的示意图;
图2C为本发明实施例中不同载波在不同TTI上传输的示意图;
图2D为本发明实施例中进行波束赋形的一种示意图;
图2E为本发明实施例中进行波束赋形的另一种示意图;
图2F为本发明实施例中进行ASFN的一种示意图;
图2G为本发明实施例中进行ASFN的另一种示意图;
图3为本发明实施例提供的另一种通信方法的流程图;
图4A为本发明实施例提供的一种通信设备的一种示意图;
图4B为本发明实施例提供的一种通信设备的另一种示意图;
图5A为本发明实施例提供的另一种通信设备的一种示意图;
图5B为本发明实施例提供的另一种通信设备的另一种示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
另外,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字母“/”,一般表示前后关联对象是一种“或”的关系。
下面结合说明书附图对本发明优选的实施方式进行详细说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明,并且在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
参阅图2A所示,本发明实施例中,通信的一种流程如下:
步骤200:基站向终端发送载波配置信息,载波配置信息用于确定终端能够配置的载波;
步骤210:基站采用终端能够配置的载波中的不同载波在不同TTI上进行上行接收。
在该实施例中,步骤200-步骤210中,由于终端在不同的TTI可以采用不同的载波进行传输,进而基站可以采用不同载波在不同的TTI上进行上行接收,这样,在终端能力允许的范围内实现了在不同时刻采用不同载波进行上行传输的效果,解决了灵活性较差的缺陷。
如图2B所示,在TTI0上,采用PCC进行上行接收,在TTI1上,采用SCC0进行上行接收,在TTI2上,采用SCC1进行上行接收,在TTI3上,采用PCC进行上行接收,在TTI4上,采用SCC3进行上行接收,在TTI5上,采用PCC进行上行接收,在TTI6上,采用SCC4进行上行接收,在TTI7上,采用SCC2进行上行接收。
如图2C所示,在这次通信过程中,不同的TTI上可能采用的辅载波不同,例如,在TTI0上,采用SCC3进行上行接收;在TTI1上,采用SCC0进行上行接收;在TTI2上,采用SCC1进行上行接收;在TTI3上,采用SCC2进行上行接收;在TTI4上,采用SCC3进行上行接收;在TTI5上,采用SCC4进行上行接收;在TTI6上,采用SCC4进行上行接收;在TTI7上,采用SCC2进行上行接收,这样,实现了在不同的TTI上可以采用不同的载波进行接收,解决了灵活性较差的缺陷。
本发明实施例中,可选的,终端能够配置的载波的数量大于或者等于终端能够同时采用的载波的数量。
由于终端能够配置的载波的数量大于或者等于终端能够同时采用的载波的数量,也就是说,基站给终端配置载波时,是要参考终端的载波能力,因此,进一步的,基站向终端发送载波配置信息之前,还包括如下操作:
基站接收终端发送的终端的载波能力,载波能力包括终端能够同时采用的载波的数量。
此时,基站向终端发送载波配置信息,可选的,可以采用如下方式:
基站根据终端的载波能力向终端发送载波配置信息。
本发明实施例中,可选的,载波配置信息可以包括终端能够配置的载波中的每一个辅载波进行上行传输的起始TTI及传输周期。
例如,有5个载波:SCC0、SCC1、SCC2、SCC3和PCC,则载波配置信息包括SCC0进行上行传输的起始TTI0和传输周期0、SCC1进行上行传输的起始TTI1和传输周期1、SCC2进行上行传输的起始TTI2和传输周期2、SCC3进行上行传输的起始TTI3和传输周期3、SCC4进行上行传输的起始TTI4和传输周期4,PCC进行上行传输的起始TTI5和传输周期5,如果还有其他载波的话,也同样要确定该载波进行上行传输的起始TTI和传输周期,在此不再进行一一详述。
本发明实施例中,基站在有些情况下需要根据载波上的SRS(Sounding Reference Signal,导频参考信号)进行相关操作,例如,如图2D和图2E所示,基站根据终端在载波上发送的SRS进行加权,从而获得波束赋型,终端将获得较高的接收电平,获得增益,经过外场试验,可以获得大约12%的阵列增益。
又例如,为了减小小区间的干扰,对于SFN(Single Frequency Network,单频网)小区,只有目标RRU(Radio Remote Unit,射频拉远单元)对终端发送信号,不是所有RRU都对终端发送信号,而目标RRU是通过终端发送的SRS进行识别的,如图2F中,RRU1、RR2、RRU3和RRU5均向终端1发送信号的话,会影响其他终端的接收,为了避免干扰,可以选择出终端1的目标RRU为RRU3,同理,可以选择出终端2的目标RRU为RRU4和RRU6,如图2G所示。
但是,目前,终端在有些载波上没有传输SRS,由于基站无法获取该载波的SRS,无法对该载波进行加权,进而也就无法实现波束赋形。
因此,为了使基站能够对使用的每一个载波进行加权,进而实现波束赋形,在基站使用的载波上均可以接收到终端发送的SRS,因此,本发明实施例中,基站采用终端能够配置的载波中的不同载波在不同TTI上进行上行接 收时,可选的,可以采用如下方式:
针对终端能够配置的载波中的每一个载波,基站从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上接收终端发送的SRS。
例如,有4个SCC:SCC0、SCC1、SCC2、SCC3,终端在SCC0上进行上行传输的起始TTI和传输周期分别为起始TTI0和传输周期0、终端在SCC1上进行上行传输的起始TTI和传输周期分别为起始TTI1和传输周期1、终端在SCC2上进行上行传输的起始TTI和传输周期分别为起始TTI2和传输周期2、终端在SCC3上进行上行传输的起始TTI和传输周期分别为起始TTI3和传输周期3、终端在SCC4上进行上行传输的起始TTI和传输周期分别为起始TTI4和传输周期4,则针对SCC0,从TTI0开始,采用传输周期0在SCC0上传输SRS,针对SCC1,从TTI1开始,采用传输周期1在SCC1上传输SRS,针对SCC2,从TTI2开始,采用传输周期2在SCC2上传输SRS,针对SCC3,从TTI3开始,采用传输周期3在SCC3上传输SRS。这样,终端在4个SCC上均发送了SRS,针对每一个载波,基站可以根据对应的SRS对该载波进行加权计算,进而实现波束赋形。
本发明实施例中,终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为终端能够同时采用的载波的数量,也就是说,当终端能够同时采用的载波的数量为3时,最多有3个载波对应的起始TTI和传输周期均相同,例如,载波1对应的起始TTI为TTI1、传输周期为传输周期1,载波2对应的起始TTI也为TTI1、传输周期也为传输周期1,载波3对应的起始TTI也为TTI1、传输周期也为传输周期1,就是说最多可以有3个载波的起始TTI均为TTI1,传输周期均为传输周期1。
当然,上述只是一种保证终端实际同时采用的载波的数量小于或者等于终端能够同时采用的载波的数量,但是并不限定于上述方式,只要每个载波对应的起始TTI和传输周期可以保证同时采用的载波的数量小于或者等于载波能力包括终端能够同时采用的载波的数量即可。
上述讲述的是,如果载波配置信息包括起始TTI及传输周期时,基站是 在目标TTI到达时接收SRS。
例如,SCC0对应的起始TTI为TTI0,传输周期为10ms,则在TTI0采用SCC0接收SRS,在TTI10采用SCC0接收SRS,在TTI20采用SCC0接收SRS,以此类推。
当然,也可以不需要等到目标TTI才发送,而是接收到指令就可以发送。
因此,基站采用终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收之前,还包括如下操作:
基站采用不同载波向终端发送SRS发送指令;
此时,基站采用终端能够配置的载波中的不同载波在不同TTI上进行上行接收时,可选的,可以采用如下方式:
基站采用发送SRS发送指令的不同载波在不同TTI上上接收终端根据SRS发送指令发送的SRS。
上述讲述的是采用哪个载波发送SRS发送指令,则采用哪个载波接收SRS,当然,也可以在SRS发送指令携带载波的标识,去与标识对应的载波接收SRS即可。
因此,基站采用终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收之前,还包括如下操作:
基站采用不同载波向终端发送SRS发送指令,SRS发送指令携带不同载波分别对应的标识;
此时,基站采用终端能够配置的载波中的不同载波在不同TTI上进行上行接收时,可选的,可以采用如下方式:
基站采用与不同标识分别对应的不同载波在不同TTI上接收终端根据SRS发送指令发送的SRS。
本发明实施例中,可选的,终端能够配置的载波包括基站采用的载波。
本发明实施例中,基站采用终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收之后,还包括如下操作:
针对接收到的任意一SRS,基站根据任意一SRS对发送SRS的载波进行 下行载波处理。
其中,进行下行载波处理可以为波束赋形,当然也可以为其他操作,在此不再进行详述。
上述讲述的是基站采用载波接收SRS的过程,当然,在实际应用中,基站也可以利用载波接收上行数据。
当然,基站接收数据,是通过基站调度终端来执行的,因此,本发明实施例中,基站采用终端能够配置的载波中的不同载波在不同TTI上进行上行接收之前,还包括如下操作:
基站向终端发送数据发送指令;
此时,基站采用终端能够配置的载波中的不同载波在不同TTI上进行上行接收时,可选的,可以采用如下方式:
基站采用终端能够配置的载波中的不同载波在不同的TTI上接收终端根据数据发送指令发送的上行数据。
本发明实施例中,为了提高业务质量,基站采用终端能够配置的载波中的不同载波在不同TTI上进行上行接收之后,还包括如下操作:
基站确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,第二载波满足预设条件时,向终端发送载波调整指令。
此时,基站确定在第一TTI上进行上行数据传输的第一载波不满足预设条件时,可选的,可以采用如下方式:
基站确定在第一TTI上进行上行数据传输的第一载波的负载大于负载预设门限值和/或信号质量小于或者等于信号质量预设门限值;
基站确定第二载波满足预设条件时,可选的,可以采用如下方式:
基站确定第二载波的负载小于或者等于负载预设门限值和/或信号质量大于信号质量预设门限值。
上述是从基站侧来描述的通信方法,下面从终端侧来描述通信方法。
参阅图3所示,本发明实施例中,通信的另一种流程如下:
步骤300:终端接收基站发送的载波配置信息;
步骤310:终端根据载波配置信息确定终端能够配置的载波;
步骤320:终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送。
在该实施例中,步骤300-步骤320中,终端确定能够配置的载波后,在进行上行传输时,在不同的TTI可以采用不同的载波进行传输,这样在终端能力允许的范围内实现了在不同时刻采用不同载波进行上行传输的效果,解决了灵活性较差的缺陷。
如图2B所示,在TTI0上,采用PCC进行上行发送发送,在TTI1上,采用SCC0进行上行发送,在TTI2上,采用SCC1进行上行发送,在TTI3上,采用PCC进行上行发送,在TTI4上,采用SCC3进行上行发送,在TTI5上,采用PCC进行上行发送,在TTI6上,采用SCC4进行上行发送,在TTI7上,采用SCC2进行上行发送。
如图2C所示,在这次通信过程中,不同的TTI上可能采用的辅载波不同,例如,在TTI0上,采用SCC3进行上行发送;在TTI1上,采用SCC0进行上行发送;在TTI2上,采用SCC1进行上行发送;在TTI3上,采用SCC2进行上行发送;在TTI4上,采用SCC3进行上行发送;在TTI5上,采用SCC4进行上行发送;在TTI6上,采用SCC4进行上行发送;在TTI7上,采用SCC2进行上行发送,这样,实现了在不同的TTI上可以采用不同的载波进行发送,解决了灵活性较差的缺陷。
本发明实施例中,可选的,终端能够配置的载波的数量大于或者等于终端能够同时采用的载波的数量。
本发明实施例中,可选的,终端接收基站发送的载波配置信息之前,还包括:
终端向基站发送终端的载波能力,载波能力包括终端能够同时采用的载波的数量。
本发明实施例中,可选的,载波配置信息包括终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
例如,有4个辅载波:SCC0、SCC1、SCC2、SCC3,则载波配置信息包括SCC0进行上行传输的起始TTI0和传输周期0、SCC1进行上行传输的起始TTI1和传输周期1、SCC2进行上行传输的起始TTI2和传输周期2、SCC3进行上行传输的起始TTI3和传输周期3、SCC4进行上行传输的起始TTI4和传输周期4,如果还有其他载波的话,也同样要确定该辅载波进行上行传输的起始TTI和传输周期。
本发明实施例中,基站在有些情况下需要根据载波上的SRS进行相关操作,例如,如图2D和图2E所示,基站根据终端在载波上发送的SRS进行加权,从而获得波束赋型,终端将获得较高的接收电平,获得增益,经过外场试验,可以获得大约12%的阵列增益。
又例如,为了减小小区间的干扰,对于SFN小区,只有目标RRU对终端发送信号,不是所有RRU都对终端发送信号,而目标RRU是通过终端发送的SRS进行识别的,如图2F中,RRU1、RR2、RRU3和RRU5均向终端1发送信号的话,会影响其他终端的接收,为了避免干扰,可以选择出终端1的目标RRU为RRU3,同理,可以选择出终端2的目标RRU为RRU4和RRU6,如图2G所示。
但是,目前,由于终端在有些载波上没有传输SRS,由于基站无法获取该载波的SRS,无法对该载波进行加权,进而无法实现波束赋形。
因此,为了使基站能够对每一个载波进行加权,进而实现波束赋形,终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,可选的,可以采用如下方式:
针对终端能够配置的载波中的每一个载波,终端从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上发送信道探测参考信号SRS。
例如,有4个SCC:SCC0、SCC1、SCC2、SCC3,终端在SCC0上进行上行传输的起始TTI和传输周期分别为起始TTI0和传输周期0、终端在SCC1上进行上行传输的起始TTI和传输周期分别为起始TTI1和传输周期1、终端在SCC2进行上行传输的起始TTI和传输周期分别为起始TTI2和传输周期2、 终端在SCC3上进行上行传输的起始TTI和传输周期分别为起始TTI3和传输周期3、终端在SCC4上进行上行传输的起始TTI和传输周期分别为起始TTI4和传输周期4,则针对SCC0,从TTI0开始,采用传输周期0在SCC0上传输SRS,针对SCC1,从TTI1开始,采用传输周期1在SCC1上传输SRS,针对SCC2,从TTI2开始,采用传输周期2在SCC2上传输SRS,针对SCC3,从TTI3开始,采用传输周期3在SCC3上传输SRS。
这样,终端在4个SCC上均发送了SRS,基站可以根据每一个载波上的SRS对该载波进行加权,进而实现波束赋形。
本发明实施例中,终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为终端能够同时采用的载波的数量,也就是说,当终端能够同时采用的载波的数量为3时,最多有3个载波对应的起始TTI和传输周期均相同,例如,载波1对应的起始TTI为TTI1、传输周期为传输周期1,载波2对应的起始TTI也为TTI1、传输周期也为传输周期1,载波3对应的起始TTI也为TTI1、传输周期也为传输周期1,就是说最多可以有3个载波的起始TTI均为TTI1,传输周期均为传输周期1。
当然,上述只是一种保证终端实际同时采用的载波的数量小于或者等于终端能够同时采用的载波的数量,但是并不限定于上述方式,只要每个载波对应的起始TTI和传输周期可以保证同时采用的载波的数量小于或者等于载波能力包括终端能够同时采用的载波的数量即可。
上述讲述的是,如果载波配置信息包括起始TTI及传输周期时,终端是在目标TTI到达时发送SRS。
例如,SCC0对应的起始TTI为TTI0,传输周期为10ms,则在TTI0采用SCC0发送SRS,在TTI10采用SCC0发送SRS,在TTI20采用SCC0发送SRS,以此类推。
当然,也可以是终端接收到SRS发送指令时就发送SRS,而不需要等到目标TTI才发送。
因此,本发明实施例中,终端采用能够配置的载波中的不同载波在不同 传输时间间隔TTI上进行上行发送之前,还包括如下操作:
终端接收基站采用不同载波发送的SRS发送指令;
此时,终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,可选的,可以采用如下方式:
终端采用接收SRS发送指令的不同载波在不同TTI上发送SRS。
上述讲述的是采用哪个载波接收到SRS发送指令,则采用哪个载波发送SRS,当然,也可以在SRS发送指令携带载波的标识,去与标识对应的载波发送SRS即可。因此,本发明实施例中,终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送之前,还包括如下操作:
终端接收基站采用不同载波发送的SRS发送指令,、SRS发送指令携带不同载波分别对应的标识;
此时,终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,可选的,可以采用如下方式:
终端采用不同标识分别对应的不同载波在不同TTI上发送SRS。
本发明实施例中,可选的,终端能够配置的载波包括基站采用的载波。
上述讲述的是终端利用载波发送SRS的情况,当然,在实际应用中,终端也可以利用载波发送上行数据。
但是,终端到底要发送SRS还是要发送上行数据,都是基站来调度的,因此,终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送之前,还包括如下操作:
终端接收基站发送的数据发送指令;
此时,终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,可选的,可以采用如下方式:
终端根据述数据发送指令采用能够配置的载波中的不同载波在不同传输时间间隔TTI上发送上行数据。
进一步的,终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送之后,还包括如下操作:
终端接收载波调整指令;
终端根据载波调整指令,将采用第一载波在第一TTI上传输的上行数据,调整至采用第二载波在第二TTI上进行传输。
此处需要说明的是,将采用第一载波在第一TTI上传输的上行数据,调整至采用第二载波在第二TTI上进行传输时,在具体实现时,要将第一载波对应的发射通道关闭,将第二载波对应的发射通道打开。
基于上述相应方法的技术方案,参阅图4A所示,本发明实施例提供一种通信设备,该通信设备包括发送单元40、接收单元41,其中:
发送单元40,用以向终端发送载波配置信息,载波配置信息用于确定终端能够配置的载波;
接收单元41,用于采用终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收。
可选的,终端能够配置的载波的数量大于或者等于终端能够同时采用的载波的数量。
进一步的,接收单元41还用于,接收终端发送的终端的载波能力,载波能力包括终端能够同时采用的载波的数量。
可选的,载波配置信息包括终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
可选的,接收单元41采用终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收时,具体为:
针对终端能够配置的载波中的每一个载波,接收单元41从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上接收终端发送的信道探测参考信号SRS。
可选的,终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为终端能够同时采用的载波的数量。
进一步的,发送单元40还用于,采用不同载波向终端发送SRS发送指令;
此时,接收单元41采用终端能够配置的载波中的不同载波在不同TTI上 进行上行接收时,具体为:
接收单元41采用发送SRS发送指令的不同载波在不同TTI上上接收终端根据SRS发送指令发送的SRS。
进一步的,还包括处理单元42,用于针对接收到的任意一SRS,根据任意一SRS对发送SRS的载波进行下行载波处理。
可选的,终端能够配置的载波包括基站采用的载波。
进一步的,发送单元40还用于,向终端发送数据发送指令;
接收单元41采用终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收时,具体为:
接收单元41采用终端能够配置的载波中的不同载波在不同的TTI上接收终端根据数据发送指令发送的上行数据。
进一步的,还包括确定单元43,用于确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,第二载波满足预设条件:
发送单元40还用于,在确定单元43确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,第二载波满足预设条件时,向终端发送载波调整指令。
可选的,确定单元43确定在第一TTI上进行上行数据传输的第一载波不满足预设条件时,具体为:
确定单元43确定在第一TTI上进行上行数据传输的第一载波的负载大于负载预设门限值和/或信号质量小于或者等于信号质量预设门限值;
此时,确定单元43确定第二载波满足预设条件时,具体为:
确定单元43确定第二载波的负载小于或者等于负载预设门限值和/或信号质量大于信号质量预设门限值。
基于上述相应方法的技术方案,参阅图4B所示,本发明实施例提供一种通信设备,该通信设备包括发射器400、接收器410,其中:
发射器400,用以向终端发送载波配置信息,载波配置信息用于确定终端能够配置的载波;
接收器410,用于采用终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收。
需要说明的是,发射器400还用于执行图4A中的发送单元40所执行的其他操作;接收器410还用于执行图4A中的接收单元41所执行的其他操作。
还包括处理器420,用于执行图4A中的处理单元42和确定单元43所执行的操作。
基于上述相应方法的技术方案,参阅图5A所示,本发明实施例提供一种通信设备,该通信设备包括接收单元50、确定单元51和发送单元52,其中:
接收单元50,用于接收基站发送的载波配置信息;
确定单元51,用于根据载波配置信息确定终端能够配置的载波;
发送单元52,用于采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送。
可选的,终端能够配置的载波的数量大于或者等于终端能够同时采用的载波的数量。
进一步的,发送单元52还用于,向基站发送终端的载波能力,载波能力包括终端能够同时采用的载波的数量。
可选的,载波配置信息包括终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
可选的,发送单元52采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,具体为:
针对终端能够配置的载波中的每一个载波,发送单元52从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上发送信道探测参考信号SRS。
可选的,终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为终端能够同时采用的载波的数量。
进一步的,接收单元50还用于,接收基站采用不同载波发送的SRS发送指令;
发送单元52采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,具体为:
发送单元52采用接收SRS发送指令的不同载波在不同TTI上发送SRS。
可选的,终端能够配置的载波包括基站采用的载波。
进一步的,接收单元50还用于,接收基站发送的数据发送指令;
发送单元52采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,具体为:
发送单元52根据述数据发送指令采用能够配置的载波中的不同载波在不同传输时间间隔TTI上发送上行数据。
进一步的,接收单元50还用于,接收载波调整指令;
发送单元52具体用于,根据载波调整指令,将采用第一载波在第一TTI上传输的上行数据,调整至采用第二载波在第二TTI上进行传输。
基于上述相应方法的技术方案,参阅图5B所示,本发明实施例提供一种通信设备,该通信设备包括接收器500、处理器510和发射器520,其中:
接收器500,用于接收基站发送的载波配置信息;
处理器510,用于根据载波配置信息确定终端能够配置的载波;
发射器520,用于采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送。
需要说明的是,接收器500还用于执行图5A中的接收单元50所执行的其他操作,处理器510还用于执行图5A中的确定单元51所执行的其他操作,发射器520还用于执行图5A中的发送单元52所执行的其他操作。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产 品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (44)

  1. 一种通信方法,其特征在于,包括:
    基站向终端发送载波配置信息,所述载波配置信息用于确定所述终端能够配置的载波;
    所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收。
  2. 如权利要求1所述的方法,其特征在于,所述终端能够配置的载波的数量大于或者等于所述终端能够同时采用的载波的数量。
  3. 如权利要求1或2所述的方法,其特征在于,所述基站向终端发送载波配置信息之前,还包括:
    所述基站接收所述终端发送的所述终端的载波能力,所述载波能力包括所述终端能够同时采用的载波的数量。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述载波配置信息包括所述终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
  5. 如权利要求4所述的方法,其特征在于,所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收,包括:
    针对所述终端能够配置的载波中的每一个载波,所述基站从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上接收所述终端发送的信道探测参考信号SRS。
  6. 如权利要求4或5所述的方法,其特征在于,所述终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为所述终端能够同时采用的载波的数量。
  7. 如权利要求1-3任一项所述的方法,其特征在于,所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收之前,还包括:
    所述基站采用不同载波向所述终端发送SRS发送指令;
    所述基站采用所述终端能够配置的载波中的不同载波在不同TTI上进行上行接收,包括:
    所述基站采用发送所述SRS发送指令的不同载波在不同TTI上上接收所述终端根据所述SRS发送指令发送的SRS。
  8. 如权利要求3-7任一项所述的方法,其特征在于,所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收之后,还包括:
    针对接收到的任意一SRS,所述基站根据所述任意一SRS对发送所述SRS的载波进行下行载波处理。
  9. 如权利要求3-8任一项所述的方法,其特征在于,所述终端能够配置的载波包括所述基站采用的载波。
  10. 如权利要求1-3任一项所述的方法,其特征在于,所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收之前,还包括:
    所述基站向所述终端发送数据发送指令;
    所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收,包括:
    所述基站采用所述终端能够配置的载波中的不同载波在不同的TTI上接收所述终端根据所述数据发送指令发送的上行数据。
  11. 如权利要求10所述的方法,其特征在于,所述基站采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收之后,还包括:
    所述基站确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,第二载波满足所述预设条件时,向所述终端发送载波调整指令。
  12. 如权利要求11所述的方法,其特征在于,所述基站确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,包括:
    所述基站确定在第一TTI上进行上行数据传输的第一载波的负载大于负载预设门限值和/或信号质量小于或者等于信号质量预设门限值;
    所述基站确定第二载波满足所述预设条件,包括:
    所述基站确定所述第二载波的负载小于或者等于负载预设门限值和/或信号质量大于信号质量预设门限值。
  13. 一种通信的方法,其特征在于,包括:
    终端接收基站发送的载波配置信息;
    所述终端根据所述载波配置信息确定所述终端能够配置的载波;
    所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送。
  14. 如权利要求13所述的方法,其特征在于,所述终端能够配置的载波的数量大于或者等于所述终端能够同时采用的载波的数量。
  15. 如权利要求13或14所述的方法,其特征在于,所述终端接收基站发送的载波配置信息之前,还包括:
    所述终端向所述基站发送所述终端的载波能力,所述载波能力包括所述终端能够同时采用的载波的数量。
  16. 如权利要求13-15任一项所述的方法,其特征在于,所述载波配置信息包括所述终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
  17. 如权利要求16所述的方法,其特征在于,所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送,包括:
    针对所述终端能够配置的载波中的每一个载波,所述终端从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上发送信道探测参考信号SRS。
  18. 如权利要求16或17所述的方法,其特征在于,所述终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为所述终端能够同时采用的载波的数量。
  19. 如权利要求13-15任一项所述的方法,其特征在于,所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送之前,还包括:
    所述终端接收所述基站采用不同载波发送的SRS发送指令;
    所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送,包括:
    所述终端采用接收所述SRS发送指令的不同载波在不同TTI上发送SRS。
  20. 如权利要求16-19任一项所述的方法,其特征在于,所述终端能够配置的载波包括所述基站采用的载波。
  21. 如权利要求13-15任一项所述的方法,其特征在于,所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送之前,还包括:
    所述终端接收所述基站发送的数据发送指令;
    所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送,包括:
    所述终端根据所述述数据发送指令采用能够配置的载波中的不同载波在不同传输时间间隔TTI上发送上行数据。
  22. 如权利要求21所述的方法,其特征在于,所述终端采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送之后,还包括:
    所述终端接收载波调整指令;
    所述终端根据所述载波调整指令,将采用所述第一载波在所述第一TTI上传输的上行数据,调整至采用所述第二载波在所述第二TTI上进行传输。
  23. 一种通信设备,其特征在于,包括:
    发送单元,用以向终端发送载波配置信息,所述载波配置信息用于确定所述终端能够配置的载波;
    接收单元,用于采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收。
  24. 如权利要求23所述的通信设备,其特征在于,所述终端能够配置的载波的数量大于或者等于所述终端能够同时采用的载波的数量。
  25. 如权利要求23或24所述的通信设备,其特征在于,所述接收单元还用于,接收所述终端发送的所述终端的载波能力,所述载波能力包括所述终端能够同时采用的载波的数量。
  26. 如权利要求23-25任一项所述的通信设备,其特征在于,所述载波配置信息包括所述终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
  27. 如权利要求26所述的通信设备,其特征在于,所述接收单元采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收时,具体为:
    针对所述终端能够配置的载波中的每一个载波,所述接收单元从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上接收所述终端发送的信道探测参考信号SRS。
  28. 如权利要求26或27所述的通信设备,其特征在于,所述终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为所述终端能够同时采用的载波的数量。
  29. 如权利要求23-25任一项所述的通信设备,其特征在于,所述发送单元还用于,采用不同载波向所述终端发送SRS发送指令;
    所述接收单元采用所述终端能够配置的载波中的不同载波在不同TTI上进行上行接收时,具体为:
    所述接收单元采用发送所述SRS发送指令的不同载波在不同TTI上上接收所述终端根据所述SRS发送指令发送的SRS。
  30. 如权利要求25-29任一项所述的通信设备,其特征在于,还包括处理单元,用于针对接收到的任意一SRS,根据所述任意一SRS对发送所述SRS的载波进行下行载波处理。
  31. 如权利要求25-30任一项所述的通信设备,其特征在于,所述终端能 够配置的载波包括所述基站采用的载波。
  32. 如权利要求23-25任一项所述的通信设备,其特征在于,所述发送单元还用于,向所述终端发送数据发送指令;
    所述接收单元采用所述终端能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行接收时,具体为:
    所述接收单元采用所述终端能够配置的载波中的不同载波在不同的TTI上接收所述终端根据所述数据发送指令发送的上行数据。
  33. 如权利要求32所述的通信设备,其特征在于,还包括确定单元,用于确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,第二载波满足所述预设条件:
    所述发送单元还用于,在所述确定单元确定在第一TTI上进行上行数据传输的第一载波不满足预设条件,第二载波满足所述预设条件时,向所述终端发送载波调整指令。
  34. 如权利要求33所述的通信设备,其特征在于,所述确定单元确定在第一TTI上进行上行数据传输的第一载波不满足预设条件时,具体为:
    所述确定单元确定在第一TTI上进行上行数据传输的第一载波的负载大于负载预设门限值和/或信号质量小于或者等于信号质量预设门限值;
    所述确定单元确定第二载波满足所述预设条件时,具体为:
    所述确定单元确定所述第二载波的负载小于或者等于负载预设门限值和/或信号质量大于信号质量预设门限值。
  35. 一种通信的通信设备,其特征在于,包括:
    接收单元,用于接收基站发送的载波配置信息;
    确定单元,用于根据所述载波配置信息确定所述终端能够配置的载波;
    发送单元,用于采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送。
  36. 如权利要求35所述的通信设备,其特征在于,所述终端能够配置的载波的数量大于或者等于所述终端能够同时采用的载波的数量。
  37. 如权利要求35或36所述的通信设备,其特征在于,所述发送单元还用于,向所述基站发送所述终端的载波能力,所述载波能力包括所述终端能够同时采用的载波的数量。
  38. 如权利要求35-37任一项所述的通信设备,其特征在于,所述载波配置信息包括所述终端能够配置的载波中的每一个载波进行上行传输的起始TTI及传输周期。
  39. 如权利要求38所述的通信设备,其特征在于,所述发送单元采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,具体为:
    针对所述终端能够配置的载波中的每一个载波,所述发送单元从与该载波对应的起始TTI开始,采用与该载波对应的传输周期,在该载波上发送信道探测参考信号SRS。
  40. 如权利要求38或39所述的通信设备,其特征在于,所述终端能够配置的载波中对应的起始TTI相同,及对应的传输周期相同的载波的最大数量为所述终端能够同时采用的载波的数量。
  41. 如权利要求35-37任一项所述的通信设备,其特征在于,所述接收单元还用于,接收所述基站采用不同载波发送的SRS发送指令;
    所述发送单元采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,具体为:
    所述发送单元采用接收所述SRS发送指令的不同载波在不同TTI上发送SRS。
  42. 如权利要求38-41任一项所述的通信设备,其特征在于,所述终端能够配置的载波包括所述基站采用的载波。
  43. 如权利要求35-37任一项所述的通信设备,其特征在于,所述接收单元还用于,接收所述基站发送的数据发送指令;
    所述发送单元采用能够配置的载波中的不同载波在不同传输时间间隔TTI上进行上行发送时,具体为:
    所述发送单元根据所述述数据发送指令采用能够配置的载波中的不同载波在不同传输时间间隔TTI上发送上行数据。
  44. 如权利要求43所述的通信设备,其特征在于,所述接收单元还用于,接收载波调整指令;
    所述发送单元具体用于,根据所述载波调整指令,将采用所述第一载波在所述第一TTI上传输的上行数据,调整至采用所述第二载波在所述第二TTI上进行传输。
PCT/CN2015/083333 2015-07-03 2015-07-03 一种通信方法及装置 WO2017004757A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2015/083333 WO2017004757A1 (zh) 2015-07-03 2015-07-03 一种通信方法及装置
CN201580035397.0A CN106560012B (zh) 2015-07-03 2015-07-03 一种通信方法及装置
JP2017568103A JP6515210B2 (ja) 2015-07-03 2015-07-03 通信方法および通信装置
AU2015401601A AU2015401601B2 (en) 2015-07-03 2015-07-03 Communication method and communications apparatus
CN202010308549.2A CN111654918B (zh) 2015-07-03 2015-07-03 一种通信方法及装置
EP15897413.9A EP3306995B1 (en) 2015-07-03 2015-07-03 Communication method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/083333 WO2017004757A1 (zh) 2015-07-03 2015-07-03 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2017004757A1 true WO2017004757A1 (zh) 2017-01-12

Family

ID=57684741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083333 WO2017004757A1 (zh) 2015-07-03 2015-07-03 一种通信方法及装置

Country Status (5)

Country Link
EP (1) EP3306995B1 (zh)
JP (1) JP6515210B2 (zh)
CN (2) CN111654918B (zh)
AU (1) AU2015401601B2 (zh)
WO (1) WO2017004757A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195904A1 (zh) * 2017-04-28 2018-11-01 北京小米移动软件有限公司 用于信道载波配置的方法、装置、用户设备及基站
IL270845A (en) * 2017-07-17 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Data transfer method, end unit and network unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101351033A (zh) * 2007-07-20 2009-01-21 中兴通讯股份有限公司 一种多载波增强上行接入系统的数据复用方法
CN102415187A (zh) * 2009-04-23 2012-04-11 松下电器产业株式会社 用于生成多个上行链路传输块的逻辑信道优先级排序过程
WO2014109561A1 (en) * 2013-01-09 2014-07-17 Lg Electronics Inc. Method and apparatus for performing measurement in wireless communication system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9265063B2 (en) * 2006-06-21 2016-02-16 Electronics And Telecommunications Research Institute Method to transmit downlink signaling message on cellular systems for packet transmission and method for receiving the message
CN101835174B (zh) * 2009-03-12 2012-10-31 中国移动通信集团公司 信号传送方法及其相关设备
CN101873698B (zh) * 2009-04-23 2012-12-26 中国移动通信集团公司 信号传送方法及其相关设备
CN102714869B (zh) * 2010-01-08 2016-04-06 夏普株式会社 用于探测参考信号传输的移动通信方法和系统以及基站、用户设备和其中的集成电路
CN102378383B (zh) * 2010-08-09 2014-04-02 华为技术有限公司 发送与接收探测参考信号的方法、基站和用户设备
JP2013535941A (ja) * 2010-08-16 2013-09-12 ノキア シーメンス ネットワークス オサケユキチュア 基準信号の送信
KR101776873B1 (ko) * 2011-01-11 2017-09-11 삼성전자 주식회사 이동통신 시스템에서 역방향 전송 출력 결정 방법 및 장치
US9787451B2 (en) * 2011-03-02 2017-10-10 Lg Electronics Inc. Method and apparatus for transmitting a sounding reference signal by a terminal
US9363820B2 (en) * 2011-08-11 2016-06-07 Industrial Technology Research Institute Method of uplink control information transmission
CN104067660B (zh) * 2012-01-26 2018-11-06 索尼公司 无线通信设备、无线通信方法和无线通信系统
JP2013197944A (ja) * 2012-03-21 2013-09-30 Ntt Docomo Inc 無線基地局及び移動局
CN103391628B (zh) * 2012-05-09 2017-01-25 中国移动通信集团公司 一种载波聚合系统中信息传输方法及装置
CN109152063A (zh) * 2012-12-17 2019-01-04 华为技术有限公司 一种载波的分配方法、用户设备及基站
KR102025385B1 (ko) * 2013-02-26 2019-11-27 삼성전자주식회사 셀 내의 캐리어 집적 시스템에서 단말의 능력에 따른 제어 채널 전송 방법 및 장치
EP2966890B1 (en) * 2013-04-02 2020-06-10 Huawei Technologies Co., Ltd. Method and device for data transmission and user equipment
RU2631251C2 (ru) * 2013-05-31 2017-09-20 Хуавэй Текнолоджиз Ко., Лтд. Способ обмена информацией, базовая станция и устройство пользователя
JP6225552B2 (ja) * 2013-08-08 2017-11-08 富士通株式会社 無線通信方法、無線通信システムおよび通信装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101351033A (zh) * 2007-07-20 2009-01-21 中兴通讯股份有限公司 一种多载波增强上行接入系统的数据复用方法
CN102415187A (zh) * 2009-04-23 2012-04-11 松下电器产业株式会社 用于生成多个上行链路传输块的逻辑信道优先级排序过程
WO2014109561A1 (en) * 2013-01-09 2014-07-17 Lg Electronics Inc. Method and apparatus for performing measurement in wireless communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3306995A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195904A1 (zh) * 2017-04-28 2018-11-01 北京小米移动软件有限公司 用于信道载波配置的方法、装置、用户设备及基站
US11109379B2 (en) 2017-04-28 2021-08-31 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for configuring channel carrier, user equipment and base station
IL270845A (en) * 2017-07-17 2020-01-30 Guangdong Oppo Mobile Telecommunications Corp Ltd Data transfer method, end unit and network unit
EP3637894A4 (en) * 2017-07-17 2020-04-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. DATA TRANSMISSION METHOD, TERMINAL DEVICE AND NETWORK DEVICE
RU2748873C1 (ru) * 2017-07-17 2021-06-02 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ передачи данных, терминал и сетевое устройство
US11419111B2 (en) 2017-07-17 2022-08-16 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, terminal device, and network device
IL270845B2 (en) * 2017-07-17 2023-05-01 Guangdong Oppo Mobile Telecommunications Corp Ltd Data transfer method, end unit and network unit

Also Published As

Publication number Publication date
AU2015401601B2 (en) 2019-01-31
EP3306995B1 (en) 2021-03-10
CN111654918A (zh) 2020-09-11
EP3306995A1 (en) 2018-04-11
CN111654918B (zh) 2024-03-05
JP2018526859A (ja) 2018-09-13
CN106560012A (zh) 2017-04-05
AU2015401601A1 (en) 2018-01-25
CN106560012B (zh) 2020-04-28
EP3306995A4 (en) 2018-05-30
JP6515210B2 (ja) 2019-05-15

Similar Documents

Publication Publication Date Title
CN111971916B (zh) 用于传送传输块重复的方法、无线设备、基站、介质和系统
EP2875619B1 (en) Interference managment of device-to-device communication in a cellular communication system
WO2017092563A1 (zh) 一种数据传输控制方法、装置、系统及相关设备
US10117255B2 (en) Neighboring cell load information
EP2826191B1 (en) Wireless multi-flow communications in the uplink
US20190254043A1 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (noma) scheme
JP2022521719A (ja) 電力制御方法および電力制御装置
WO2018032434A1 (zh) 通信方法及装置
TW201445895A (zh) 無線通信裝置與方法
WO2016000241A1 (zh) 一种用户设备及功率分配的方法
US20170187428A1 (en) CoMP JT COMMUNICATION METHOD AND BASE STATION
JP2016034112A (ja) ユーザ装置、及び上り送信タイミング制御方法
CN104363978A (zh) 一种传输功率的控制方法及装置
WO2018171461A1 (zh) 信息传输方法、装置及系统
WO2017113206A1 (zh) 一种数据通信的方法、终端设备及网络设备
WO2016050137A1 (zh) 一种基于tm9的载波聚合方法和设备
WO2020097775A1 (en) Communications with preconfigured uplink resources
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
WO2016168967A1 (zh) 一种分量载波组的配置方法及设备
WO2017004757A1 (zh) 一种通信方法及装置
WO2018232832A1 (zh) 一种确定mimo层数的方法和设备
WO2017166234A1 (zh) 信号传输方法、信号传输控制方法、用户设备及基站
JP7449992B2 (ja) 方法、装置、及びコンピュータプログラム
WO2022011711A1 (zh) 通信方法、通信设备、电子设备及计算机存储介质
US9380595B2 (en) Methods and apparatus for communication scheduling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897413

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017568103

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015401601

Country of ref document: AU

Date of ref document: 20150703

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2015897413

Country of ref document: EP