WO2016050137A1 - 一种基于tm9的载波聚合方法和设备 - Google Patents

一种基于tm9的载波聚合方法和设备 Download PDF

Info

Publication number
WO2016050137A1
WO2016050137A1 PCT/CN2015/089380 CN2015089380W WO2016050137A1 WO 2016050137 A1 WO2016050137 A1 WO 2016050137A1 CN 2015089380 W CN2015089380 W CN 2015089380W WO 2016050137 A1 WO2016050137 A1 WO 2016050137A1
Authority
WO
WIPO (PCT)
Prior art keywords
component carrier
transmission mode
codebook
stream
network side
Prior art date
Application number
PCT/CN2015/089380
Other languages
English (en)
French (fr)
Inventor
郭凤然
沈毅
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US15/515,894 priority Critical patent/US10362578B2/en
Priority to EP15847085.6A priority patent/EP3203672B1/en
Publication of WO2016050137A1 publication Critical patent/WO2016050137A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a carrier aggregation method and apparatus based on TM9.
  • FIG. 1 it is a networking diagram of a carrier aggregation system, and a carrier aggregation of a Time Division-Long Time Evolution (TD-LTE) cell is mainly based on a bandwidth of 10 M and 20 M in D, E, and F bands.
  • Perform carrier aggregation In a carrier aggregation (CA) system, a plurality of component carriers serving a user equipment (User Equipment, UE) are divided into a primary component carrier (PCC) and a secondary component carrier (Secondary Component Carrier). , SCC).
  • PCC primary component carrier
  • SCC Secondary Component Carrier
  • the cell corresponding to the PCC is called the primary cell (PCell), the PCell will inherit all the functions of the serving cell of the Long Term Evolution (LTE); the cell corresponding to the SCC is called the secondary cell (SCell), and the SCell will only bear the data. Transfer function.
  • the PCell and the SCell are from the perspective of the UE.
  • the PCell includes a downlink (DL) component carrier (CC) and an uplink (UL) CC.
  • the SCell may have only a DL CC, but not only a UL CC.
  • the LTE-A cell will support the transmission mode 9 (TM9), and the cell downlink can be configured with a maximum of 8 ports and a maximum of 8 streams.
  • TM9 transmission mode 9
  • the rate is far beyond the LTE cell.
  • the current carrier aggregation cell is mainly considered to be single-and dual-channel transmission, and the carrier aggregation cell does not support carrier aggregation for the downlink 8-port TM9 TD-LTE-A cell.
  • the embodiment of the present invention provides a carrier aggregation method and device based on the TM9, so that the carrier aggregation cell supports carrier aggregation of the TD-LTE-A cell of the downlink 8 port TM9, and improves the user rate.
  • An embodiment of the present invention provides a carrier aggregation method based on a transmission mode TM9, where the method includes:
  • the network side device determines a component carrier that is currently activated in the carrier aggregation system
  • the network side device determines a transmission mode of the component carrier
  • the network side device transmits data to the user equipment UE according to the transmission mode.
  • the network side device determines the transmission mode of the component carrier, and specifically includes:
  • the network side device determines whether the UE supports an uplink carrier aggregation function
  • the network side device determines that the transmission mode of the component carrier is the codebook TM9 under the codebook condition; or, under the non-codebook condition, the network side device determines The transmission mode of the component carrier is a non-codebook TM9;
  • the network side device determines that the transmission mode of the component carrier is the codebook TM9 under the codebook condition; or, under the non-codebook condition, the network side device It is determined that the transmission mode of the component carrier is TM3.
  • the network side device determines the transmission mode of the component carrier, and specifically includes:
  • the network side device determines that the transmission mode of the component carrier is the codebook TM9; or, under the non-codebook condition, determines that the transmission mode of the component carrier is the non-codebook TM9.
  • the process of determining, by the network side device, that the transmission mode of the component carrier is the codebook TM9 specifically: the network side device determining whether the number of ports configured by the network side device is greater than or equal to 4;
  • the network side device determines that the transmission mode of the component carrier is a codebook TM9 single stream or a codebook TM9 dual stream;
  • the network side device determines whether the maximum number of flows supported by the UE is greater than or equal to 4;
  • the network side device determines that the transmission mode of the component carrier is a codebook TM9 single stream or a codebook TM9 dual stream;
  • the network side device determines that the transmission mode of the component carrier is a codebook TM9 quad stream or a codebook TM9 eight stream.
  • the method further includes: the network side device transmitting the transmission mode of the component carrier to the UE;
  • the transmission mode of the component carrier is the codebook TM9 single stream or the codebook TM9 dual stream
  • the auxiliary component carrier enables the inter-mode adaptation function
  • the transmission mode is adaptive to TM3; otherwise, the transmission mode is adaptive to TM9 single stream or TM9 dual stream;
  • the transmission mode of the UE in the component carrier is the codebook TM9 four-stream or the codebook TM9 eight-stream
  • the auxiliary component carrier enables the inter-mode adaptive function
  • if the RSRP is greater than the preset third threshold, and the SINR is greater than the pre- Set fourth The threshold then adapts the transmission mode to TM9 four-stream or TM9 eight-stream; otherwise, the transmission mode is adaptive to TM3.
  • An embodiment of the present invention provides a carrier aggregation method based on a transmission mode TM9, where the method includes:
  • the user equipment UE receives a transmission mode of a component carrier from the network side device;
  • the transmission mode of the component carrier is the codebook TM9 single stream or the codebook TM9 dual stream, and the auxiliary component carrier enables the inter-mode adaptation function, if the reference symbol received power RSRP is greater than a preset first threshold, and the signal and interference are added If the noise ratio SINR is greater than a preset second threshold, the UE adapts the transmission mode to TM3; otherwise, adapts the transmission mode to TM9 single stream or TM9 dual stream;
  • the auxiliary component carrier turns on the inter-mode adaptive function, if the RSRP is greater than the preset third threshold, and the SINR is greater than the preset fourth threshold Then, the UE adapts the transmission mode to TM9 four-stream or TM9 eight-stream; otherwise, the UE adapts the transmission mode to TM3.
  • the embodiment of the present invention provides a network side device, where the network side device specifically includes:
  • a first determining module configured to determine a component carrier that is currently activated in the carrier aggregation system
  • a second determining module configured to: when a component carrier that configures the transmission mode TM9 is configured in the component carrier that is currently activated, determine a transmission mode of the component carrier for the component carrier that configures the ME9;
  • a transmission module configured to transmit data to the user equipment UE according to the transmission mode.
  • the second determining module is specifically configured to: when the component carrier of the TM9 is configured as a secondary component carrier, determine whether the UE supports the uplink carrier aggregation function; if the UE supports the uplink carrier aggregation function, under the codebook condition, Determining that the transmission mode of the component carrier is the codebook TM9; or, under the non-codebook condition, determining that the transmission mode of the component carrier is a non-codebook TM9; if the UE does not support the uplink carrier aggregation function, the code is Under the condition, the transmission mode of the component carrier is determined to be the codebook TM9; or, under the non-codebook condition, the transmission mode of the component carrier is determined to be TM3.
  • the second determining module is specifically configured to: when the component carrier of the TM9 is configured as the main component carrier, determine, according to the codebook condition, that the transmission mode of the component carrier is the codebook TM9; or, under the non-codebook condition, It is determined that the transmission mode of the component carrier is a non-codebook TM9.
  • the second determining module is further configured to: determine, in the process of determining that the transmission mode of the component carrier is the codebook TM9, whether the number of ports configured by the network side device is greater than or equal to 4; if the network side device is configured If the number of ports is not greater than or equal to 4, it is determined that the transmission mode of the component carrier is a codebook TM9 single stream or a codebook TM9 dual stream; if the number of ports configured by the network side device is greater than or equal to 4, it is determined that the UE supports the maximum Whether the number of streams is greater than or equal to 4; if the number of streams supported by the UE is not greater than or equal to 4, determining that the transmission mode of the component carrier is a codebook TM9 single stream or a codebook TM9 dual stream; if the maximum supported stream of the UE If the number is greater than or equal to 4, it is determined that the transmission mode of the component carrier is a codebook TM9 quad stream or a codebook TM9 eight stream.
  • the transmission module is further configured to transmit the component carrier after determining a transmission mode of the component carrier
  • the mode is sent to the UE; when the transmission mode of the component carrier is the codebook TM9 single stream or the codebook TM9 dual stream, and the auxiliary component carrier enables the inter-mode adaptive function, if the reference symbol received power RSRP is greater than Presetting the first threshold, and the signal to interference plus noise ratio SINR is greater than the preset second threshold, then adapting the transmission mode to TM3; otherwise, adapting the transmission mode to TM9 single stream or TM9 dual stream; If the transmission mode of the component carrier is the codebook TM9 four-stream or the codebook TM9 eight-stream, and the auxiliary component carrier enables the inter-mode adaptive function, if the RSRP is greater than the preset third threshold, and the SINR is greater than the preset fourth threshold, The transmission mode is then adapted to TM9 four-stream or TM9 eight-stream; otherwise, the transmission mode is adaptive to TM3.
  • An embodiment of the present invention provides a user equipment UE, where the UE specifically includes:
  • a receiving module configured to receive a transmission mode of a component carrier from a network side device
  • a processing module configured to: when the transmission mode of the component carrier is a codebook transmission mode TM9 single stream or a codebook TM9 dual stream, and the auxiliary component carrier enables an inter-mode adaptive function, if the reference symbol received power RSRP is greater than a preset first Threshold, and the signal to interference plus noise ratio SINR is greater than a preset second threshold, then adapting the transmission mode to TM3; otherwise, adapting the transmission mode to TM9 single stream or TM9 dual stream; or, transmission on the component carrier
  • the mode is codebook TM9 four-stream or codebook TM9 eight-stream, and when the auxiliary component carrier turns on the inter-mode adaptive function, if the RSRP is greater than the preset third threshold, and the SINR is greater than the preset fourth threshold, the transmission mode is adaptive. Go to TM9 four-stream or TM9 eight-stream; otherwise, adapt the transmission mode to TM3.
  • a network side device where the network side device specifically includes:
  • a processor for reading a program in the memory performing the following process:
  • a transceiver for receiving and transmitting data under the control of a processor.
  • the processor is specifically configured to:
  • the component carrier of the TM9 When the component carrier of the TM9 is configured as a secondary component carrier, it is determined whether the UE supports the uplink carrier aggregation function; if the UE supports the uplink carrier aggregation function, determining, under the codebook condition, that the transmission mode of the component carrier is a code Or the non-codebook condition, determining that the transmission mode of the component carrier is non-codebook TM9; if the UE does not support the uplink carrier aggregation function, determining the component carrier under the codebook condition
  • the transmission mode is codebook TM9; or, under non-codebook conditions, the transmission mode of the component carrier is determined to be TM3.
  • the processor is specifically configured to:
  • the transmission mode of the component carrier is determined to be the codebook TM9 under the codebook condition; or, under the non-codebook condition, the transmission mode of the component carrier is determined to be non- Codebook TM9.
  • the processor is further configured to:
  • the processor is further configured to:
  • the transmission mode of the component carrier After determining the transmission mode of the component carrier, transmitting, by the transceiver 410, the transmission mode of the component carrier to the UE; the transmission mode of the component in the component carrier is a codebook TM9 single stream or a codebook
  • the transmission mode of the component in the component carrier is a codebook TM9 single stream or a codebook
  • the transmission mode of the component in the component carrier is a codebook TM9 single stream or a codebook
  • a UE where the UE specifically includes:
  • a transceiver for receiving and transmitting data under the control of a processor.
  • a processor configured to receive, by the transceiver, a transmission mode of the component carrier from the network side device, and read a program in the memory, and perform the following process:
  • the transmission mode of the component carrier is the codebook transmission mode TM9 single stream or the codebook TM9 dual stream
  • the auxiliary component carrier enables the inter-mode adaptation function
  • the transmission mode is adaptive to TM3; otherwise, the transmission mode is adaptive to TM9 single stream or TM9 dual stream; or, the transmission mode of the component carrier is code
  • the TM9 four-stream or the codebook TM9 is eight-stream
  • the auxiliary component carrier turns on the inter-mode adaptive function, if the RSRP is greater than the preset third threshold, and the SINR is greater than the preset fourth threshold, the transmission mode is adaptive to the TM9 four. Stream or TM9 eight streams; otherwise, adapt the transmission mode to TM3.
  • the embodiment of the present invention has at least the following advantages.
  • the carrier aggregation cell can support carrier aggregation of the TD-LTE-A cell of the downlink 8 port TM9, thereby improving the user rate. And enhance the user experience. Further, the foregoing method increases the checkpoints such as the maximum supported data stream number and the UE capability, so as to improve user throughput.
  • FIG. 1 is a schematic diagram of networking of a carrier aggregation system in the prior art
  • FIG. 2 is a flowchart of a carrier aggregation method based on TM9 according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic structural diagram of a network side device according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic structural diagram of a user equipment according to Embodiment 3 of the present invention.
  • FIG. 5 is a schematic structural diagram of a network side device according to Embodiment 4 of the present invention.
  • FIG. 6 is a schematic structural diagram of a network side device according to Embodiment 5 of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • UMTS Universal Mobile Telecommunication System
  • user equipment includes but is not limited to a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile telephone (Mobile Telephone), and a mobile phone (handset).
  • the user equipment can communicate with one or more core networks via a Radio Access Network (RAN), for example, the user equipment can be a mobile phone (or "cellular"
  • RAN Radio Access Network
  • the user equipment can be a mobile phone (or "cellular"
  • the telephone device, the computer with wireless communication function, etc., the user equipment can also be a mobile device that is portable, pocket-sized, handheld, built-in, or in-vehicle.
  • a base station may refer to a device in an access network that communicates with a wireless terminal over one or more sectors over an air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a Base Transceiver Station (BTS) in GSM or CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B), the invention is not limited.
  • BTS Base Transceiver Station
  • NodeB base station
  • NodeB evolved base station
  • LTE Long Term Evolutional Node B
  • the first embodiment of the present invention provides a carrier aggregation method based on TM9.
  • the TM9-based carrier aggregation method specifically includes the following steps:
  • Step 201 The network side device determines a component carrier that is currently activated in the carrier aggregation system.
  • the carrier aggregation process specifically includes, but is not limited to, a configuration process of a carrier aggregation cell and an activation/deactivation process of a secondary component carrier.
  • one component carrier is configured as a primary component carrier
  • the other component carrier component is configured as a secondary component carrier.
  • a set of carrier aggregation parameters may be configured, for example, an uplink carrier aggregation switch, a downlink carrier aggregation switch, a carrier aggregation cross-carrier scheduling switch, a carrier aggregation activation/deactivation ratio threshold, and a carrier aggregation activation. Data volume threshold, carrier aggregation deactivation data volume threshold, and so on.
  • a set of default carrier aggregation parameters may be set to the carrier aggregation relationship, and the parameter may be specifically adjusted.
  • the activation/deactivation process of the secondary component carrier may be performed in accordance with the activation/deactivation algorithm shown in Table 1. For example, after the carrier aggregation relationship is configured, if the UE1 is attached to the primary component carrier, and the data flow on the UE1 reaches the carrier aggregation activation data threshold, and the parameters reach the carrier aggregation condition, the secondary component carrier will Activated.
  • the network side device may determine a component carrier that has been activated in the carrier aggregation system, and determine whether a component carrier of the TM9 is configured in the component carrier that is currently activated.
  • Step 202 If there is a component carrier configured with TM9 in the component carrier that is currently activated, the network side device determines the transmission mode of the component carrier for the component carrier configuring the TM9.
  • scheduling of the primary component carrier and the secondary component carrier are performed separately, that is, according to a general policy, the primary component carrier and the secondary component carrier are independently scheduled, and each is configured according to In the case of the UE, the transmission mode and the Downlink Control Information (DCI) format are determined.
  • DCI Downlink Control Information
  • TD-LTE cell A is a primary component carrier
  • TD-LTE cell A is configured with a transmission mode of TM3
  • LTE-A cell B is a secondary component carrier
  • LTE-A cell B is configured with a transmission mode of TM9
  • the component carrier (LTE-A cell B) of the TM9 is processed according to the technical solution provided by the embodiment of the present invention, and the process is described in detail in the subsequent process; for configuring the component carrier (TD-LTE cell A) of the TM3, according to the prior art The processing is not described in detail in the embodiment of the present invention.
  • the network side device determines the transmission mode of the component carrier, including but not limited to: the network side device determines whether the UE supports the uplink carrier aggregation function; In the case of the carrier aggregation function, the network side device determines that the transmission mode of the component carrier is the codebook TM9; or, under the non-codebook condition, the network side device determines that the transmission mode of the component carrier is the non-codebook TM9; The UE does not support the uplink carrier aggregation function, and the network side device determines that the transmission mode of the component carrier is the codebook TM9 under the codebook condition; or, under the non-codebook condition, the network side device determines that the transmission mode of the component carrier is TM3.
  • the network side device determines the transmission mode of the component carrier as the codebook TM9, and specifically includes, but is not limited to, the network side device determines whether the number of ports configured by the network side device is greater than or equal to 4, and if the network side device configures the port If the number is not greater than or equal to 4, the network side device determines that the transmission mode of the component carrier is the codebook TM9 single stream or the codebook TM9 dual stream; if the number of ports configured by the network side device is greater than or equal to 4, the network side device determines that the UE supports the maximum If the number of streams supported by the UE is not greater than or equal to 4, the network side device determines that the transmission mode of the component carrier is a codebook TM9 single stream or a codebook TM9 dual stream; if the maximum number of streams supported by the UE is greater than or equal to 4. The network side device determines that the transmission mode of the component carrier is a codebook TM9 quad stream or a codebook TM9 eight stream.
  • the uplink component aggregation function requires the UE to have two transmit antennas, and the primary component carrier and the secondary component carrier simultaneously send uplink data. Therefore, if the UE supports the uplink carrier aggregation function, the uplink data may be sent on the secondary component carrier.
  • the network side device determines that the transmission mode of the component carrier is the codebook TM9; or, under the non-codebook condition, the network The side device determines that the transmission mode of the component carrier is non-codebook TM9. If the UE does not support the uplink carrier aggregation function, the UE uplink supports only one component carrier, that is, the primary component carrier.
  • the network side device determines that the transmission mode of the component carrier is the codebook TM9; Alternatively, under non-codebook conditions, the network side device determines that the transmission mode of the component carrier is TM3, and cannot be the non-codebook TM9.
  • the network side device determines the transmission mode of the component carrier, which includes, but is not limited to, the following manner: under the codebook condition, the network side device determines the member.
  • the transmission mode of the carrier is the codebook TM9; or, under the non-codebook condition, the network side device determines that the transmission mode of the component carrier is the non-codebook TM9.
  • the network side device determines the transmission mode of the component carrier as the codebook TM9, and specifically includes, but is not limited to, the network side device determines whether the number of ports configured by the network side device is greater than or equal to 4, and if the network side device configures the port If the number is not greater than or equal to 4, the network side device determines that the transmission mode of the component carrier is the codebook TM9 single stream or the codebook TM9 dual stream; if the number of ports configured by the network side device is greater than or equal to 4, the network side device determines that the UE supports the maximum If the number of streams supported by the UE is not greater than or equal to 4, the network side device determines that the transmission mode of the component carrier is a codebook TM9 single stream or a codebook TM9 dual stream; if the maximum number of streams supported by the UE is greater than or equal to 4. The network side device determines that the transmission mode of the component carrier is a codebook TM9 quad stream or a codebook TM9 eight stream.
  • the component carrier configuring the TM9 may be used as the secondary component carrier, and the component carrier configuring the TM9 may be used as the primary component carrier. Further, the primary component carrier needs to be always active regardless of whether the UE supports the uplink carrier aggregation function.
  • Step 203 The network side device transmits data to the UE according to the transmission mode, that is, the transmission mode of the component carrier configuring the TM9 determined in step 202. After determining the transmission mode of the component carrier (such as the primary component carrier or the secondary component carrier), the network side device may further adjust the format of the data transmission according to the channel environment, and transmit the data to the UE by using the format of the data transmission.
  • the transmission mode that is, the transmission mode of the component carrier configuring the TM9 determined in step 202.
  • the network side device may further adjust the format of the data transmission according to the channel environment, and transmit the data to the UE by using the format of the data transmission.
  • the network side device may also send the transmission mode of the component carrier (such as the primary component carrier or the secondary component carrier of the configured TM9) to the data transmission process.
  • the UE receives the transmission mode of the component carrier by the UE.
  • the transmission mode of the component carrier is the codebook TM9 single stream or the codebook TM9 dual stream
  • the auxiliary component carrier enables the inter-mode adaptation function
  • RSRP reference signal received power
  • SINR signal to interference plus noise ratio
  • the transmission mode of the component carrier is the codebook TM9 four-stream or the codebook TM9 eight-stream
  • the secondary component carrier enables the inter-mode adaptation function
  • the preset first threshold, the preset second threshold, the preset third threshold, and the preset fourth threshold may be arbitrarily set according to actual experience.
  • the RSRP of the UE is greater than the preset first threshold, the RSRP value is better, for example, the preset first threshold is -100 dBm.
  • the SINR of the UE is greater than the preset second threshold, the SINR value is better, such as the preset second threshold being 18 dB.
  • the RSRP of the UE is greater than the preset third threshold, the RSRP value is better, for example, the preset third threshold is -100 dBm.
  • the SINR of the UE is greater than the preset fourth threshold, the SINR value is better, such as the preset fourth threshold being 18 dB.
  • a carrier aggregation cell can be enabled. Supports carrier aggregation for the downlink 8-port TM9 TD-LTE-A cell, thereby increasing user speed and enhancing user experience. Further, the foregoing method increases the checkpoints such as the maximum supported data stream number and the UE capability, so as to improve user throughput. Further, on the basis of the existing TD-LTE cell carrier aggregation, considering the case where the TM9 cell is activated as the secondary component carrier, what transmission mode is used by the secondary component carrier cell to transmit data, and the maximum supported data flow number is increased. Checkpoints such as UE capabilities are used to improve user throughput and increase the rate of carrier aggregation users.
  • the network side device is further provided in the embodiment of the present invention. As shown in FIG. 3, the network side device specifically includes:
  • the first determining module 11 is configured to determine a component carrier that is currently activated in the carrier aggregation system
  • the second determining module 12 is configured to determine, when the component carrier that is currently activated has a component carrier configured with the transmission mode TM9, determine a transmission mode of the component carrier for configuring a component carrier of the TM9;
  • the transmission module 13 is configured to transmit data to the user equipment UE according to the transmission mode.
  • the second determining module 12 is specifically configured to determine whether the UE supports the uplink carrier aggregation function when the component carrier of the TM9 is configured as the secondary component carrier; if the UE supports the uplink carrier aggregation function, the codec condition is Determining that the transmission mode of the component carrier is the codebook TM9; or, under the non-codebook condition, determining that the transmission mode of the component carrier is a non-codebook TM9; if the UE does not support the uplink carrier aggregation function, Under the codebook condition, the transmission mode of the component carrier is determined to be the codebook TM9; or, under the non-codebook condition, the transmission mode of the component carrier is determined to be TM3.
  • the second determining module 12 is specifically configured to: when the component carrier of the TM9 is configured as the primary component carrier, determine, according to the codebook condition, that the transmission mode of the component carrier is the codebook TM9; or, under the non-codebook condition And determining that the transmission mode of the component carrier is a non-codebook TM9.
  • the second determining module 12 is further configured to: determine, in the process of determining that the transmission mode of the component carrier is the codebook TM9, whether the number of ports configured by the network side device is greater than or equal to 4; If the number of ports is not greater than or equal to 4, it is determined that the transmission mode of the component carrier is a codebook TM9 single stream or a codebook TM9 dual stream; if the number of ports configured by the network side device is greater than or equal to 4, it is determined that the UE supports the maximum Whether the number of streams of the UE is greater than or equal to 4; if the number of streams supported by the UE is not greater than or equal to 4, determining that the transmission mode of the component carrier is a codebook TM9 single stream or a codebook TM9 dual stream; if the UE supports the maximum If the number of streams is greater than or equal to 4, it is determined that the transmission mode of the component carrier is a codebook TM9 quad stream or a codebook TM9 eight stream.
  • the transmission module 13 is further configured to: after determining a transmission mode of the component carrier, send a transmission mode of the component carrier to the UE; and a transmission mode of the component in the component carrier is a codebook TM9 If the single-stream or codebook TM9 dual-stream and the auxiliary component carrier enable the inter-mode adaptive function, if the reference symbol received power RSRP is greater than the preset first threshold, and the signal-to-interference plus noise ratio SINR is greater than the preset second threshold, then The transmission mode is adaptive to TM3; otherwise, the transmission mode is adaptive to TM9 single stream or TM9 dual stream; by the UE in the component carrier
  • the transmission mode is codebook TM9 four-stream or codebook TM9 eight-stream, and when the auxiliary component carrier turns on the inter-mode adaptive function, if the RSRP is greater than the preset third threshold, and the SINR is greater than the preset fourth threshold, the transmission mode is Adapt to TM9 quad or TM9 eight streams; otherwise, adapt the transmission
  • modules of the device of the present invention may be integrated or integrated.
  • the above modules can be combined into one module, or can be further split into multiple sub-modules.
  • a UE is further provided in the embodiment of the present invention. As shown in FIG. 4, the UE specifically includes:
  • the receiving module 21 is configured to receive a transmission mode of a component carrier from the network side device.
  • the processing module 22 is configured to: when the transmission mode of the component carrier is the codebook transmission mode TM9 single stream or the codebook TM9 dual stream, and the auxiliary component carrier enables the inter-mode adaptation function, if the reference symbol received power RSRP is greater than the preset number a threshold, and the signal to interference plus noise ratio SINR is greater than a preset second threshold, then adapting the transmission mode to TM3; otherwise, adapting the transmission mode to TM9 single stream or TM9 dual stream; or, on the component carrier
  • the transmission mode is the codebook TM9 four-stream or the codebook TM9 eight-stream
  • the auxiliary component carrier turns on the inter-mode adaptive function, if the RSRP is greater than the preset third threshold, and the SINR is greater than the preset fourth threshold, the transmission mode is Adapt to TM9 four-stream or TM9 eight-stream; otherwise, adapt the transmission mode to TM3.
  • modules of the device of the present invention may be integrated or integrated.
  • the above modules can be combined into one module, or can be further split into multiple sub-modules.
  • the network side device is further provided in the embodiment of the present invention. As shown in FIG. 4, the network side device specifically includes:
  • the processor 500 is configured to read a program in the memory 520 and perform the following process:
  • the machine 510 transmits data to the UE according to the transmission mode.
  • the transceiver 510 is configured to receive and transmit data under the control of the processor 400.
  • the processor 500 is specifically configured to determine whether the UE supports the uplink carrier aggregation function when the component carrier of the TM9 is configured as the secondary component carrier; if the UE supports the uplink carrier aggregation function, the codebook If the UE does not support the uplink carrier aggregation function, the transmission mode of the component carrier is determined to be a non-codebook TM9. Then, under the codebook condition, determining that the transmission mode of the component carrier is the codebook TM9; or, under the non-codebook condition, determining that the transmission mode of the component carrier is TM3.
  • the processor 500 is specifically configured to: when configuring a component carrier of the TM9 as a main component carrier, in the codebook
  • the transmission mode of the component carrier is determined to be the codebook TM9; or, under the non-codebook condition, the transmission mode of the component carrier is determined to be the non-codebook TM9.
  • the processor 500 is further configured to: determine, in the process of determining that the transmission mode of the component carrier is the codebook TM9, whether the number of ports configured by the network side device is greater than or equal to 4; If the number of ports configured by the device is not greater than or equal to 4, it is determined that the transmission mode of the component carrier is a codebook TM9 single stream or a codebook TM9 dual stream; if the number of ports configured by the network side device is greater than or equal to 4, determining the UE Whether the maximum number of supported streams is greater than or equal to 4; if the number of streams supported by the UE is not greater than or equal to 4, determining that the transmission mode of the component carrier is a codebook TM9 single stream or a codebook TM9 dual stream; if the UE is the largest If the number of supported streams is greater than or equal to 4, it is determined that the transmission mode of the component carrier is a codebook TM9 quad stream or a codebook TM9 eight stream.
  • the processor 500 is further configured to: after determining the transmission mode of the component carrier, send, by the transceiver 510, a transmission mode of the component carrier to the UE; by the UE in the member
  • the transmission mode of the carrier is the codebook TM9 single stream or the codebook TM9 dual stream
  • the auxiliary component carrier enables the inter-mode adaptation function, if the reference symbol received power RSRP is greater than the preset first threshold, and the signal-to-interference plus noise ratio SINR is greater than Presetting the second threshold, then adapting the transmission mode to TM3; otherwise, adapting the transmission mode to TM9 single stream or TM9 dual stream; the transmission mode of the UE in the component carrier is codebook TM9 quad stream or code
  • the TM9 is eight-stream and the auxiliary component carrier enables the inter-mode adaptive function, if the RSRP is greater than the preset third threshold, and the SINR is greater than the preset fourth threshold, the transmission mode is adaptive to the TM9 four-stream or
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 500 and various circuits of memory represented by memory 520.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 510 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • a UE is further provided in the embodiment of the present invention. As shown in FIG. 6, the UE specifically includes:
  • the transceiver 610 is configured to receive and transmit data under the control of the processor 600.
  • the processor 600 is configured to receive, by the transceiver 610, a transmission mode of a component carrier from the network side device, and read a program in the memory 620, and perform the following process:
  • the transmission mode of the component carrier is the codebook transmission mode TM9 single stream or the codebook TM9 dual stream
  • the auxiliary component carrier enables the inter-mode adaptation function
  • the transmission mode is adaptive to TM3; otherwise, the transmission will be transmitted.
  • the transmission mode is adaptive to the TM9 single stream or the TM9 dual stream; or, when the transmission mode of the component carrier is the codebook TM9 quad stream or the codebook TM9 eight stream, and the auxiliary component carrier turns on the inter-mode adaptive function, if the RSRP is greater than
  • the third threshold is preset, and the SINR is greater than the preset fourth threshold, then the transmission mode is adaptive to the TM9 quad stream or the TM9 eight stream; otherwise, the transmission mode is adaptive to TM3.
  • the bus architecture can include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 600 and various circuits of memory represented by memory 620.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 610 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 600 is responsible for managing the bus architecture and general processing, and the memory 620 can store data used by the processor 600 in performing operations.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

公开了一种基于TM9的载波聚合方法和设备,该方法包括:网络侧设备确定载波聚合系统中当前已经激活的成员载波;如果当前已经激活的成员载波中有配置TM9的成员载波,则针对配置TM9的成员载波,网络侧设备确定所述成员载波的传输模式;网络侧设备按照所述传输模式向用UE传输数据。本发明实施例中,可以使载波聚合小区支持对下行8端口的TM9的TD-LTE-A小区进行载波聚合,从而能够提高用户速率,并增强用户体验。上述方式增加了最大支持数据流数、UE能力等检查点,用以提高用户吞吐量。

Description

一种基于TM9的载波聚合方法和设备
本申请要求在2014年9月30日提交中国专利局、申请号为201410521497.1、发明名称为“一种基于TM9的载波聚合方法和设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其是一种基于TM9的载波聚合方法和设备。
背景技术
如图1所示,为载波聚合系统的组网示意图,时分长期演进(Time Division-Long Time Evolution,TD-LTE)小区的载波聚合,主要是基于带宽10M、20M在D、E、F等频段进行载波聚合。在载波聚合(Carrier Aggregation,CA)系统中,将同时为一个用户设备(User Equipment,UE)服务的多个成员载波分为主成员载波(Primary Component Carrier,PCC)和辅成员载波(Secondary Component Carrier,SCC)。其中,PCC对应的小区称为主小区(PCell),PCell将继承长期演进(Long Term Evolution,LTE)的服务小区的全部功能;SCC对应的小区称为辅小区(SCell),SCell将仅承担数据传输功能。PCell和SCell是从UE的角度来说的,PCell包含下行(DL)成员载波(Component Carrier,CC)和上行(UL)CC,SCell可以只有DL CC,但不能只有UL CC。
随着高级长期演进(Long Term Evolution-Advanced,LTE-A)技术和UE技术的发展,LTE-A小区将支持传输模式9(Transmission Mode9,TM9),小区下行最多配置8端口,最大支持8流的单用户传输,速率远超出LTE小区。但是,由于UE的发射天线限制,现阶段的载波聚合小区主要考虑的是单双流传输,载波聚合小区不支持对下行8端口的TM9的TD-LTE-A小区进行载波聚合。
发明内容
本发明实施例提供一种基于TM9的载波聚合方法和设备,使载波聚合小区支持对下行8端口的TM9的TD-LTE-A小区进行载波聚合,提高用户速率。
本发明实施例提供一种基于传输模式TM9的载波聚合方法,该方法包括:
网络侧设备确定载波聚合系统中当前已经激活的成员载波;
如果当前已经激活的成员载波中有配置TM9的成员载波,则针对配置TM9的成员载 波,所述网络侧设备确定所述成员载波的传输模式;
所述网络侧设备按照所述传输模式向用户设备UE传输数据。
当配置TM9的成员载波为辅成员载波时,所述网络侧设备确定所述成员载波的传输模式,具体包括:
所述网络侧设备判断所述UE是否支持上行载波聚合功能;
如果所述UE支持上行载波聚合功能,则在码本条件下,所述网络侧设备确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,所述网络侧设备确定所述成员载波的传输模式为非码本TM9;
如果所述UE不支持上行载波聚合功能,则在码本条件下,所述网络侧设备确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,所述网络侧设备确定所述成员载波的传输模式为TM3。
当配置TM9的成员载波为主成员载波时,所述网络侧设备确定所述成员载波的传输模式,具体包括:
在码本条件下,所述网络侧设备确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9。
所述网络侧设备确定所述成员载波的传输模式为码本TM9的过程,具体包括:所述网络侧设备判断本网络侧设备配置的端口数是否大于等于4;
如果本网络侧设备配置的端口数不大于等于4,则所述网络侧设备确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;
如果本网络侧设备配置的端口数大于等于4,则所述网络侧设备判断所述UE最大支持的流数是否大于等于4;
如果所述UE最大支持的流数不大于等于4,则所述网络侧设备确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;
如果所述UE最大支持的流数大于等于4,则所述网络侧设备确定所述成员载波的传输模式为码本TM9四流或者码本TM9八流。
所述网络侧设备确定所述成员载波的传输模式之后,所述方法进一步包括:所述网络侧设备将所述成员载波的传输模式发送给所述UE;
由所述UE在所述成员载波的传输模式为码本TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;
由所述UE在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四 阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
本发明实施例提供一种基于传输模式TM9的载波聚合方法,该方法包括:
用户设备UE接收来自网络侧设备的成员载波的传输模式;
在所述成员载波的传输模式为码本TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则所述UE将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;
在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则所述UE将传输模式自适应到TM9四流或者TM9八流;否则,所述UE将传输模式自适应到TM3。
本发明实施例提供一种网络侧设备,所述网络侧设备具体包括:
第一确定模块,用于确定载波聚合系统中当前已经激活的成员载波;
第二确定模块,用于在当前已经激活的成员载波中有配置传输模式TM9的成员载波时,则针对配置TM9的成员载波,确定所述成员载波的传输模式;
传输模块,用于按照所述传输模式向用户设备UE传输数据。
所述第二确定模块,具体用于当配置TM9的成员载波为辅成员载波时,判断所述UE是否支持上行载波聚合功能;如果所述UE支持上行载波聚合功能,则在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9;如果所述UE不支持上行载波聚合功能,则在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为TM3。
所述第二确定模块,具体用于当配置TM9的成员载波为主成员载波时,在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9。
所述第二确定模块,进一步用于在确定所述成员载波的传输模式为码本TM9的过程中,判断所述网络侧设备配置的端口数是否大于等于4;如果所述网络侧设备配置的端口数不大于等于4,则确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;如果所述网络侧设备配置的端口数大于等于4,则判断所述UE最大支持的流数是否大于等于4;如果所述UE最大支持的流数不大于等于4,则确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;如果所述UE最大支持的流数大于等于4,则确定所述成员载波的传输模式为码本TM9四流或者码本TM9八流。
所述传输模块,还用于在确定所述成员载波的传输模式之后,将所述成员载波的传输 模式发送给所述UE;由所述UE在所述成员载波的传输模式为码本TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;由所述UE在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
本发明实施例提供一种用户设备UE,所述UE具体包括:
接收模块,用于接收来自网络侧设备的成员载波的传输模式;
处理模块,用于在所述成员载波的传输模式为码本传输模式TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;或者,在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
一种网络侧设备,所述网络侧设备具体包括:
处理器,用于读取存储器中的程序,执行下列过程:
确定载波聚合系统中当前已经激活的成员载波,在当前已经激活的成员载波中有配置传输模式TM9的成员载波时,则针对配置TM9的成员载波,确定所述成员载波的传输模式,以及通过收发机按照所述传输模式向UE传输数据。
收发机,用于在处理器的控制下接收和发送数据。
较佳的,所述处理器具体用于:
当配置TM9的成员载波为辅成员载波时,判断所述UE是否支持上行载波聚合功能;如果所述UE支持上行载波聚合功能,则在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9;如果所述UE不支持上行载波聚合功能,则在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为TM3。
较佳的,所述处理器具体用于:
当配置TM9的成员载波为主成员载波时,在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9。
较佳的,所述处理器进一步用于:
在确定所述成员载波的传输模式为码本TM9的过程中,判断所述网络侧设备配置的 端口数是否大于等于4;如果所述网络侧设备配置的端口数不大于等于4,则确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;如果所述网络侧设备配置的端口数大于等于4,则判断所述UE最大支持的流数是否大于等于4;如果所述UE最大支持的流数不大于等于4,则确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;如果所述UE最大支持的流数大于等于4,则确定所述成员载波的传输模式为码本TM9四流或者码本TM9八流。
较佳的,所述处理器还用于:
在确定所述成员载波的传输模式之后,通过收发机410将所述成员载波的传输模式发送给所述UE;由所述UE在所述成员载波的传输模式为码本TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;由所述UE在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
一种UE,所述UE具体包括:
收发机,用于在处理器的控制下接收和发送数据。
处理器,用于通过收发机接收来自网络侧设备的成员载波的传输模式,以及读取存储器中的程序,执行下列过程:
用于在所述成员载波的传输模式为码本传输模式TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;或者,在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
与现有技术相比,本发明实施例至少具有以下优点,本发明实施例中,可以使载波聚合小区支持对下行8端口的TM9的TD-LTE-A小区进行载波聚合,从而能够提高用户速率,并增强用户体验。进一步的,上述方式增加了最大支持数据流数、UE能力等检查点,用以提高用户吞吐量。
附图说明
图1是现有技术中的载波聚合系统的组网示意图;
图2是本发明实施例一提供的一种基于TM9的载波聚合方法流程图;
图3是本发明实施例二提供的一种网络侧设备的结构示意图;
图4是本发明实施例三提供的一种用户设备的结构示意图;
图5是本发明实施例四提供的一种网络侧设备的结构示意图;
图6是本发明实施例五提供的一种网络侧设备的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应理解,本发明的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)等。
还应理解,在本发明实施例中,用户设备(UE,User Equipment)包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、手机(handset)及便携设备(portable equipment)等,该用户设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,用户设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,用户设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
在本发明实施例中,基站(例如,接入点)可以是指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明并不限定。
实施例一
针对现有技术中存在的问题,本发明实施例一提供一种基于TM9的载波聚合方法,如图2所示,该基于TM9的载波聚合方法具体包括以下步骤:
步骤201,网络侧设备确定载波聚合系统中当前已经激活的成员载波。
本发明实施例中,在载波聚合系统中,载波聚合过程具体包括但不限于:载波聚合小区的配置过程以及辅成员载波的激活/去激活过程。
在载波聚合小区的配置过程中,将一个成员载波配置为主成员载波,将其它一个或者多个成员载波配置为辅成员载波。进一步的,当载波聚合关系添加之后,还可以配置一组载波聚合参数,例如,上行载波聚合开关、下行载波聚合开关、载波聚合跨载波调度开关、载波聚合激活/去激活比例门限、载波聚合激活数据量门限、载波聚合去激活数据量门限等。进一步的,还可以设置一组默认的载波聚合参数到载波聚合关系中,此参数可具体调整。
在辅成员载波的激活/去激活过程中,可以按照表1所示的激活/去激活算法执行辅成员载波的激活/去激活处理。例如,当载波聚合关系配置好之后,如果UE1附着在主成员载波上,此时UE1上的数据流达到载波聚合激活数据量门限,并且各项参数达到了载波聚合的条件,则辅成员载波将被激活。
表1
Figure PCTCN2015089380-appb-000001
基于上述处理,网络侧设备可以确定出载波聚合系统中当前已经激活的成员载波,并确定当前已经激活的成员载波中是否有配置TM9的成员载波。
步骤202,如果当前已经激活的成员载波中有配置TM9的成员载波,则针对配置TM9的成员载波,网络侧设备确定该成员载波的传输模式。
本发明实施例中,当辅成员载波被激活之后,主成员载波和辅成员载波的调度是分别进行的,即按照一般的策略来说,主成员载波和辅成员载波是独立调度的,各自根据UE情况,确定自己的传输模式和下行控制信息(Downlink Control Information,DCI)格式。对于配置TM9的成员载波,按照本发明实施例提供的技术方案处理,对于未配置TM9的成员载波,按照现有技术处理。例如,TD-LTE小区A为主成员载波,TD-LTE小区A配置的传输模式为TM3,LTE-A小区B为辅成员载波,LTE-A小区B配置的传输模式为TM9,则:对于配置TM9的成员载波(LTE-A小区B),按照本发明实施例提供的技术方案处理,该处理在后续过程中详细说明;对于配置TM3的成员载波(TD-LTE小区A),按照现有技术处理,该处理本发明实施例中不再赘述。
本发明实施例中,当配置TM9的成员载波为辅成员载波时,网络侧设备确定成员载波的传输模式,具体包括但不限于:网络侧设备判断UE是否支持上行载波聚合功能;如果UE支持上行载波聚合功能,则在码本条件下,网络侧设备确定成员载波的传输模式为码本TM9;或者,在非码本条件下,网络侧设备确定成员载波的传输模式为非码本TM9;如果UE不支持上行载波聚合功能,则在码本条件下,网络侧设备确定成员载波的传输模式为码本TM9;或者,在非码本条件下,网络侧设备确定成员载波的传输模式为TM3。
进一步的,网络侧设备确定成员载波的传输模式为码本TM9的过程,具体包括但不限于:网络侧设备判断本网络侧设备配置的端口数是否大于等于4;如果本网络侧设备配置的端口数不大于等于4,则网络侧设备确定成员载波的传输模式为码本TM9单流或者码本TM9双流;如果本网络侧设备配置的端口数大于等于4,则网络侧设备判断UE最大支持的流数是否大于等于4;如果UE最大支持的流数不大于等于4,则网络侧设备确定成员载波的传输模式为码本TM9单流或者码本TM9双流;如果UE最大支持的流数大于等于4,则网络侧设备确定成员载波的传输模式为码本TM9四流或者码本TM9八流。
其中,由于上行载波聚合功能需要UE有两根发送天线,主成员载波和辅成员载波同时发送上行数据。因此,如果UE支持上行载波聚合功能,则可以在辅成员载波发送上行数据,在码本条件下,网络侧设备确定成员载波的传输模式为码本TM9;或者,在非码本条件下,网络侧设备确定成员载波的传输模式为非码本TM9。如果UE不支持上行载波聚合功能,则UE上行只支持一个成员载波,即主成员载波,对于辅成员载波来说,在码本条件下,网络侧设备确定成员载波的传输模式为码本TM9;或者,在非码本条件下,网络侧设备确定成员载波的传输模式为TM3,而不能是非码本TM9。
本发明实施例中,当配置TM9的成员载波为主成员载波时,网络侧设备确定成员载波的传输模式的过程,具体包括但不限于如下方式:在码本条件下,网络侧设备确定成员 载波的传输模式为码本TM9;或者,在非码本条件下,网络侧设备确定成员载波的传输模式为非码本TM9。
进一步的,网络侧设备确定成员载波的传输模式为码本TM9的过程,具体包括但不限于:网络侧设备判断本网络侧设备配置的端口数是否大于等于4;如果本网络侧设备配置的端口数不大于等于4,则网络侧设备确定成员载波的传输模式为码本TM9单流或者码本TM9双流;如果本网络侧设备配置的端口数大于等于4,则网络侧设备判断UE最大支持的流数是否大于等于4;如果UE最大支持的流数不大于等于4,则网络侧设备确定成员载波的传输模式为码本TM9单流或者码本TM9双流;如果UE最大支持的流数大于等于4,则网络侧设备确定成员载波的传输模式为码本TM9四流或者码本TM9八流。
其中,本发明实施例中,可以将配置TM9的成员载波作为辅成员载波,也可以将配置TM9的成员载波作为主成员载波。进一步的,无论UE是否支持上行载波聚合功能,主成员载波需要始终是激活的。
步骤203,网络侧设备按照传输模式(即步骤202中确定的配置TM9的成员载波的传输模式)向UE传输数据。其中,网络侧设备在确定成员载波(如主成员载波或者辅成员载波)的传输模式之后,还可以根据信道环境调整数据传输的格式,并利用该数据传输的格式向UE传输数据。
本发明实施例中,网络侧设备在确定成员载波的传输模式之后,在数据传输过程中,网络侧设备还可以将成员载波(如配置TM9的主成员载波或者辅成员载波)的传输模式发送给UE,由UE接收成员载波的传输模式。
进一步的,在成员载波的传输模式为码本TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果UE的参考符号接收功率(Reference Signal Received Power,RSRP)大于预设第一阈值,且UE的信号与干扰加噪声比(Signal to Interference plus Noise Ratio,SINR)大于预设第二阈值,则UE将传输模式自适应到TM3;否则,UE将传输模式自适应到TM9单流或者TM9双流。进一步的,在成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果UE的RSRP大于预设第三阈值,且UE的SINR大于预设第四阈值,则UE将传输模式自适应到TM9四流或者TM9八流;否则,UE将传输模式自适应到TM3。
其中,预设第一阈值、预设第二阈值、预设第三阈值和预设第四阈值均可以根据实际经验任意设置。当UE的RSRP大于预设第一阈值时,表示RSRP值较好,如预设第一阈值为-100dBm。当UE的SINR大于预设第二阈值,表示SINR值较好,如预设第二阈值为18dB。当UE的RSRP大于预设第三阈值时,表示RSRP值较好,如预设第三阈值为-100dBm。当UE的SINR大于预设第四阈值,表示SINR值较好,如预设第四阈值为18dB。
综上所述,本发明实施例至少具有以下优点,本发明实施例中,可以使载波聚合小区 支持对下行8端口的TM9的TD-LTE-A小区进行载波聚合,从而能够提高用户速率,并增强用户体验。进一步的,上述方式增加了最大支持数据流数、UE能力等检查点,用以提高用户吞吐量。进一步的,通过在现有TD-LTE小区载波聚合基础上,考虑将TM9小区作为辅成员载波激活的情况,将辅成员载波小区使用何种传输模式来传输数据,增加了最大支持数据流数、UE能力等检查点,用以提高用户吞吐量,提高载波聚合用户的速率。
实施例二
基于与上述方法同样的发明构思,本发明实施例中还提供了一种网络侧设备,如图3所示,所述网络侧设备具体包括:
第一确定模块11,用于确定载波聚合系统中当前已经激活的成员载波;
第二确定模块12,用于在当前已经激活的成员载波有配置传输模式TM9的成员载波时,则针对配置TM9的成员载波,确定所述成员载波的传输模式;
传输模块13,用于按照所述传输模式向用户设备UE传输数据。
所述第二确定模块12,具体用于当配置TM9的成员载波为辅成员载波时,判断所述UE是否支持上行载波聚合功能;如果所述UE支持上行载波聚合功能,则在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9;如果所述UE不支持上行载波聚合功能,则在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为TM3。
所述第二确定模块12,具体用于当配置TM9的成员载波为主成员载波时,在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9。
所述第二确定模块12,进一步用于在确定所述成员载波的传输模式为码本TM9的过程中,判断所述网络侧设备配置的端口数是否大于等于4;如果所述网络侧设备配置的端口数不大于等于4,则确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;如果所述网络侧设备配置的端口数大于等于4,则判断所述UE最大支持的流数是否大于等于4;如果所述UE最大支持的流数不大于等于4,则确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;如果所述UE最大支持的流数大于等于4,则确定所述成员载波的传输模式为码本TM9四流或者码本TM9八流。
所述传输模块13,还用于在确定所述成员载波的传输模式之后,将所述成员载波的传输模式发送给所述UE;由所述UE在所述成员载波的传输模式为码本TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;由所述UE在所述成员载波 的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
其中,本发明装置的各个模块可以集成于一体,也可以分离部署。上述模块可以合并为一个模块,也可以进一步拆分成多个子模块。
实施例三
基于与上述方法同样的发明构思,本发明实施例中还提供了一种UE,如图4所示,所述UE具体包括:
接收模块21,用于接收来自网络侧设备的成员载波的传输模式;
处理模块22,用于在所述成员载波的传输模式为码本传输模式TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;或者,在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
其中,本发明装置的各个模块可以集成于一体,也可以分离部署。上述模块可以合并为一个模块,也可以进一步拆分成多个子模块。
实施例四
基于与上述方法同样的发明构思,本发明实施例中还提供了一种网络侧设备,如图4所示,所述网络侧设备具体包括:
处理器500,用于读取存储器520中的程序,执行下列过程:
确定载波聚合系统中当前已经激活的成员载波,在当前已经激活的成员载波中有配置传输模式TM9的成员载波时,则针对配置TM9的成员载波,确定所述成员载波的传输模式,以及通过收发机510按照所述传输模式向UE传输数据。
收发机510,用于在处理器400的控制下接收和发送数据。
较佳的,所述处理器500,具体用于当配置TM9的成员载波为辅成员载波时,判断所述UE是否支持上行载波聚合功能;如果所述UE支持上行载波聚合功能,则在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9;如果所述UE不支持上行载波聚合功能,则在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为TM3。
较佳的,所述处理器500,具体用于当配置TM9的成员载波为主成员载波时,在码本 条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9。
较佳的,所述处理器500,进一步用于在确定所述成员载波的传输模式为码本TM9的过程中,判断所述网络侧设备配置的端口数是否大于等于4;如果所述网络侧设备配置的端口数不大于等于4,则确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;如果所述网络侧设备配置的端口数大于等于4,则判断所述UE最大支持的流数是否大于等于4;如果所述UE最大支持的流数不大于等于4,则确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;如果所述UE最大支持的流数大于等于4,则确定所述成员载波的传输模式为码本TM9四流或者码本TM9八流。
较佳的,所述处理器500,还用于在确定所述成员载波的传输模式之后,通过收发机510将所述成员载波的传输模式发送给所述UE;由所述UE在所述成员载波的传输模式为码本TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;由所述UE在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
实施例五
基于与上述方法同样的发明构思,本发明实施例中还提供了一种UE,如图6所示,所述UE具体包括:
收发机610,用于在处理器600的控制下接收和发送数据。
处理器600,用于通过收发机610接收来自网络侧设备的成员载波的传输模式,以及读取存储器620中的程序,执行下列过程:
用于在所述成员载波的传输模式为码本传输模式TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传 输模式自适应到TM9单流或者TM9双流;或者,在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器600代表的一个或多个处理器和存储器620代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机610可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器600负责管理总线架构和通常的处理,存储器620可以存储处理器600在执行操作时所使用的数据。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (12)

  1. 一种基于传输模式TM9的载波聚合方法,其特征在于,该方法包括:
    网络侧设备确定载波聚合系统中当前已经激活的成员载波;
    如果当前已经激活的成员载波中有配置TM9的成员载波,则针对配置TM9的成员载波,所述网络侧设备确定所述成员载波的传输模式;
    所述网络侧设备按照所述传输模式向用户设备UE传输数据。
  2. 如权利要求1所述的方法,其特征在于,当配置TM9的成员载波为辅成员载波时,所述网络侧设备确定所述成员载波的传输模式,具体包括:
    所述网络侧设备判断所述UE是否支持上行载波聚合功能;
    如果所述UE支持上行载波聚合功能,则在码本条件下,所述网络侧设备确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,所述网络侧设备确定所述成员载波的传输模式为非码本TM9;
    如果所述UE不支持上行载波聚合功能,则在码本条件下,所述网络侧设备确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,所述网络侧设备确定所述成员载波的传输模式为TM3。
  3. 如权利要求1所述的方法,其特征在于,当配置TM9的成员载波为主成员载波时,所述网络侧设备确定所述成员载波的传输模式,具体包括:
    在码本条件下,所述网络侧设备确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9。
  4. 如权利要求2或3所述的方法,其特征在于,所述网络侧设备确定所述成员载波的传输模式为码本TM9的过程,具体包括:
    所述网络侧设备判断本网络侧设备配置的端口数是否大于等于4;
    如果本网络侧设备配置的端口数不大于等于4,则所述网络侧设备确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;
    如果本网络侧设备配置的端口数大于等于4,则所述网络侧设备判断所述UE最大支持的流数是否大于等于4;
    如果所述UE最大支持的流数不大于等于4,则所述网络侧设备确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;
    如果所述UE最大支持的流数大于等于4,则所述网络侧设备确定所述成员载波的传输模式为码本TM9四流或者码本TM9八流。
  5. 如权利要求4所述的方法,其特征在于,所述网络侧设备确定所述成员载波的传输模式之后,所述方法进一步包括:
    所述网络侧设备将所述成员载波的传输模式发送给所述UE;
    由所述UE在所述成员载波的传输模式为码本TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;
    由所述UE在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
  6. 一种基于传输模式TM9的载波聚合方法,其特征在于,该方法包括:
    用户设备UE接收来自网络侧设备的成员载波的传输模式;
    在所述成员载波的传输模式为码本TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则所述UE将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;
    在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则所述UE将传输模式自适应到TM9四流或者TM9八流;否则,所述UE将传输模式自适应到TM3。
  7. 一种网络侧设备,其特征在于,所述网络侧设备具体包括:
    第一确定模块,用于确定载波聚合系统中当前已经激活的成员载波;
    第二确定模块,用于在当前已经激活的成员载波中有配置传输模式TM9的成员载波时,则针对配置TM9的成员载波,确定所述成员载波的传输模式;
    传输模块,用于按照所述传输模式向用户设备UE传输数据。
  8. 如权利要求7所述的网络侧设备,其特征在于,
    所述第二确定模块,具体用于当配置TM9的成员载波为辅成员载波时,判断所述UE是否支持上行载波聚合功能;如果所述UE支持上行载波聚合功能,则在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为非码本TM9;如果所述UE不支持上行载波聚合功能,则在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载波的传输模式为TM3。
  9. 如权利要求7所述的网络侧设备,其特征在于,
    所述第二确定模块,具体用于当配置TM9的成员载波为主成员载波时,在码本条件下,确定所述成员载波的传输模式为码本TM9;或者,在非码本条件下,确定所述成员载 波的传输模式为非码本TM9。
  10. 如权利要求8或9所述的网络侧设备,其特征在于,
    所述第二确定模块,进一步用于在确定所述成员载波的传输模式为码本TM9的过程中,判断所述网络侧设备配置的端口数是否大于等于4;如果所述网络侧设备配置的端口数不大于等于4,则确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;如果所述网络侧设备配置的端口数大于等于4,则判断所述UE最大支持的流数是否大于等于4;如果所述UE最大支持的流数不大于等于4,则确定所述成员载波的传输模式为码本TM9单流或者码本TM9双流;如果所述UE最大支持的流数大于等于4,则确定所述成员载波的传输模式为码本TM9四流或者码本TM9八流。
  11. 如权利要求10所述的网络侧设备,其特征在于,
    所述传输模块,还用于在确定所述成员载波的传输模式之后,将所述成员载波的传输模式发送给所述UE;由所述UE在所述成员载波的传输模式为码本TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;由所述UE在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
  12. 一种用户设备UE,其特征在于,所述UE具体包括:
    接收模块,用于接收来自网络侧设备的成员载波的传输模式;
    处理模块,用于在所述成员载波的传输模式为码本传输模式TM9单流或者码本TM9双流,且辅成员载波开启模式间自适应功能时,如果参考符号接收功率RSRP大于预设第一阈值,且信号与干扰加噪声比SINR大于预设第二阈值,则将传输模式自适应到TM3;否则,将传输模式自适应到TM9单流或者TM9双流;或者,在所述成员载波的传输模式为码本TM9四流或者码本TM9八流,且辅成员载波开启模式间自适应功能时,如果RSRP大于预设第三阈值,且SINR大于预设第四阈值,则将传输模式自适应到TM9四流或者TM9八流;否则,将传输模式自适应到TM3。
PCT/CN2015/089380 2014-09-30 2015-09-10 一种基于tm9的载波聚合方法和设备 WO2016050137A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/515,894 US10362578B2 (en) 2014-09-30 2015-09-10 TM9-based carrier aggregation method and device
EP15847085.6A EP3203672B1 (en) 2014-09-30 2015-09-10 Tm9-based carrier aggregation method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410521497.1A CN104301083B (zh) 2014-09-30 2014-09-30 一种基于tm9的载波聚合方法和设备
CN201410521497.1 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016050137A1 true WO2016050137A1 (zh) 2016-04-07

Family

ID=52320664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089380 WO2016050137A1 (zh) 2014-09-30 2015-09-10 一种基于tm9的载波聚合方法和设备

Country Status (4)

Country Link
US (1) US10362578B2 (zh)
EP (1) EP3203672B1 (zh)
CN (1) CN104301083B (zh)
WO (1) WO2016050137A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201412265D0 (en) * 2014-07-10 2014-08-27 Vodafone Ip Licensing Ltd Carrier aggregation activation
CN104301083B (zh) * 2014-09-30 2017-10-13 大唐移动通信设备有限公司 一种基于tm9的载波聚合方法和设备
US10177886B2 (en) * 2015-11-30 2019-01-08 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for configuring a cluster
CN115883035A (zh) * 2021-09-26 2023-03-31 深圳市中兴微电子技术有限公司 载波数据处理方法、装置、网络设备及存储介质
CN114286038B (zh) * 2021-12-27 2024-03-22 中国联合网络通信集团有限公司 视频数据传输方法、机载终端、计算机设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104460A (zh) * 2011-03-18 2011-06-22 电信科学技术研究院 一种确定反馈信息比特数的方法和设备
WO2014051378A1 (en) * 2012-09-27 2014-04-03 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving channel state information
CN103716891A (zh) * 2013-12-31 2014-04-09 大唐移动通信设备有限公司 Lte-a系统中pucch资源位置分配的方法和系统
CN104301083A (zh) * 2014-09-30 2015-01-21 大唐移动通信设备有限公司 一种基于tm9的载波聚合方法和设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5356339B2 (ja) * 2010-09-03 2013-12-04 シャープ株式会社 端末装置、基地局装置、通信システムおよび通信方法
US8670410B2 (en) * 2010-09-17 2014-03-11 Qualcomm Incorporated Uplink control channel resource mapping for carrier aggregation
CN102026388B (zh) * 2011-01-07 2013-07-31 西安电子科技大学 LTE-A系统中CoMP下的无线资源分配方法
US8817647B2 (en) * 2011-02-15 2014-08-26 Mediatek Inc. Priority rules of periodic CSI reporting in carrier aggregation
CN102843209B (zh) * 2011-06-22 2015-09-30 华为技术有限公司 传输控制信令的方法和装置
CN106712921B (zh) * 2011-07-14 2020-06-30 Lg电子株式会社 无线通信系统中设置信道的方法和装置
CN103326758B (zh) * 2012-03-19 2018-06-12 中兴通讯股份有限公司 下行解调参考信号初始化配置参数通知、接收方法及装置
WO2013168958A1 (ko) * 2012-05-07 2013-11-14 엘지전자 주식회사 하향링크 데이터 수신 방법 및 사용자기기와 하향링크 데이터 전송 방법 및 기지국
WO2014070321A1 (en) * 2012-11-01 2014-05-08 Maruti Gupta Signaling qos requirements and ue power preference in lte-a networks
WO2014168527A1 (en) * 2013-04-09 2014-10-16 Telefonaktiebolaget L M Ericsson (Publ) Selection of transmission mode based on radio conditions
US20150333884A1 (en) * 2014-05-08 2015-11-19 Telefonaktiebolaget L M Ericsson (Publ) Beam Forming Using a Two-Dimensional Antenna Arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104460A (zh) * 2011-03-18 2011-06-22 电信科学技术研究院 一种确定反馈信息比特数的方法和设备
WO2014051378A1 (en) * 2012-09-27 2014-04-03 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving channel state information
CN103716891A (zh) * 2013-12-31 2014-04-09 大唐移动通信设备有限公司 Lte-a系统中pucch资源位置分配的方法和系统
CN104301083A (zh) * 2014-09-30 2015-01-21 大唐移动通信设备有限公司 一种基于tm9的载波聚合方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203672A4 *

Also Published As

Publication number Publication date
EP3203672A4 (en) 2018-06-13
CN104301083A (zh) 2015-01-21
US10362578B2 (en) 2019-07-23
CN104301083B (zh) 2017-10-13
EP3203672B1 (en) 2020-01-01
EP3203672A1 (en) 2017-08-09
US20170325211A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
US10993277B2 (en) Enhanced PDCP duplication handling and RLC failure handling
KR102352689B1 (ko) 전력 제어 방법, 단말 기기 및 네트워크 기기
CN105940734B (zh) 用于上行链路发射功率分配和功率余量报告的方法和装置
KR102015038B1 (ko) Laa/lte 무선 리소스 할당 시의 불균형을 해소하기 위한 동적 링크 모니터링
WO2017193398A1 (zh) 功率控制方法和装置
US11153006B2 (en) Uplink transmission puncturing to reduce interference between wireless services
WO2016050137A1 (zh) 一种基于tm9的载波聚合方法和设备
TWI583215B (zh) 載波聚合之非連續接收
WO2020037447A1 (zh) 一种功率控制方法及装置、终端
CN109152069B (zh) 传输控制信息的方法和设备
US11057905B2 (en) Communication method, network device and terminal device
JP2018532350A (ja) フレキシブルな複信動作のためのセル識別子および他のパラメータを管理するための技法
WO2015139278A1 (zh) 发送信号的方法、用户设备和基站
US20220322190A1 (en) Primary cell switching in non-simultaneous uplink carrier aggregation scenarios
WO2019023876A1 (zh) 数据传输的方法和终端设备
WO2021207959A1 (zh) 重复传输方法、装置及可读存储介质
US11350417B2 (en) Method and apparatus for transmitting information
WO2015154611A1 (zh) 一种多业务控制信道发送的方法和装置
JP2022507564A (ja) 通信方法および装置
CN106560012B (zh) 一种通信方法及装置
WO2015149348A1 (zh) 调节数据传输速率的方法和装置
WO2018177549A1 (en) Method, apparatus and computer program for use in power headroom reporting
CA3065405A1 (en) Uplink transmission method and terminal device
CN110024451B (zh) 在针对混合传输时间间隔的上行链路多载波场景中用于功率分配的系统和方法
US11191081B2 (en) Method and apparatus for measurement and reporting for reference signal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15515894

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015847085

Country of ref document: EP