WO2017002918A1 - アルブミン-糖鎖複合体 - Google Patents

アルブミン-糖鎖複合体 Download PDF

Info

Publication number
WO2017002918A1
WO2017002918A1 PCT/JP2016/069438 JP2016069438W WO2017002918A1 WO 2017002918 A1 WO2017002918 A1 WO 2017002918A1 JP 2016069438 W JP2016069438 W JP 2016069438W WO 2017002918 A1 WO2017002918 A1 WO 2017002918A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar chain
albumin
complex
formula
carrier
Prior art date
Application number
PCT/JP2016/069438
Other languages
English (en)
French (fr)
Inventor
田中 克典
恭良 渡辺
章弘 小椋
貴博 山本
Original Assignee
株式会社糖鎖工学研究所
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社糖鎖工学研究所, 国立研究開発法人理化学研究所 filed Critical 株式会社糖鎖工学研究所
Priority to CA2991013A priority Critical patent/CA2991013C/en
Priority to KR1020177037467A priority patent/KR102611306B1/ko
Priority to US15/740,511 priority patent/US10683341B2/en
Priority to SG11201710829WA priority patent/SG11201710829WA/en
Priority to DK16818026.3T priority patent/DK3318575T3/da
Priority to EP16818026.3A priority patent/EP3318575B1/en
Priority to JP2017526430A priority patent/JP6956959B2/ja
Priority to AU2016286027A priority patent/AU2016286027B2/en
Priority to CN201680038209.4A priority patent/CN107750252B/zh
Publication of WO2017002918A1 publication Critical patent/WO2017002918A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/76Albumins
    • C07K14/765Serum albumin, e.g. HSA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/702Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/549Sugars, nucleosides, nucleotides or nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/643Albumins, e.g. HSA, BSA, ovalbumin or a Keyhole Limpet Hemocyanin [KHL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0056Peptides, proteins, polyamino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to an albumin-sugar chain complex that exists stably in a living body and can exert a sugar chain cluster effect with one molecule.
  • N-type sugar chain has a structure in which a sugar chain is bonded to the amide nitrogen atom of the side chain of asparagine (Asn) and constitutes a sugar chain.
  • a sugar chain is bonded to the amide nitrogen atom of the side chain of asparagine (Asn) and constitutes a sugar chain.
  • monosaccharides monosaccharides or derivatives thereof
  • branching branching
  • N-type sugar chains interact with other molecules such as proteins and lipids, and are deeply involved in various biological functions such as immune response regulation, cell growth, canceration and cancer cell metastasis. It also contributes to the stability of proteins in vivo.
  • N-type sugar chain Since the function of this N-type sugar chain can be expected to be applied to pharmaceuticals for diagnosis and treatment, analysis of the dynamics of the N-type sugar chain in vivo is in progress. Since the interaction of N-type sugar chains with proteins and the like mainly depends on the sugar chain structure, an N-type sugar having a specific sugar chain structure is used as a method for analyzing the function of the N-type sugar chain. Glycoproteins in which a chain is bound to a protein such as albumin are administered to animals, and a method for analyzing kinetic analysis, presence or absence of accumulation in tissues, and the like (for example, see Non-Patent Document 1 or 2). .
  • a fluorescent substance is further introduced into a glycoprotein having an N-type sugar chain having a specific sugar chain structure, and the pharmacokinetics of the animal is examined noninvasively by bioimaging analysis or the like (for example, non- (See Patent Document 3).
  • the glycoprotein used for analyzing the function of the N-type sugar chain is preferably one in which as many N-type sugar chains as possible are bound per protein molecule so as to obtain a sugar chain cluster effect.
  • the present inventors have so far synthesized 4 to 16 molecules of N-type sugar chains per molecule into the polylysine skeleton, further synthesized a sugar chain cluster modified with a fluorescent substance at the terminal, and administered this to animals. It has been reported that kinetic analysis was performed (see Non-Patent Document 4). Since sugar chains are bulky and have a large number of hydroxyl groups, it has been very difficult to increase the number of binding molecules of sugar chains per protein molecule.
  • a sugar chain cluster in which N-type sugar chains of 16 molecules per molecule are introduced into polylysine is easily degraded when administered to a living body. Moreover, when actually used as a pharmaceutical product for diagnosis and treatment in humans, it is more desirable to use a natural protein as much as possible.
  • An object of the present invention is to provide an albumin-sugar chain complex in which a sufficient number of sugar chains are bonded so as to obtain a sugar chain cluster effect and can exist relatively stably in a living body. .
  • albumin has many lysine residues suitable for sugar chain modification, and that the sugar chain modified one is also relatively stable in vivo.
  • RIKEN-CLICK reaction (6 ⁇ -aza electrocyclic reaction of conjugated imine)
  • Patent Documents 1 and 2 a large number of N-types per albumin molecule
  • sugar chains can be introduced and have completed the present invention.
  • albumin-sugar chain complex the carrier for functional molecules, and the bioimaging probe according to the present invention are the following [1] to [12].
  • the asparagine-linked sugar chain has the following formulas (a ′) to (f ′):
  • the albumin-sugar chain complex according to [1] or [2], which is one or more selected from the group consisting of: [4] The albumin-sugar chain complex according to any one of [1] to [3], wherein the asparagine-linked sugar chain is linked to a lysine residue of albumin. [5] A carrier for selectively delivering a functional molecule to a target tissue in a living body, including the albumin-sugar chain complex of any one of [1] to [4] Carrier.
  • a carrier for selectively delivering a functional molecule to a target tissue in a living body wherein the target tissue is a liver stellate cell, and the albumin-sugar chain complex of [1] or [2] And a non-reducing end of the asparagine-linked sugar chain is N-acetylglucosamine.
  • a carrier for selectively delivering a functional molecule to a target tissue in vivo wherein the target tissue is a liver or a spleen, and the albumin-sugar chain complex according to [1] or [2] And the non-reducing end of the asparagine-linked sugar chain is mannose.
  • a carrier for selectively delivering a functional molecule to a target tissue in vivo wherein the target tissue is a cancer cell, and the albumin-sugar chain complex of [1] or [2] And a non-reducing end of the asparagine-linked sugar chain is ⁇ (2-3) sialic acid.
  • the functional molecule carrier according to any one of [5] to [9], wherein the functional molecule is a fluorescent substance or a drug.
  • a bioimaging probe comprising the albumin-sugar chain complex according to any one of [1] to [4] as an active ingredient and administered into an animal body.
  • the albumin-sugar chain complex according to the present invention can exist relatively stably in a living body, exhibits a sugar chain cluster effect, and has a strong interaction with other biomolecules such as proteins. Therefore, the albumin-sugar chain complex is useful as a functional analysis tool for N-type sugar chains, and further supports a carrier for a functional molecule that delivers a functional molecule to a specific cell or tissue, or a specific cell. It is also useful as a bioimaging probe for labeling cells and tissues, and as an active ingredient of pharmaceuticals targeting specific cells.
  • FIG. 3 is a schematic diagram of a biantennary sugar chain represented by formulas (a ′) to (f ′).
  • mice administered with HL750-HSA A
  • mice administered with Complex 2a B
  • mice administered with Complex 2b C
  • mice administered with Complex 2c D
  • FIG. 2 is a fluorescence image of a mouse individual at the time point 0.5 to 3 hours after administration.
  • measurement results of urinary excretion of albumin-glycan complex or HL750-HSA in each mouse (A) fluorescence intensity of gallbladder at 3 hours after administration of albumin-glycan complex in each mouse FIG.
  • FIG. 6 shows the measurement results (B) of the above and the measurement results (C) of the fluorescence intensity of the small intestine after 3 hours from the administration of the albumin-sugar chain complex of each mouse.
  • Test Example 1 0.5 to 3 hours after administration of the mouse (A) administered with the complex 2d, the mouse (B) administered with the complex 2e, and the mouse (C) administered with the complex 2f. It is a fluorescence image of a mouse individual.
  • Test Example 1 a fluorescence image (A) of the liver and spleen excised from a mouse individual 3 hours after administration of each complex, a diagram (B) showing the measurement results of the fluorescence intensity of the liver, and fluorescence of the spleen It is the figure (C) which showed the measurement result of intensity
  • Test Example 2 measurement results of urinary excretion of albumin-glycan complex of each mouse (A), measurement results of fluorescence intensity of gallbladder at 3 hours after administration of albumin-glycan complex of each mouse ( (B) and the measurement results (C) of the fluorescence intensity of the small intestine after 3 hours from the administration of the albumin-sugar chain complex in each mouse.
  • Experiment 3 it is the fluorescence image of the mouse
  • the albumin-sugar chain complex according to the present invention is characterized in that five or more N-type sugar chains are bound per albumin molecule.
  • a sugar chain complex in which one molecule of sugar chain is bonded to one molecule of albumin, the interaction between the sugar chain and other molecules such as proteins is small and the reactivity is low.
  • the albumin-sugar chain complex according to the present invention has 5 or more N-type sugar chains per molecule, and the sugar chain cluster effect is sufficiently exhibited by only one molecule. Strong interaction between chains and specific biomolecules.
  • the albumin-sugar chain complex according to the present invention preferably has 9 or more N-type sugar chains per molecule of albumin.
  • the upper limit of the number of N-type sugar chains is not particularly limited, but the number of N-type sugar chains can be, for example, 30 molecules or less, preferably 20 molecules or less, more preferably 15 molecules or less, and still more preferably Is 11 molecules or less.
  • albumin is used as a protein for binding an N-type sugar chain.
  • the N-type sugar chain is linked to the lysine residue of albumin.
  • Albumin is excellent in stability in vivo and has many lysine residues suitable for sugar chain modification.
  • human serum albumin has about 60 lysine residues per molecule, and it is assumed that there are 10 to 30 lysine residues that can be sugar chain-modified.
  • even when the sugar chain is modified there is an advantage that it is difficult to acquire antigenicity and is difficult to be metabolized as a foreign substance in vivo.
  • the albumin constituting the albumin-sugar chain complex according to the present invention may be a natural protein purified from an animal or a recombinant. Further, it may be a wild-type albumin originally possessed by any animal, and a mutant type in which one or several amino acids other than lysine residues are deleted, substituted or added from wild-type albumin. Albumin may also be used.
  • albumin constituting the albumin-sugar chain complex according to the present invention
  • serum albumin is preferable, and mammal-derived serum albumin is more preferable.
  • mammal humans, livestock and experimental animals such as mice, rats, rabbits, guinea pigs, hamsters, monkeys, sheep, horses, cows, pigs, donkeys, dogs, cats, etc. are preferable, and humans are particularly preferable.
  • the N-type sugar chain constituting the albumin-sugar chain complex according to the present invention may be only one type or two or more types.
  • the saccharide constituting one molecule of the N-type sugar chain is not particularly limited as long as it is a monosaccharide (monosaccharide or a derivative thereof) that can form a chain state structure by a glycosidic bond. It may be a sugar chain consisting only of saccharides, or a sugar chain consisting of two or more types of monosaccharides.
  • Examples of the monosaccharide include glucose (Glu), galactose (Gal), mannose (Man), N-acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), fucose (Fuc), xylose (Xyl), glucuron.
  • the form of the glycosidic bond is not particularly limited, and may be ⁇ 1,4 bond, ⁇ 1,6 bond, ⁇ 2,3 bond, ⁇ 2,6 bond, ⁇ 1,2 bond, ⁇ 1,4 bond and the like.
  • the N-type sugar chain constituting the albumin-sugar chain complex according to the present invention preferably has a common sequence of * -Man-GlcNAc-GlcNAc-** (** indicates the albumin binding side).
  • the N-type sugar chain bonded to one molecule of albumin may have a sugar chain portion that is linear or branched.
  • the sugar chain constituting the albumin-sugar chain complex according to the present invention is preferably a bifurcated sugar chain that is present in a relatively large amount in the body of an animal, and is represented by the formula (a ′) to It is preferable that it is 1 or more types selected from the group which consists of (f '). Note that the sugar chains of the formulas (a ′) to (f ′) are sugar chains that are abundant in the living body of animals including humans.
  • an aldehyde compound containing an N-type sugar chain represented by the following general formula (I-0) is linked to the lysine residue of albumin by the following reaction.
  • the reaction is performed on the side chains of at least 5 lysine residues on the albumin surface.
  • the albumin-sugar chain complex thus synthesized has 5 or more structures of the following general formula (I) per molecule of albumin.
  • a 1 represents N-type sugar chain-Asn- (group in which an N-type sugar chain is bonded to the amide nitrogen atom of the side chain of the Asn residue).
  • the sugar chain in A 1 is preferably a sugar chain of the above formulas (a ′) to (f ′).
  • L 1 is bonded to a nitrogen atom that is not bonded to the sugar chain of the Asn residue in A 1 .
  • ** represents a site bonded to the carbon atom bonded to the amino group of the side chain of the lysine residue of albumin.
  • Alb-NH 2 represents albumin.
  • R 1 represents an alkyl group having 1 to 6 carbon atoms.
  • the alkyl group may be linear or branched.
  • Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a pentyl group, an isoamyl group, and a hexyl group.
  • R 1 in the general formula (I) is preferably an alkyl group having 1 to 3 carbon atoms, and is a methyl group, an ethyl group, or a propyl group. Is more preferable, and an ethyl group is more preferable.
  • Z 1 represents a 1,2-phenylene group, a 1,3-phenylene group, or a 1,4-phenylene group.
  • Z 1 in the general formula (I) is preferably a 1,4-phenylene group.
  • L 1 represents an arbitrary linking group.
  • L 1 is not particularly limited as long as it is a divalent group that does not inhibit the RIKEN-CLICK reaction, but the higher the degree of freedom of movement of the N-type sugar chain linked to albumin, the higher the sugar chain cluster effect. Therefore, a relatively long chain group or a bulky group such as a ring structure is preferable.
  • L 1 in general formula (I) and general formula (I-0) is preferably a group represented by the following general formula (II).
  • R 2 represents an alkylene group having 1 to 20 carbon atoms
  • L 2 represents an arbitrary linking group.
  • * represents a site bonded to A 1 in the general formula (I)
  • ** represents a site bonded to Z 1 in the general formula (I).
  • the alkylene group for R 2 may be linear or branched.
  • alkylene group examples include methylene group, ethylene group, propylene group, isopropylene group, n-butylene group, isobutylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, undecylene group, Examples include dodecylene group, tridecylene group, tetradecylene group, pentadecylene group, hexadecylene group, heptadecylene group, and nonadecylene group.
  • R 2 in the general formula (II) is preferably an alkylene group having 3 to 10 carbon atoms, and is a linear alkylene group having 3 to 10 carbon atoms. More preferably, it is more preferably a linear alkylene group having 4 to 8 carbon atoms.
  • L 2 in the general formula (II) is not particularly limited as long as it is a divalent group that does not inhibit the RIKEN-CLICK reaction.
  • L 2 includes —O—CO—NH— (CH 2 ) n —CO—NH—, —O—CO—NH— (CH 2 ) n —NH—CO—, — (CH 2 ) N —, — (CH 2 ) n —O— (CH 2 ) m —, — (CH 2 ) n —CO—NH—, or — (CH 2 ) n —NH—CO— (wherein n And m are each independently an integer of 1 to 20.).
  • the aldehyde compound (I′-0) in which L 1 in the general formula (I-0) is a group represented by the general formula (II) includes, for example, an azide represented by the following general formula (III), It can be synthesized by a cyclization reaction (Alkyne-Azide Cyclization) with an aldehyde represented by the general formula (IV).
  • a 1 , Z 1 and R 1 are the same as in general formula (I)
  • L 2 and R 2 are the same as in general formula (II).
  • the cyclization reaction can be performed, for example, by mixing both substances in a polar solvent under a nitrogen atmosphere.
  • the polar solvent include water, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), methyl cyanide (acetonitrile), propionitrile, diethoxyethane (DME), and a mixed solvent thereof.
  • the reaction temperature is preferably 50 ° C. or more, more preferably 60 to 100 ° C., and further preferably 60 to 80 ° C.
  • the albumin-sugar chain complex according to the present invention preferably has a structure represented by the following general formulas (V-1) to (V-8).
  • Formulas (V-1) in ⁇ (V-8) R 1 is the same as R 1 in the general formula (I), R 2 is the same as R 2 in the general formula (II) , N1 is an integer of 1 to 6, “*” is a binding site with a sugar chain, and “**” binds to a carbon atom that binds to the amino group of the side chain of a lysine residue of albumin. It is a part.
  • the sugar chain bound by “*” is preferably any one of the formulas (a ′) to (f ′).
  • R 1 is an alkyl group having 1 to 3 carbon atoms
  • R 2 is an alkylene group having 3 to 16 carbon atoms
  • n1 is an integer of 1 to 3
  • the sugar chain bonded at * is preferably a compound of any one of the above formulas (a ′) to (f ′)
  • R 1 is an alkyl group having 1 to 3 carbon atoms
  • R 2 is an alkylene group having 3 to 10 carbon atoms
  • n1 is an integer of 1 to 3
  • the sugar chain bonded in * is a compound of any one of the above formulas (a ′) to (f ′) More preferred.
  • the RIKEN-CLICK reaction between the aldehyde compound represented by the general formula (I-0) and albumin can be performed, for example, by mixing both substances in a polar solvent.
  • the polar solvent include water, dimethylformamide (DMF), dimethyl sulfoxide (DMSO), methyl cyanide, propionitrile, diethoxyethane (DME), and mixed solvents thereof.
  • the reaction temperature is preferably 60 ° C. or lower, more preferably 50 ° C. or lower, and further preferably 15 to 40 ° C. so that albumin is not denatured.
  • N-type sugar chain molecule introduced into one molecule of albumin by adjusting the molar ratio of the aldehyde compound represented by the general formula (I-0) and albumin used for the RIKEN-CLICK reaction The number can be adjusted. The greater the amount of the aldehyde compound relative to albumin, the greater the number of N-type sugar chains introduced per albumin molecule.
  • the aldehyde compound represented by the general formula (I-0) containing each N-type sugar chain is sequentially reacted with albumin. .
  • N-type sugar chains are introduced in order from those that react easily with aldehyde compounds. Therefore, depending on the order of reaction with albumin, even if the number of molecules of each N-type sugar chain bonded per albumin molecule is the same, the albumin-sugar chain complex having different reactivity with other proteins May be obtained.
  • the albumin-sugar chain complex according to the present invention preferably contains a labeling substance or a binding site for binding to the labeling substance.
  • the albumin-sugar chain complex can be detected by the labeling substance.
  • the labeling substance is preferably a substance capable of detecting the albumin-sugar chain complex administered in vivo, and is a fluorescent substance, a substance having a structure coordinated with a radioactive metal, a substance containing a radioisotope, or a paramagnet for MRI. Examples thereof include a substance having a structure coordinated with a metal.
  • These labeling substances are preferably bound to a portion other than the N-type sugar chain in the albumin-sugar chain complex.
  • the fluorescent material possessed by the albumin-sugar chain complex according to the present invention is not particularly limited, and can be appropriately selected from fluorescent materials used when fluorescently labeling proteins, sugars and the like. . It may be a protein, a dye, or a quantum dot.
  • the fluorescent substance contained in the albumin-sugar chain complex according to the present invention is preferably a fluorescent substance that can be administered relatively safely in vivo, and it is easier to detect the albumin-sugar chain complex in vivo from outside the body. Therefore, a near-infrared fluorescent material is more preferable.
  • HiLyte Fluor (registered trademark) 750 Indocyanine Green, Alexa Fluor (registered trademark) 647, Alexa Fluor 680, Alexa Fluor 790, Cy (registered trademark) 3.5, Cy5, Cy5.5, Cy7
  • organic fluorescent dyes having an indocyanine skeleton such as cyanine derivatives such as brilliant blue and brilliant green, and inorganic nanoparticles such as Y 2 O 3 fluorescent nanoparticles.
  • examples of substances having a structure coordinated with a radioactive metal include porphorin, DOTA (1,4,7,10-tetraazacyclodecane-1,4 , 7,10-tetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), and the like.
  • examples of the substance containing the radioisotope include derivatives containing at least one selected from the group consisting of 18 F, 11 C, 13 N, 15 O, and 99m Tc (for example, trifluoro ( 18 F) borate) Is mentioned.
  • examples of the substance having a structure coordinated with the paramagnetic metal for MRI include gadolinium.
  • the albumin-sugar chain complex according to the present invention may contain a tag peptide and a low molecular compound such as biotin.
  • the tag peptide include His tag, Flag tag, HA tag and the like.
  • the albumin-sugar chain complex according to the present invention Since the albumin-sugar chain complex according to the present invention has a large number of N-type sugar chains in one molecule, the specific interaction between the sugar chain and another substance is 1 per molecule. It appears more markedly than a sugar chain complex having only one N-type sugar chain. Therefore, utilizing the affinity between this sugar chain and another substance, the albumin-sugar chain complex according to the present invention detects cells and tissues on the surface of which a substance having a high affinity with the contained sugar chain exists. Can be used as a probe. In particular, since the albumin-sugar chain complex according to the present invention is relatively stable in the living body of an animal, the distribution or localization of a biomolecule such as a protein is grasped at the cell, tissue, or individual level, and its dynamics. Therefore, it is useful as an active ingredient of a bioimaging probe administered into an animal body.
  • albumin-sugar chain complex when administered to an animal, a complex containing an N-type sugar chain whose non-reducing end is N-acetylglucosamine as shown in formula (d ′) And is taken up by stellate cells, particularly by interaction with Desmin and Vimentin.
  • these albumin-glycan complexes are useful for bioimaging probes for detecting liver, especially activated stellate cells, and for delivering functional molecules selectively to the liver, particularly stellate cells. It is useful as a carrier for sex molecules.
  • a complex containing an N-type sugar chain in which the non-reducing end is a bifurcated type of mannose and N-acetylneuraminic acid as in the formula (f ′) accumulates in the liver and is taken up particularly in Kupffer cells It is. Therefore, these albumin-sugar chain complexes are used as bioimaging probes for detecting livers, particularly Kupffer cells, and carriers for functional molecules for selectively delivering functional molecules to livers, particularly Kupffer cells. Useful as.
  • a complex containing an N-type sugar chain whose non-reducing end is mannose as shown in the formula (e ′) mainly accumulates in the liver and spleen due to the interaction with the C-type lectin on Kupffer cells. To do. For this reason, these albumin-sugar chain complexes are useful as bioimaging probes for detecting the liver and spleen and as functional molecule carriers for selectively delivering functional molecules to the liver and spleen. .
  • a complex containing an N-type sugar chain whose non-reducing end is ⁇ (2-3) sialic acid (having a sialic acid-galactose bond) as shown in the formula (b ′) is attached to the surface of cancer cells.
  • an albumin-sugar chain complex in which at least one N-type sugar chain is an ⁇ (2-3) sialog sugar chain per molecule of albumin is a bioimaging probe for detecting cancer, It is useful as a carrier for functional molecules for selectively delivering functional molecules to cancer cells.
  • functional molecules include radiotherapy drugs and diagnostic drugs.
  • the albumin-sugar chain complex according to the present invention is used as a carrier for functional molecules, the functional molecule may be bound to a portion other than the N-type sugar chain in the albumin-sugar chain complex. Preferably, it binds other than the lysine residue of albumin.
  • the albumin-sugar chain complex according to the present invention is also useful as an active ingredient of a pharmaceutical product.
  • an anti-cancer agent bound to albumin in an albumin-sugar chain complex containing an N-type sugar chain whose non-reducing end is ⁇ (2-3) sialic acid is used for the treatment of cancer. It can be an active ingredient of the pharmaceutical used.
  • the albumin-sugar chain complex according to the present invention the difference in physiological activity due to the difference in sugar chain structure is more emphasized due to the sugar chain cluster effect. For this reason, the albumin-sugar chain complex according to the present invention is also useful for analyzing the function as a recognition signal in the life phenomenon of sugar chains.
  • an albumin-sugar chain complex containing a labeling substance to an animal and detecting the labeling substance, the dynamics of the albumin-sugar chain complex in the body, for example, the excretion route can be analyzed.
  • asialoglycoprotein whose non-reducing end is not sialic acid binds to asialoglycoprotein receptor (AGCR) present on the surface of hepatocytes and is taken into hepatocytes.
  • a sialoprotein whose reducing end is sialic acid binds to AGCR but is not taken up by hepatocytes.
  • an albumin-sugar chain complex containing an N-type sugar chain whose non-reducing end is acidic sialic acid is metabolized.
  • the albumin-sugar chain complex containing an N-type sugar chain whose non-reducing end is galactose as shown in the formula (c ′) is rapidly discharged from the bladder via the kidney. It was clarified that it was excreted in the intestine. The effects of other sugar chains on the substance excretion pathway can also be analyzed in the same manner using the albumin-sugar chain complex according to the present invention.
  • N-type sugar chain azide derivatives represented by the following formulas (a) to (f) those used in the subsequent experiments are all Angew. Chem. Int. Ed. Vol.49, p.8195-8200 (2010), and the aldehyde compound represented by the following formula (1) is Org. Biomol. Chem. Vol.12, p.1412-1418 (2014).
  • HL750-HSA HSA combined with near-infrared fluorescent dye
  • the synthesized HL750-HSA had an average mass of 70.5 kDa, and 3.1 molecules of near-infrared fluorescent dye was bound per molecule.
  • HL750-HSA (2,6-HLF-HSA, hereinafter sometimes referred to as “complex 2a”) to which an N-type sugar chain represented by the formula (a ′) was bound was synthesized.
  • the reaction solution was cooled to room temperature to obtain a stock solution (3.8 mM) in which the aldehyde compound represented by the following formula (1a) was dissolved in DMSO.
  • the synthesized aldehyde compound represented by the formula (1a) was detected by ESI-TOF MS (detected value of C 128 H 183 N 13 O 71 [M-2H] ⁇ 2 / 2: 1518.0509, calculation Value: 1518.0482).
  • the reaction solution was filtered with a Durapore (registered trademark) PVDF membrane (0.45 ⁇ m) and then diluted to 150 ⁇ L with water to prepare a complex 2a solution.
  • the synthesized complex 2a had an average mass of 98.0 kDa, and 9.2 molecules of N-type sugar chain per molecule (aldehyde compound represented by the formula (1a)) was bound.
  • HL750-HSA (2,3-HLF-HSA, hereinafter sometimes referred to as “complex 2b”) to which an N-type sugar chain represented by the formula (b ′) was bound was synthesized.
  • reaction solution was filtered with a Durapore PVDF membrane (0.45 ⁇ m) and then diluted to 60 ⁇ L with water to prepare a complex 2b solution.
  • the average mass of the synthesized complex 2b was 102.1 kDa, and 10.5 molecules of N-type sugar chain per molecule (aldehyde compound represented by the formula (1b)) was bound.
  • HL750-HSA (asialo-HLF-HSA, hereinafter sometimes referred to as “complex 2c”) to which an N-type sugar chain represented by the formula (c ′) was bound was synthesized.
  • HL750-HSA (GlcNAc-HLF-HSA, hereinafter sometimes referred to as “complex 2d”) to which an N-type sugar chain represented by the formula (d ′) was bound was synthesized.
  • HL750-HSA Man-HLF-HSA, hereinafter sometimes referred to as “complex 2e” to which an N-type sugar chain represented by the formula (e ′) was bound was synthesized.
  • HL750-HSA Half-HLF-HSA, hereinafter sometimes referred to as “complex 2f” to which an N-type sugar chain represented by the formula (f ′) was bound was synthesized.
  • HL750-HSA Hetero3-HSA, hereinafter referred to as “complex 2g” in which an N-type sugar chain represented by the formula (a ′) and an N-type sugar chain represented by the formula (c ′) are combined. Is synthesized).
  • a stock solution of an aldehyde compound represented by the formula (1a) produced in Example 1 was added to a solution obtained by adding 175 ⁇ L of water and 88 ⁇ L of DMSO to 175 ⁇ L (10 nmol) of the HL750-HSA stock solution synthesized in Production Example 1. (3.8 mM) 46.7 ⁇ L (175 nmol, 17.5 eq) was mixed to prepare a reaction solution. The resulting reaction solution was incubated and reacted overnight at 37 ° C. in an air atmosphere while gently shaking to bind the N-type sugar chain represented by the formula (a ′) to HL750-HSA. The intermediate was synthesized.
  • the reaction solution was filtered with a Durapore PVDF membrane (0.45 ⁇ m) and then diluted with water to prepare a 2 g complex solution (50 ⁇ M).
  • the average mass of the synthesized complex 2g was 103.9 kDa, and N-type sugar chain represented by the formula (c ′) of 2.6 molecules per molecule (formula ( The aldehyde compound represented by 1c) was bound. That is, the complex 2g is a hetero type in which an N-type sugar chain represented by the formula (a ′) and an N-type sugar chain represented by the formula (c ′) are bound to albumin at about 8: 2. Albumin-sugar chain complex.
  • HL750-HSA Hetero2-HSA, hereinafter referred to as “complex 2h” in which an N-type sugar chain represented by the formula (a ′) and an N-type sugar chain represented by the formula (c ′) are combined. Is synthesized).
  • a stock solution of the aldehyde compound represented by the formula (1a) produced in Example 1 was added to 210 ⁇ L (12 nmol) of the HL750-HSA stock solution synthesized in Production Example 1 and 210 ⁇ L of water and 105 ⁇ L of DMSO were added. (3.8 mM) 43.4 ⁇ L (163 nmol, 13.6 eq) was mixed to prepare a reaction solution. The resulting reaction solution was incubated and reacted overnight at 37 ° C. in an air atmosphere while gently shaking to bind the N-type sugar chain represented by the formula (a ′) to HL750-HSA. The intermediate was synthesized.
  • the reaction solution was filtered with a Durapore PVDF membrane (0.45 ⁇ m) and then diluted with water to prepare a complex 2h solution (50 ⁇ M).
  • a complex 2h solution 50 ⁇ M.
  • the average mass of the synthesized complex 2h was 98.7 kDa, and an N-type sugar chain (formula (c)) represented by 4.7 formulas per molecule (c ′).
  • the aldehyde compound represented by 1c) was bound. That is, the complex 2h is a hetero type in which an N-type sugar chain represented by the formula (a ′) and an N-type sugar chain represented by the formula (c ′) are bound to albumin at about 5: 5.
  • Albumin-sugar chain complex is a hetero type in which an N-type sugar chain represented by the formula (a ′) and an N-type sugar chain represented by the formula (c ′) are bound to albumin at about 5: 5.
  • Albumin-sugar chain complex is a hetero type in which
  • HL750-HSA Hetero-HSA, hereinafter referred to as “complex 2i” in which an N-type sugar chain represented by the formula (a ′) and an N-type sugar chain represented by the formula (c ′) are combined. Is synthesized).
  • a stock solution of an aldehyde compound represented by the formula (1a) produced in Example 1 was added to a solution obtained by adding 175 ⁇ L of water and 88 ⁇ L of DMSO to 175 ⁇ L (10 nmol) of the HL750-HSA stock solution synthesized in Production Example 1. (3.8 mM) 13.3 ⁇ L (50 nmol, 5.0 eq) was mixed to prepare a reaction solution. The resulting reaction solution was incubated and reacted overnight at 37 ° C. in an air atmosphere while gently shaking to bind the N-type sugar chain represented by the formula (a ′) to HL750-HSA. The intermediate was synthesized.
  • the reaction solution was filtered with a Durapore PVDF membrane (0.45 ⁇ m) and then diluted with water to prepare a complex 2i solution (50 ⁇ M).
  • the synthesized complex 2i had an average mass of 97.2 kDa and an N-type sugar chain represented by the formula (c ′) of 6.3 molecules per molecule (formula ( The aldehyde compound represented by 1c) was bound. That is, the complex 2i is a hetero type in which an N-type sugar chain represented by the formula (a ′) and an N-type sugar chain represented by the formula (c ′) are bound to albumin at about 3: 7. Albumin-sugar chain complex.
  • HL750-HSA Hetero4-HSA, hereinafter referred to as “complex 2j” in which the N-type sugar chain represented by the formula (a ′) and the N-type sugar chain represented by the formula (c ′) are combined. Is synthesized).
  • the reaction solution was filtered with a Durapore PVDF membrane (0.45 ⁇ m) and then diluted with water to prepare a complex 2j solution (50 ⁇ M).
  • the synthesized complex 2j had an average mass of 97.6 kDa, and an N-type sugar chain represented by the formula (a ′) of 4.7 molecules per molecule (formula ( The aldehyde compound represented by 1a) was bound. That is, the complex 2j is a hetero type in which an N-type sugar chain represented by the formula (a ′) and an N-type sugar chain represented by the formula (c ′) are bound to albumin at about 5: 5. Albumin-sugar chain complex.
  • the mouse was anesthetized with pentobarbital, and then placed on a biofluorescence imaging apparatus IVIS (registered trademark) Kinetics fluorescence imager (manufactured by Caliper Life Sciences) until 3 hours after administration of the albumin-glycan complex.
  • IVIS registered trademark
  • Kinetics fluorescence imager manufactured by Caliper Life Sciences
  • a fluorescence image of the whole individual was acquired every 30 minutes during the period.
  • the acquired fluorescence image is an image obtained by removing background fluorescence (640 nm excitation light) from the 710 nm excitation light image.
  • FIGS. 2 (A) to (D) show the fluorescence of mice at 0.5 to 3 hours after administration of each mouse injected with HL750-HSA, complex 2a, complex 2b, and complex 2c, respectively. An image is shown. As a result, HL750-HSA into which no sugar chain had been introduced was diffused throughout the body of the mouse through the blood vessels even when 3 hours had elapsed after administration. On the other hand, in the complex 2a and complex 2b in which about 10 molecules of sugar chain having non-reducing terminal acidic sialic acid are introduced per albumin molecule, accumulation in the kidney and bladder is confirmed. It was found that it was rapidly excreted in the urine.
  • HL750-HSA (2,6-new-HLF-HSA, hereinafter referred to as “complex 2SIa” in which N-type sugar chains represented by the formula (a ′) are bonded to 1.8 molecules per albumin molecule.
  • HL750-HSA into which no sugar chain has been introduced is diffused almost throughout the body through the blood vessels even after 3 hours from the administration.
  • FIG. 3 (A) shows the measurement results of the urinary excretion of albumin-glycan complex or HL750-HSA of each mouse.
  • HL750-HSA was the most excreted from the kidney and bladder.
  • the amount of urinary excretion was higher in the complex 2a than in the complex 2b, and the discharge rate into the urine was faster.
  • FIG. 3 (B) shows the measurement results of the fluorescence intensity of the gallbladder of each mouse at 3 hours after administration
  • FIG. 3 (C) shows the measurement results of the fluorescence intensity of the small intestine of each mouse at 3 hours after administration.
  • the complex 2c binds to AGCR on the surface of hepatocytes and is excreted in the intestine via the liver and gallbladder. It was.
  • the complex 2a and the complex 2b were hardly excreted in the intestine, and were selectively excreted from the bladder.
  • FIG. 5 (A) shows fluorescent images of the liver and spleen excised from the mouse individual at the point of 3 hours after administration of each complex.
  • FIG. 5 (B) shows the measurement results of the fluorescence intensity of the liver of each mouse at 3 hours after administration
  • FIG. 5 (C) shows the fluorescence intensity of the spleen of each mouse at 3 hours after administration. The measurement results are shown respectively.
  • the mice administered with Complex 2d, Complex 2e, and Complex 2f all had significantly higher fluorescence intensity of the liver and spleen than the mice administered with Complex 2a, and these albumin-sugar chains
  • the complex was found to selectively accumulate in the liver and spleen.
  • the liver excised from the mouse was tissue-stained. Specifically, the liver excised from the mouse was fixed by immersing it in 4% PFA solution at 4 ° C. for 24 hours, then immersed in PBS containing 15% sucrose at 4 ° C. for 24 hours, and then containing 30% sucrose. It was immersed in PBS at 4 ° C. for 24 hours. The fixed liver was frozen at ⁇ 78 ° C. in OCT compound (registered trademark), and then sections of 6 to 8 ⁇ m were prepared.
  • OCT compound registered trademark
  • the complex 2d and the complex 2f were taken into non-parenchymal cells, not parenchymal cells, in the liver.
  • anti-Desmin antibody that specifically stains stellate cells and anti-LYVE-1 antibody that specifically stains sinusoidal endothelial cells co-localize well with complex 2d, and Kupffer cells
  • the anti-F4 / 80 antibody that specifically stains was not very colocalized with complex 2d. From these results, it was suggested that the complex 2d may be specifically taken into activated stellate cells by interaction with Desmin and Vimentin.
  • the complex 2d co-localizes well with the anti-Desmin antibody and the anti-LYVE-1 antibody, suggesting that the complex 2f may also be specifically taken up by stellate cells.
  • the complex 2e co-localizes well with the anti-F4 / 80 antibody, suggesting the possibility of being specifically taken up by Kupffer cells.
  • Test Example 2 since the complex 2a was mainly excreted from the kidney and the complex 2c was mainly excreted from the intestinal tract, it was complexed with the N-type sugar chain (formula (1a)) constituting the complex 2a. Using hetero-conjugates having various proportions of N-type sugar chains (formula (1c)) constituting the body 2c, the influence on the abundance ratio of sugar chains and the discharge pathway was examined. Specifically, the complexes 2a, 2c, 2g to 2j produced in Examples 1, 3, and 7 to 9 were administered to mice in the same manner as in Test Example 1, and then 30 hours until 3 hours after the administration. Every minute, a fluorescence image of the entire mouse was acquired. Further, in the same manner as in Test Example 1, the urinary excretion amount of each complex and the accumulation amount in the gallbladder and small intestine were examined. The abundance ratio (molar ratio) of sugar chains in each complex is shown in Table 1.
  • FIG. 6 (A) shows the measurement results of the urinary excretion of the albumin-glycan complex of each mouse
  • FIG. 6 (B) shows the measurement results of the fluorescence intensity of the gallbladder of each mouse after 3 hours from the administration
  • FIG. 6C shows the measurement results of the fluorescence intensity of the small intestine of each mouse after 3 hours from the administration.
  • the complex 2h and the complex 2j both contain the sugar chain of the formula (1a) and the sugar chain of the formula (1c) at 1: 1 (molar ratio), but the complex 2h is excreted from the kidney. There was a difference that the complex 2j was easily discharged into the small intestine. This suggests that it is important which sugar chain is linked to which lysine residue on the surface of the albumin molecule because the order in which the sugar chain is modified with respect to albumin is different.
  • ⁇ (2-3) sialoprotein is specifically taken up by cancer cells through interaction with secretin. Therefore, the complex 2b produced in Example 2 was administered to a cancer model mouse transplanted with a cancer cell-derived culture strain A431 cell, and the dynamics in the individual was observed. After transplanting 3 ⁇ 10 6 A431 cells in the vicinity of the right shoulder to an 8-week-old female BALB / c nude mouse, a mouse that had passed 2 weeks was used as a cancer model. After administration to this cancer model mouse in the same manner as in Test Example 1, a fluorescence image of the entire mouse individual was obtained every 30 minutes until 5 hours after administration.
  • FIG. 7 shows a fluorescence image of an individual mouse after 1 hour has elapsed after administration of each mouse injected with the complex 2b.
  • the part indicated by the arrow in the figure is the position where A431 cells have been transplanted.
  • Complex 2b was rapidly taken up by A431 cells 1 hour after administration. Moreover, most was excreted 5 hours after administration (not shown).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Toxicology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本発明は、糖鎖クラスター効果が得られるだけ充分な数の糖鎖が結合しており、かつ生体内で比較的安定的に存在し得るアルブミン-糖鎖複合体を提供することを目的とする。本発明においては、アスパラギン結合型糖鎖が、アルブミン1分子当たり5分子以上結合していることを特徴とする、アルブミン-糖鎖複合体;生体内において標的組織へ選択的に機能性分子を送達するための担体であって、前記記載のアルブミン-糖鎖複合体を含む、機能性分子用担体;前記記載のアルブミン-糖鎖複合体を有効成分とし、動物の生体内に投与されることを特徴とする、バイオイメージングプローブが提供される。

Description

アルブミン-糖鎖複合体
 本願は2015年6月30日に出願した特願2015-132002の特許出願に基づき優先権を主張する。本願は、かかる基礎出願の内容及び引用した文献の内容を参照することにより本願に組み入れる。
 本発明は、生体内で安定して存在し、1分子で糖鎖クラスター効果を発揮し得るアルブミン-糖鎖複合体に関する。
 アスパラギン結合型糖鎖(以下、「N-型糖鎖」と略す場合がある。)は、アスパラギン(Asn)の側鎖のアミド窒素原子に糖鎖が結合した構造からなり、糖鎖を構成する単糖類(単糖又はその誘導体)の種類や配列、分岐の有無等によって多種多様な構造がある。N-型糖鎖は、タンパク質や脂質等の他の分子と相互作用することにより、免疫応答調節、細胞の増殖、がん化やがん細胞の転移等、様々な生物学的機能に深く関与しており、さらに、タンパク質の生体内における安定性にも寄与している。このN-型糖鎖の機能は、診断や治療のための医薬品への応用が期待できるため、N-型糖鎖の生体内における動態の解析が進められている。N-型糖鎖のタンパク質等との相互作用は、主に糖鎖構造に依存しているため、N-型糖鎖の機能を解析する方法として、特定の糖鎖構造をもつN-型糖鎖を、アルブミン等のタンパク質に結合させた糖タンパク質を動物に投与し、動態解析や組織への蓄積の有無等を解析する方法が行われている(例えば、非特許文献1又は2参照。)。また、特定の糖鎖構造のN-型糖鎖をもつ糖タンパク質にさらに蛍光物質を導入し、動物の体内動態をバイオイメージング解析等により非侵襲的に調べることも行われている(例えば、非特許文献3参照。)。
 1本の糖鎖とタンパク質の相互作用は弱いが、糖鎖が集積することにより、強い相互作用を発揮する(糖鎖クラスター効果)。このため、N-型糖鎖の機能解析に用いる糖タンパク質としては、糖鎖クラスター効果が得られるように、タンパク質1分子当たりにできるだけ多数のN-型糖鎖を結合させたものが好ましい。
 本発明者らは、これまでに、ポリリジン骨格に1分子当たり4~16分子のN-型糖鎖を導入し、さらに末端に蛍光物質を修飾した糖鎖クラスターを合成し、これを動物に投与して動態解析を行ったことを報告している(非特許文献4参照。)。糖鎖は嵩高く、水酸基も多いことから、従来はタンパク質1分子当たりの糖鎖の結合分子数を増やすことは非常に困難であった。
国際公開第2008/096760号 特開2015-030702号公報
Andre, et al., Bioconjugate Chemistry, 1997, Vol. 8, p.845-855 Unverzagt, et al., Journal of Medicinal Chemistry, 2002, Vol.45, p.478-491 Ogura, et al., Glycoconjugate Journal, 2014, Vol. 31, p.273-279 Tanaka, et al., Angewandte Chemie International Edition, 2010, Vol. 49,p.8195-8200
 ポリリジンに1分子当たり16分子のN-型糖鎖を導入した糖鎖クラスターは、生体に投与すると、分解されやすい。また、実際にヒトへの診断や治療のための医薬品として使用する場合には、できるだけ天然のタンパク質を用いることがより望ましい。
 本発明は、糖鎖クラスター効果が得られるだけ充分な数の糖鎖が結合しており、かつ生体内で比較的安定的に存在し得るアルブミン-糖鎖複合体を提供することを目的とする。
 本発明者等は、前記課題を解決すべく鋭意検討した結果、アルブミンは、糖鎖修飾に適したリジン残基を多く有しており、かつ糖鎖修飾されたものも生体内で比較的安定して存在し得ること、新たに開発したRIKEN-CLICK反応(共役イミンの6π-アザ電子環状反応)(特許文献1、2参照。)を利用することにより、アルブミン1分子当たり多数のN-型糖鎖を導入できることを見出し、本発明を完成するに至った。
 すなわち、本発明に係るアルブミン-糖鎖複合体、機能性分子用担体、及びバイオイメージングプローブは、下記[1]~[12]である。
[1] アスパラギン結合型糖鎖が、アルブミン1分子当たり5分子以上結合していることを特徴とする、アルブミン-糖鎖複合体。
[2] 前記アスパラギン結合型糖鎖の非還元末端の糖が、N-アセチルグルコサミン、ガラクトース、マンノース、及びシアル酸からなる群から選択される糖を含む、前記[1]のアルブミン-糖鎖複合体。
[3] 前記アスパラギン結合型糖鎖が、下記式(a’)~(f’)
Figure JPOXMLDOC01-appb-C000002
[前記式中、Neu5AcはN-アセチルノイラミン酸、Galはガラクトース、GlcNAcはN-アセチルグルコサミン、Manはマンノースを意味する。]
からなる群より選択される1種以上である、前記[1]又は[2]のアルブミン-糖鎖複合体。
[4] アスパラギン結合型糖鎖が、アルブミンのリジン残基に連結している、前記[1]~[3]のいずれかのアルブミン-糖鎖複合体。
[5] 生体内において標的組織へ選択的に機能性分子を送達するための担体であって、前記[1]~[4]のいずれかのアルブミン-糖鎖複合体を含む、機能性分子用担体。
[6] 生体内において標的組織へ選択的に機能性分子を送達するための担体であって、前記標的組織が肝臓の星細胞であり、前記[1]又は[2]のアルブミン-糖鎖複合体を含み、前記アスパラギン結合型糖鎖の非還元末端がN-アセチルグルコサミンである、機能性分子用担体。
[7] 生体内において標的組織へ選択的に機能性分子を送達するための担体であって、前記標的組織が肝臓のクッパー細胞であり、前記[1]又は[2]のアルブミン-糖鎖複合体を含み、前記アスパラギン結合型糖鎖の非還元末端がマンノースとN-アセチルノイラミン酸の2分岐型である、機能性分子用担体。
[8] 生体内において標的組織へ選択的に機能性分子を送達するための担体であって、前記標的組織が肝臓又は脾臓であり、前記[1]又は[2]のアルブミン-糖鎖複合体を含み、前記アスパラギン結合型糖鎖の非還元末端がマンノースである、機能性分子用担体。
[9] 生体内において標的組織へ選択的に機能性分子を送達するための担体であって、前記標的組織ががん細胞であり、前記[1]又は[2]のアルブミン-糖鎖複合体を含み、前記アスパラギン結合型糖鎖の非還元末端がα(2-3)シアル酸である、機能性分子用担体。
[10] 前記機能性分子が、蛍光物質又は薬剤である、前記[5]~[9]のいずれかの機能性分子用担体。
[11] 前記[1]~[4]のいずれかのアルブミン-糖鎖複合体を有効成分とし、動物の生体内に投与されることを特徴とする、バイオイメージングプローブ。
 本発明に係るアルブミン-糖鎖複合体は、生体内で比較的安定的に存在し得、かつ糖鎖クラスター効果が発揮され、タンパク質等の他の生体分子との相互作用が強い。このため、当該アルブミン-糖鎖複合体は、N-型糖鎖の機能解析ツールとして有用であり、さらに、機能性分子を特定の細胞や組織に送達する機能性分子用担体や、特定の細胞や組織を標識するバイオイメージングプローブ、特定の細胞等を標的とする医薬品の有効成分としても有用である。
式(a’)~(f’)で表される2分岐型糖鎖の模式図である。 試験例1において、HL750-HSAを投与したマウス(A)、複合体2aを投与したマウス(B)、複合体2bを投与したマウス(C)、及び複合体2cを投与したマウス(D)の投与後0.5~3時間経過時点のマウス個体の蛍光画像である。 試験例1において、各マウスのアルブミン-糖鎖複合体又はHL750-HSAの尿中排泄量の測定結果(A)、各マウスのアルブミン-糖鎖複合体投与から3時間経過時点における胆嚢の蛍光強度の測定結果(B)、及び各マウスのアルブミン-糖鎖複合体投与から3時間経過時点における小腸の蛍光強度の測定結果(C)を、示した図である。 試験例1において、複合体2dを投与したマウス(A)、複合体2eを投与したマウス(B)、及び複合体2fを投与したマウス(C)の投与後0.5~3時間経過時点のマウス個体の蛍光画像である。 試験例1において、各複合体投与後3時間経過時点のマウス個体から切除された肝臓と脾臓の蛍光画像(A)、肝臓の蛍光強度の測定結果を示した図(B)、及び脾臓の蛍光強度の測定結果を示した図(C)である。 試験例2において、各マウスのアルブミン-糖鎖複合体の尿中排泄量の測定結果(A)、各マウスのアルブミン-糖鎖複合体投与から3時間経過時点における胆嚢の蛍光強度の測定結果(B)、及び各マウスのアルブミン-糖鎖複合体投与から3時間経過時点における小腸の蛍光強度の測定結果(C)を、示した図である。 試験例3において、複合体2bを投与したマウスの投与後1時間経過時点のマウス個体の蛍光画像である。
 本発明に係るアルブミン-糖鎖複合体は、N-型糖鎖が、アルブミン1分子当たり5分子以上結合していることを特徴とする。アルブミン1分子に1分子の糖鎖を結合させた糖鎖複合体では、当該糖鎖とタンパク質等の他の分子との相互作用が小さく、反応性が低い。これに対して、本発明に係るアルブミン-糖鎖複合体は、1分子当たり5分子以上のN-型糖鎖を有しており、1分子のみで糖鎖クラスター効果が充分に発揮され、糖鎖と特定の生体分子との相互作用が強い。本発明に係るアルブミン-糖鎖複合体としては、アルブミン1分子当たり、9分子以上のN-型糖鎖を有することが好ましい。N-型糖鎖の数の上限は特に限定されないが、N-型糖鎖の数は例えば30分子以下とすることができ、好ましくは20分子以下であり、より好ましくは15分子以下、さらに好ましくは11分子以下である。
 本発明に係るアルブミン-糖鎖複合体は、N-型糖鎖を結合させるタンパク質としてアルブミンを用いる。N-型糖鎖は、アルブミンのリジン残基に連結させる。アルブミンは、生体内での安定性に優れており、かつ糖鎖修飾に適したリジン残基が多数存在している。例えば、ヒト血清アルブミンには、1分子当たりリジン残基が60個程度存在しており、このうち糖鎖修飾可能なリジン残基が10~30個あると推察される。加えて、糖鎖修飾された場合でも、抗原性を獲得し難く、生体内で異物として代謝され難いという利点もある。
 本発明に係るアルブミン-糖鎖複合体を構成するアルブミンは、動物から精製された天然型のタンパク質であってもよく、組み換え体であってもよい。また、いずれかの動物が本来有している野生型のアルブミンであってもよく、野生型アルブミンのうち、リジン残基以外の1又は数個のアミノ酸が欠失、置換若しくは付加された変異型アルブミンであってもよい。
 本発明に係るアルブミン-糖鎖複合体を構成するアルブミンとしては、血清アルブミンが好ましく、哺乳動物由来の血清アルブミンがより好ましい。当該哺乳動物としては、ヒトや、マウス、ラット、ウサギ、モルモット、ハムスター、サル、ヒツジ、ウマ、ウシ、ブタ、ロバ、イヌ、ネコ等の家畜や実験動物が好ましく、ヒトが特に好ましい。
 本発明に係るアルブミン-糖鎖複合体を構成するN-型糖鎖は、1種類のみであってもよく、2種類以上であってもよい。また、1分子のN-型糖鎖を構成する糖類は、グリコシド結合によって鎖状態構造を形成し得る単糖類(単糖又はその誘導体)であれば特に限定されるものではなく、1種類の単糖類のみからなる糖鎖であってもよく、2種類以上の単糖類からなる糖鎖であってもよい。当該単糖類としては、例えば、グルコース(Glu)、ガラクトース(Gal)、マンノース(Man)、N-アセチルグルコサミン(GlcNAc)、N-アセチルガラクトサミン(GalNAc)、フコース(Fuc)、キシロース(Xyl)、グルクロン酸(GlcA)、イズロン酸(IdoA)、N-アセチルノイラミン酸(Neu5Ac)、N-グリコリルノイラミン酸(Neu5Gc)、デアミノノイラミン酸(KDN;2-ケト-3-デオキシ-D-グリセロ-D-ガラクト-ノノン酸)、及びこれらの誘導体等が挙げられる。
 グリコシド結合の形態は特に限定されず、α1,4結合、α1,6結合、α2,3結合、α2,6結合、β1,2結合、β1,4結合等であってよい。
 本発明に係るアルブミン-糖鎖複合体を構成するN-型糖鎖は、好ましくは、*-Man-GlcNAc-GlcNAc-**(**はアルブミン結合側を示す。)の共通配列を有する。
 本発明に係るアルブミン-糖鎖複合体において、アルブミン1分子に結合しているN-型糖鎖は、糖鎖部分が直鎖状であってもよく、分岐鎖状であってもよい。本発明に係るアルブミン-糖鎖複合体を構成する糖鎖としては、動物の体内に比較的多く存在している2分岐型糖鎖であることが好ましく、図1に示す式(a’)~(f’)からなる群より選択される1種以上であることが好ましい。なお、式(a’)~(f’)の糖鎖は、ヒトをはじめとする動物の生体内で多く存在する糖鎖である。
Figure JPOXMLDOC01-appb-C000003
 例えば、特許文献1、2に記載の化合物を利用することにより、アルブミン1分子当たり5分子以上のN-型糖鎖を連結させることができる。具体的には、下記一般式(I-0)で表される、N-型糖鎖を含有するアルデヒド化合物を、下記反応によりアルブミンのリジン残基に連結させる。当該反応をアルブミン表面の少なくとも5個のリジン残基の側鎖に対して行う。こうして合成されたアルブミン-糖鎖複合体は、下記一般式(I)の構造を、アルブミン1分子当たり5個以上有する。
Figure JPOXMLDOC01-appb-C000004
 一般式(I)及び一般式(I-0)中、Aは、N-型糖鎖-Asn-(Asn残基の側鎖のアミド窒素原子にN-型糖鎖が結合した基)を表す。A中の糖鎖としては、前記式(a’)~(f’)の糖鎖であることが好ましい。また、Lは、A中のAsn残基の糖鎖と結合していない窒素原子と結合する。
 一般式(I)中、**は、アルブミンのリジン残基の側鎖のアミノ基に結合する炭素原子に結合する部位を示す。また、Alb-NHはアルブミンを表す。
 一般式(I)及び一般式(I-0)中、Rは炭素数1~6のアルキル基を表す。当該アルキル基は、直鎖状であってもよく、分枝鎖状であってもよい。当該アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、ペンチル基、イソアミル基、ヘキシル基等が挙げられる。本発明に係るアルブミン-糖鎖複合体としては、一般式(I)中のRが、炭素数1~3のアルキル基であることが好ましく、メチル基、エチル基、又はプロピル基であることがより好ましく、エチル基であることがさらに好ましい。
 一般式(I)及び一般式(I-0)中、Zは1,2-フェニレン基、1,3-フェニレン基、又は1,4-フェニレン基を表す。本発明に係るアルブミン-糖鎖複合体としては、一般式(I)のZが1,4-フェニレン基であることが好ましい。
 一般式(I)及び一般式(I-0)中、Lは任意の連結基を表す。Lは、RIKEN-CLICK反応を阻害しない2価の基であれば特に限定されるものではないが、アルブミンに連結されたN-型糖鎖の動きの自由度が高いほうが、糖鎖クラスター効果が発揮されやすいことから、比較的長鎖である基や、環構造等の嵩高い基が好ましい。
 一般式(I)及び一般式(I-0)中のLとしては、下記一般式(II)で表される基が好ましい。一般式(II)中、Rは炭素数1~20のアルキレン基を表し、Lは任意の連結基を表す。一般式(II)中、*は、前記一般式(I)中のAと結合する部位を示し、**は、前記一般式(I)中のZと結合する部位を示す。
Figure JPOXMLDOC01-appb-C000005
 Rのアルキレン基は、直鎖状であってもよく、分枝鎖状であってもよい。アルブミンとN-型糖鎖を柔らかいアルキレン基によって連結することにより、N-型糖鎖の動きの自由度が高くなる結果、同じアルブミン分子に結合している複数のN-型糖鎖が互いに集積しやすくなる。当該アルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、n-ブチレン基、イソブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基、ヘキサデシレン基、ヘプタデシレン基、ノナデシレン基等が挙げられる。本発明に係るアルブミン-糖鎖複合体としては、一般式(II)のRが、炭素数3~10のアルキレン基であることが好ましく、炭素数3~10の直鎖状のアルキレン基であることがより好ましく、炭素数4~8の直鎖状のアルキレン基であることがさらに好ましい。
 一般式(II)中のLは、RIKEN-CLICK反応を阻害しない2価の基であれば特に限定されるものではない。具体的には、Lとしては、-O-CO-NH-(CH2n-CO-NH-、-O-CO-NH-(CH2n-NH-CO-、-(CH2n-、-(CH2n-O-(CH2m-、-(CH2n-CO-NH-、又は-(CH2n-NH-CO-(前記式中、n及びmは、それぞれ独立して1~20の整数である。)が挙げられる。
 一般式(I-0)中のLが一般式(II)で表される基であるアルデヒド化合物(I’-0)は、例えば、下記一般式(III)で表されるアジドと、下記一般式(IV)で表されるアルデヒドとの環化反応(Alkyne -Azide Cyclization)により合成できる。一般式(III)及び(IV)中、A、Z、及びRは一般式(I)と同じであり、L及びRは一般式(II)と同じである。
Figure JPOXMLDOC01-appb-C000006
 当該環化反応は、例えば、両物質を、窒素雰囲気下、極性溶媒中で混合することにより行うことができる。極性溶媒としては、例えば、水、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、シアン化メチル(アセトニトリル)、プロピオニトリル、ジエトキシエタン(DME)、及びこれらの混合溶媒等が挙げられる。反応温度は、50℃以上で行うことが好ましく、60~100℃で行うことがより好ましく、60~80℃で行うことがさらに好ましい。
 本発明に係るアルブミン-糖鎖複合体としては、下記一般式(V-1)~(V-8)の構造を有するものが好ましい。一般式(V-1)~(V-8)中、Rは、前記一般式(I)のRと同じであり、Rは、前記一般式(II)のRと同じであり、n1は1~6の整数であり、「*」は、糖鎖との結合部位であり、「**」は、アルブミンのリジン残基の側鎖のアミノ基に結合する炭素原子に結合する部位である。「*」で結合する糖鎖としては、前記式(a’)~(f’)のいずれかであることが好ましい。
 下記一般式(V-1)~(V-8)で表される化合物としては、Rが炭素数1~3のアルキル基であり、Rが炭素数3~16のアルキレン基であり、n1が1~3の整数であり、*において結合する糖鎖は前記式(a’)~(f’)のいずれかである化合物が好ましく、Rが炭素数1~3のアルキル基であり、Rが炭素数3~10のアルキレン基であり、n1が1~3の整数であり、*において結合する糖鎖は前記式(a’)~(f’)のいずれかである化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 前記一般式(I-0)で表されるアルデヒド化合物とアルブミンとのRIKEN-CLICK反応は、例えば、両物質を、極性溶媒中で混合することにより行うことができる。
 極性溶媒としては、例えば、水、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、シアン化メチル、プロピオニトリル、ジエトキシエタン(DME)、及びこれらの混合溶媒等が挙げられる。反応温度は、アルブミンが変性しないよう、60℃以下で行うことが好ましく、50℃以下で行うことがより好ましく、15~40℃で行うことがさらに好ましい。
 前記RIKEN-CLICK反応に供される前記一般式(I-0)で表されるアルデヒド化合物とアルブミンのモル比を調節することにより、アルブミン1分子に対して導入されるN-型糖鎖の分子数を調節することができる。アルブミンに対する前記アルデヒド化合物の量が多いほど、アルブミン1分子に対して導入されるN-型糖鎖の分子数を多くすることができる。
 アルブミン1分子に対して、2種類以上のN-型糖鎖を導入する場合、各N-型糖鎖を含有する一般式(I-0)で表されるアルデヒド化合物を、順次アルブミンと反応させる。アルブミン表面の複数のリジン残基のうち、アルデヒド化合物と反応しやすいものから順にN-型糖鎖が導入される。このため、アルブミンと反応させる順番により、アルブミン1分子当たりに結合している各N-型糖鎖の分子数が同じであっても、他のタンパク質との反応性が異なるアルブミン-糖鎖複合体が得られる場合がある。
 本発明に係るアルブミン-糖鎖複合体としては、標識物質又は標識物質と結合するための結合部位を含有することも好ましい。標識物質により、アルブミン-糖鎖複合体を検出できる。標識物質としては、生体内に投与したアルブミン-糖鎖複合体を検出可能なものが好ましく、蛍光物質、放射性金属と配位する構造を有する物質、放射性同位体を含む物質、MRI用の常磁性金属と配位する構造を有する物質等が挙げられる。これらの標識物質は、アルブミン-糖鎖複合体中のN-型糖鎖以外の部分に結合していることが好ましい。
 本発明に係るアルブミン-糖鎖複合体が有する蛍光物質としては、特に限定されるものではなく、タンパク質や糖等を蛍光標識する際に用いられる蛍光物質の中から適宜選択して用いることができる。タンパク質であってもよく、色素であってもよく、量子ドットであってもよい。本発明に係るアルブミン-糖鎖複合体が含有する蛍光物質としては、生体内に比較的安全に投与可能なものが好ましく、生体内のアルブミン-糖鎖複合体を生体外からもより検出しやすいことから近赤外蛍光物質がより好ましい。近赤外蛍光物質としては、HiLyte Fluor(登録商標) 750、インドシアニングリーン、Alexa Flor(登録商標)647、AlexaFluor 680、AlexaFluor 790、Cy(登録商標)3.5、Cy5、 Cy5.5、Cy7等のインドシアニン骨格を有した有機蛍光色素、ブリリアントブルー、ブリリアントグリーン等のシアニン誘導体、Y蛍光ナノ粒子等の無機ナノ粒子等が挙げられる。
 本発明に係るアルブミン-糖鎖複合体が有する標識物質のうち、放射性金属と配位する構造を有する物質としては、ポルフォリン、DOTA(1,4,7,10-テトラアザシクロデカン-1,4,7,10-テトラ酢酸)、DTPA(ジエチレントリアミンペンタ酢酸)等が挙げられる。前記放射性同位体を含む物質としては、18F、11C、13N、15O、及び99mTcからなる群より選択される1種以上を含む誘導体(例えば、トリフルオロ(18F)ボレート)等が挙げられる。前記MRI用の常磁性金属と配位する構造を有する物質としては、例えばガドリニウム等が挙げられる。
 本発明に係るアルブミン-糖鎖複合体は、タグペプチドや、ビオチン等の低分子化合物を含有していてもよい。当該タグペプチドとしては、Hisタグ、Flagタグ、HAタグ等が挙げられる。特定の物質と特異的に結合するこれらの物質を含有することにより、混合物からの単離や精製を容易に行うことができる。
 本発明に係るアルブミン-糖鎖複合体は、1分子中に多数のN-型糖鎖を有しているため、糖鎖と他の物質との特異的な相互作用が、1分子中に1個のN-型糖鎖しかない糖鎖複合体よりも顕著に表れる。そこで、この糖鎖と他の物質との親和性を利用し、本発明に係るアルブミン-糖鎖複合体は、含まれる糖鎖と親和性の高い物質が表面に存在する細胞や組織を検出するためのプローブとして用いることができる。特に、本発明に係るアルブミン-糖鎖複合体は、動物の生体内で比較的安定であることから、細胞や組織、又は個体レベルでタンパク質等の生体分子の分布又は局在を捉え、その動態を画像として解析するため、動物の生体内に投与されるバイオイメージングプローブの有効成分として有用である。
 例えば、本発明に係るアルブミン-糖鎖複合体を動物に投与した場合、式(d’)のように非還元末端がN-アセチルグルコサミンであるN-型糖鎖を含有する複合体は、肝臓に集積し、特にDesminやVimentinとの相互作用により、星細胞に取り込まれる。このため、これらのアルブミン-糖鎖複合体は、肝臓、特に活性化された星細胞を検出するためのバイオイメージングプローブや、肝臓、特に星細胞へ選択的に機能性分子を送達するための機能性分子用担体として有用である。また、式(f’)のように非還元末端がマンノースとN-アセチルノイラミン酸の2分岐型であるN-型糖鎖を含有する複合体は、肝臓に集積し、特にクッパー細胞に取り込まれる。このため、これらのアルブミン-糖鎖複合体は、肝臓、特にクッパー細胞を検出するためのバイオイメージングプローブや、肝臓、特にクッパー細胞へ選択的に機能性分子を送達するための機能性分子用担体として有用である。また、式(e’)のように非還元末端がマンノースであるN-型糖鎖を含有する複合体は、クッパー細胞上のC-型レクチンとの相互作用により、主に肝臓や脾臓に集積する。このため、これらのアルブミン-糖鎖複合体は、肝臓や脾臓を検出するためのバイオイメージングプローブや、肝臓や脾臓へ選択的に機能性分子を送達するための機能性分子用担体として有用である。さらに、式(b’)のように非還元末端がα(2-3)シアル酸(シアル酸-ガラクトース結合を持つ)であるN-型糖鎖を含有する複合体は、がん細胞表面に高発現しているセレクチンとの相互作用により、がん細胞に集積する。このため、アルブミン1分子当たり、少なくとも1分子以上のN-型糖鎖がα(2-3)シアロ糖鎖であるアルブミン-糖鎖複合体は、がんを検出するためのバイオイメージングプローブや、がん細胞へ選択的に機能性分子を送達するための機能性分子用担体として有用である。なお、機能性分子としては、放射線治療薬剤、診断薬等が挙げられる。本発明に係るアルブミン-糖鎖複合体を機能性分子用担体として用いる場合には、機能性分子は、アルブミン-糖鎖複合体中のN-型糖鎖以外の部分に結合していることが好ましく、アルブミンのリジン残基以外に結合していることがより好ましい。
 また、本発明に係るアルブミン-糖鎖複合体は、医薬品の有効成分としても有用である。例えば、非還元末端がα(2-3)シアル酸であるN-型糖鎖を含有するアルブミン-糖鎖複合体中のアルブミンに抗がん剤を結合させたものは、がんの治療に用いる医薬品の有効成分とし得る。
 本発明に係るアルブミン-糖鎖複合体では、糖鎖クラスター効果により、糖鎖構造の違いによる生理活性の相違がより強調される。このため、本発明に係るアルブミン-糖鎖複合体は、糖鎖の生命現象における認識シグナルとしての機能の解析にも有用である。標識物質を含有させたアルブミン-糖鎖複合体を動物に投与し、当該標識物質を検出することにより、体内における当該アルブミン-糖鎖複合体の動態、例えば排出経路等を解析することができる。例えば、血液中の糖タンパク質のうち、非還元末端がシアル酸ではないアシアロ糖タンパク質は、肝細胞表面に存在するアシアロ糖タンパク受容体(AGCR)と結合して肝細胞内に取り込まれるが、非還元末端がシアル酸であるシアロタンパク質はAGCRと結合するものの、肝細胞へは取り込まれない。実際に、後記実施例に示すように、式(a’)や(b’)のように非還元末端が酸性シアル酸であるN-型糖鎖を含有するアルブミン-糖鎖複合体は、代謝を受けて腎臓を経て膀胱から速やかに排出されるが、式(c’)のように非還元末端がガラクトースであるN-型糖鎖を含有するアルブミン-糖鎖複合体は、肝臓、胆嚢を経て腸管排泄されることが解明された。その他の糖鎖が物質の排泄経路に与える影響も、本発明に係るアルブミン-糖鎖複合体を用いて同様にして解析することができる。
 以下、実施例等を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
 なお、以降の実験に使用したもののうち、下記式(a)~(f)で表されるN-型糖鎖のアジド誘導体は、いずれも株式会社糖鎖工学研究所によってAngew. Chem. Int. Ed. vol.49, p.8195-8200 (2010)に記載された方法で合成されたものであり、下記式(1)で表されるアルデヒド化合物は、Org. Biomol. Chem. vol.12, p.1412-1418 (2014)に記載された方法で合成されたものである。
 また、以降の実験において、逆相HPLCは、C18カラム(製品名:5C18-AR-300、4.6×250mm、ナカライテスク社製)を備えた高速液体クロマトグラフ(装置名:Prominence(登録商標)システム、島津製作所製)を用いて行った。高分解能マススペクトル(HRMS)は、質量分析器(製品名:micrOTOF-QIII(登録商標) spectrometer、Bruker社製)を用いたESI-TOF MSにより得た。タンパク質のマススペクトルは、質量分析器(製品名:autoflex(登録商標) spectrometer、Bruker社製)を用いたMALDI-TOF MSにより得た。
[製造例1]HL750-HSAの合成
 ヒト血清アルブミン(HSA、SIGMA社から購入)3.4mg(48nmol)を300μLのPBS(リン酸緩衝生理食塩水、pH7.4)に溶解させたHSA溶液に、近赤外蛍光色素HiLyte Fluor(登録商標) 750 acid SE(2×テトラエチルアンモニウム塩)0.25mg(0.19μmol)を10μLのDMSOに溶解させた溶液を添加して反応液を調製した。得られた反応液を37℃で10分間インキュベートしてHSAに近赤外蛍光色素を結合させた後、Amicon(登録商標) 10K(メルクミリポア社製)により遠心分離処理(15,000rpm、10分間)を行った。残渣はさらに3回、リン酸バッファーで洗浄した。得られたHL750-HSA(近赤外蛍光色素と結合したHSA)を800μLの超純水に溶解したものを、HL750-HSAストック溶液とした。MALDI-TOF MSで分析したところ、合成されたHL750-HSAの平均質量は70.5kDaであり、1分子当たり3.1分子の近赤外蛍光色素が結合していた。
[実施例1]
 式(a’)で表されるN-型糖鎖が結合したHL750-HSA(2,6-HLF-HSA、以下、「複合体2a」と称すことがある。)を合成した。
<式(1a)で表されるアルデヒド化合物の合成>
 式(a’)で表される糖鎖を有するN-型糖鎖のアジド誘導体(下記式(a)で表されるアジド誘導体)(株式会社糖鎖工学研究所作製)1.24mg(0.50μmol)を139μLのDMSOに溶解させた溶液に、窒素雰囲気下、シアン化メチルに溶解させた10mMの式(1)で表されるアルデヒド化合物の溶液を45μL(0.45μmol)添加した。得られた反応液を70℃で加熱し、HPLCで反応物をチェックした。最初に添加したアルデヒド化合物が消費された後、反応液を室温まで冷却し、下記式(1a)で表されるアルデヒド化合物がDMSOに溶解しているストック溶液(3.8mM)を得た。合成された式(1a)で表されるアルデヒド化合物は、ESI-TOF MSで検出できた(C1281831371 [M-2H]-2/2の検出値:1518.0509、算出値:1518.0482)。
Figure JPOXMLDOC01-appb-C000009
<複合体2aの合成>
 製造例1で合成したHL750-HSAストック溶液132μL(7.5nmol)に、132μLの水、66μLのDMSO、及び32μL(0.12μmol、16eq)の式(1a)で表されるアルデヒド化合物のストック溶液(3.8mM)を混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて複合体2aを合成した。得られた反応物を、Amicon 10Kによりフィルター処理した後、水で3回洗浄した。その後、反応液をDurapore(登録商標) PVDF膜(0.45μm)によりフィルター処理した後、水で150μLに希釈し、複合体2a溶液を調製した。MALDI-TOF MSで分析したところ、合成された複合体2aの平均質量は98.0kDaであり、1分子当たり9.2分子のN-型糖鎖(式(1a)で表されるアルデヒド化合物)が結合していた。
[実施例2]
 式(b’)で表されるN-型糖鎖が結合したHL750-HSA(2,3-HLF-HSA、以下、「複合体2b」と称すことがある。)を合成した。
<式(1b)で表されるアルデヒド化合物の合成>
 式(b’)で表される糖鎖を有するN-型糖鎖のアジド誘導体(下記式(b)で表されるアジド誘導体)(株式会社糖鎖工学研究所作製)1.48mg(0.59μmol)を144μLのDMSOに溶解させた溶液に、窒素雰囲気下、シアン化メチルに溶解させた10mMの式(1)で表されるアルデヒド化合物の溶液を54μL(0.54μmol)添加した。得られた反応液を70℃で加熱し、HPLCで反応物をチェックした。最初に添加したアルデヒド化合物が消費された後、反応液を室温まで冷却し、下記式(1b)で表されるアルデヒド化合物がDMSOに溶解しているストック溶液(3.8mM)を得た。合成された式(1b)で表されるアルデヒド化合物は、ESI-TOF MSで検出できた(C1281831371 [M-2H]-2/2の検出値:1518.0460、算出値:1518.0482)。
Figure JPOXMLDOC01-appb-C000010
<複合体2bの合成>
 製造例1で合成したHL750-HSAストック溶液52.5μL(3.0nmol)に、52.5μLの水、26.2μLのDMSO、及び24μL(90nmol、30eq)の式(1b)で表されるアルデヒド化合物のストック溶液(3.8mM)を混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて複合体2bを合成した。得られた反応物を、Amicon 10Kによりフィルター処理した後、水で3回洗浄した。その後、反応液をDurapore PVDF膜(0.45μm)によりフィルター処理した後、水で60μLに希釈し、複合体2b溶液を調製した。MALDI-TOF MSで分析したところ、合成された複合体2bの平均質量は102.1kDaであり、1分子当たり10.5分子のN-型糖鎖(式(1b)で表されるアルデヒド化合物)が結合していた。
[実施例3]
 式(c’)で表されるN-型糖鎖が結合したHL750-HSA(asialo-HLF-HSA、以下、「複合体2c」と称すことがある。)を合成した。
<式(1c)で表されるアルデヒド化合物のストック溶液の調製>
 式(c’)で表される糖鎖を有するN-型糖鎖のアジド誘導体(下記式(c)で表されるアジド誘導体)(株式会社糖鎖工学研究所作製)1.09mg(0.57μmol)を139μLのDMSOに溶解させた溶液に、窒素雰囲気下、シアン化メチルに溶解させた10mMの式(1)で表されるアルデヒド化合物の溶液を52μL(0.52μmol)添加した。得られた反応液を70℃で加熱し、HPLCで反応物をチェックした。最初に添加したアルデヒド化合物が消費された後、反応液を室温まで冷却し、下記式(1c)で表されるアルデヒド化合物がDMSOに溶解しているストック溶液(3.8mM)を得た。合成された式(1c)で表されるアルデヒド化合物は、ESI-TOF MSで検出できた(C1061471155 [M-2H]-2/2の検出値:1226.9545、算出値:1226.9527)。
Figure JPOXMLDOC01-appb-C000011
<複合体2cの合成>
 前記式(c)で表されるアジド誘導体(株式会社糖鎖工学研究所作製)0.29mg(0.15μmol)を20μLのDMSOに溶解させた溶液に、窒素雰囲気下、シアン化メチルに溶解させた5mMの式(1)で表されるアルデヒド化合物の溶液を30μL(0.15μmol)添加した。得られた反応液を70℃で加熱し、HPLCで反応物をチェックした。最初に添加したアルデヒド化合物が消費された後、反応液を室温まで冷却し、44μLのDMSOと88μLの水を添加して希釈した。次いで、製造例1で合成したHL750-HSAストック溶液88μL(5.0nmol)を添加して充分に混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて複合体2bを合成した。得られた反応物を、Amicon 10Kによりフィルター処理した後、水で3回洗浄した。その後、反応液をDurapore PVDF膜(0.45μm)によりフィルター処理した後、水で100μLに希釈し、複合体2c溶液を調製した。MALDI-TOF MSで分析したところ、合成された複合体2bの平均質量は92.6kDaであり、1分子当たり9.1分子のN-型糖鎖(式(1c)で表されるアルデヒド化合物)が結合していた。
[実施例4]
 式(d’)で表されるN-型糖鎖が結合したHL750-HSA(GlcNAc-HLF-HSA、以下、「複合体2d」と称すことがある。)を合成した。
<式(1d)で表されるアルデヒド化合物の合成>
 式(d’)で表される糖鎖を有するN-型糖鎖のアジド誘導体(下記式(d)で表されるアジド誘導体)(株式会社糖鎖工学研究所作製)0.24mg(0.15μmol)を20μLのDMSOに溶解させた溶液に、窒素雰囲気下、シアン化メチルに溶解させた5mMの式(1)で表されるアルデヒド化合物の溶液を30μL(0.15μmol)添加した。得られた反応液を70℃で加熱し、HPLCで反応物をチェックした。最初に添加したアルデヒド化合物が消費された後、反応液を室温まで冷却し、下記式(1d)で表されるアルデヒド化合物を合成した。合成された式(1d)で表されるアルデヒド化合物は、ESI-TOF MSで検出できた(C941291145 [M-2H]-2/2の検出値:1064.9041、算出値:1064.8999)。
Figure JPOXMLDOC01-appb-C000012
<複合体2dの合成>
 次いで、室温に冷却した反応液に、44μLのDMSOと88μLの水を添加して希釈した。次いで、製造例1で合成したHL750-HSAストック溶液88μL(5.0nmol)を添加して充分に混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて複合体2dを合成した。得られた反応物を、Amicon 10Kによりフィルター処理した後、水で3回洗浄した。その後、反応液をDurapore PVDF膜(0.45μm)によりフィルター処理した後、水で100μLに希釈し、複合体2d溶液を調製した。MALDI-TOF MSで分析したところ、合成された複合体2dの平均質量は91.9kDaであり、1分子当たり10.1分子のN-型糖鎖(式(1d)で表されるアルデヒド化合物)が結合していた。
[実施例5]
 式(e’)で表されるN-型糖鎖が結合したHL750-HSA(Man-HLF-HSA、以下、「複合体2e」と称すことがある。)を合成した。
<式(1e)で表されるアルデヒド化合物の合成>
 式(e’)で表される糖鎖を有するN-型糖鎖のアジド誘導体(下記式(e)で表されるアジド誘導体)(株式会社糖鎖工学研究所作製)0.18mg(0.15μmol)を20μLのDMSOに溶解させた溶液に、窒素雰囲気下、シアン化メチルに溶解させた5mMの式(1)で表されるアルデヒド化合物の溶液を30μL(0.15μmol)添加した。得られた反応液を70℃で加熱し、HPLCで反応物をチェックした。最初に添加したアルデヒド化合物が消費された後、反応液を室温まで冷却し、下記式(1e)で表されるアルデヒド化合物を合成した。合成された式(1e)で表されるアルデヒド化合物は、ESI-TOF MSで検出できた(C7810135 [M-2H]-2/2の検出値:861.8176、算出値:861.8206)。
Figure JPOXMLDOC01-appb-C000013
<複合体2eの合成>
 次いで、室温に冷却した反応液に、44μLのDMSOと88μLの水を添加して希釈した。次いで、製造例1で合成したHL750-HSAストック溶液88μL(5.0nmol)を添加して充分に混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて複合体2eを合成した。得られた反応物を、Amicon 10Kによりフィルター処理した後、水で3回洗浄した。その後、反応液をDurapore PVDF膜(0.45μm)によりフィルター処理した後、水で100μLに希釈し、複合体2e溶液を調製した。MALDI-TOF MSで分析したところ、合成された複合体2eの平均質量は88.5kDaであり、1分子当たり10.4分子のN-型糖鎖(式(1e)で表されるアルデヒド化合物)が結合していた。
[実施例6]
 式(f’)で表されるN-型糖鎖が結合したHL750-HSA(Half-HLF-HSA、以下、「複合体2f」と称すことがある。)を合成した。
<式(1f)で表されるアルデヒド化合物の合成>
 式(f’)で表される糖鎖を有するN-型糖鎖のアジド誘導体(下記式(e)で表されるアジド誘導体)(株式会社糖鎖工学研究所作製)0.28mg(0.15μmol)を20μLのDMSOに溶解させた溶液に、窒素雰囲気下、シアン化メチルに溶解させた5mMの式(1)で表されるアルデヒド化合物の溶液を30μL(0.15μmol)添加した。得られた反応液を70℃で加熱し、HPLCで反応物をチェックした。最初に添加したアルデヒド化合物が消費された後、反応液を室温まで冷却し、下記式(1f)で表されるアルデヒド化合物を合成した。合成された式(1f)で表されるアルデヒド化合物は、ESI-TOF MSで検出できた(C1031431153 [M-2H]-2/2の検出値:1189.9316、算出値:1189.9344)。
Figure JPOXMLDOC01-appb-C000014
<複合体2fの合成>
 次いで、室温に冷却した反応液に、44μLのDMSOと88μLの水を添加して希釈した。次いで、製造例1で合成したHL750-HSAストック溶液88μL(5.0nmol)を添加して充分に混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて複合体2fを合成した。得られた反応物を、Amicon 10Kによりフィルター処理した後、水で3回洗浄した。その後、反応液をDurapore PVDF膜(0.45μm)によりフィルター処理した後、水で100μLに希釈し、複合体2f溶液を調製した。MALDI-TOF MSで分析したところ、合成された複合体2fの平均質量は94.0kDaであり、1分子当たり9.9分子のN-型糖鎖(式(1f)で表されるアルデヒド化合物)が結合していた。
[実施例7]
 式(a’)で表されるN-型糖鎖と式(c’)で表されるN-型糖鎖が結合したHL750-HSA(Hetero3-HSA、以下、「複合体2g」と称すことがある。)を合成した。
 製造例1で合成したHL750-HSAストック溶液175μL(10nmol)に、175μLの水及び88μLのDMSOを添加した溶液に、実施例1で製造した式(1a)で表されるアルデヒド化合物のストック溶液(3.8mM)46.7μL(175nmol、17.5eq)を混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて、HL750-HSAに式(a’)で表されるN-型糖鎖が結合した中間体を合成した。当該反応液0.5μLを分取し、Amicon 10Kにより精製し、水で2回洗浄した後、MALDI-TOF MSで分析したところ、合成された中間体の平均質量は96.9kDaであり、1分子当たり8.3分子の式(a’)で表されるN-型糖鎖(式(1a)で表されるアルデヒド化合物)が結合していた。
 次いで、残りの反応液(44μL、1.0nmol)に、実施例3で製造した式(1c)で表されるアルデヒド化合物のストック溶液(3.8mM)2.0μL(7.5nmol、7.5eq)を混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて、前記中間体に式(c’)で表されるN-型糖鎖が結合した複合体2gを合成した。得られた反応物を、Amicon 10Kによりフィルター処理した後、水で3回洗浄した。その後、反応液をDurapore PVDF膜(0.45μm)によりフィルター処理した後、水で希釈し、複合体2g溶液(50μM)を調製した。MALDI-TOF MSで分析したところ、合成された複合体2gの平均質量は103.9kDaであり、1分子当たり2.6分子の式(c’)で表されるN-型糖鎖(式(1c)で表されるアルデヒド化合物)が結合していた。つまり、複合体2gは、アルブミンに対して式(a’)で表されるN-型糖鎖と式(c’)で表されるN-型糖鎖が約8:2で結合したヘテロ型のアルブミン-糖鎖複合体であった。
[実施例8]
 式(a’)で表されるN-型糖鎖と式(c’)で表されるN-型糖鎖が結合したHL750-HSA(Hetero2-HSA、以下、「複合体2h」と称すことがある。)を合成した。
 製造例1で合成したHL750-HSAストック溶液210μL(12nmol)に、210μLの水及び105μLのDMSOを添加した溶液に、実施例1で製造した式(1a)で表されるアルデヒド化合物のストック溶液(3.8mM)43.4μL(163nmol、13.6eq)を混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて、HL750-HSAに式(a’)で表されるN-型糖鎖が結合した中間体を合成した。当該反応液0.5μLを分取し、Amicon 10Kにより精製し、水で2回洗浄した後、MALDI-TOF MSで分析したところ、合成された中間体の平均質量は87.1kDaであり、1分子当たり5.3分子の式(a’)で表されるN-型糖鎖(式(1a)で表されるアルデヒド化合物)が結合していた。
 次いで、残りの反応液のうち215μL(5.0nmol)に、実施例3で製造した式(1c)で表されるアルデヒド化合物のストック溶液(3.8mM)14.2μL(52nmol、10.4eq)を混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて、前記中間体に式(c’)で表されるN-型糖鎖が結合した複合体2gを合成した。得られた反応物を、Amicon 10Kによりフィルター処理した後、水で3回洗浄した。その後、反応液をDurapore PVDF膜(0.45μm)によりフィルター処理した後、水で希釈し、複合体2h溶液(50μM)を調製した。MALDI-TOF MSで分析したところ、合成された複合体2hの平均質量は98.7kDaであり、1分子当たり4.7分子の式(c’)で表されるN-型糖鎖(式(1c)で表されるアルデヒド化合物)が結合していた。つまり、複合体2hは、アルブミンに対して式(a’)で表されるN-型糖鎖と式(c’)で表されるN-型糖鎖が約5:5で結合したヘテロ型のアルブミン-糖鎖複合体であった。
[実施例9]
 式(a’)で表されるN-型糖鎖と式(c’)で表されるN-型糖鎖が結合したHL750-HSA(Hetero1-HSA、以下、「複合体2i」と称すことがある。)を合成した。
 製造例1で合成したHL750-HSAストック溶液175μL(10nmol)に、175μLの水及び88μLのDMSOを添加した溶液に、実施例1で製造した式(1a)で表されるアルデヒド化合物のストック溶液(3.8mM)13.3μL(50nmol、5.0eq)を混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて、HL750-HSAに式(a’)で表されるN-型糖鎖が結合した中間体を合成した。当該反応液0.5μLを分取し、Amicon 10Kにより精製し、水で2回洗浄した後、MALDI-TOF MSで分析したところ、合成された中間体の平均質量は78.9kDaであり、1分子当たり2.8分子の式(a’)で表されるN-型糖鎖(式(1a)で表されるアルデヒド化合物)が結合していた。
 次いで、残りの反応液のうち119μL(2.8nmol)に、実施例3で製造した式(1c)で表されるアルデヒド化合物のストック溶液(3.8mM)15.3μL(50nmol、20.9eq)を混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて、前記中間体に式(c’)で表されるN-型糖鎖が結合した複合体2iを合成した。得られた反応物を、Amicon 10Kによりフィルター処理した後、水で3回洗浄した。その後、反応液をDurapore PVDF膜(0.45μm)によりフィルター処理した後、水で希釈し、複合体2i溶液(50μM)を調製した。MALDI-TOF MSで分析したところ、合成された複合体2iの平均質量は97.2kDaであり、1分子当たり6.3分子の式(c’)で表されるN-型糖鎖(式(1c)で表されるアルデヒド化合物)が結合していた。つまり、複合体2iは、アルブミンに対して式(a’)で表されるN-型糖鎖と式(c’)で表されるN-型糖鎖が約3:7で結合したヘテロ型のアルブミン-糖鎖複合体であった。
[実施例10]
 式(a’)で表されるN-型糖鎖と式(c’)で表されるN-型糖鎖が結合したHL750-HSA(Hetero4-HSA、以下、「複合体2j」と称すことがある。)を合成した。
 製造例1で合成したHL750-HSAストック溶液175μL(10nmol)に、175μLの水及び88μLのDMSOを添加した溶液に、実施例3で製造した式(1c)で表されるアルデヒド化合物のストック溶液(3.8mM)43μL(16nmol、16eq)を混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて、HL750-HSAに式(c’)で表されるN-型糖鎖が結合した中間体を合成した。当該反応液0.5μLを分取し、Amicon 10Kにより精製し、水で2回洗浄した後、MALDI-TOF MSで分析したところ、合成された中間体の平均質量は83.5kDaであり、1分子当たり5.2分子の式(c’)で表されるN-型糖鎖(式(1c)で表されるアルデヒド化合物)が結合していた。
 次いで、残りの反応液のうち88μL(2.0nmol)に、実施例1で製造した式(1a)で表されるアルデヒド化合物のストック溶液(3.8mM)4.3μL(16nmol、8.0eq)を混合して反応液を調製した。得られた反応液を、大気雰囲気下、37℃で一晩、穏やかに振とうさせながらインキュベートして反応させて、前記中間体に式(a’)で表されるN-型糖鎖が結合した複合体2jを合成した。得られた反応物を、Amicon 10Kによりフィルター処理した後、水で3回洗浄した。その後、反応液をDurapore PVDF膜(0.45μm)によりフィルター処理した後、水で希釈し、複合体2j溶液(50μM)を調製した。MALDI-TOF MSで分析したところ、合成された複合体2jの平均質量は97.6kDaであり、1分子当たり4.7分子の式(a’)で表されるN-型糖鎖(式(1a)で表されるアルデヒド化合物)が結合していた。つまり、複合体2jは、アルブミンに対して式(a’)で表されるN-型糖鎖と式(c’)で表されるN-型糖鎖が約5:5で結合したヘテロ型のアルブミン-糖鎖複合体であった。
[試験例1]
 実施例1~6で製造したアルブミン-糖鎖複合体をマウスに投与した場合の動態を、HL750から発される近赤外蛍光を検出することにより非侵襲的に調べた。
<バイオイメージング画像の取得>
 まず、30μL(1.5nmol)の各アルブミン-糖鎖複合体溶液又は製造例1で合成したHL750-HSAに、70μLの生理食塩水を添加して希釈した注射用溶液を調製した。当該注射用溶液を、8~12週齢の雌のBALB/cヌードマウス(BALB/cAJcl-nu/nuマウス)の尾静脈へ注射した(n=4)。注射後のマウスは、ペントバルビタールで麻酔をかけた後、生体蛍光イメージング装置IVIS(登録商標) Kinetics fluorescence imager(Caliper Life Sciences社製)に静置し、アルブミン-糖鎖複合体投与後3時間までの間30分ごとに、個体全体の蛍光画像を取得した。取得した蛍光画像は、710nmの励起光画像から、バックグラウンド蛍光(640nm励起光)を除いた画像である。
<尿中排泄量>
 取得された蛍光画像中、膀胱及びその周囲の任意の関心領域について蛍光強度を測定し、膀胱及びその周囲の蛍光強度の増加から、半定量分析により、各アルブミン-糖鎖複合体及びHL750-HSAの尿中排泄量(蛍光強度値[count])を測定した。図中の尿中排泄量は、投与直後から3時間後までにおける単位時間当たりの膀胱への排出の平均値を示す。
<各組織に蓄積したアルブミン-糖鎖複合体の蛍光強度>
 アルブミン-糖鎖複合体投与から3時間経過した後のマウスから小腸を切除し、胆嚢と小腸の蛍光強度を測定し、アルブミン-糖鎖複合体の蓄積量(蛍光強度値[count])を測定した。
 また、アルブミン-糖鎖複合体投与から3時間経過した後のマウスから肝臓と脾臓を切除して蛍光強度を測定し、アルブミン-糖鎖複合体の蓄積量(蛍光強度値[count])を測定した。
<測定結果>
 図2(A)~(D)に、それぞれ、HL750-HSA、複合体2a、複合体2b、及び複合体2cを注射した各マウスの投与後0.5~3時間経過時点のマウス個体の蛍光画像を示す。この結果、糖鎖を導入していないHL750-HSAは、投与後3時間経過時点においても、血管内を通じてマウス体内全体に拡散していた。これに対して、非還元末端が酸性のシアル酸である糖鎖が、アルブミン1分子当たり10分子程度も導入されている複合体2a及び複合体2bは、腎臓及び膀胱への蓄積が確認され、速やかに尿中に排泄されることがわかった。また、複合体2aを投与したマウスと複合体2bを投与したマウスでは、マウス個体全体の蛍光強度は徐々に低下し、投与から12時間経過時点では、蛍光強度はほとんど検出されなかった(結果は図示せず。)。また、式(a’)で表されるN-型糖鎖が、アルブミン1分子当たり1.8分子結合したHL750-HSA(2,6-few-HLF-HSA、以下、「複合体2SIa」と称すことがある。)を同様にマウスに投与した場合には、糖鎖を導入していないHL750-HSAは、投与後3時間経過時点においても、血管内を通じてマウス体内のほぼ全体に拡散していた(結果は図示せず。)。一方で、非還元末端がシアル酸ではないアシアロ糖鎖がアルブミン1分子当たり10分子程度も導入されている複合体2cは、腎臓や膀胱ではなく、腸への蓄積が観察され、肝臓や胆嚢を経て腸管に排出されていることが確認された。
 図3(A)に、各マウスのアルブミン-糖鎖複合体又はHL750-HSAの尿中排泄量の測定結果を示す。この結果、腎臓及び膀胱から排出される量は、HL750-HSAが最も多かった。また、複合体2aのほうが複合体2bよりも尿中排泄量が多く、尿中への排出速度が速かった。
 図3(B)に、投与から3時間経過時点における各マウスの胆嚢の蛍光強度の測定結果を、図3(C)に、投与から3時間経過時点における各マウスの小腸の蛍光強度の測定結果を、それぞれ示す。この結果、複合体2cが投与されたマウスでは、胆嚢と小腸の蛍光強度が極めて高く、複合体2cが、肝細胞表面のAGCRと結合し、肝臓や胆嚢を経て腸管排泄されることが確認された。また、複合体2aと複合体2bは、ほとんど腸管排泄されず、膀胱から選択的に排出されていた。
 図4(A)~(C)に、それぞれ、複合体2d、複合体2e、及び複合体2fを注射した各マウスの投与後0.5~3時間経過時点のマウス個体の蛍光画像を示す。図に示すように、これらの複合体は、主に肝臓や脾臓に蓄積することが確認された。
 図5(A)に、各複合体投与後3時間経過時点のマウス個体から切除された肝臓と脾臓の蛍光画像を示す。また、図5(B)に、投与から3時間経過時点における各マウスの肝臓の蛍光強度の測定結果を、図5(C)に、投与から3時間経過時点における各マウスの脾臓の蛍光強度の測定結果を、それぞれ示す。この結果、複合体2aを投与したマウスに比べて、複合体2d、複合体2e、及び複合体2fを投与したマウスはいずれも、肝臓と脾臓の蛍光強度が極めて高く、これらのアルブミン-糖鎖複合体は肝臓と脾臓に選択的に集積することがわかった。
 複合体2d、複合体2e、及び複合体2fが、肝臓のどの部分に集積しているかを調べるために、マウスから切除した肝臓を組織染色した。具体的には、マウスから切除した肝臓を、4%PFA溶液に4℃で24時間浸漬させて固定した後、15%ショ糖含有PBSに4℃で24時間浸漬させ、次いで30%ショ糖含有PBSに4℃で24時間浸漬させた。固定化された肝臓をOCT compound(登録商標)中、-78℃で凍結させた後、6~8μmの切片を作製した。これらの切片は、ブロッキングバッファー(3% BSA、10% ヤギ血清、及び0.1M グリシンを含有するPBSTバッファー)中で30分間インキュベートした後、一次抗体液として、ラット抗Desmin抗体(製品番号:RB-9014、Thermo Fisher Scientific社製)の300倍希釈液、ラット抗LYVE-1抗体(製品番号:ab14917、abcam社製)の200倍希釈液、又はラット抗F4/80抗体(製品番号:MCA497GA、AbD serotec社製)の200倍希釈液に浸漬させて4℃で一晩インキュベートし、次いで二次抗体液として、Alexa Fluor 488標識抗ラットIgG抗体とAlexa Fluor 555標識抗ラットIgG抗体の両方を含有する200倍希釈液に浸漬させて室温で2時間インキュベートした。これらの切片は、その後さらに、Hoechst 33258の2500倍希釈液(同仁化学研究所社製)に浸漬させて室温で10分間インキュベートした後、マウント液(製品名:Fluoromount(登録商標)、Diagnostic BioSystems社製)でスライドにマウントした。切片を載せたスライドを、蛍光顕微鏡(製品名:BZ-X710 All-in-one Fluorescence Microscope(登録商標)、Keyence社製)に設置し、観察した。
 この結果、複合体2dと複合体2fは、肝臓のうち、実質細胞ではなく、非実質細胞に取り込まれていた。組織染色の結果、星細胞を特異的に染色する抗Desmin抗体と、類洞内皮細胞を特異的に染色する抗LYVE-1抗体は、複合体2dとよく共局在しており、クッパー細胞を特異的に染色する抗F4/80抗体は、複合体2dとはあまり共局在していなかった。これらの結果から、複合体2dは、DesminやVimentinとの相互作用により、活性化した星細胞に特異的に取り込まれている可能性が示唆された。
 また、複合体2dと同様に、抗Desmin抗体及び抗LYVE-1抗体とよく共局在していることから、複合体2fも、星細胞に特異的に取り込まれている可能性が示唆された。一方で、複合体2eは、抗F4/80抗体とよく共局在しており、クッパー細胞に特異的に取り込まれている可能性が示唆された。
 このように、物質表面の糖鎖の種類により、当該物質の生体内における排出機構や、生体内における蓄積部位が変化することは、従来のバイオイメージングプローブでは解析できず、糖鎖を結合させるタンパク質としてアルブミンを用い、かつ一分子当たり複数の糖鎖を結合させた本発明に係るアルブミン-糖鎖複合体をバイオイメージングプローブとすることによって初めて解明された。
[試験例2]
 試験例2において、複合体2aは主に腎臓から排泄され、複合体2cは主に腸管から排出されていたことから、複合体2aを構成するN-型糖鎖(式(1a))と複合体2cを構成するN-型糖鎖(式(1c))とを様々な割合で有するヘテロ複合体を用い、糖鎖の存在比と排出経路に対する影響を調べた。
 具体的には、実施例1、3、7~9で製造された複合体2a、2c、2g~2jについて、試験例1と同様にしてマウスに投与した後、投与後3時間までの間30分ごとに、マウス個体全体の蛍光画像を取得した。さらに、試験例1と同様にして 各複合体の尿中排泄量と、胆嚢と小腸への蓄積量を調べた。なお、各複合体中の糖鎖の存在比(モル比)を表1に示す。
Figure JPOXMLDOC01-appb-T000015
 図6(A)に、各マウスのアルブミン-糖鎖複合体の尿中排泄量の測定結果を、図6(B)に、投与から3時間経過時点における各マウスの胆嚢の蛍光強度の測定結果を、図6(C)に、投与から3時間経過時点における各マウスの小腸の蛍光強度の測定結果を、それぞれ示す。この結果、非還元末端がシアル酸ではない式(1c)の糖鎖の存在比が高くなるほど、複合体の排出経路は、腎臓よりも、胆嚢と小腸腸管へとシフトする傾向が観察された。これらの結果から、物質表面の糖鎖の種類、特に非還元末端がシアル酸か否かにより、生体内における物質の排出経路が影響されること、よって物質を生体に投与する場合に、物質表面の糖鎖を調節することにより、当該物質の動態を制御し得ることがわかった。
 なお、複合体2hと複合体2jは、いずれも式(1a)の糖鎖と式(1c)の糖鎖を1:1(モル比)で含有しているが、複合体2hは腎臓から排出されやすく、複合体2jは小腸へ排出されやすい、という差があった。これは、アルブミンに対して糖鎖修飾する順番が異なることから、アルブミン分子表面のいずれのリジン残基にどの糖鎖を連結させるかが重要であることが示唆された。
[試験例3]
 α(2-3)シアロタンパク質は、セクレチンとの相互作用により、がん細胞に特異的に取り込まれる。
 そこで、実施例2で製造された複合体2bを、癌細胞由来の培養株A431細胞を移植したがんモデルマウスに投与し、個体内における動態を観察した。
 8週齢の雌のBALB/cヌードマウスに、3×10個のA431細胞を、右肩付近に移植した後、2週間が経過したマウスをがんモデルとした。このがんモデルマウスに、試験例1と同様にして投与した後、投与後5時間までの間30分ごとに、マウス個体全体の蛍光画像を取得した。
 図7に、複合体2bを注射した各マウスの投与後1時間経過時点のマウス個体の蛍光画像を示す。図中の矢印で示した部分は、A431細胞を移植した位置である。複合体2bは、投与後1時間で速やかにA431細胞に取り込まれていた。また、投与後5時間ではほとんどが排泄されていた(図示せず。)。

Claims (11)

  1.  アスパラギン結合型糖鎖が、アルブミン1分子当たり5分子以上結合していることを特徴とする、アルブミン-糖鎖複合体。
  2.  前記アスパラギン結合型糖鎖の非還元末端の糖が、N-アセチルグルコサミン、ガラクトース、マンノース、及びシアル酸からなる群から選択される糖を含む、請求項1に記載のアルブミン-糖鎖複合体。
  3.  前記アスパラギン結合型糖鎖が、下記式(a’)~(f’)
    Figure JPOXMLDOC01-appb-C000001
    [前記式中、Neu5AcはN-アセチルノイラミン酸、Galはガラクトース、GlcNAcはN-アセチルグルコサミン、Manはマンノースを意味する。]
    からなる群より選択される1種以上の糖鎖である、請求項1又は2に記載のアルブミン-糖鎖複合体。
  4.  アスパラギン結合型糖鎖が、アルブミンのリジン残基に連結している、請求項1~3のいずれか一項に記載のアルブミン-糖鎖複合体。
  5.  生体内において標的組織へ選択的に機能性分子を送達するための担体であって、請求項1~4のいずれか一項に記載のアルブミン-糖鎖複合体を含む、機能性分子用担体。
  6.  生体内において標的組織へ選択的に機能性分子を送達するための担体であって、前記標的組織が肝臓の星細胞であり、請求項1又は2に記載のアルブミン-糖鎖複合体を含み、前記アスパラギン結合型糖鎖の非還元末端がN-アセチルグルコサミンである、機能性分子用担体。
  7.  生体内において標的組織へ選択的に機能性分子を送達するための担体であって、前記標的組織が肝臓のクッパー細胞であり、請求項1又は2に記載のアルブミン-糖鎖複合体を含み、前記アスパラギン結合型糖鎖の非還元末端がマンノースとN-アセチルノイラミン酸の2分岐型である、機能性分子用担体。
  8.  生体内において標的組織へ選択的に機能性分子を送達するための担体であって、前記標的組織が肝臓又は脾臓であり、請求項1又は2に記載のアルブミン-糖鎖複合体を含み、前記アスパラギン結合型糖鎖の非還元末端がマンノースである、機能性分子用担体。
  9.  生体内において標的組織へ選択的に機能性分子を送達するための担体であって、前記標的組織ががん細胞であり、請求項1又は2に記載のアルブミン-糖鎖複合体を含み、前記アスパラギン結合型糖鎖の非還元末端がα(2-3)シアル酸である、機能性分子用担体。
  10.  前記機能性分子が、蛍光物質又は薬剤である、請求項5~9のいずれか一項に記載の機能性分子用担体。
  11.  請求項1~4のいずれか一項に記載のアルブミン-糖鎖複合体を有効成分とし、動物の生体内に投与されることを特徴とする、バイオイメージングプローブ。
PCT/JP2016/069438 2015-06-30 2016-06-30 アルブミン-糖鎖複合体 WO2017002918A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA2991013A CA2991013C (en) 2015-06-30 2016-06-30 Albumin-sugar chain complex
KR1020177037467A KR102611306B1 (ko) 2015-06-30 2016-06-30 알부민-당쇄 복합체
US15/740,511 US10683341B2 (en) 2015-06-30 2016-06-30 Albumin-sugar chain complex
SG11201710829WA SG11201710829WA (en) 2015-06-30 2016-06-30 Albumin-sugar chain complex
DK16818026.3T DK3318575T3 (da) 2015-06-30 2016-06-30 Albumin-sukkerkædekompleks
EP16818026.3A EP3318575B1 (en) 2015-06-30 2016-06-30 Albumin-sugar chain complex
JP2017526430A JP6956959B2 (ja) 2015-06-30 2016-06-30 アルブミン−糖鎖複合体
AU2016286027A AU2016286027B2 (en) 2015-06-30 2016-06-30 Albumin-sugar chain complex
CN201680038209.4A CN107750252B (zh) 2015-06-30 2016-06-30 白蛋白-糖链复合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015132002 2015-06-30
JP2015-132002 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002918A1 true WO2017002918A1 (ja) 2017-01-05

Family

ID=57608323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069438 WO2017002918A1 (ja) 2015-06-30 2016-06-30 アルブミン-糖鎖複合体

Country Status (11)

Country Link
US (1) US10683341B2 (ja)
EP (1) EP3318575B1 (ja)
JP (1) JP6956959B2 (ja)
KR (1) KR102611306B1 (ja)
CN (1) CN107750252B (ja)
AU (1) AU2016286027B2 (ja)
CA (1) CA2991013C (ja)
DK (1) DK3318575T3 (ja)
SG (2) SG11201710829WA (ja)
TW (1) TWI757238B (ja)
WO (1) WO2017002918A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220012277A (ko) * 2019-05-24 2022-02-03 가부시키가이샤 도우사 고가쿠 겐큐쇼 신규 인공 단백질 촉매

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043285A (ja) * 2006-08-18 2008-02-28 Nipro Corp 糖鎖含有アルブミン、その製造方法およびその用途

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943763B2 (en) * 2002-07-05 2011-05-17 Otsuka Chemical Holdings Co., Ltd. Process for preparing glycopeptides having asparagine-linked oligosaccharides, and the glycopeptides
TWI466897B (zh) * 2005-07-19 2015-01-01 Glytech Inc 癌細胞之檢測方法、糖鏈之構造解析方法,以及糖鏈衍生物
JP4449915B2 (ja) 2006-02-08 2010-04-14 ソニー株式会社 符号化装置、符号化方法およびプログラム、並びに、記録媒体
JP5013378B2 (ja) 2007-02-05 2012-08-29 国立大学法人大阪大学 新規ヘキサトリエン−β−カルボニル化合物
US7943570B2 (en) 2007-10-16 2011-05-17 Nipro Corporation Sugar chain-containing albumin, production method thereof and use thereof
AU2012225900B2 (en) * 2011-03-04 2015-09-17 Glytech, Inc. Method for producing sialic-acid-containing sugar chain
JP6327547B2 (ja) 2013-08-02 2018-05-23 国立研究開発法人理化学研究所 新規化合物及びその利用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043285A (ja) * 2006-08-18 2008-02-28 Nipro Corp 糖鎖含有アルブミン、その製造方法およびその用途

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
AKIHIRO OGURA ET AL.: "Kagakuteki na Tosa no Donyu ni yoru Tanpakushitsu no Seitainai Dotai to Shuseki Seigyo", 94TH ANNUAL MEETING OF THE CHEMICAL SOCIETY OF JAPAN IN SPRING (2014) KOEN YOKOSHU, vol. IV, 2014, pages 1457, XP009508033, ISSN: 0285-7626 *
ANDRE, S. ET AL.: "Neoglycoproteins with the synthetic complex biantennary nonasaccharide or its alpha 2,3/alpha 2,6-sialylated derivatives: their preparation, assessment of their ligand properties for purified lectins, for tumor cells in vitro, and in tissue sections, and their biodistribution in tumor-bearing mice", BIOCONJUG. CHEM., vol. 8, no. 6, 1997, pages 845 - 855, XP002250773, ISSN: 1043-1802 *
KAZUKIYO KOBAYASHI ET AL.: "Glycocluster materials", JOURNAL OF THE AGRICULTURAL CHEMICAL SOCIETY OF JAPAN, vol. 78, no. 9, 2004, pages 870 - 873, XP055506027, ISSN: 0002-1407 *
OGURA, A. ET AL.: "Glycan multivalency effects toward albumin enable N-glycan-dependent tumor targeting", BIOORG. MED. CHEM. LETT., vol. 26, no. issue 9, March 2016 (2016-03-01), pages 2251 - 2254, XP029500671, ISSN: 0960-894X *
OGURA, A. ET AL.: "In vivo kinetics and biodistribution analysis of neoglycoproteins: effects of chemically introduced glycans on proteins", GLYCOCONJ. J., vol. 31, no. issue 4, 2014, pages 273 - 279, XP055343352, ISSN: 0282-0080 *
OGURA, A. ET AL.: "Visualizing Trimming Dependence of Biodistribution and Kinetics with Homo- and Heterogeneous N-Glycoclusters on Fluorescent Albumin", SCI. REP., vol. 6, February 2016 (2016-02-01), pages 21797, XP055343353, ISSN: 2045-2322 *
UNVERZAGT, C. ET AL.: "Structure-activity profiles of complex biantennary glycans with core fucosylation and with/without additional alpha 2,3/alpha 2,6 sialylation: synthesis of neoglycoproteins and their properties in lectin assays, cell binding, and organ uptake", J. MED. CHEM., vol. 45, no. 2, 2002, pages 478 - 491, XP055343351, ISSN: 0022-2623 *
WAHG, H. ET AL.: "Design and synthesis of glycoprotein-based multivalent glyco-ligands for influenza hemagglutinin and human galectin- 3", BIOORG. MED. CHEM., vol. 21, no. issue 7, 2013, pages 2037 - 2044, XP029002576, ISSN: 0968-0896 *

Also Published As

Publication number Publication date
CN107750252A (zh) 2018-03-02
KR102611306B1 (ko) 2023-12-06
EP3318575A4 (en) 2019-03-13
US10683341B2 (en) 2020-06-16
SG11201710829WA (en) 2018-02-27
SG10201912682XA (en) 2020-03-30
CA2991013C (en) 2023-09-26
EP3318575A1 (en) 2018-05-09
KR20180021727A (ko) 2018-03-05
EP3318575B1 (en) 2021-01-06
JP6956959B2 (ja) 2021-11-02
JPWO2017002918A1 (ja) 2018-04-26
US20180186859A1 (en) 2018-07-05
TW201705976A (zh) 2017-02-16
AU2016286027A1 (en) 2018-01-25
TWI757238B (zh) 2022-03-11
AU2016286027B2 (en) 2020-02-27
CN107750252B (zh) 2021-11-30
DK3318575T3 (da) 2021-04-12
CA2991013A1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
Chen et al. Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots
US11559591B2 (en) Ultrasmall nanoparticles labeled with Zirconium-89 and methods thereof
Ogura et al. Glycan multivalency effects toward albumin enable N-glycan-dependent tumor targeting
JP4560209B2 (ja) 診断および治療に有用な非共有結合的バイオコンジュゲート
CN102065884A (zh) 聚乙二醇化的赖脯胰岛素化合物
US9925284B2 (en) Nanoparticle coated with ligand introduced with long hydrophobic chain and method for preparing same
Konopka et al. Multimodal imaging of the receptor for advanced glycation end-products with molecularly targeted nanoparticles
JP7039554B2 (ja) 抗psma抗体、その使用及びそのコンジュゲート
JP2019527561A (ja) 抗体、その使用及びそのコンジュゲート
WO2014138186A1 (en) Bioorthogonal two-component delivery systems for enhanced internalization of nanotherapeutics
McCann et al. Biodistribution and excretion of monosaccharide− albumin conjugates measured with in vivo near-infrared fluorescence imaging
Tanaka Chemically synthesized glycoconjugates on proteins: effects of multivalency and glycoform in vivo
US20020009416A1 (en) Modified avidin-type molecules as targeting agents for the liver and cells of the reticuloendothelial system
WO2017002918A1 (ja) アルブミン-糖鎖複合体
Kang et al. A vascular endothelial growth factor 121 (VEGF121)-based dual PET/optical probe for in vivo imaging of VEGF receptor expression
JP2001501190A (ja) ポリエチレングリコール抱合ナノエリスロソーム、その製造方法及びその使用
Vong et al. Influence of glycosylation pattern on protein biodistribution and kinetics in vivo within mice
Tanaka Glycan Molecular Technology for Highly Selective In Vivo Recognition
Carrasco et al. Development and Biodistribution of a Nerve Growth Factor Radioactive Conjugate for PET Imaging
JP2023540138A (ja) 肝細胞に標的化細胞内送達を行うためのガラクトシル化デンドリマー
WO1997022879A1 (en) Modified avidin-type molecules as targeting agents for the liver and cells of the reticuloendothelial system
Li et al. NIR optical probes targeting glucose transporters
Olive Preparation of near-infrared-labeled targeted contrast agents for clinical translation
JP2011063572A (ja) 診断用造影剤
Tanaka et al. Chemical Approach to a Whole Body Imaging of Sialo-N-Linked Glycans

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16818026

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526430

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177037467

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2991013

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11201710829W

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 2016286027

Country of ref document: AU

Date of ref document: 20160630

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016818026

Country of ref document: EP