WO2017002287A1 - Solar battery module - Google Patents

Solar battery module Download PDF

Info

Publication number
WO2017002287A1
WO2017002287A1 PCT/JP2016/002011 JP2016002011W WO2017002287A1 WO 2017002287 A1 WO2017002287 A1 WO 2017002287A1 JP 2016002011 W JP2016002011 W JP 2016002011W WO 2017002287 A1 WO2017002287 A1 WO 2017002287A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
solar cell
bar electrode
tab wiring
longitudinal direction
Prior art date
Application number
PCT/JP2016/002011
Other languages
French (fr)
Japanese (ja)
Inventor
平 茂治
翔士 佐藤
直宏 月出
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017002287A1 publication Critical patent/WO2017002287A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention relates to a solar cell module.
  • solar cell modules are being developed as photoelectric conversion devices that convert light energy into electrical energy.
  • the solar cell module is expected as a new energy source because it can directly convert sunlight into electricity and has a smaller environmental load than clean power generation using fossil fuel.
  • the solar cell module has, for example, a structure in which a plurality of solar cell elements are sealed with a filling member between a surface protection member and a back surface protection member.
  • the plurality of solar cell elements are arranged in a matrix.
  • a plurality of solar cell elements arranged linearly along one of the row direction or the column direction are connected by tab wiring joined to the bus bar electrodes of two adjacent solar cell elements to form a string. ing.
  • Patent Document 1 describes a technique related to such a solar cell module.
  • the bus bar electrode and the tab wiring are uniformly bonded over the entire area of the bus bar electrode in the longitudinal direction of the tab wiring. For this reason, when a solar cell element and a tab wiring repeat expansion and contraction due to a temperature cycle or the like, stress may occur in the solar cell element and the tab wiring.
  • Patent Document 2 discloses a configuration in which a portion of the tab wiring is not connected to the bus bar electrode by solder to relieve stress generated in the solar cell element and the tab wiring and prevent cell cracking or the like.
  • JP 2011-187882 A Japanese Patent No. 4174545
  • the present invention provides a solar cell module capable of reducing the stress of the solar cell element and the tab wiring even when the above-described stress occurs, while increasing the total output within the product life. For the purpose.
  • the solar cell module which concerns on 1 aspect of this invention is equipped with two adjacent solar cell elements, and the elongate tab wiring which electrically connects the said two solar cell elements, These two solar cell elements Each has a long bus bar electrode that is formed along the long direction of the tab wiring and is joined to the tab wiring so as to overlap, and the bus bar electrode is a light-receiving charge generated by the solar cell element.
  • a plurality of openings, and the plurality of openings are provided side by side along the longitudinal direction. Openings with different areas are included.
  • the solar cell module which concerns on 1 aspect of this invention is equipped with two adjacent solar cell elements, and the elongate tab wiring which electrically connects the said two solar cell elements, These two solar cell elements Each has a long bus bar electrode that is formed along the long direction of the tab wiring and is joined to the tab wiring so as to overlap, and the bus bar electrode is a light-receiving charge generated by the solar cell element. And a plurality of openings, the openings being aligned along the longitudinal direction and the intersecting direction intersecting the longitudinal direction in plan view. The number of the plurality of openings provided side by side along the intersecting direction is different along the longitudinal direction.
  • the solar cell module which concerns on 1 aspect of this invention is equipped with two adjacent solar cell elements, and the elongate tab wiring which electrically connects the said two solar cell elements, These two solar cell elements Each has a long bus bar electrode that is formed along the long direction of the tab wiring and is joined to the tab wiring so as to overlap, and the bus bar electrode is a light-receiving charge generated by the solar cell element.
  • the solar cell module according to the present invention it is possible to reduce the stress of the solar cell element and the tab wiring while increasing the total output within the product life.
  • FIG. 1 is a schematic plan view of the solar cell module according to Embodiment 1.
  • FIG. 2 is a plan view of the solar cell element according to Embodiment 1.
  • FIG. 3 is a cross-sectional view illustrating a stacked structure of the solar cell element according to Embodiment 1.
  • 4 is a structural cross-sectional view in the column direction of the solar cell module according to Embodiment 1.
  • FIG. 5 is a plan view showing an example of the configuration of the bus bar electrode according to the first embodiment.
  • FIG. 6 is a plan view showing an example of the configuration of the bus bar electrode according to the first embodiment.
  • FIG. 7 is a plan view showing an example of the configuration of the bus bar electrode according to the first embodiment.
  • FIG. 1 is a schematic plan view of the solar cell module according to Embodiment 1.
  • FIG. 2 is a plan view of the solar cell element according to Embodiment 1.
  • FIG. 3 is a cross-sectional view illustrating a stacked structure of the solar cell element
  • FIG. 8 is a plan view showing an example of the configuration of the bus bar electrode according to the second embodiment.
  • FIG. 9 is a plan view showing an example of the configuration of the bus bar electrode according to the second embodiment.
  • FIG. 10 is a plan view showing an example of the configuration of the bus bar electrode according to the second embodiment.
  • FIG. 11 is a plan view showing an example of the configuration of the bus bar electrode according to the third embodiment.
  • FIG. 12 is a plan view showing an example of the configuration of the bus bar electrode according to the third embodiment.
  • FIG. 13 is a plan view showing an example of the configuration of a bus bar electrode according to a modification of the third embodiment.
  • FIG. 14 is a plan view showing an example of a configuration of a bus bar electrode according to a modification of the third embodiment.
  • FIG. 15 is a schematic diagram for explaining the flow of received light charges in the solar cell element according to Embodiment 3 and its modification.
  • FIG. 16 is a plan view showing an example of the configuration of the bus bar electrode according to the fourth embodiment.
  • FIG. 17 is a plan view showing an example of the configuration of the bus bar electrode according to the fourth embodiment.
  • FIG. 18 is a plan view showing an example of the configuration of the bus bar electrode according to the fourth embodiment.
  • FIG. 19 is a plan view showing an example of a configuration of a bus bar electrode according to another embodiment.
  • FIG. 20 is a plan view showing an example of a configuration of a bus bar electrode according to another embodiment.
  • FIG. 21 is a plan view showing an example of a configuration of a bus bar electrode according to another embodiment.
  • the “front surface” of the solar cell element means, for example, a surface in which more light can enter the interior than the “back surface” that is the opposite surface (light exceeding 50% to 100% light). Is incident on the inside from the front surface), and no light enters the interior from the “back surface” side.
  • the “surface” of the solar cell module means a surface on which light on the side facing the “surface” of the solar cell element can be incident, and the “back surface” means a surface on the opposite side.
  • descriptions such as “providing the second member on the first member” do not intend only when the first and second members are provided in direct contact unless specifically limited. That is, this description includes a case where another member exists between the first and second members.
  • the description of “substantially **” is intended to include not only exactly the same, but also those that are recognized as being substantially the same, with “substantially identical” as an example.
  • Embodiment 1 The solar cell module according to Embodiment 1 will be described with reference to FIGS.
  • FIG. 1 is a schematic plan view of a solar cell module 1 according to Embodiment 1.
  • the solar cell module 1 shown in the figure includes a plurality of solar cell elements 11, a tab wiring 20, a cross wiring 30, and a frame body 60.
  • the solar cell element 11 is a planar photovoltaic cell that is two-dimensionally arranged in a direction parallel to the light receiving surface and generates electric power by light irradiation.
  • the light receiving surface means a surface of a light receiving surface electrode 102 described later.
  • plane view means viewing from a direction perpendicular to the light receiving surface.
  • the tab wiring 20 is a long wiring member that is disposed on one front surface and the other back surface of two adjacent solar cell elements 11 and electrically connects the adjacent solar cell elements 11.
  • the tab wiring 20 electrically connects the solar cell elements 11 adjacent in the column direction, for example, as shown in FIG.
  • the cross wiring 30 is a wiring member for connecting the solar cell strings.
  • the solar cell string is an aggregate of a plurality of solar cell elements 11 arranged in the column direction and connected by the tab wiring 20.
  • the frame body 60 is an outer frame member that covers the outer peripheral portion of the panel in which the plurality of solar cell elements 11 are two-dimensionally arranged.
  • FIG. 2 is a plan view of the solar cell element 11 according to the first embodiment.
  • the solar cell element 11 has a substantially square shape in plan view.
  • the solar cell element 11 is, for example, 125 mm long ⁇ 125 mm wide ⁇ 200 ⁇ m thick.
  • a plurality of striped bus bar electrodes 40 are formed in parallel to each other, and a plurality of striped finger electrodes 50 are formed in parallel to each other so as to be orthogonal to the bus bar electrodes 40.
  • interval of the several finger electrode 50 are not limited to what is shown by FIG.
  • the tab wiring 20 is joined on the bus bar electrode 40 as shown by a dotted line in FIG.
  • the bus bar electrode 40 and the tab wiring 20 have, for example, substantially the same line width.
  • the received light charges generated by the solar cell element 11 are collected by the finger electrode 50.
  • the light-receiving charges collected by the finger electrodes 50 are transmitted to the bus bar electrode 40 and further transmitted to the tab wiring 20 joined immediately above the bus bar electrode 40.
  • the bus bar electrode 40 has an opening as shown in FIG. Details of the opening of the bus bar electrode 40 will be described later.
  • the bus bar electrode 40 and the finger electrode 50 constitute a collector electrode 100.
  • the collector electrode 100 is formed of, for example, a conductive paste containing conductive particles such as Ag (silver). In FIG.
  • hatching is added to the bus bar electrode 40 and the finger electrode 50, but the hatching here is added to distinguish from the opening and does not mean a cross section. Similarly, hatching added to bus bar electrodes and finger electrodes shown in FIGS. 5 to 21 described later does not mean a cross section.
  • FIG. 3 is a cross-sectional view showing the laminated structure of solar cell element 11 according to Embodiment 1.
  • 2 is a cross-sectional view taken along the line III-III of the solar cell element 11 in FIG.
  • an i-type amorphous silicon film 121 and a p-type amorphous silicon film 122 are formed in this order on the main surface of an n-type single crystal silicon wafer 101.
  • the n-type single crystal silicon wafer 101, the i-type amorphous silicon film 121, and the p-type amorphous silicon film 122 form a photoelectric conversion layer, and the n-type single crystal silicon wafer 101 serves as a main power generation layer.
  • the light receiving surface electrode 102 is formed on the p-type amorphous silicon film 122.
  • a collecting electrode 100 including a plurality of bus bar electrodes 40 and a plurality of finger electrodes 50 is formed on the light receiving surface electrode 102. In FIG. 3, only the finger electrode 50 of the collector electrode 100 is shown.
  • an i-type amorphous silicon film 123 and an n-type amorphous silicon film 124 are formed in this order on the back surface of the n-type single crystal silicon wafer 101. Further, the light receiving surface electrode 103 is formed on the n-type amorphous silicon film 124, and the collector electrode 100 including the plurality of bus bar electrodes 40 and the plurality of finger electrodes 50 is formed on the light receiving surface electrode 103.
  • the p-type amorphous silicon film 122 is formed on the back surface side of the n-type single crystal silicon wafer 101 and the n-type amorphous silicon film 124 is formed on the light-receiving surface side of the n-type single crystal silicon wafer 101, respectively. Good.
  • the collector electrode 100 can be formed by a printing method such as screen printing using, for example, a thermosetting resin-type conductive paste using a resin material as a binder and conductive particles such as silver particles as a filler. .
  • the pitch of the finger electrodes 50 on the back surface is the same as the pitch of the finger electrodes 50 on the front surface, but the pitch of the finger electrodes 50 on the back surface is smaller than the pitch of the finger electrodes 50 on the front surface.
  • the number of finger electrodes 50 on the back surface may be larger than the number of finger electrodes 50 on the front surface.
  • the area occupation ratio of the collector electrode 100 formed on the back surface may be higher than the area occupation ratio of the collector electrode formed on the front surface.
  • the area occupation ratio of the collector electrode is a ratio of the total area of the bus bar electrode 40 and the finger electrode 50 in the plan view to the area of the solar cell element 11 in the plan view.
  • the solar cell element 11 according to the present embodiment is a single-sided light receiving type in which the light receiving surface is the front surface, the effect of increasing the current collection efficiency on the back surface is more than the effect of increasing the light shielding loss on the back surface. large. Therefore, the current collection efficiency of the solar cell element 11 can be improved.
  • the solar cell element 11 is provided between the n-type single crystal silicon wafer 101 and the p-type amorphous silicon film 122 or the n-type amorphous silicon film 124 in order to improve the pn junction characteristics.
  • the i-type amorphous silicon film 121 is provided.
  • the solar cell element 11 is a single-sided light receiving type, and the light receiving surface electrode 102 on the surface side of the n-type single crystal silicon wafer 101 serves as a light receiving surface. Carriers generated in the n-type single crystal silicon wafer 101 diffuse as photocurrents to the light-receiving surface electrodes 102 and 103 on the front surface side and the back surface side and are collected by the collector electrode 100.
  • the light receiving surface electrodes 102 and 103 are transparent electrodes made of, for example, ITO (indium tin oxide), SnO 2 (tin oxide), ZnO (zinc oxide), or the like.
  • the light receiving surface electrode 103 on the back side may be a metal electrode that is not transparent.
  • the solar cell element 11 may be a double-sided light receiving type.
  • the light receiving surface electrode 102 on the front surface side and the light receiving surface electrode 103 on the back surface side of the n-type single crystal silicon wafer 101 are light receiving surfaces.
  • Carriers generated in the n-type single crystal silicon wafer 101 diffuse as photocurrents to the light-receiving surface electrodes 102 and 103 on the front surface side and the back surface side and are collected by the collector electrode 100.
  • the light receiving surface electrodes 102 and 103 are transparent electrodes.
  • the solar cell element 11 only needs to have a function as a photovoltaic power, and the structure of the solar cell element 11 is not limited to the above-described structure.
  • FIG. 4 is a structural cross-sectional view of the solar cell module 1 according to Embodiment 1 in the column direction. 4 is a cross-sectional view taken along the line IV-IV in the solar cell module 1 of FIG.
  • the solar cell module 1 shown in the figure includes a solar cell element 11, a tab wiring 20, a surface filling member 70A and a back surface filling member 70B, a surface protection member 80, and a back surface protection member 90.
  • the tab wiring 20 is a long conductive wiring, for example, a ribbon-shaped metal foil.
  • the tab wiring 20 can be produced, for example, by cutting a metal foil such as a copper foil or a silver foil, which is covered with solder, silver, or the like into a strip having a predetermined length.
  • the tab wiring 20 disposed on the surface of one solar cell element 11 is also disposed on the back surface of the other solar cell element 11. More specifically, the lower surface of one end of the tab wiring 20 is joined to the bus bar electrode 40 (not shown in FIG. 4) on the surface side of one solar cell element 11. Further, the upper surface of the other end portion of the tab wiring 20 is joined to a bus bar electrode 40 (not shown in FIG.
  • the solar cell string composed of a plurality of solar cell elements 11 arranged in the column direction has a configuration in which the plurality of solar cell elements 11 are connected in series in the column direction.
  • the tab wiring 20 and the bus bar electrode 40 are joined by, for example, a solder material.
  • a surface protection member 80 is disposed on the surface side of the plurality of solar cell elements 11, and a back surface protection member 90 is disposed on the back surface side.
  • a surface filling member 70 ⁇ / b> A is disposed between the surface including the plurality of solar cell elements 11 and the surface protection member 80, and the back surface filling is performed between the surface including the plurality of solar cell elements 11 and the back surface protection member 90.
  • a member 70B is arranged. The front surface protection member 80 and the back surface protection member 90 are fixed by a front surface filling member 70A and a back surface filling member 70B, respectively.
  • the surface protection member 80 is a protection member disposed on the surface side of the solar cell element 11.
  • the surface protection member 80 is a member that protects the inside of the solar cell module 1 from wind and rain, external impact, fire, and the like, and ensures long-term reliability of the solar cell module 1 when exposed outdoors. From this point of view, the surface protection member 80 can be made of, for example, glass having translucency and water shielding properties, a resin member having a light-transmitting property and water shielding properties such as a film or plate.
  • the back surface protection member 90 is a protection member disposed on the back surface side of the solar cell element 11.
  • the back surface protection member 90 is a member that protects the back surface of the solar cell module 1 from the external environment.
  • a resin film such as polyethylene terephthalate or a laminated film having a structure in which an Al foil is sandwiched between resin films is used. Can do.
  • the front surface filling member 70 ⁇ / b> A is a filler filled in the space between the plurality of solar cell elements 11 and the surface protection member 80
  • the back surface filling member 70 ⁇ / b> B is formed between the plurality of solar cell elements 11 and the back surface protection member 90. It is a filler filled in the space between.
  • the front surface filling member 70A and the back surface filling member 70B have a sealing function for blocking the solar cell element 11 from the external environment. With the arrangement of the front surface filling member 70A and the back surface filling member 70B, it is possible to ensure high heat resistance and high moisture resistance of the solar cell module 1 assumed to be installed outdoors.
  • the surface filling member 70A is made of a translucent polymer material having a sealing function.
  • Examples of the polymer material of the surface filling member 70A include translucent resin materials such as ethylene vinyl acetate (EVA).
  • the back surface filling member 70B is made of a polymer material having a sealing function.
  • the back surface filling member 70B is processed in white.
  • the polymer material of the back surface filling member 70B include a resin material obtained by processing EVA or the like in white.
  • the surface filling member 70A and the back surface filling member 70B are made of the same material system from the viewpoint of simplification of the manufacturing process and the adhesion of the interface between the surface filling member 70A and the back surface filling member 70B.
  • the front surface filling member 70A and the back surface filling member 70B are obtained by laminating (laminating) two resin sheets (translucent EVA sheet and white processed EVA sheet) sandwiching a plurality of solar cell elements 11 (cell strings). It is formed by doing.
  • FIGS. 5 to 7 show a finger electrode 50 in addition to the bus bar electrode 40.
  • the bus bar electrode on at least one of the front and back surfaces of the solar cell element 11 has the configuration of the bus bar electrode 40 shown in FIGS. That is, the bus bar electrode 40 shown in FIGS. 5 to 7 may have only the front surface, the back surface, or both surfaces of the solar cell element 11. The same applies to FIGS. 8 to 14 and FIGS. 16 to 21 described later.
  • the bus bar electrode 40 is a long electrode that is formed along the long direction of the tab wiring 20 and is joined to the tab wiring 20 so as to overlap.
  • the bus bar electrode 40 has a charge transfer portion 41 that transfers the light-receiving charge generated by the solar cell element 11 to the tab wiring 20.
  • the bus bar electrode 40 has a plurality of openings 42. The plurality of openings 42 are provided side by side along the longitudinal direction of the tab wiring 20 (longitudinal direction of the bus bar electrode 40).
  • the longitudinal direction of the tab wiring 20 is also simply referred to as a longitudinal direction.
  • the plurality of openings 42 include openings 42 having different areas in plan view. Specifically, at least the width in the long direction of the openings 42 having different areas among the plurality of openings 42 and the width in the crossing direction (the short direction of the bus bar electrode 40) intersecting the long direction in plan view. One is different.
  • the crossing direction is, for example, a direction substantially perpendicular to the long direction in plan view.
  • the area in planar view of all the plurality of openings 42 may be different.
  • the area of the plurality of openings 42 in plan view may be larger as it is closer to either the center or both ends of the bus bar electrode 40 in the longitudinal direction.
  • the area of the plurality of openings 42 in plan view is larger as it is closer to both ends of the bus bar electrode 40 in the longitudinal direction.
  • the plurality of openings 42 have the same width in the intersecting direction and different widths in the longitudinal direction.
  • the width in the longitudinal direction of the plurality of openings 42 is larger as it is closer to both ends of the bus bar electrode 40 in the longitudinal direction.
  • the area in the planar view of the plurality of openings 42 becomes larger as it is closer to both ends of the bus bar electrode 40 in the longitudinal direction.
  • the area of the plurality of openings 42 in plan view is larger as it is closer to the center of the bus bar electrode 40 in the longitudinal direction.
  • the widths in the intersecting direction of the plurality of openings 42 are the same, and the widths in the longitudinal direction are different.
  • the width in the longitudinal direction of the plurality of openings 42 increases as the distance from the center of the bus bar electrode 40 in the longitudinal direction increases.
  • the area of the plurality of openings 42 in plan view increases as the area is closer to the center of the bus bar electrode 40 in the longitudinal direction.
  • the area of the plurality of openings 42 in plan view is larger as it is closer to both ends of the bus bar electrode 40 in the longitudinal direction.
  • at least one of the width in the intersecting direction and the width in the longitudinal direction of the plurality of openings 42 is different.
  • the width in the longitudinal direction and the intersecting direction of the opening 42 located near both ends of the bus bar electrode 40 in the longitudinal direction is larger than the width in the longitudinal direction and the intersecting direction of the other opening 42.
  • the width of the other opening portions 42 in the intersecting direction is smaller as it is closer to the center of the bus bar electrode 40 in the longitudinal direction.
  • the area in the planar view of the plurality of openings 42 becomes larger as it is closer to both ends of the bus bar electrode 40 in the longitudinal direction.
  • the bus bar electrodes 40 are provided side by side along the longitudinal direction, and have a plurality of openings 42 whose area in plan view is non-uniform along the longitudinal direction.
  • the bus bar electrode 40 has regions with different area occupancy rates of the charge transfer portions 41 for the respective regions, such as the first region and the second region shown in FIGS.
  • the area occupancy of the charge transfer unit 41 in the first region is larger than the area occupancy of the charge transfer unit 41 in the second region.
  • the first region and the second region have the same size.
  • the size of the first region and the second region needs to be equal to or larger than a predetermined size.
  • the predetermined size is a size including at least one opening 42.
  • the bus bar electrode 40 is, for example, the bus bar electrode in the longitudinal direction as the central region of the bus bar electrode 40 in the longitudinal direction as in the first region and the second region shown in FIGS. 5 and 7. It has a region where the area occupancy of the charge transfer portion 41 with respect to each region is larger than the regions on both ends of the electrode 40.
  • the bus bar electrode 40 is, for example, as the first region and the second region shown in FIG. 6, the regions on both ends of the bus bar electrode 40 in the longitudinal direction are closer to the center of the bus bar electrode 40 in the longitudinal direction. There are regions in which the area occupancy of the charge transfer portion 41 with respect to each region is larger than the region on the side.
  • first region and the second region are not limited to the regions shown in FIGS. 5 to 7, and may be regions at positions different from the regions shown in FIGS.
  • the solar cell module 1 includes two adjacent solar cell elements 11 and a long tab wiring 20 that electrically connects the two solar cell elements 11.
  • Each of the two solar cell elements 11 has a long bus bar electrode 40 that is formed along the long direction of the tab wiring 20 and is joined to the tab wiring 20 so as to overlap.
  • the bus bar electrode 40 has a charge transfer portion 41 that transmits the received light charges generated by the solar cell element 11 to the tab wiring 20, and a plurality of openings 42.
  • the plurality of openings 42 are provided side by side along the longitudinal direction, and the plurality of openings 42 include openings 42 having different areas in plan view.
  • the bus bar electrode 40 has regions having different area occupancy rates of the charge transfer portions 41 with respect to the respective regions, for example, the first region and the second region shown in FIGS. That is, the area occupancy rate of the charge transfer portion 41 becomes non-uniform along the longitudinal direction.
  • the bus bar electrode 40 has a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 41 is low (second region) and a region where the adhesive strength is high (first region).
  • the portion where the tab wiring and the bus bar electrode are not connected is provided uniformly, and the electrical loss occurs uniformly.
  • the electrical loss is reduced. That is, in the solar cell module 1 according to Embodiment 1, since the portion where the tab wiring 20 and the bus bar electrode 40 are not connected is reduced depending on the location, the electrical loss is reduced. Therefore, the electrical loss is suppressed until a situation such as a cell crack occurs due to a temperature cycle or the like, and even if stress is generated in the solar cell element 11 and the tab wiring 20, the tab wiring 20 and the charge transfer The tab wiring 20 in the region where the adhesive strength with the portion 41 is low is peeled off.
  • the stress of the solar cell element 11 and the tab wiring 20 can be reduced thereafter. Further, in the region where the adhesive strength between the tab wiring 20 and the charge transfer portion 41 is high, since the tab wiring 20 and the charge transfer portion 41 are joined, it is possible to suppress a decrease in current collection efficiency. That is, the stress of the solar cell element 11 and the tab wiring 20 can be reduced while increasing the total output within the product life.
  • the bus bar electrode 40 is not joined to the tab wiring 20 at the opening 42. Therefore, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the stress can be absorbed in a region that is not joined to the bus bar electrode 40 of the tab wiring 20. The stress on the tab wiring 20 can be reduced.
  • At least one of the width in the longitudinal direction of the opening 42 having a different area among the plurality of openings 42 and the width in the intersecting direction intersecting the longitudinal direction in plan view are different.
  • the area of the plurality of openings 42 in plan view can be changed.
  • the area of the plurality of openings 42 in plan view is larger as it is closer to either the center or both ends of the bus bar electrode 40 in the longitudinal direction.
  • one of the center and both ends of the bus bar electrode 40 in the longitudinal direction can be set to a region where the adhesive strength between the tab wiring 20 and the bus bar electrode 40 is low.
  • the tab wiring 20 can be easily peeled off at the central side. Therefore, if the bonding strength between the solar cell element 11 and the tab wiring 20 is high, there is no escape from stress due to temperature cycles or the like, so the stress on the solar cell element 11 is increased, but the tab wiring 20 is peeled off at the center side. The stress on the solar cell element 11 is alleviated.
  • the tab wiring 20 can be easily peeled off at both end sides. Therefore, the degree of freedom at both ends of the tab wiring 20 is increased, so that stress at both ends of the tab wiring 20 can be reduced.
  • the area in plan view of the plurality of openings 42 shown in FIGS. 5 to 7 is larger as it is closer to either the center or both ends of the bus bar electrode 40 in the longitudinal direction, it is not limited thereto.
  • the areas of the plurality of openings 42 in plan view may be different areas, and may not increase in order from one of the center and both ends of the bus bar electrode 40 in the longitudinal direction toward the other. Good. That is, any region of the bus bar electrode 40 may be an area where the adhesive strength between the tab wiring 20 and the bus bar electrode 40 is low, instead of one of the center and both ends of the bus bar electrode 40.
  • the tab wiring 20 in a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 41 is low is peeled off. Therefore, the stress can be absorbed in the region where the bonding of the tab wiring 20 with the bus bar electrode 40 is peeled off, so that the stress of the solar cell element 11 and the tab wiring 20 can be reduced.
  • the solar cell module according to the present embodiment includes two adjacent solar cell elements 11 and a long tab wiring 20 that electrically connects the two solar cell elements 11.
  • Each of the two solar cell elements 11 has a long bus bar electrode 140 that is formed along the long direction of the tab wiring 20 and is joined to the tab wiring 20 so as to overlap.
  • the bus bar electrode 140 includes a charge transfer unit 141 that transmits the received light charges generated by the solar cell element 11 to the tab wiring 20, and a plurality of openings 142.
  • FIG. 8 to 10 are plan views showing an example of the configuration of the bus bar electrode 140 according to the second embodiment.
  • the plurality of openings 142 are provided side by side along the longitudinal direction and the crossing direction that intersects the long direction in plan view, and are provided side by side along the crossing direction of the plurality of openings 142.
  • the number obtained varies along the longitudinal direction.
  • the area of the plurality of openings 142 in plan view may be larger as it is closer to either the center or both ends of the bus bar electrode 140 in the longitudinal direction.
  • the number of the plurality of openings 142 provided side by side in the crossing direction may be as large as closer to either the center or both ends of the bus bar electrode 140 in the longitudinal direction.
  • the number of the plurality of openings 142 provided side by side along the intersecting direction is larger as it is closer to both ends of the bus bar electrode 140 in the longitudinal direction.
  • four openings 142 are provided at both ends of the bus bar electrode 140 in the longitudinal direction, and one opening 142 is provided at the center of the bus bar electrode 140 in the longitudinal direction.
  • the area of the opening 142 at both ends of the bus bar electrode 140 in the longitudinal direction in plan view is larger than the area of the other opening 142.
  • the widths of the plurality of openings 142 in the intersecting direction are the same, and the widths of the openings 142 at both ends of the bus bar electrode 140 in the longitudinal direction are the same as the widths of the other openings 142 in the longitudinal direction. Greater than width.
  • the number of the plurality of openings 142 provided side by side along the intersecting direction increases as the distance from the center of the bus bar electrode 140 in the longitudinal direction increases.
  • one opening 142 is provided at both ends of the bus bar electrode 140 in the longitudinal direction, and four openings 142 are provided at the center of the bus bar electrode 140 in the longitudinal direction.
  • the area of the opening 142 at the center of the bus bar electrode 140 in the longitudinal direction in plan view is larger than the areas of the other openings 142.
  • the widths in the intersecting direction of the plurality of openings 142 are the same, and the width in the longitudinal direction of the central opening 142 of the bus bar electrode 140 in the longitudinal direction is the same as the width in the longitudinal direction of the other openings 142. Greater than width.
  • the interval between the two openings 142 adjacent in the cross direction may be larger as the distance from the center of the bus bar electrode 140 in the cross direction is closer.
  • the interval between two adjacent openings 142 close to the center of the bus bar electrode 140 in the intersecting direction is, for example, the width in the intersecting direction of the charge transfer portion 141a shown in FIG.
  • the width in the cross direction of the charge transfer unit 141a is larger than the width in the cross direction of the charge transfer unit 141b arranged along the cross direction with the charge transfer unit 141a.
  • the bus bar electrodes 140 are provided side by side along the longitudinal direction and the crossing direction, and have a plurality of openings 142 in which the number provided side by side along the crossing direction is non-uniform along the longitudinal direction. .
  • the bus bar electrode 140 has regions having different area occupancy rates of the charge transfer portions 141 for the respective regions, such as the first region and the second region shown in FIGS.
  • the area occupation rate of the charge transfer unit 141 in the first region is larger than the area occupation rate of the charge transfer unit 141 in the second region.
  • the first region and the second region have the same size.
  • the size of the first region and the second region needs to be equal to or larger than a predetermined size.
  • the predetermined size is a size including a plurality of openings 142 arranged in the intersecting direction and both ends of the bus bar electrode 140 in the intersecting direction.
  • the bus bar electrode 140 has a bus bar in the longitudinal direction that is closer to the center side of the bus bar electrode 140 in the longitudinal direction, such as the first region and the second region shown in FIGS. 8 and 10. It has a region where the area occupancy of the charge transfer portion 141 with respect to each region is larger than the regions on both ends of the electrode 140.
  • the bus bar electrode 140 is, for example, as the first region and the second region shown in FIG. 9, the regions on both ends of the bus bar electrode 140 in the longitudinal direction are closer to the center of the bus bar electrode 140 in the longitudinal direction. There are regions where the area occupancy of the charge transfer portion 141 for each region is larger than the region on the side.
  • the bus bar electrode 40 has a bus bar in the longitudinal direction that is closer to the center side of the bus bar electrode 140 in the longitudinal direction, such as the first region and the second region shown in FIGS. 8 and 10. It has a region where the area occupancy of the charge transfer portion 141 with respect to each region is larger than the regions on both ends of the electrode 140.
  • the bus bar electrode 140 is, for example, as the first region and the second region shown in FIG. 9, the regions on both ends of the bus bar electrode 140 in the longitudinal direction are closer to the center of the bus bar electrode 140 in the longitudinal direction. There are regions where the area occupancy of the charge transfer portion 141 for each region is larger than the region on the side.
  • first region and the second region are not limited to the regions illustrated in FIGS. 8 to 10 and may be regions at positions different from the regions illustrated in FIGS.
  • the solar cell module according to the present embodiment includes two adjacent solar cell elements 11 and a long tab wiring 20 that electrically connects the two solar cell elements 11.
  • Each of the two solar cell elements 11 has a long bus bar electrode 140 that is formed along the long direction of the tab wiring 20 and is joined to the tab wiring 20 so as to overlap.
  • the bus bar electrode 140 includes a charge transfer unit 141 that transmits the received light charges generated by the solar cell element 11 to the tab wiring 20, and a plurality of openings 142.
  • the plurality of openings 142 are provided side by side along the long direction and the crossing direction intersecting the long direction in plan view, and the number provided along the crossing direction of the plurality of openings 142 is long. Different along the direction.
  • the bus bar electrode 140 has regions having different area occupancy rates of the charge transfer portions 141 for the respective regions, such as the first region and the second region shown in FIGS. That is, the area occupancy of the charge transfer portion 141 becomes non-uniform along the longitudinal direction.
  • the bus bar electrode 140 has a region (second region) where the adhesive strength between the tab wiring 20 and the charge transfer portion 141 is low (second region) and a region (first region).
  • the portion where the tab wiring and the bus bar electrode are not connected is provided uniformly, and the electrical loss occurs uniformly.
  • the solar cell module according to Embodiment 2 since the portion where the tab wiring 20 and the bus bar electrode 140 are not connected is provided unevenly, the electrical loss is reduced.
  • the portion where the tab wiring 20 and the bus bar electrode 140 are not connected is reduced depending on the location, the electrical loss is reduced. Therefore, the electrical loss is suppressed until a situation such as a cell crack occurs due to a temperature cycle or the like, and even if stress is generated in the solar cell element 11 and the tab wiring 20, the tab wiring 20 and the charge transfer The tab wiring 20 in the region where the adhesive strength with the portion 141 is low is peeled off. Thereby, since stress can be absorbed in the region where the bonding of the tab wiring 20 to the bus bar electrode 140 is peeled off, the stress of the solar cell element 11 and the tab wiring 20 can be reduced thereafter.
  • the tab wiring 20 and the charge transfer portion 141 are joined, it is possible to suppress a decrease in current collection efficiency. That is, the stress of the solar cell element 11 and the tab wiring 20 can be reduced while increasing the total output within the product life.
  • the bus bar electrode 140 is not joined to the tab wiring 20 at the opening 142. Therefore, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the stress can be absorbed in a region that is not joined to the bus bar electrode 140 of the tab wiring 20. The stress on the tab wiring 20 can be reduced.
  • the number of the plurality of openings 142 provided side by side along the crossing direction increases as the distance from the center and both ends of the bus bar electrode 140 in the longitudinal direction increases.
  • the area of the plurality of openings 142 in plan view is larger as it is closer to either the center or both ends of the bus bar electrode 140 in the longitudinal direction.
  • one of the center and both ends of the bus bar electrode 140 in the longitudinal direction can be an area where the adhesive strength between the tab wiring 20 and the bus bar electrode 140 is low.
  • the tab wiring 20 can be easily peeled off at the central side. Therefore, if the bonding strength between the solar cell element 11 and the tab wiring 20 is high, there is no escape from stress due to temperature cycles or the like, so the stress on the solar cell element 11 is increased, but the tab wiring 20 is peeled off at the center side. The stress on the solar cell element 11 is alleviated.
  • the tab wiring 20 can be easily peeled off at both end sides. Therefore, the degree of freedom at both ends of the tab wiring 20 is increased, so that stress at both ends of the tab wiring 20 can be reduced.
  • the number of the plurality of openings 142 shown in FIGS. 8 to 10 provided side by side along the crossing direction is closer to one of the center and both ends of the bus bar electrode 140 in the longitudinal direction, the number is larger. Not limited to this.
  • the number of the plurality of openings 142 provided side by side along the intersecting direction may be different along the longitudinal direction, from one of the center and both ends of the bus bar electrode 140 in the longitudinal direction to the other. It does not have to increase in order. That is, any area of the bus bar electrode 140 may be an area where the adhesive strength between the tab wiring 20 and the bus bar electrode 140 is low, instead of one of the center and both ends of the bus bar electrode 140.
  • the tab wiring 20 in a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 141 is low is peeled off. Therefore, the stress can be absorbed in the region where the bonding of the tab wiring 20 to the bus bar electrode 140 is peeled off, so that the stress of the solar cell element 11 and the tab wiring 20 can be reduced.
  • the distance between the two openings 142 adjacent in the crossing direction is larger as the distance from the center of the bus bar electrode 140 in the crossing direction is closer.
  • the solar cell module according to the present embodiment includes two adjacent solar cell elements 11 and a long tab wiring 20 that electrically connects the two solar cell elements 11.
  • Each of the two solar cell elements 11 has a long bus bar electrode 240 that is formed along the lengthwise direction of the tab wiring 20 and overlaps and is joined to the tab wiring 20.
  • the bus bar electrode 240 includes a charge transfer unit 241 that transmits the received light charges generated by the solar cell element 11 to the tab wiring 20, and a charge transfer unit in a plurality of regions that are aligned along the crossing direction that intersects the long direction in plan view. And an opening 242 for branching 241.
  • the region branched in the crossing direction by the opening 242 in the charge transfer portion 241 is referred to as a branch portion 241a.
  • FIG. 1 Configuration of Bus Bar Electrode According to Embodiment 3
  • 11 and 12 are plan views showing an example of the configuration of the bus bar electrode 240 according to the third embodiment.
  • the charge transfer portion 241 is branched into a plurality of branch portions 241 a arranged along the crossing direction by the opening 242.
  • the charge transfer portion 241 is branched into two branch portions 241 a arranged along the crossing direction by the opening 242.
  • the opening 242 may be a notch provided at at least one end of both ends of the bus bar electrode 240 in the longitudinal direction.
  • variety of the crossing direction of the branch part 241a changes along a elongate direction. Note that the width of the branching portion 241a in the intersecting direction may increase from one of the center and both ends of the bus bar electrode 240 in the longitudinal direction toward the other.
  • the bus bar electrode 240 is provided with one opening 242.
  • the opening 242 is provided so that the width in the intersecting direction of the branching portion 241 a increases from the center of the bus bar electrode 240 in the longitudinal direction toward both ends.
  • the opening 342 has a shape that tapers from the center of the bus bar electrode 240 toward both ends in the longitudinal direction.
  • the branch part 241a has a reverse taper shape in which the width in the intersecting direction of the branch part 241a increases from the center of the bus bar electrode 240 toward both ends in the longitudinal direction.
  • the bus bar electrode 240 is provided with openings 242 as notches at both ends of the bus bar electrode 240 in the longitudinal direction.
  • the opening 242 is provided such that the width of the branching portion 241a in the crossing direction increases from both ends of the bus bar electrode 240 toward the center in the longitudinal direction.
  • the opening 242 has a shape that tapers from both ends of the bus bar electrode 240 toward the center in the longitudinal direction.
  • the branch part 241a has a reverse taper shape in which the width in the crossing direction of the branch part 241a increases from both ends of the bus bar electrode 240 toward the center in the longitudinal direction.
  • the bus bar electrode 240 has the opening 242 whose width in the crossing direction is not uniform along the longitudinal direction.
  • the bus bar electrode 240 has a branch portion 241a whose width in the intersecting direction is not uniform along the longitudinal direction.
  • the bus bar electrode 240 has regions having different area occupancy rates of the charge transfer portions 241 for the respective regions, such as the first region and the second region illustrated in FIGS. 11 and 12, for example.
  • the area occupancy of the charge transfer unit 241 in the first region is larger than the area occupancy of the charge transfer unit 241 in the second region.
  • the first region and the second region have the same size.
  • the size of the first region and the second region needs to be equal to or larger than a predetermined size.
  • the predetermined size is a size including a part of the opening 242 and both ends of the bus bar electrode 240 in the crossing direction.
  • the width of the branching portion 241a in the crossing direction increases from one of the center and both ends of the bus bar electrode 240 in the long direction toward the other.
  • the bus bar electrode 240 is, for example, the first region on both ends of the bus bar electrode 240 in the longitudinal direction as in the first region and the second region shown in FIG.
  • the region having a larger area occupancy ratio of the charge transfer portion 241 for each region than the second region on the center side of the electrode 240 is provided.
  • the bus bar electrode 240 is, for example, the first region on the central side of the bus bar electrode 240 in the longitudinal direction as in the first region and the second region shown in FIG.
  • the area occupying area of the charge transfer portion 241 with respect to each region is larger than the second regions on both ends of 240.
  • first region and the second region are not limited to the regions illustrated in FIGS. 11 and 12, and may be regions at positions different from the regions illustrated in FIGS. 11 and 12.
  • FIG. 13 and 14 are plan views showing an example of the configuration of the bus bar electrode 240a according to a modification of the third embodiment.
  • the configuration of the bus bar electrode 240a according to the present modification is different from the configuration of the bus bar electrode 240 shown in FIGS. 11 and 12 in that three or more branch portions 241a are arranged along the crossing direction.
  • branch portions 241a are arranged along the crossing direction.
  • the opening 242 has a shape that branches the charge transfer part 241 into four branch parts 241a arranged along the crossing direction at both ends of the opening 242 in the longitudinal direction. .
  • the opening 242 three portions that taper from the center of the bus bar electrode 240 toward both ends in the longitudinal direction are arranged along the crossing direction at each of both ends of the opening 242 in the longitudinal direction.
  • the four branch portions 241a arranged along the cross direction have reverse tapered shapes such that the width of the branch portion 241a in the cross direction increases from the center of the bus bar electrode 240 toward both ends in the longitudinal direction.
  • the opening 242 may have a shape that branches the charge transfer portion 241 into three or five or more branch portions 241a arranged along the crossing direction.
  • the opening portion 242 has two portions that taper from the center of the bus bar electrode 240 in the longitudinal direction toward both ends at each of both ends of the opening portion 242 in the longitudinal direction. It may have a shape of four or more.
  • the three or five or more branch portions 241a arranged along the intersecting direction have a reverse taper such that the width of the branch portion 241a in the intersecting direction increases from the center of the bus bar electrode 240 toward both ends in the longitudinal direction. You may have a shape.
  • the charge transfer portion 241 extends along the cross direction by two openings (notches) 242 arranged along the cross direction at each of both ends of the bus bar electrode 240a in the longitudinal direction.
  • the two openings 242 aligned along the intersecting direction have a shape that tapers from both ends of the bus bar electrode 240 toward the center in the longitudinal direction.
  • the three branch portions 241a arranged along the cross direction have reverse tapered shapes such that the width of the branch portion 241a in the cross direction increases from both ends of the bus bar electrode 140 toward the center in the longitudinal direction.
  • the opening 242 is formed along the cross direction in order to branch the charge transfer portion 241 into four or more branch portions 241a arranged along the cross direction at both ends of the bus bar electrode 240a in the longitudinal direction. Two or more may be provided. Specifically, at each of both ends of the bus bar electrode 240a in the longitudinal direction, there are three openings 242 having a shape that tapers from both ends of the bus bar electrode 240a in the longitudinal direction toward the center. You may provide so that it may line up. As a result, the four or more branch portions 241a arranged along the intersecting direction have a reverse taper shape in which the width of the intersecting direction of the branch portion 241a increases from both ends of the bus bar electrode 240 toward the center in the longitudinal direction. May be.
  • the width in the crossing direction of the bus bar electrode 240a may change along the longitudinal direction.
  • the bus bar electrode 240a may have a reverse tapered shape that increases from both ends of the bus bar electrode 240a in the longitudinal direction toward the center.
  • the bus bar electrode 240a has three or more branching portions 241a whose width in the crossing direction changes along the longitudinal direction so as to be arranged in the crossing direction. Even when the bus bar electrode 240a has three or more branching portions 241a arranged in the crossing direction, the bus bar electrode 240a is, for example, as shown in FIGS. Like the first region and the second region shown, there are regions where the area occupancy rates of the charge transfer portions 241 with respect to the respective regions are different.
  • the solar cell module according to the present embodiment includes two adjacent solar cell elements 11 and a long tab wiring 20 that electrically connects the two solar cell elements 11.
  • Each of the two solar cell elements 11 has a long bus bar electrode 240 (240a) that is formed along the lengthwise direction of the tab wiring 20 and overlaps and is joined to the tab wiring 20.
  • a plurality of bus bar electrodes 240 (240a) are arranged along a crossing direction, which is a direction crossing the long direction in a plan view, with a charge transfer unit 241 that transmits the received light charges generated by the solar cell element 11 to the tab wiring 20.
  • the branch portion 241a has an opening 242 for branching the charge transfer portion 241. The width of the branching portion 241a in the intersecting direction changes along the longitudinal direction.
  • the bus bar electrode 240 (240a) has regions having different area occupancy rates of the charge transfer portions 241 for the respective regions, such as the first region and the second region shown in FIGS. . That is, the area occupation ratio of the charge transfer portion 241 becomes non-uniform along the long direction.
  • the bus bar electrode 240 (240a) includes a region (second region) where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is low (second region) and a region (first region).
  • the portion where the tab wiring and the bus bar electrode are not connected is provided uniformly, and the electrical loss occurs uniformly.
  • the electrical loss is reduced. That is, in the solar cell module according to Embodiment 3, since the portion where the tab wiring 20 and the bus bar electrode 240 (240a) are not connected is reduced depending on the location, the electrical loss is reduced. Therefore, the electrical loss is suppressed until a situation such as a cell crack occurs due to a temperature cycle or the like, and even if stress is generated in the solar cell element 11 and the tab wiring 20, the tab wiring 20 and the charge transfer The tab wiring 20 in the region where the adhesive strength with the portion 241 is low is peeled off.
  • the bus bar electrode 240 (240a) is not joined to the tab wiring 20 at the opening 242. Therefore, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the stress can be absorbed in a region of the tab wiring 20 that is not joined to the bus bar electrode 240 (240a). The stress of the element 11 and the tab wiring 20 can be reduced. That is, the stress of the solar cell element 11 and the tab wiring 20 can be reduced while increasing the total output within the product life.
  • the opening 242 branches, for example, the charge transfer portion 241 into the branch portions 241a arranged in the three or more directions along the crossing direction. As a result, the opening 242 branches the charge transfer portion 241 finely, so that the area where the tab wiring 20 and the charge transfer portion 241 are joined increases. Therefore, it is possible to suppress a decrease in current collection efficiency.
  • the opening 242 is a notch provided at at least one end of both ends of the bus bar electrode 240 in the longitudinal direction.
  • the bus bar electrode 240 (240a) is formed in, for example, the first region and the second region shown in FIGS. As described above, there are regions in which the area occupancy ratios of the charge transfer portions 241 with respect to the respective regions are different. That is, the area occupation ratio of the charge transfer portion 241 becomes non-uniform along the long direction.
  • the bus bar electrode 240 (240a) includes a region (second region) where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is low (second region) and a region (first region).
  • the tab wiring 20 in a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is low is peeled off. The stress on the tab wiring 20 can be reduced.
  • the width of the branching portion 241a in the intersecting direction increases from one of the center and both ends of the bus bar electrode 240 (240a) in the longitudinal direction toward the other.
  • either one of the center and both ends of the bus bar electrode 240 (240a) in the longitudinal direction can be set to a region where the adhesive strength between the tab wiring 20 and the bus bar electrode 240 (240a) is low.
  • the tab wiring 20 can be easily peeled off at the central side. it can. Therefore, if the bonding strength between the solar cell element 11 and the tab wiring 20 is high, there is no escape from stress due to temperature cycles or the like, so the stress on the solar cell element 11 is increased, but the tab wiring 20 is peeled off at the center side. The stress on the solar cell element 11 is alleviated.
  • the tab wiring 20 is easily peeled off at both ends. be able to. Therefore, the degree of freedom at both ends of the tab wiring 20 is increased, so that stress at both ends of the tab wiring 20 can be reduced.
  • FIG. 15 is a schematic diagram for explaining the flow of received light charges in the solar cell element 11 according to Embodiment 3 and its modification.
  • FIG. 15 is a view as seen from XV-XV in the bus bar electrode 140 of FIG. However, FIG. 15 also shows the configuration around the bus bar electrode 240. Further, the arrows shown in FIG. 15 indicate the flow of received light charges, and the thicker the arrows, the greater the amount of received light charges.
  • the received charge generated in the solar cell element 11 is collected by the finger electrode 50.
  • the light-receiving charges collected by the finger electrode 50 are transmitted to the bus bar electrode 240 and further transmitted to the tab wiring 20 joined immediately above the bus bar electrode 240.
  • the received charge generated in the solar cell element 11 is collected by the finger electrode 50.
  • the received charge collected by the finger electrode 50 is transmitted to the bus bar electrode 240.
  • the received light charge transmitted to the bus bar electrode 240 flows through the bus bar electrode 240 to a position where the tab wiring 20 and the bus bar electrode 240 are not peeled off.
  • the received charge transmitted to the bus bar electrode 240 flows through the bus bar electrode 240 to a portion where the tab wiring 20 and the bus bar electrode 240 are not peeled off while the received charge collected by each finger electrode is added.
  • the amount of received light charges increases each time the bus bar electrode 240 and the finger electrode 50 intersect. Therefore, the greater the amount of received light charge, the greater the power loss due to the resistance component of the bus bar electrode 240.
  • the width of the branching portion 241a in the crossing direction is increased from one of the center and both ends of the bus bar electrode 240 (240a) in the long direction toward the other.
  • the resistance value per unit length of the bus bar electrode 240 (240a) can be decreased from one of the center and both ends of the bus bar electrode 240 (240a) toward the other.
  • the width of the branching portion 241a in the intersecting direction is increased from both ends of the bus bar electrode 240 in the longitudinal direction toward the center (W1 ⁇ W2 ⁇ W3).
  • the resistance value per unit length of the bus bar electrode 240 decreases from the both ends of the bus bar electrode 240 in the longitudinal direction toward the center.
  • the width of the branching portion 241a shown in FIGS. 11 to 14 is increased from one of the center and both ends of the bus bar electrode 240 toward the other in the longitudinal direction, but is not limited thereto. .
  • the width in the intersecting direction of the branch portion 241a only needs to change along the longitudinal direction, and does not increase from one of the center and both ends of the bus bar electrode 240 (240a) in the longitudinal direction toward the other. May be. That is, the adhesive strength between the tab wiring 20 and the bus bar electrode 240 (240a) is low in any region of the bus bar electrode 240 (240a), not in one of the center and both ends of the bus bar electrode 240 (240a). It may be an area.
  • the tab wiring 20 in a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is low is peeled off. Therefore, the stress can be absorbed in the region where the bonding of the tab wiring 20 to the bus bar electrode 240 (240a) is peeled off, so that the stress of the solar cell element 11 and the tab wiring 20 can be reduced.
  • the width of the bus bar electrode 240 (240a) in the intersecting direction changes along the longitudinal direction.
  • the width of the bus bar electrode 240 (240a) in the crossing direction that is, the width between the upper end and the lower end in the crossing direction of the charge transfer unit 241 is changed along the longitudinal direction, thereby forming the shape of the opening 242. Even without changing, it is possible to create a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is low and a region where it is high.
  • the structure of the solar cell module according to the present embodiment and the structure of the solar cell element 11 are the same as those according to the third embodiment, a detailed description thereof will be omitted, and hereinafter, different from the third embodiment. The description will focus on the bus bar electrode 340.
  • the bus bar electrode 340 has a plurality of openings 342.
  • the openings 342 are provided side by side along the longitudinal direction. Note that the width of the branching portion 341a in the intersecting direction may increase from one of the center and both ends of the opening 342 in the longitudinal direction toward the other.
  • the bus bar electrode 340 is provided with four openings 342 similar to the shape of the opening 242 shown in FIGS. 11 and 13 along the longitudinal direction.
  • the opening 342 is provided such that the width in the intersecting direction of the branching portion 341 a increases from both ends of the opening 342 in the longitudinal direction toward the center.
  • the opening 342 has a shape that tapers from the center of the opening 342 in the longitudinal direction toward both ends.
  • the bus bar electrode 340 has, for each opening 342, a branching part 341a having a reverse taper shape in which the width in the crossing direction of the branching part 341a increases from the center of the opening 342 toward both ends in the longitudinal direction. .
  • the bus bar electrode 340 is provided with four circular openings 342.
  • the openings 342 are provided side by side along the longitudinal direction, and the opening 342 has a circular shape, so that the width in the intersecting direction of the branching part 341 a is the opening in the longitudinal direction. It is provided so as to increase from both ends of 342 toward the center.
  • the bus bar electrode 340 has, for each opening 342, a branching part 341a having a reverse tapered shape such that the width of the branching part 341a in the crossing direction increases from the center of the opening 342 toward both ends in the longitudinal direction. .
  • the bus bar electrode 340 has a plurality of openings 342 whose width in the intersecting direction is not uniform along the longitudinal direction.
  • the bus bar electrode 340 has a plurality of branch portions 341a whose width in the crossing direction is not uniform along the longitudinal direction.
  • the bus bar electrode 340 includes regions having different area occupancy rates of the charge transfer portions 341 for the respective regions, such as the first region and the second region illustrated in FIGS.
  • the area occupancy of the charge transfer unit 341 in the first region is larger than the area occupancy of the charge transfer unit 341 in the second region.
  • the first region and the second region have the same size.
  • the size of the first region and the second region needs to be equal to or larger than a predetermined size.
  • the predetermined size is a size including a part of the opening 342 and both ends of the bus bar electrode 340 in the crossing direction.
  • the width of the branching portion 341a in the intersecting direction increases from one of the center and both ends of the opening 342 in the longitudinal direction toward the other.
  • the bus bar electrode 340 is formed so that the first region on both ends of the opening 342 in the longitudinal direction is longer in the longitudinal direction, such as the first region and the second region shown in FIGS.
  • the area occupying area of the charge transfer portion 341 in each region is larger than the second region on the center side of the opening 342 in FIG.
  • first region and the second region are not limited to the regions illustrated in FIGS. 16 to 18 and may be regions at positions different from the regions illustrated in FIGS.
  • the width in the crossing direction of the branching portion 341a shown in FIGS. 16 to 18 increases from one of the center and both ends of the opening 342 in the longitudinal direction toward the other, but is not limited thereto.
  • the width in the intersecting direction of the branching portion 341a only needs to change along the longitudinal direction, and does not have to increase from one of the center and both ends of the opening 342 in the longitudinal direction toward the other. .
  • the four openings 342 are provided side by side along the longitudinal direction, the present invention is not limited to this.
  • two, three, or five or more openings 342 may be provided along the longitudinal direction.
  • the bus bar electrode 340 has a plurality of openings 342, and the openings 342 are provided along the longitudinal direction.
  • the bus bar electrode 340 includes regions having different area occupancy rates of the charge transfer portions 341 for the respective regions, such as the first region and the second region shown in FIGS. That is, the area occupation ratio of the charge transfer portion 341 becomes non-uniform along the long direction.
  • the bus bar electrode 340 has a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 341 is low (second region) and a region where the adhesive strength is high (first region).
  • the portion where the tab wiring and the bus bar electrode are not connected is provided uniformly, and the electrical loss occurs uniformly.
  • the electrical loss is reduced. That is, in the solar cell module according to Embodiment 4, since the portion where the tab wiring 20 and the bus bar electrode 340 are not connected is reduced depending on the location, the electrical loss is reduced. Therefore, the electrical loss is suppressed until a situation such as a cell crack occurs due to a temperature cycle or the like, and even if stress is generated in the solar cell element 11 and the tab wiring 20, the tab wiring 20 and the charge transfer The tab wiring 20 in the region where the adhesive strength with the portion 341 is low is peeled off.
  • the bus bar electrode 340 is not joined to the tab wiring 20 in the opening 342. Therefore, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the stress can be absorbed in a region that is not joined to the bus bar electrode 340 of the tab wiring 20. The stress on the tab wiring 20 can be reduced.
  • the width in the crossing direction of the branching portion 341a increases from one of the center and both ends of the opening 342 in the longitudinal direction toward the other.
  • either the center or both ends of the opening 342 in the longitudinal direction can be set to a region where the adhesive strength between the tab wiring 20 and the bus bar electrode 340 is low.
  • the finger electrode 50 is not provided so as to penetrate the bus bar electrode, but is not limited thereto.
  • the bus bar electrode 440 may be penetrated like a finger electrode 350 shown in FIGS. 19 to 21 described below.
  • 19 to 21 are plan views showing an example of the configuration of the bus bar electrode 440 according to another embodiment.
  • FIG. 19 shows a bus bar electrode 440 having a configuration in which the finger electrode 450 penetrates the bus bar electrode 240a shown in FIG. 13 in the crossing direction. Thereby, the finger electrode 450 cuts the opening 442 vertically in the crossing direction.
  • FIG. 20 shows a bus bar electrode 440 having a configuration in which the finger electrode 450 penetrates the bus bar electrode 240a shown in FIG. 14 in the crossing direction. Thereby, the finger electrode 450 cuts the opening 442 vertically in the crossing direction.
  • FIG. 21 shows a bus bar electrode 440 having a configuration in which the finger electrode 450 penetrates the bus bar electrode 340 shown in FIG. 17 in the crossing direction. Thereby, the finger electrode 450 cuts the opening 442 vertically in the crossing direction.
  • branch portions 241 a and 341 a that are not directly connected to the finger electrode 50, but in FIGS. 19 to 21, all the branch portions 441 a are directly connected to the finger electrode 450. . Therefore, in the region where the tab wiring 20 and the bus bar electrode 440 are peeled off, the received charge is distributed to the plurality of branch portions 441a in consideration of the power loss due to the resistance component. Loss can be further suppressed. Further, the area occupation ratio of the charge transfer portion 441 is non-uniform along the longitudinal direction. In other words, the bus bar electrode 440 has a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 441 is low and a region where the adhesive strength is high.
  • the portion where the tab wiring and the bus bar electrode are not connected is provided uniformly, and the electrical loss occurs uniformly.
  • the portion where the tab wiring 20 and the bus bar electrode 440 are not connected is provided unevenly, the electrical loss is reduced. That is, in the solar cell module according to the other embodiment, the portion where the tab wiring 20 and the bus bar electrode 440 are not connected is reduced depending on the location, so that the electrical loss is reduced.
  • the electrical loss is suppressed until a situation such as a cell crack occurs due to a temperature cycle or the like, and even if stress is generated in the solar cell element 11 and the tab wiring 20, the tab wiring 20 and the charge transfer
  • the tab wiring 20 in the region where the adhesive strength with the portion 441 is low is peeled off.
  • the width in the cross direction of the bus bar electrode 240a shown in FIG. 14 changes along the longitudinal direction.
  • the width in the cross direction of other bus bar electrodes is not limited to this. It may change along the scale direction.
  • the finger electrode 50 is a straight line, but may not be a straight line, but may be a curved line.
  • the configuration of the solar cell module is a configuration in which a plurality of solar cell elements 11 are arranged in a matrix on the surface, but is not limited to the matrix configuration.
  • the configuration of the solar cell module may be an annular arrangement or a one-dimensional linear or curved arrangement.
  • the present invention can be realized by any combination of the components and functions in the above-described embodiment without departing from the gist of the present invention, and forms obtained by making various modifications conceived by those skilled in the art. Forms are also included in the present invention.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A solar battery module (1) comprises two adjacent solar battery elements (11) and a long tab wire (20) for electrically connecting the two solar battery elements (11). Each of the two solar battery elements (11) is formed along the lengthwise direction of the tab wire (20) and has a long busbar electrode (40) that overlaps and is joined to the tab wire (20). The busbar electrode (40) includes: a charge-transmitting part (41) which transmits, to the tab wire (20), a photo-reception charge generated by the solar battery element (11); and a plurality of openings (42). The plurality of openings (42) are disposed in a row in a lengthwise direction, and the plurality of openings (42) include openings (42) having different surface areas in the planar view.

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.
 従来、光エネルギーを電気エネルギーに変換する光電変換装置として、太陽電池モジュールの開発が進められている。太陽電池モジュールは、太陽光を直接電気に変換できることから、また、化石燃料による発電と比べて環境負荷が小さくクリーンであることから、新しいエネルギー源として期待されている。 Conventionally, solar cell modules are being developed as photoelectric conversion devices that convert light energy into electrical energy. The solar cell module is expected as a new energy source because it can directly convert sunlight into electricity and has a smaller environmental load than clean power generation using fossil fuel.
 太陽電池モジュールは、例えば、表面保護部材と裏面保護部材との間に複数の太陽電池素子が充填部材で封止された構造となっている。太陽電池モジュールにおいて、複数の太陽電池素子は、マトリクス状に配置されている。行方向又は列方向の一方に沿って直線状に配列された複数の太陽電池素子は、隣り合う2つの太陽電池素子どうしのバスバー電極に接合されたタブ配線によって連結されていき、ストリングを構成している。特許文献1には、このような太陽電池モジュールに関する技術が記載されている。 The solar cell module has, for example, a structure in which a plurality of solar cell elements are sealed with a filling member between a surface protection member and a back surface protection member. In the solar cell module, the plurality of solar cell elements are arranged in a matrix. A plurality of solar cell elements arranged linearly along one of the row direction or the column direction are connected by tab wiring joined to the bus bar electrodes of two adjacent solar cell elements to form a string. ing. Patent Document 1 describes a technique related to such a solar cell module.
 ところで、特許文献1に記載の太陽電池モジュールでは、バスバー電極とタブ配線とが、タブ配線の長尺方向におけるバスバー電極の全域にわたり一様に接着されている。このため、温度サイクル等により太陽電池素子及びタブ配線が膨張及び収縮を繰り返すと、太陽電池素子及びタブ配線にストレスが生じる可能性がある。 Incidentally, in the solar cell module described in Patent Document 1, the bus bar electrode and the tab wiring are uniformly bonded over the entire area of the bus bar electrode in the longitudinal direction of the tab wiring. For this reason, when a solar cell element and a tab wiring repeat expansion and contraction due to a temperature cycle or the like, stress may occur in the solar cell element and the tab wiring.
 そこで、特許文献2には、バスバー電極にタブ配線が一部半田で接続されない部分を作り、太陽電池素子及びタブ配線に生じるストレスを緩和してセル割れなどを防ぐ構成が開示されている。 Therefore, Patent Document 2 discloses a configuration in which a portion of the tab wiring is not connected to the bus bar electrode by solder to relieve stress generated in the solar cell element and the tab wiring and prevent cell cracking or the like.
特開2011-187882号公報JP 2011-187882 A 特許第4174545号公報Japanese Patent No. 4174545
 しかしながら、特許文献2における太陽電池モジュールの構成においては、バスバー電極とタブ配線とが接続されていない部分が一様に存在することから、セル割れなどの不具合が発生していない状態であっても、バスバー電極とタブ配線とが接続されていない部分の電気的ロスによってモジュール出力が低下する。したがって、セル割れなどの不具合は常に発生する訳ではないので、不具合が発生していない場合にはタブ配線とバスバー電極とが接続する部分を増やすことで電気的ロスを低減し、万が一ストレスなどでセル割れなどの不具合が発生するような状況になった場合に、ストレスを緩和する構造に変化させることができた方が良い。 However, in the configuration of the solar cell module in Patent Document 2, since there is a portion where the bus bar electrode and the tab wiring are not connected uniformly, even if there is no problem such as cell cracking. The module output is reduced due to the electrical loss of the portion where the bus bar electrode and the tab wiring are not connected. Therefore, defects such as cell cracks do not always occur, so if there are no defects, increase the portion where the tab wiring and bus bar electrode are connected to reduce the electrical loss. It is better to be able to change the structure to relieve stress when a situation such as a cell crack occurs.
 そこで、本発明は、商品寿命内でのトータルの出力を高めた上で、上記の様なストレスが生じた場合でも太陽電池素子及びタブ配線のストレスを低減することができる太陽電池モジュールを提供することを目的とする。 Therefore, the present invention provides a solar cell module capable of reducing the stress of the solar cell element and the tab wiring even when the above-described stress occurs, while increasing the total output within the product life. For the purpose.
 本発明の一態様に係る太陽電池モジュールは、隣り合う2つの太陽電池素子と、前記2つの太陽電池素子を電気的に接続する長尺状のタブ配線と、を備え、前記2つの太陽電池素子のそれぞれは、前記タブ配線の長尺方向に沿って形成され、前記タブ配線と重なって接合する長尺状のバスバー電極を有し、前記バスバー電極は、前記太陽電池素子で生成された受光電荷を前記タブ配線に伝達する電荷伝達部と、複数の開口部とを有し、前記複数の開口部は、前記長尺方向に沿って並んで設けられ、前記複数の開口部には、平面視における面積が異なる開口部が含まれる。 The solar cell module which concerns on 1 aspect of this invention is equipped with two adjacent solar cell elements, and the elongate tab wiring which electrically connects the said two solar cell elements, These two solar cell elements Each has a long bus bar electrode that is formed along the long direction of the tab wiring and is joined to the tab wiring so as to overlap, and the bus bar electrode is a light-receiving charge generated by the solar cell element. A plurality of openings, and the plurality of openings are provided side by side along the longitudinal direction. Openings with different areas are included.
 本発明の一態様に係る太陽電池モジュールは、隣り合う2つの太陽電池素子と、前記2つの太陽電池素子を電気的に接続する長尺状のタブ配線と、を備え、前記2つの太陽電池素子のそれぞれは、前記タブ配線の長尺方向に沿って形成され、前記タブ配線と重なって接合する長尺状のバスバー電極を有し、前記バスバー電極は、前記太陽電池素子で生成された受光電荷を前記タブ配線に伝達する電荷伝達部と、複数の開口部とを有し、前記複数の開口部は、前記長尺方向及び当該長尺方向と平面視において交差する交差方向に沿って並んで設けられ、前記複数の開口部の前記交差方向に沿って並んで設けられる数は、前記長尺方向に沿って異なる。 The solar cell module which concerns on 1 aspect of this invention is equipped with two adjacent solar cell elements, and the elongate tab wiring which electrically connects the said two solar cell elements, These two solar cell elements Each has a long bus bar electrode that is formed along the long direction of the tab wiring and is joined to the tab wiring so as to overlap, and the bus bar electrode is a light-receiving charge generated by the solar cell element. And a plurality of openings, the openings being aligned along the longitudinal direction and the intersecting direction intersecting the longitudinal direction in plan view. The number of the plurality of openings provided side by side along the intersecting direction is different along the longitudinal direction.
 本発明の一態様に係る太陽電池モジュールは、隣り合う2つの太陽電池素子と、前記2つの太陽電池素子を電気的に接続する長尺状のタブ配線と、を備え、前記2つの太陽電池素子のそれぞれは、前記タブ配線の長尺方向に沿って形成され、前記タブ配線と重なって接合する長尺状のバスバー電極を有し、前記バスバー電極は、前記太陽電池素子で生成された受光電荷を前記タブ配線に伝達する電荷伝達部と、前記長尺方向と平面視において交差する交差方向に沿って並ぶ複数の分岐部に当該電荷伝達部を分岐させる開口部とを有し、前記分岐部の前記交差方向の幅は、前記長尺方向に沿って変化する。 The solar cell module which concerns on 1 aspect of this invention is equipped with two adjacent solar cell elements, and the elongate tab wiring which electrically connects the said two solar cell elements, These two solar cell elements Each has a long bus bar electrode that is formed along the long direction of the tab wiring and is joined to the tab wiring so as to overlap, and the bus bar electrode is a light-receiving charge generated by the solar cell element. A charge transfer portion for transferring the charge transfer portion to the tab wiring, and an opening for branching the charge transfer portion into a plurality of branch portions arranged in a crossing direction intersecting the longitudinal direction in plan view, the branch portion The width in the crossing direction varies along the longitudinal direction.
 本発明に係る太陽電池モジュールによれば、商品寿命内でのトータルの出力を高めた上で、太陽電池素子及びタブ配線のストレスを低減することができる。 According to the solar cell module according to the present invention, it is possible to reduce the stress of the solar cell element and the tab wiring while increasing the total output within the product life.
図1は、実施の形態1に係る太陽電池モジュールの概観平面図である。1 is a schematic plan view of the solar cell module according to Embodiment 1. FIG. 図2は、実施の形態1に係る太陽電池素子の平面図である。2 is a plan view of the solar cell element according to Embodiment 1. FIG. 図3は、実施の形態1に係る太陽電池素子の積層構造を表す断面図である。FIG. 3 is a cross-sectional view illustrating a stacked structure of the solar cell element according to Embodiment 1. 図4は、実施の形態1に係る太陽電池モジュールの列方向における構造断面図である。4 is a structural cross-sectional view in the column direction of the solar cell module according to Embodiment 1. FIG. 図5は、実施の形態1に係るバスバー電極の構成の一例を示す平面図である。FIG. 5 is a plan view showing an example of the configuration of the bus bar electrode according to the first embodiment. 図6は、実施の形態1に係るバスバー電極の構成の一例を示す平面図である。FIG. 6 is a plan view showing an example of the configuration of the bus bar electrode according to the first embodiment. 図7は、実施の形態1に係るバスバー電極の構成の一例を示す平面図である。FIG. 7 is a plan view showing an example of the configuration of the bus bar electrode according to the first embodiment. 図8は、実施の形態2に係るバスバー電極の構成の一例を示す平面図である。FIG. 8 is a plan view showing an example of the configuration of the bus bar electrode according to the second embodiment. 図9は、実施の形態2に係るバスバー電極の構成の一例を示す平面図である。FIG. 9 is a plan view showing an example of the configuration of the bus bar electrode according to the second embodiment. 図10は、実施の形態2に係るバスバー電極の構成の一例を示す平面図である。FIG. 10 is a plan view showing an example of the configuration of the bus bar electrode according to the second embodiment. 図11は、実施の形態3に係るバスバー電極の構成の一例を示す平面図である。FIG. 11 is a plan view showing an example of the configuration of the bus bar electrode according to the third embodiment. 図12は、実施の形態3に係るバスバー電極の構成の一例を示す平面図である。FIG. 12 is a plan view showing an example of the configuration of the bus bar electrode according to the third embodiment. 図13は、実施の形態3の変形例に係るバスバー電極の構成の一例を示す平面図である。FIG. 13 is a plan view showing an example of the configuration of a bus bar electrode according to a modification of the third embodiment. 図14は、実施の形態3の変形例に係るバスバー電極の構成の一例を示す平面図である。FIG. 14 is a plan view showing an example of a configuration of a bus bar electrode according to a modification of the third embodiment. 図15は、実施の形態3及びその変形例に係る太陽電池素子における受光電荷の流れを説明する模式図である。FIG. 15 is a schematic diagram for explaining the flow of received light charges in the solar cell element according to Embodiment 3 and its modification. 図16は、実施の形態4に係るバスバー電極の構成の一例を示す平面図である。FIG. 16 is a plan view showing an example of the configuration of the bus bar electrode according to the fourth embodiment. 図17は、実施の形態4に係るバスバー電極の構成の一例を示す平面図である。FIG. 17 is a plan view showing an example of the configuration of the bus bar electrode according to the fourth embodiment. 図18は、実施の形態4に係るバスバー電極の構成の一例を示す平面図である。FIG. 18 is a plan view showing an example of the configuration of the bus bar electrode according to the fourth embodiment. 図19は、その他の実施の形態に係るバスバー電極の構成の一例を示す平面図である。FIG. 19 is a plan view showing an example of a configuration of a bus bar electrode according to another embodiment. 図20は、その他の実施の形態に係るバスバー電極の構成の一例を示す平面図である。FIG. 20 is a plan view showing an example of a configuration of a bus bar electrode according to another embodiment. 図21は、その他の実施の形態に係るバスバー電極の構成の一例を示す平面図である。FIG. 21 is a plan view showing an example of a configuration of a bus bar electrode according to another embodiment.
 以下では、本発明の実施の形態に係る太陽電池モジュールについて、図面を用いて詳細に説明する。以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, the solar cell module according to the embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, components, component arrangements, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
 本明細書において、太陽電池素子の「表面」とは、その反対側の面である「裏面」に比べ、例えば、光が多く内部へ入射可能な面を意味(50%超過~100%の光が表面から内部に入射する)、し、「裏面」側から光が内部に全く入らない場合も含む。また太陽電池モジュールの「表面」とは、太陽電池素子の「表面」と対向する側の光が入射可能な面を意味し、「裏面」とはその反対側の面を意味する。また、「第1の部材上に第2の部材を設ける」などの記載は、特に限定を付さない限り、第1及び第2の部材が直接接触して設けられる場合のみを意図しない。即ち、この記載は、第1及び第2の部材の間に他の部材が存在する場合を含む。また、「略**」との記載は、「略同一」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。 In this specification, the “front surface” of the solar cell element means, for example, a surface in which more light can enter the interior than the “back surface” that is the opposite surface (light exceeding 50% to 100% light). Is incident on the inside from the front surface), and no light enters the interior from the “back surface” side. The “surface” of the solar cell module means a surface on which light on the side facing the “surface” of the solar cell element can be incident, and the “back surface” means a surface on the opposite side. In addition, descriptions such as “providing the second member on the first member” do not intend only when the first and second members are provided in direct contact unless specifically limited. That is, this description includes a case where another member exists between the first and second members. In addition, the description of “substantially **” is intended to include not only exactly the same, but also those that are recognized as being substantially the same, with “substantially identical” as an example.
 (実施の形態1)
 実施の形態1に係る太陽電池モジュールについて、図1~7を用いて説明する。
(Embodiment 1)
The solar cell module according to Embodiment 1 will be described with reference to FIGS.
 [1-1.太陽電池モジュールの基本構成]
 本実施の形態に係る太陽電池モジュールの基本構成の一例について、図1を用いて説明する。
[1-1. Basic configuration of solar cell module]
An example of the basic configuration of the solar cell module according to this embodiment will be described with reference to FIG.
 図1は、実施の形態1に係る太陽電池モジュール1の概観平面図である。同図に示された太陽電池モジュール1は、複数の太陽電池素子11と、タブ配線20と、わたり配線30と、枠体60とを備える。 FIG. 1 is a schematic plan view of a solar cell module 1 according to Embodiment 1. FIG. The solar cell module 1 shown in the figure includes a plurality of solar cell elements 11, a tab wiring 20, a cross wiring 30, and a frame body 60.
 太陽電池素子11は、受光面に平行な方向で2次元状に配置され、光照射により電力を発生する平板状の光起電力セルである。ここで、受光面とは、後述する受光面電極102の面を意味する。以下の説明では、特に限定を付さない限り、「平面視」とは、受光面に垂直な方向から見ることを意味する。 The solar cell element 11 is a planar photovoltaic cell that is two-dimensionally arranged in a direction parallel to the light receiving surface and generates electric power by light irradiation. Here, the light receiving surface means a surface of a light receiving surface electrode 102 described later. In the following description, unless otherwise specified, “plan view” means viewing from a direction perpendicular to the light receiving surface.
 タブ配線20は、隣り合う2つの太陽電池素子11の一方の表面及び他方の裏面に配置され、隣接する太陽電池素子11を電気的に接続する長尺状の配線部材である。タブ配線20は、例えば列方向に隣接する太陽電池素子11を後述する図4に示されるように電気的に接続する。 The tab wiring 20 is a long wiring member that is disposed on one front surface and the other back surface of two adjacent solar cell elements 11 and electrically connects the adjacent solar cell elements 11. The tab wiring 20 electrically connects the solar cell elements 11 adjacent in the column direction, for example, as shown in FIG.
 わたり配線30は、太陽電池ストリングどうしを接続する配線部材である。なお、太陽電池ストリングとは、列方向に配置されタブ配線20により接続された複数の太陽電池素子11の集合体である。 The cross wiring 30 is a wiring member for connecting the solar cell strings. The solar cell string is an aggregate of a plurality of solar cell elements 11 arranged in the column direction and connected by the tab wiring 20.
 枠体60は、複数の太陽電池素子11が2次元配列されたパネルの外周部を覆う外枠部材である。 The frame body 60 is an outer frame member that covers the outer peripheral portion of the panel in which the plurality of solar cell elements 11 are two-dimensionally arranged.
 [1-2.太陽電池素子の構造]
 太陽電池モジュール1の主たる構成要素である太陽電池素子11の構造について説明する。
[1-2. Structure of solar cell element]
The structure of the solar cell element 11 which is the main component of the solar cell module 1 will be described.
 図2は、実施の形態1に係る太陽電池素子11の平面図である。同図に示すように、太陽電池素子11は、平面視において略正方形状である。太陽電池素子11は、例えば、縦125mm×横125mm×厚み200μmである。また、太陽電池素子11の表面上には、ストライプ状の複数のバスバー電極40が互いに平行に形成され、バスバー電極40と直交するようにストライプ状の複数のフィンガー電極50が互いに平行に形成されている。なお、複数のバスバー電極40のそれぞれの間隔及び複数のフィンガー電極50のそれぞれの間隔は図2に示されるものに限定されない。 FIG. 2 is a plan view of the solar cell element 11 according to the first embodiment. As shown in the figure, the solar cell element 11 has a substantially square shape in plan view. The solar cell element 11 is, for example, 125 mm long × 125 mm wide × 200 μm thick. Further, on the surface of the solar cell element 11, a plurality of striped bus bar electrodes 40 are formed in parallel to each other, and a plurality of striped finger electrodes 50 are formed in parallel to each other so as to be orthogonal to the bus bar electrodes 40. Yes. In addition, each space | interval of the some bus-bar electrode 40 and each space | interval of the several finger electrode 50 are not limited to what is shown by FIG.
 バスバー電極40の上には、図2において点線で示されるようにタブ配線20が接合されている。バスバー電極40及びタブ配線20は、例えば略同一の線幅を有する。太陽電池素子11で生成された受光電荷は、フィンガー電極50で集電される。そして、フィンガー電極50で集電された受光電荷は、バスバー電極40へ伝達され、さらに、バスバー電極40の直上に接合されたタブ配線20へ伝達される。また、バスバー電極40は、例えば図2に示されるような開口部を有する。バスバー電極40が有する開口部の詳細については後述する。バスバー電極40及びフィンガー電極50は、集電極100を構成する。集電極100は、例えば、Ag(銀)などの導電性粒子を含む導電性ペーストにより形成される。なお、図2では、バスバー電極40及びフィンガー電極50にハッチングを付加しているが、ここでのハッチングは、開口部と区別するために付加したものであって、断面を意味するものではない。同様に後述する図5~21に示されるバスバー電極及びフィンガー電極に付加されたハッチングも断面を意味するものではない。 The tab wiring 20 is joined on the bus bar electrode 40 as shown by a dotted line in FIG. The bus bar electrode 40 and the tab wiring 20 have, for example, substantially the same line width. The received light charges generated by the solar cell element 11 are collected by the finger electrode 50. The light-receiving charges collected by the finger electrodes 50 are transmitted to the bus bar electrode 40 and further transmitted to the tab wiring 20 joined immediately above the bus bar electrode 40. The bus bar electrode 40 has an opening as shown in FIG. Details of the opening of the bus bar electrode 40 will be described later. The bus bar electrode 40 and the finger electrode 50 constitute a collector electrode 100. The collector electrode 100 is formed of, for example, a conductive paste containing conductive particles such as Ag (silver). In FIG. 2, hatching is added to the bus bar electrode 40 and the finger electrode 50, but the hatching here is added to distinguish from the opening and does not mean a cross section. Similarly, hatching added to bus bar electrodes and finger electrodes shown in FIGS. 5 to 21 described later does not mean a cross section.
 図3は、実施の形態1に係る太陽電池素子11の積層構造を表す断面図である。なお、同図は、図2における太陽電池素子11のIII-III断面図である。図3に示されるように、n型単結晶シリコンウエハ101の主面上にi型非晶質シリコン膜121及びp型非晶質シリコン膜122が、この順で形成されている。n型単結晶シリコンウエハ101、i型非晶質シリコン膜121及びp型非晶質シリコン膜122は、光電変換層を形成し、n型単結晶シリコンウエハ101が主たる発電層となる。さらに、p型非晶質シリコン膜122上に、受光面電極102が形成されている。図3に示されるように、受光面電極102上には、複数のバスバー電極40及び複数のフィンガー電極50からなる集電極100が形成されている。なお、図3では、集電極100のうち、フィンガー電極50のみが示されている。 FIG. 3 is a cross-sectional view showing the laminated structure of solar cell element 11 according to Embodiment 1. 2 is a cross-sectional view taken along the line III-III of the solar cell element 11 in FIG. As shown in FIG. 3, an i-type amorphous silicon film 121 and a p-type amorphous silicon film 122 are formed in this order on the main surface of an n-type single crystal silicon wafer 101. The n-type single crystal silicon wafer 101, the i-type amorphous silicon film 121, and the p-type amorphous silicon film 122 form a photoelectric conversion layer, and the n-type single crystal silicon wafer 101 serves as a main power generation layer. Further, the light receiving surface electrode 102 is formed on the p-type amorphous silicon film 122. As shown in FIG. 3, a collecting electrode 100 including a plurality of bus bar electrodes 40 and a plurality of finger electrodes 50 is formed on the light receiving surface electrode 102. In FIG. 3, only the finger electrode 50 of the collector electrode 100 is shown.
 また、n型単結晶シリコンウエハ101の裏面には、i型非晶質シリコン膜123及びn型非晶質シリコン膜124が、この順で形成されている。さらに、n型非晶質シリコン膜124上に、受光面電極103が形成され、受光面電極103上に、複数のバスバー電極40及び複数のフィンガー電極50からなる集電極100が形成されている。 Further, an i-type amorphous silicon film 123 and an n-type amorphous silicon film 124 are formed in this order on the back surface of the n-type single crystal silicon wafer 101. Further, the light receiving surface electrode 103 is formed on the n-type amorphous silicon film 124, and the collector electrode 100 including the plurality of bus bar electrodes 40 and the plurality of finger electrodes 50 is formed on the light receiving surface electrode 103.
 なお、p型非晶質シリコン膜122がn型単結晶シリコンウエハ101の裏面側に、n型非晶質シリコン膜124がn型単結晶シリコンウエハ101の受光面側にそれぞれ形成されていてもよい。 Even if the p-type amorphous silicon film 122 is formed on the back surface side of the n-type single crystal silicon wafer 101 and the n-type amorphous silicon film 124 is formed on the light-receiving surface side of the n-type single crystal silicon wafer 101, respectively. Good.
 集電極100は、例えば、樹脂材料をバインダとし、銀粒子などの導電性粒子をフィラーとした熱硬化型である樹脂型導電性ペーストを用いて、スクリーン印刷などの印刷法により形成することができる。 The collector electrode 100 can be formed by a printing method such as screen printing using, for example, a thermosetting resin-type conductive paste using a resin material as a binder and conductive particles such as silver particles as a filler. .
 なお、図3に示されるように、裏面のフィンガー電極50のピッチは、表面のフィンガー電極50のピッチと同じであるが、裏面のフィンガー電極50のピッチが表面のフィンガー電極50のピッチよりも小さくてもよい。言い換えると、裏面のフィンガー電極50の本数は、表面のフィンガー電極50の本数よりも多くてもよい。つまり、裏面に形成された集電極100の面積占有率は、表面に形成された集電極の面積占有率よりも高くてもよい。ここで、集電極の面積占有率とは、平面視における太陽電池素子11の面積に対する、平面視におけるバスバー電極40及びフィンガー電極50のトータル面積の割合である。 As shown in FIG. 3, the pitch of the finger electrodes 50 on the back surface is the same as the pitch of the finger electrodes 50 on the front surface, but the pitch of the finger electrodes 50 on the back surface is smaller than the pitch of the finger electrodes 50 on the front surface. May be. In other words, the number of finger electrodes 50 on the back surface may be larger than the number of finger electrodes 50 on the front surface. That is, the area occupation ratio of the collector electrode 100 formed on the back surface may be higher than the area occupation ratio of the collector electrode formed on the front surface. Here, the area occupation ratio of the collector electrode is a ratio of the total area of the bus bar electrode 40 and the finger electrode 50 in the plan view to the area of the solar cell element 11 in the plan view.
 裏面におけるフィンガー電極50の本数が多い場合、裏面における集電効率は増加するが、表面に比べて遮光ロスが増加する。しかしながら、本実施の形態に係る太陽電池素子11は受光面が表面である片面受光型であるので、裏面における遮光ロスの増加が与える影響よりも、裏面における集電効率の増加が与える影響のほうが大きい。よって、太陽電池素子11の集電効率を向上させることが可能となる。 When the number of finger electrodes 50 on the back surface is large, the current collection efficiency on the back surface increases, but the light shielding loss increases compared to the front surface. However, since the solar cell element 11 according to the present embodiment is a single-sided light receiving type in which the light receiving surface is the front surface, the effect of increasing the current collection efficiency on the back surface is more than the effect of increasing the light shielding loss on the back surface. large. Therefore, the current collection efficiency of the solar cell element 11 can be improved.
 本実施の形態に係る太陽電池素子11は、pn接合特性を改善するために、n型単結晶シリコンウエハ101とp型非晶質シリコン膜122又はn型非晶質シリコン膜124との間に、i型非晶質シリコン膜121を設けた構造を有している。 The solar cell element 11 according to the present embodiment is provided between the n-type single crystal silicon wafer 101 and the p-type amorphous silicon film 122 or the n-type amorphous silicon film 124 in order to improve the pn junction characteristics. The i-type amorphous silicon film 121 is provided.
 本実施の形態に係る太陽電池素子11は、片面受光型であり、n型単結晶シリコンウエハ101の表面側の受光面電極102が受光面となる。n型単結晶シリコンウエハ101において発生したキャリアは、光電流として表面側及び裏面側の受光面電極102及び103に拡散し、集電極100で収集される。 The solar cell element 11 according to the present embodiment is a single-sided light receiving type, and the light receiving surface electrode 102 on the surface side of the n-type single crystal silicon wafer 101 serves as a light receiving surface. Carriers generated in the n-type single crystal silicon wafer 101 diffuse as photocurrents to the light-receiving surface electrodes 102 and 103 on the front surface side and the back surface side and are collected by the collector electrode 100.
 受光面電極102及び103は、例えば、ITO(インジウム錫酸化物)、SnO(酸化錫)、ZnO(酸化亜鉛)などからなる透明電極である。なお、裏面側の受光面電極103は、透明でない金属電極であってもよい。 The light receiving surface electrodes 102 and 103 are transparent electrodes made of, for example, ITO (indium tin oxide), SnO 2 (tin oxide), ZnO (zinc oxide), or the like. The light receiving surface electrode 103 on the back side may be a metal electrode that is not transparent.
 なお、本実施の形態に係る太陽電池素子11は、両面受光型であってもよい。この場合には、n型単結晶シリコンウエハ101の表面側の受光面電極102及び裏面側の受光面電極103がそれぞれ受光面となる。n型単結晶シリコンウエハ101において発生したキャリアは、光電流として表面側及び裏面側の受光面電極102及び103に拡散し、集電極100で収集される。また、受光面電極102及び103は、透明電極である。 The solar cell element 11 according to the present embodiment may be a double-sided light receiving type. In this case, the light receiving surface electrode 102 on the front surface side and the light receiving surface electrode 103 on the back surface side of the n-type single crystal silicon wafer 101 are light receiving surfaces. Carriers generated in the n-type single crystal silicon wafer 101 diffuse as photocurrents to the light-receiving surface electrodes 102 and 103 on the front surface side and the back surface side and are collected by the collector electrode 100. The light receiving surface electrodes 102 and 103 are transparent electrodes.
 また、太陽電池素子11は、光起電力としての機能を有するものであればよく、太陽電池素子11の構造は上述した構造に限定されない。 Further, the solar cell element 11 only needs to have a function as a photovoltaic power, and the structure of the solar cell element 11 is not limited to the above-described structure.
 [1-3.太陽電池モジュールの構造]
 次に、本実施の形態に係る太陽電池モジュール1の具体的構造について説明する。
[1-3. Structure of solar cell module]
Next, a specific structure of the solar cell module 1 according to the present embodiment will be described.
 図4は、実施の形態1に係る太陽電池モジュール1の列方向における構造断面図である。図4は、図1の太陽電池モジュール1におけるIV-IV断面図である。同図に示された太陽電池モジュール1は、太陽電池素子11と、タブ配線20と、表面充填部材70A及び裏面充填部材70Bと、表面保護部材80及び裏面保護部材90とを備える。 FIG. 4 is a structural cross-sectional view of the solar cell module 1 according to Embodiment 1 in the column direction. 4 is a cross-sectional view taken along the line IV-IV in the solar cell module 1 of FIG. The solar cell module 1 shown in the figure includes a solar cell element 11, a tab wiring 20, a surface filling member 70A and a back surface filling member 70B, a surface protection member 80, and a back surface protection member 90.
 タブ配線20は、長尺状の導電性配線であって、例えば、リボン状の金属箔である。タブ配線20は、例えば、銅箔や銀箔等の金属箔の表面全体を半田や銀等で被覆したものを所定の長さに短冊状に切断することによって作製することができる。列方向に隣接する2つの太陽電池素子11において、一方の太陽電池素子11の表面に配置されたタブ配線20は、他方の太陽電池素子11の裏面にも配置される。より具体的には、タブ配線20の一端部の下面は、一方の太陽電池素子11の表面側のバスバー電極40(図4では図示せず)に接合される。また、タブ配線20の他端部の上面は、他方の太陽電池素子11の裏面側のバスバー電極40(図4では図示せず)に接合される。これにより、列方向に配置された複数の太陽電池素子11からなる太陽電池ストリングは、当該複数の太陽電池素子11が列方向に直列接続された構成となっている。タブ配線20とバスバー電極40とは、例えば、ハンダ材により接合される。 The tab wiring 20 is a long conductive wiring, for example, a ribbon-shaped metal foil. The tab wiring 20 can be produced, for example, by cutting a metal foil such as a copper foil or a silver foil, which is covered with solder, silver, or the like into a strip having a predetermined length. In the two solar cell elements 11 adjacent to each other in the column direction, the tab wiring 20 disposed on the surface of one solar cell element 11 is also disposed on the back surface of the other solar cell element 11. More specifically, the lower surface of one end of the tab wiring 20 is joined to the bus bar electrode 40 (not shown in FIG. 4) on the surface side of one solar cell element 11. Further, the upper surface of the other end portion of the tab wiring 20 is joined to a bus bar electrode 40 (not shown in FIG. 4) on the back surface side of the other solar cell element 11. Thereby, the solar cell string composed of a plurality of solar cell elements 11 arranged in the column direction has a configuration in which the plurality of solar cell elements 11 are connected in series in the column direction. The tab wiring 20 and the bus bar electrode 40 are joined by, for example, a solder material.
 また、図4に示されるように、複数の太陽電池素子11の表面側には表面保護部材80が配設され、裏面側には裏面保護部材90が配設されている。そして、複数の太陽電池素子11を含む面と表面保護部材80との間には表面充填部材70Aが配置され、複数の太陽電池素子11を含む面と裏面保護部材90との間には裏面充填部材70Bが配置されている。表面保護部材80及び裏面保護部材90は、それぞれ、表面充填部材70A及び裏面充填部材70Bにより固定されている。 Further, as shown in FIG. 4, a surface protection member 80 is disposed on the surface side of the plurality of solar cell elements 11, and a back surface protection member 90 is disposed on the back surface side. A surface filling member 70 </ b> A is disposed between the surface including the plurality of solar cell elements 11 and the surface protection member 80, and the back surface filling is performed between the surface including the plurality of solar cell elements 11 and the back surface protection member 90. A member 70B is arranged. The front surface protection member 80 and the back surface protection member 90 are fixed by a front surface filling member 70A and a back surface filling member 70B, respectively.
 表面保護部材80は、太陽電池素子11の表面側に配置された保護部材である。表面保護部材80は、太陽電池モジュール1の内部を風雨や外部衝撃、火災などから保護し、太陽電池モジュール1の屋外暴露における長期信頼性を確保するための部材である。この観点から表面保護部材80は、例えば、透光性及び遮水性を有するガラス、フィルム状又は板状の硬質の透光性及び遮水性を有する樹脂部材などを用いることができる。 The surface protection member 80 is a protection member disposed on the surface side of the solar cell element 11. The surface protection member 80 is a member that protects the inside of the solar cell module 1 from wind and rain, external impact, fire, and the like, and ensures long-term reliability of the solar cell module 1 when exposed outdoors. From this point of view, the surface protection member 80 can be made of, for example, glass having translucency and water shielding properties, a resin member having a light-transmitting property and water shielding properties such as a film or plate.
 裏面保護部材90は、太陽電池素子11の裏面側に配置された保護部材である。裏面保護部材90は、太陽電池モジュール1の裏面を外部環境から保護する部材であり、例えば、ポリエチレンテレフタレートなどの樹脂フィルム、又は、Al箔を樹脂フィルムでサンドイッチした構造を有する積層フィルムなどを用いることができる。 The back surface protection member 90 is a protection member disposed on the back surface side of the solar cell element 11. The back surface protection member 90 is a member that protects the back surface of the solar cell module 1 from the external environment. For example, a resin film such as polyethylene terephthalate or a laminated film having a structure in which an Al foil is sandwiched between resin films is used. Can do.
 表面充填部材70Aは、複数の太陽電池素子11と表面保護部材80との間の空間に充填された充填材であり、裏面充填部材70Bは、複数の太陽電池素子11と裏面保護部材90との間の空間に充填された充填材である。表面充填部材70A及び裏面充填部材70Bは、太陽電池素子11を外部環境から遮断するための封止機能を有している。表面充填部材70A及び裏面充填部材70Bの配置により、屋外設置が想定される太陽電池モジュール1の高耐熱性及び高耐湿性を確保することが可能となる。 The front surface filling member 70 </ b> A is a filler filled in the space between the plurality of solar cell elements 11 and the surface protection member 80, and the back surface filling member 70 </ b> B is formed between the plurality of solar cell elements 11 and the back surface protection member 90. It is a filler filled in the space between. The front surface filling member 70A and the back surface filling member 70B have a sealing function for blocking the solar cell element 11 from the external environment. With the arrangement of the front surface filling member 70A and the back surface filling member 70B, it is possible to ensure high heat resistance and high moisture resistance of the solar cell module 1 assumed to be installed outdoors.
 表面充填部材70Aは、封止機能を有する透光性の高分子材料からなる。表面充填部材70Aの高分子材料は、例えば、エチレンビニルアセテート(EVA)等の透光性樹脂材料が挙げられる。 The surface filling member 70A is made of a translucent polymer material having a sealing function. Examples of the polymer material of the surface filling member 70A include translucent resin materials such as ethylene vinyl acetate (EVA).
 裏面充填部材70Bは、封止機能を有する高分子材料からなる。ここで、裏面充填部材70Bは、白色加工されている。裏面充填部材70Bの高分子材料は、例えば、EVA等が白色加工された樹脂材料が挙げられる。 The back surface filling member 70B is made of a polymer material having a sealing function. Here, the back surface filling member 70B is processed in white. Examples of the polymer material of the back surface filling member 70B include a resin material obtained by processing EVA or the like in white.
 なお、製造工程の簡素化及び表面充填部材70Aと裏面充填部材70Bとの界面の密着性といった観点から、表面充填部材70Aと裏面充填部材70Bとは、同じ材料系であることが好ましい。表面充填部材70A及び裏面充填部材70Bは、複数の太陽電池素子11(セルストリング)を挟んだ2つの樹脂シート(透光性のEVAシートと白色加工されたEVAシート)をラミネート処理(ラミネート加工)することで形成される。 In addition, it is preferable that the surface filling member 70A and the back surface filling member 70B are made of the same material system from the viewpoint of simplification of the manufacturing process and the adhesion of the interface between the surface filling member 70A and the back surface filling member 70B. The front surface filling member 70A and the back surface filling member 70B are obtained by laminating (laminating) two resin sheets (translucent EVA sheet and white processed EVA sheet) sandwiching a plurality of solar cell elements 11 (cell strings). It is formed by doing.
 [1-4.実施の形態1に係るバスバー電極の構成]
 図5~7は、実施の形態1に係るバスバー電極40の構成の一例を示す平面図である。
[1-4. Configuration of Bus Bar Electrode According to Embodiment 1]
5 to 7 are plan views showing an example of the configuration of the bus bar electrode 40 according to the first embodiment.
 図5~7には、バスバー電極40の他にフィンガー電極50が図示されている。なお、太陽電池素子11の表面及び裏面のうちの少なくとも一方におけるバスバー電極が、図5~7に示されるバスバー電極40の構成を有する。つまり、図5~7に示されるバスバー電極40の構成を太陽電池素子11の表面のみ、裏面のみ、又は、両面のバスバー電極が有してもよい。なお、後述する図8~14、図16~21についても同様である。 5 to 7 show a finger electrode 50 in addition to the bus bar electrode 40. The bus bar electrode on at least one of the front and back surfaces of the solar cell element 11 has the configuration of the bus bar electrode 40 shown in FIGS. That is, the bus bar electrode 40 shown in FIGS. 5 to 7 may have only the front surface, the back surface, or both surfaces of the solar cell element 11. The same applies to FIGS. 8 to 14 and FIGS. 16 to 21 described later.
 バスバー電極40は、タブ配線20の長尺方向に沿って形成され、タブ配線20と重なって接合する長尺状の電極である。バスバー電極40は、太陽電池素子11で生成された受光電荷をタブ配線20に伝達する電荷伝達部41を有する。また、バスバー電極40は、複数の開口部42を有する。複数の開口部42は、タブ配線20の長尺方向(バスバー電極40の長手方向)に沿って並んで設けられる。なお、以下では、タブ配線20の長尺方向を、単に、長尺方向とも呼ぶ。 The bus bar electrode 40 is a long electrode that is formed along the long direction of the tab wiring 20 and is joined to the tab wiring 20 so as to overlap. The bus bar electrode 40 has a charge transfer portion 41 that transfers the light-receiving charge generated by the solar cell element 11 to the tab wiring 20. The bus bar electrode 40 has a plurality of openings 42. The plurality of openings 42 are provided side by side along the longitudinal direction of the tab wiring 20 (longitudinal direction of the bus bar electrode 40). Hereinafter, the longitudinal direction of the tab wiring 20 is also simply referred to as a longitudinal direction.
 また、複数の開口部42には、平面視における面積が異なる開口部42が含まれる。具体的には、複数の開口部42のうちの面積の異なる開口部42の長尺方向の幅及び長尺方向と平面視において交差する交差方向(バスバー電極40の短手方向)の幅の少なくとも一方が異なる。当該交差方向は、例えば、長尺方向と平面視において略垂直な方向である。なお、複数の開口部42全ての平面視における面積が異なってもよい。また、複数の開口部42の平面視における面積は、長尺方向におけるバスバー電極40の中央及び両端のうちのどちらか一方に近いほど大きくてもよい。 The plurality of openings 42 include openings 42 having different areas in plan view. Specifically, at least the width in the long direction of the openings 42 having different areas among the plurality of openings 42 and the width in the crossing direction (the short direction of the bus bar electrode 40) intersecting the long direction in plan view. One is different. The crossing direction is, for example, a direction substantially perpendicular to the long direction in plan view. In addition, the area in planar view of all the plurality of openings 42 may be different. In addition, the area of the plurality of openings 42 in plan view may be larger as it is closer to either the center or both ends of the bus bar electrode 40 in the longitudinal direction.
 図5では、複数の開口部42の平面視における面積は、長尺方向におけるバスバー電極40の両端に近いほど大きい。例えば、複数の開口部42の、交差方向の幅は同じであり、長尺方向の幅が異なる。具体的には、複数の開口部42の長尺方向の幅が、長尺方向におけるバスバー電極40の両端に近いほど大きい。これにより、複数の開口部42の平面視における面積は、長尺方向におけるバスバー電極40の両端に近いほど大きくなる。 In FIG. 5, the area of the plurality of openings 42 in plan view is larger as it is closer to both ends of the bus bar electrode 40 in the longitudinal direction. For example, the plurality of openings 42 have the same width in the intersecting direction and different widths in the longitudinal direction. Specifically, the width in the longitudinal direction of the plurality of openings 42 is larger as it is closer to both ends of the bus bar electrode 40 in the longitudinal direction. Thereby, the area in the planar view of the plurality of openings 42 becomes larger as it is closer to both ends of the bus bar electrode 40 in the longitudinal direction.
 また、図6では、複数の開口部42の平面視における面積は、長尺方向におけるバスバー電極40の中央に近いほど大きい。例えば、複数の開口部42の交差方向の幅は同じであり、長尺方向の幅が異なる。具体的には、複数の開口部42の長尺方向の幅が、長尺方向におけるバスバー電極40の中央に近いほど大きい。これにより、複数の開口部42の平面視における面積は、長尺方向におけるバスバー電極40の中央に近いほど大きくなる。 In FIG. 6, the area of the plurality of openings 42 in plan view is larger as it is closer to the center of the bus bar electrode 40 in the longitudinal direction. For example, the widths in the intersecting direction of the plurality of openings 42 are the same, and the widths in the longitudinal direction are different. Specifically, the width in the longitudinal direction of the plurality of openings 42 increases as the distance from the center of the bus bar electrode 40 in the longitudinal direction increases. As a result, the area of the plurality of openings 42 in plan view increases as the area is closer to the center of the bus bar electrode 40 in the longitudinal direction.
 また、図7では、複数の開口部42の平面視における面積は、長尺方向におけるバスバー電極40の両端に近いほど大きい。例えば、複数の開口部42の交差方向の幅及び長尺方向の幅の少なくとも一方が異なる。具体的には、長尺方向におけるバスバー電極40の両端に近い位置にある開口部42の長尺方向及び交差方向の幅が、その他の開口部42の長尺方向及び交差方向の幅よりも大きい。また、その他の開口部42の交差方向の幅は、長尺方向におけるバスバー電極40の中央に近いほど小さい。これにより、複数の開口部42の平面視における面積は、長尺方向におけるバスバー電極40の両端に近いほど大きくなる。 In FIG. 7, the area of the plurality of openings 42 in plan view is larger as it is closer to both ends of the bus bar electrode 40 in the longitudinal direction. For example, at least one of the width in the intersecting direction and the width in the longitudinal direction of the plurality of openings 42 is different. Specifically, the width in the longitudinal direction and the intersecting direction of the opening 42 located near both ends of the bus bar electrode 40 in the longitudinal direction is larger than the width in the longitudinal direction and the intersecting direction of the other opening 42. . Further, the width of the other opening portions 42 in the intersecting direction is smaller as it is closer to the center of the bus bar electrode 40 in the longitudinal direction. Thereby, the area in the planar view of the plurality of openings 42 becomes larger as it is closer to both ends of the bus bar electrode 40 in the longitudinal direction.
 このように、バスバー電極40は、長尺方向に沿って並んで設けられ、平面視における面積が長尺方向に沿って不均一な複数の開口部42を有する。これにより、バスバー電極40は、例えば、図5~7に示される第1の領域及び第2の領域のように、それぞれの領域に対する電荷伝達部41の面積占有率が異なる領域を有する。例えば、第1の領域における電荷伝達部41の面積占有率は、第2の領域における電荷伝達部41の面積占有率よりも大きい。ただし、第1の領域及び第2の領域の大きさは、それぞれ同じ大きさを有する。また、第1の領域及び第2の領域の大きさは、所定の大きさ以上である必要がある。例えば、所定の大きさは、少なくとも1つの開口部42を含む大きさである。 Thus, the bus bar electrodes 40 are provided side by side along the longitudinal direction, and have a plurality of openings 42 whose area in plan view is non-uniform along the longitudinal direction. As a result, the bus bar electrode 40 has regions with different area occupancy rates of the charge transfer portions 41 for the respective regions, such as the first region and the second region shown in FIGS. For example, the area occupancy of the charge transfer unit 41 in the first region is larger than the area occupancy of the charge transfer unit 41 in the second region. However, the first region and the second region have the same size. Further, the size of the first region and the second region needs to be equal to or larger than a predetermined size. For example, the predetermined size is a size including at least one opening 42.
 また、複数の開口部42の平面視における面積は、長尺方向におけるバスバー電極40の中央及び両端のうちのどちらか一方に近いほど大きい。これにより、バスバー電極40は、例えば、図5及び図7に示される第1の領域及び第2の領域のように、長尺方向におけるバスバー電極40の中央側の領域ほど、長尺方向におけるバスバー電極40の両端側の領域よりもそれぞれの領域に対する電荷伝達部41の面積占有率が大きくなる領域を有する。または、バスバー電極40は、例えば、図6に示される第1の領域及び第2の領域のように、長尺方向におけるバスバー電極40の両端側の領域ほど、長尺方向におけるバスバー電極40の中央側の領域よりもそれぞれの領域に対する電荷伝達部41の面積占有率が大きくなる領域を有する。 Further, the area of the plurality of openings 42 in plan view is larger as it is closer to either the center or both ends of the bus bar electrode 40 in the longitudinal direction. Thereby, the bus bar electrode 40 is, for example, the bus bar electrode in the longitudinal direction as the central region of the bus bar electrode 40 in the longitudinal direction as in the first region and the second region shown in FIGS. 5 and 7. It has a region where the area occupancy of the charge transfer portion 41 with respect to each region is larger than the regions on both ends of the electrode 40. Alternatively, the bus bar electrode 40 is, for example, as the first region and the second region shown in FIG. 6, the regions on both ends of the bus bar electrode 40 in the longitudinal direction are closer to the center of the bus bar electrode 40 in the longitudinal direction. There are regions in which the area occupancy of the charge transfer portion 41 with respect to each region is larger than the region on the side.
 なお、第1の領域及び第2の領域は、図5~7に示される領域に限らず、図5~7に示される領域とは異なる位置の領域であってもよい。 Note that the first region and the second region are not limited to the regions shown in FIGS. 5 to 7, and may be regions at positions different from the regions shown in FIGS.
 [1-5.効果等]
 従来の太陽電池モジュールでは、バスバー電極とタブ配線とが接続されていない部分が一様に存在することから、セル割れなどの不具合が発生していない状態であっても、バスバー電極とタブ配線とが接続されていない部分の電気的ロスによってモジュール出力が低下する。したがって、セル割れなどの不具合は常に発生する訳ではないので、不具合が発生していない場合にはタブ配線とバスバー電極とが接続する部分を増やすことで電気的ロスを低減し、万が一ストレスなどでセル割れなどの不具合が発生するような状況になった場合に、ストレスを緩和する構造に変化させることができた方が良い。
[1-5. Effect]
In the conventional solar cell module, since the portion where the bus bar electrode and the tab wiring are not connected exists uniformly, the bus bar electrode and the tab wiring The module output decreases due to the electrical loss of the part where is not connected. Therefore, defects such as cell cracks do not always occur, so if there are no defects, increase the portion where the tab wiring and bus bar electrode are connected to reduce the electrical loss. It is better to be able to change the structure to relieve stress when a situation such as a cell crack occurs.
 そこで、本実施の形態に係る太陽電池モジュール1は、隣り合う2つの太陽電池素子11と、2つの太陽電池素子11を電気的に接続する長尺状のタブ配線20とを備える。2つの太陽電池素子11のそれぞれは、タブ配線20の長尺方向に沿って形成され、タブ配線20と重なって接合する長尺状のバスバー電極40を有する。バスバー電極40は、太陽電池素子11で生成された受光電荷をタブ配線20に伝達する電荷伝達部41と、複数の開口部42とを有する。複数の開口部42は、長尺方向に沿って並んで設けられ、複数の開口部42には、平面視における面積が異なる開口部42が含まれる。 Therefore, the solar cell module 1 according to the present embodiment includes two adjacent solar cell elements 11 and a long tab wiring 20 that electrically connects the two solar cell elements 11. Each of the two solar cell elements 11 has a long bus bar electrode 40 that is formed along the long direction of the tab wiring 20 and is joined to the tab wiring 20 so as to overlap. The bus bar electrode 40 has a charge transfer portion 41 that transmits the received light charges generated by the solar cell element 11 to the tab wiring 20, and a plurality of openings 42. The plurality of openings 42 are provided side by side along the longitudinal direction, and the plurality of openings 42 include openings 42 having different areas in plan view.
 これにより、バスバー電極40は、例えば、図5~7に示される第1の領域及び第2の領域のように、それぞれの領域に対する電荷伝達部41の面積占有率が異なる領域を有する。つまり、電荷伝達部41の面積占有率は、長尺方向に沿って不均一になる。言い換えると、バスバー電極40は、タブ配線20と電荷伝達部41との接着強度が低い領域(第2の領域)と高い領域(第1の領域)とを有する。従来の太陽電池モジュールでは、タブ配線とバスバー電極とが接続しない部分が一様に設けられており、電気的ロスが一様に発生していた。一方、実施の形態1に係る太陽電池モジュール1では、タブ配線20とバスバー電極40とが接続しない部分が不均一に設けられるため、電気的ロスを小さくしている。つまり、実施の形態1に係る太陽電池モジュール1では、タブ配線20とバスバー電極40とが接続しない部分を場所によって小さくしているため、電気的ロスを小さくしている。したがって、温度サイクル等によりセル割れなどの不具合が発生するような状況になるまでは電気的ロスは抑制され、太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20と電荷伝達部41との接着強度が低い領域のタブ配線20が剥がれる。これにより、タブ配線20のバスバー電極40との接合が剥がれた領域にストレスを吸収させることができるため、以降は、太陽電池素子11及びタブ配線20のストレスを低減することができる。また、タブ配線20と電荷伝達部41との接着強度が高い領域では、タブ配線20と電荷伝達部41とが接合しているため、集電効率の低下を抑制することができる。つまり、商品寿命内でのトータルの出力を高めた上で、太陽電池素子11及びタブ配線20のストレスを低減することができる。 Thereby, the bus bar electrode 40 has regions having different area occupancy rates of the charge transfer portions 41 with respect to the respective regions, for example, the first region and the second region shown in FIGS. That is, the area occupancy rate of the charge transfer portion 41 becomes non-uniform along the longitudinal direction. In other words, the bus bar electrode 40 has a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 41 is low (second region) and a region where the adhesive strength is high (first region). In the conventional solar cell module, the portion where the tab wiring and the bus bar electrode are not connected is provided uniformly, and the electrical loss occurs uniformly. On the other hand, in the solar cell module 1 according to Embodiment 1, since the portion where the tab wiring 20 and the bus bar electrode 40 are not connected is provided unevenly, the electrical loss is reduced. That is, in the solar cell module 1 according to Embodiment 1, since the portion where the tab wiring 20 and the bus bar electrode 40 are not connected is reduced depending on the location, the electrical loss is reduced. Therefore, the electrical loss is suppressed until a situation such as a cell crack occurs due to a temperature cycle or the like, and even if stress is generated in the solar cell element 11 and the tab wiring 20, the tab wiring 20 and the charge transfer The tab wiring 20 in the region where the adhesive strength with the portion 41 is low is peeled off. Thereby, since stress can be absorbed in the region where the bonding of the tab wiring 20 to the bus bar electrode 40 is peeled off, the stress of the solar cell element 11 and the tab wiring 20 can be reduced thereafter. Further, in the region where the adhesive strength between the tab wiring 20 and the charge transfer portion 41 is high, since the tab wiring 20 and the charge transfer portion 41 are joined, it is possible to suppress a decrease in current collection efficiency. That is, the stress of the solar cell element 11 and the tab wiring 20 can be reduced while increasing the total output within the product life.
 また、バスバー電極40は、開口部42においてタブ配線20と接合していない。したがって、温度サイクル等により太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20のバスバー電極40と接合していない領域にストレスを吸収させることができるので、太陽電池素子11及びタブ配線20のストレスを低減することができる。 Further, the bus bar electrode 40 is not joined to the tab wiring 20 at the opening 42. Therefore, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the stress can be absorbed in a region that is not joined to the bus bar electrode 40 of the tab wiring 20. The stress on the tab wiring 20 can be reduced.
 また、複数の開口部42のうちの面積の異なる開口部42の長尺方向の幅及び長尺方向と平面視において交差する交差方向の幅の少なくとも一方は、異なる。 Further, at least one of the width in the longitudinal direction of the opening 42 having a different area among the plurality of openings 42 and the width in the intersecting direction intersecting the longitudinal direction in plan view are different.
 これにより、複数の開口部42の長尺方向の幅及び交差方向の幅の少なくとも一方を変えることで、複数の開口部42の平面視における面積を変えることができる。 Thus, by changing at least one of the width in the longitudinal direction and the width in the intersecting direction of the plurality of openings 42, the area of the plurality of openings 42 in plan view can be changed.
 また、複数の開口部42の平面視における面積は、長尺方向におけるバスバー電極40の中央及び両端のうちのどちらか一方に近いほど大きい。 Further, the area of the plurality of openings 42 in plan view is larger as it is closer to either the center or both ends of the bus bar electrode 40 in the longitudinal direction.
 これにより、長尺方向におけるバスバー電極40の中央及び両端のうちのどちらか一方側をタブ配線20とバスバー電極40との接着強度が低い領域にすることができる。 Thereby, one of the center and both ends of the bus bar electrode 40 in the longitudinal direction can be set to a region where the adhesive strength between the tab wiring 20 and the bus bar electrode 40 is low.
 例えば、長尺方向におけるバスバー電極40の中央側をタブ配線20とバスバー電極40との接着強度が低い領域にすることで、中央側でタブ配線20を剥がれやすくすることができる。したがって、太陽電池素子11とタブ配線20との接合強度が高いと、温度サイクル等によるストレスの逃げ場がないので、太陽電池素子11に対するストレスが高まるが、中央側でタブ配線20が剥がれることで、太陽電池素子11に対するストレスが緩和される。 For example, by setting the central side of the bus bar electrode 40 in the longitudinal direction to a region where the adhesive strength between the tab wiring 20 and the bus bar electrode 40 is low, the tab wiring 20 can be easily peeled off at the central side. Therefore, if the bonding strength between the solar cell element 11 and the tab wiring 20 is high, there is no escape from stress due to temperature cycles or the like, so the stress on the solar cell element 11 is increased, but the tab wiring 20 is peeled off at the center side. The stress on the solar cell element 11 is alleviated.
 また、例えば、長尺方向におけるバスバー電極40の両端側をタブ配線20とバスバー電極40との接着強度が低い領域にすることで、両端側でタブ配線20が剥がれやすくすることができる。したがって、タブ配線20の両端での自由度が高まるので、タブ配線20の両端でのストレスを低減できる。 In addition, for example, by setting both end sides of the bus bar electrode 40 in the longitudinal direction to regions where the adhesive strength between the tab wiring 20 and the bus bar electrode 40 is low, the tab wiring 20 can be easily peeled off at both end sides. Therefore, the degree of freedom at both ends of the tab wiring 20 is increased, so that stress at both ends of the tab wiring 20 can be reduced.
 なお、図5~7に示される複数の開口部42の平面視における面積は、長尺方向におけるバスバー電極40の中央及び両端のうちのどちらか一方に近いほど大きかったが、これに限らない。例えば、複数の開口部42の平面視における面積は、異なる面積であればよく、長尺方向におけるバスバー電極40の中央及び両端のうちのどちらか一方から他方に向けて順番に大きくならなくてもよい。つまり、バスバー電極40の中央及び両端のうちのどちらか一方の領域ではなく、バスバー電極40の任意の領域をタブ配線20とバスバー電極40との接着強度が低い領域にしてもよい。これにより、温度サイクル等により太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20と電荷伝達部41との接着強度が低い領域のタブ配線20が剥がれる。したがって、タブ配線20のバスバー電極40との接合が剥がれた領域にストレスを吸収させることができるため、太陽電池素子11及びタブ配線20のストレスを低減することができる。 Although the area in plan view of the plurality of openings 42 shown in FIGS. 5 to 7 is larger as it is closer to either the center or both ends of the bus bar electrode 40 in the longitudinal direction, it is not limited thereto. For example, the areas of the plurality of openings 42 in plan view may be different areas, and may not increase in order from one of the center and both ends of the bus bar electrode 40 in the longitudinal direction toward the other. Good. That is, any region of the bus bar electrode 40 may be an area where the adhesive strength between the tab wiring 20 and the bus bar electrode 40 is low, instead of one of the center and both ends of the bus bar electrode 40. Thereby, even if the solar cell element 11 and the tab wiring 20 are stressed due to a temperature cycle or the like, the tab wiring 20 in a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 41 is low is peeled off. Therefore, the stress can be absorbed in the region where the bonding of the tab wiring 20 with the bus bar electrode 40 is peeled off, so that the stress of the solar cell element 11 and the tab wiring 20 can be reduced.
 (実施の形態2)
 次に、実施の形態2に係る太陽電池モジュールについて、図8~10を用いて説明する。
(Embodiment 2)
Next, a solar cell module according to Embodiment 2 will be described with reference to FIGS.
 本実施の形態に係る太陽電池モジュールは、隣り合う2つの太陽電池素子11と、2つの太陽電池素子11を電気的に接続する長尺状のタブ配線20とを備える。2つの太陽電池素子11のそれぞれは、タブ配線20の長尺方向に沿って形成され、タブ配線20と重なって接合する長尺状のバスバー電極140を有する。バスバー電極140は、太陽電池素子11で生成された受光電荷をタブ配線20に伝達する電荷伝達部141と、複数の開口部142とを有する。 The solar cell module according to the present embodiment includes two adjacent solar cell elements 11 and a long tab wiring 20 that electrically connects the two solar cell elements 11. Each of the two solar cell elements 11 has a long bus bar electrode 140 that is formed along the long direction of the tab wiring 20 and is joined to the tab wiring 20 so as to overlap. The bus bar electrode 140 includes a charge transfer unit 141 that transmits the received light charges generated by the solar cell element 11 to the tab wiring 20, and a plurality of openings 142.
 このように、本実施の形態に係る太陽電池モジュールの構造、及び、太陽電池素子11の構造については、実施の形態1に係るそれらと同様であるため詳細な説明を省略し、以下、実施の形態1と異なるバスバー電極140を中心に説明する。 Thus, since the structure of the solar cell module according to the present embodiment and the structure of the solar cell element 11 are the same as those according to the first embodiment, a detailed description thereof will be omitted. The bus bar electrode 140 different from that of the first embodiment will be mainly described.
 [2-1.実施の形態2に係るバスバー電極の構成]
 図8~10は、実施の形態2に係るバスバー電極140の構成の一例を示す平面図である。
[2-1. Configuration of Bus Bar Electrode According to Second Embodiment]
8 to 10 are plan views showing an example of the configuration of the bus bar electrode 140 according to the second embodiment.
 本実施の形態では、複数の開口部142は、長尺方向及び長尺方向と平面視において交差する交差方向に沿って並んで設けられ、複数の開口部142の交差方向に沿って並んで設けられる数は、長尺方向に沿って異なる。なお、複数の開口部142の平面視における面積は、長尺方向におけるバスバー電極140の中央及び両端のうちのどちらか一方に近いほど大きくてもよい。また、複数の開口部142が交差方向に沿って並んで設けられる数は、長尺方向におけるバスバー電極140の中央及び両端のうちのどちらか一方に近いほど多くてもよい。 In the present embodiment, the plurality of openings 142 are provided side by side along the longitudinal direction and the crossing direction that intersects the long direction in plan view, and are provided side by side along the crossing direction of the plurality of openings 142. The number obtained varies along the longitudinal direction. In addition, the area of the plurality of openings 142 in plan view may be larger as it is closer to either the center or both ends of the bus bar electrode 140 in the longitudinal direction. Further, the number of the plurality of openings 142 provided side by side in the crossing direction may be as large as closer to either the center or both ends of the bus bar electrode 140 in the longitudinal direction.
 図8では、複数の開口部142の交差方向に沿って並んで設けられる数は、長尺方向におけるバスバー電極140の両端に近いほど多い。例えば、長尺方向におけるバスバー電極140の両端では、開口部142は4つ設けられ、長尺方向におけるバスバー電極140の中央では、開口部142は1つ設けられる。また、長尺方向におけるバスバー電極140の両端の開口部142の平面視における面積が、その他の開口部142の面積よりも大きい。例えば、複数の開口部142のそれぞれの交差方向の幅は同じであり、長尺方向におけるバスバー電極140の両端の開口部142の長尺方向の幅が、その他の開口部142の長尺方向の幅よりも大きい。 In FIG. 8, the number of the plurality of openings 142 provided side by side along the intersecting direction is larger as it is closer to both ends of the bus bar electrode 140 in the longitudinal direction. For example, four openings 142 are provided at both ends of the bus bar electrode 140 in the longitudinal direction, and one opening 142 is provided at the center of the bus bar electrode 140 in the longitudinal direction. Further, the area of the opening 142 at both ends of the bus bar electrode 140 in the longitudinal direction in plan view is larger than the area of the other opening 142. For example, the widths of the plurality of openings 142 in the intersecting direction are the same, and the widths of the openings 142 at both ends of the bus bar electrode 140 in the longitudinal direction are the same as the widths of the other openings 142 in the longitudinal direction. Greater than width.
 また、図9では、複数の開口部142の交差方向に沿って並んで設けられる数は、長尺方向におけるバスバー電極140の中央に近いほど多い。例えば、長尺方向におけるバスバー電極140の両端では、開口部142は1つ設けられ、長尺方向におけるバスバー電極140の中央では、開口部142は4つ設けられる。また、長尺方向におけるバスバー電極140の中央の開口部142の平面視における面積が、その他の開口部142の面積よりも大きい。例えば、複数の開口部142のそれぞれの交差方向の幅は同じであり、長尺方向におけるバスバー電極140の中央の開口部142の長尺方向の幅が、その他の開口部142の長尺方向の幅よりも大きい。 In FIG. 9, the number of the plurality of openings 142 provided side by side along the intersecting direction increases as the distance from the center of the bus bar electrode 140 in the longitudinal direction increases. For example, one opening 142 is provided at both ends of the bus bar electrode 140 in the longitudinal direction, and four openings 142 are provided at the center of the bus bar electrode 140 in the longitudinal direction. In addition, the area of the opening 142 at the center of the bus bar electrode 140 in the longitudinal direction in plan view is larger than the areas of the other openings 142. For example, the widths in the intersecting direction of the plurality of openings 142 are the same, and the width in the longitudinal direction of the central opening 142 of the bus bar electrode 140 in the longitudinal direction is the same as the width in the longitudinal direction of the other openings 142. Greater than width.
 また、交差方向に沿って隣り合う2つの開口部142の間隔は、交差方向におけるバスバー電極140の中央に近いほど大きくてもよい。ここで、交差方向におけるバスバー電極140の中央に近い隣り合う2つの開口部142の間隔とは、例えば、図10に示される電荷伝達部141aの交差方向の幅である。図10に示されるように、電荷伝達部141aの交差方向の幅は、電荷伝達部141aと交差方向に沿って並ぶ電荷伝達部141bの交差方向の幅よりも大きい。 Further, the interval between the two openings 142 adjacent in the cross direction may be larger as the distance from the center of the bus bar electrode 140 in the cross direction is closer. Here, the interval between two adjacent openings 142 close to the center of the bus bar electrode 140 in the intersecting direction is, for example, the width in the intersecting direction of the charge transfer portion 141a shown in FIG. As shown in FIG. 10, the width in the cross direction of the charge transfer unit 141a is larger than the width in the cross direction of the charge transfer unit 141b arranged along the cross direction with the charge transfer unit 141a.
 このように、バスバー電極140は、長尺方向及び交差方向に沿って並んで設けられ、交差方向に沿って並んで設けられる数が長尺方向に沿って不均一な複数の開口部142を有する。これにより、バスバー電極140は、例えば、図8~10に示される第1の領域及び第2の領域のように、それぞれの領域に対する電荷伝達部141の面積占有率が異なる領域を有する。例えば、第1の領域における電荷伝達部141の面積占有率は、第2の領域における電荷伝達部141の面積占有率よりも大きい。ただし、第1の領域及び第2の領域の大きさは、それぞれ同じ大きさを有する。また、第1の領域及び第2の領域の大きさは、所定の大きさ以上である必要がある。例えば、所定の大きさは、交差方向に沿って並ぶ複数の開口部142及び交差方向におけるバスバー電極140の両端を含む大きさである。 Thus, the bus bar electrodes 140 are provided side by side along the longitudinal direction and the crossing direction, and have a plurality of openings 142 in which the number provided side by side along the crossing direction is non-uniform along the longitudinal direction. . Thereby, the bus bar electrode 140 has regions having different area occupancy rates of the charge transfer portions 141 for the respective regions, such as the first region and the second region shown in FIGS. For example, the area occupation rate of the charge transfer unit 141 in the first region is larger than the area occupation rate of the charge transfer unit 141 in the second region. However, the first region and the second region have the same size. Further, the size of the first region and the second region needs to be equal to or larger than a predetermined size. For example, the predetermined size is a size including a plurality of openings 142 arranged in the intersecting direction and both ends of the bus bar electrode 140 in the intersecting direction.
 また、複数の開口部142の交差方向に沿って並んで設けられる数は、長尺方向におけるバスバー電極140の中央及び両端のうちのどちらか一方に近いほど多い。これにより、バスバー電極140は、例えば、図8及び図10に示される第1の領域及び第2の領域のように、長尺方向におけるバスバー電極140の中央側の領域ほど、長尺方向におけるバスバー電極140の両端側の領域よりもそれぞれの領域に対する電荷伝達部141の面積占有率が大きくなる領域を有する。または、バスバー電極140は、例えば、図9に示される第1の領域及び第2の領域のように、長尺方向におけるバスバー電極140の両端側の領域ほど、長尺方向におけるバスバー電極140の中央側の領域よりもそれぞれの領域に対する電荷伝達部141の面積占有率が大きくなる領域を有する。 Further, the number of the plurality of openings 142 provided side by side along the intersecting direction is larger as it is closer to either the center or both ends of the bus bar electrode 140 in the longitudinal direction. As a result, the bus bar electrode 140 has a bus bar in the longitudinal direction that is closer to the center side of the bus bar electrode 140 in the longitudinal direction, such as the first region and the second region shown in FIGS. 8 and 10. It has a region where the area occupancy of the charge transfer portion 141 with respect to each region is larger than the regions on both ends of the electrode 140. Alternatively, the bus bar electrode 140 is, for example, as the first region and the second region shown in FIG. 9, the regions on both ends of the bus bar electrode 140 in the longitudinal direction are closer to the center of the bus bar electrode 140 in the longitudinal direction. There are regions where the area occupancy of the charge transfer portion 141 for each region is larger than the region on the side.
 また、複数の開口部142の平面視における面積は、長尺方向におけるバスバー電極40の中央及び両端のうちのどちらか一方に近いほど大きい。これにより、バスバー電極40は、例えば、図8及び図10に示される第1の領域及び第2の領域のように、長尺方向におけるバスバー電極140の中央側の領域ほど、長尺方向におけるバスバー電極140の両端側の領域よりもそれぞれの領域に対する電荷伝達部141の面積占有率が大きくなる領域を有する。または、バスバー電極140は、例えば、図9に示される第1の領域及び第2の領域のように、長尺方向におけるバスバー電極140の両端側の領域ほど、長尺方向におけるバスバー電極140の中央側の領域よりもそれぞれの領域に対する電荷伝達部141の面積占有率が大きくなる領域を有する。 Further, the area of the plurality of openings 142 in plan view is larger as it is closer to either the center or both ends of the bus bar electrode 40 in the longitudinal direction. As a result, the bus bar electrode 40 has a bus bar in the longitudinal direction that is closer to the center side of the bus bar electrode 140 in the longitudinal direction, such as the first region and the second region shown in FIGS. 8 and 10. It has a region where the area occupancy of the charge transfer portion 141 with respect to each region is larger than the regions on both ends of the electrode 140. Alternatively, the bus bar electrode 140 is, for example, as the first region and the second region shown in FIG. 9, the regions on both ends of the bus bar electrode 140 in the longitudinal direction are closer to the center of the bus bar electrode 140 in the longitudinal direction. There are regions where the area occupancy of the charge transfer portion 141 for each region is larger than the region on the side.
 なお、第1の領域及び第2の領域は、図8~10に示される領域に限らず、図8~10に示される領域とは異なる位置の領域であってもよい。 Note that the first region and the second region are not limited to the regions illustrated in FIGS. 8 to 10 and may be regions at positions different from the regions illustrated in FIGS.
 [2-2.効果等]
 本実施の形態に係る太陽電池モジュールは、隣り合う2つの太陽電池素子11と、2つの太陽電池素子11を電気的に接続する長尺状のタブ配線20とを備える。2つの太陽電池素子11のそれぞれは、タブ配線20の長尺方向に沿って形成され、タブ配線20と重なって接合する長尺状のバスバー電極140を有する。バスバー電極140は、太陽電池素子11で生成された受光電荷をタブ配線20に伝達する電荷伝達部141と、複数の開口部142とを有する。複数の開口部142は、長尺方向及び長尺方向と平面視において交差する交差方向に沿って並んで設けられ、複数の開口部142の交差方向に沿って並んで設けられる数は、長尺方向に沿って異なる。
[2-2. Effect]
The solar cell module according to the present embodiment includes two adjacent solar cell elements 11 and a long tab wiring 20 that electrically connects the two solar cell elements 11. Each of the two solar cell elements 11 has a long bus bar electrode 140 that is formed along the long direction of the tab wiring 20 and is joined to the tab wiring 20 so as to overlap. The bus bar electrode 140 includes a charge transfer unit 141 that transmits the received light charges generated by the solar cell element 11 to the tab wiring 20, and a plurality of openings 142. The plurality of openings 142 are provided side by side along the long direction and the crossing direction intersecting the long direction in plan view, and the number provided along the crossing direction of the plurality of openings 142 is long. Different along the direction.
 これにより、バスバー電極140は、例えば、図8~10に示される第1の領域及び第2の領域のように、それぞれの領域に対する電荷伝達部141の面積占有率が異なる領域を有する。つまり、電荷伝達部141の面積占有率は、長尺方向に沿って不均一になる。言い換えると、バスバー電極140は、タブ配線20と電荷伝達部141との接着強度が低い領域(第2の領域)と高い領域(第1の領域)とを有する。従来の太陽電池モジュールでは、タブ配線とバスバー電極とが接続しない部分が一様に設けられており、電気的ロスが一様に発生していた。一方、実施の形態2に係る太陽電池モジュールでは、タブ配線20とバスバー電極140とが接続しない部分が不均一に設けられるため、電気的ロスを小さくしている。つまり、実施の形態2に係る太陽電池モジュールでは、タブ配線20とバスバー電極140とが接続しない部分を場所によって小さくしているため、電気的ロスを小さくしている。したがって、温度サイクル等によりセル割れなどの不具合が発生するような状況になるまでは電気的ロスは抑制され、太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20と電荷伝達部141との接着強度が低い領域のタブ配線20が剥がれる。これにより、タブ配線20のバスバー電極140との接合が剥がれた領域にストレスを吸収させることができるため、以降は、太陽電池素子11及びタブ配線20のストレスを低減することができる。また、タブ配線20と電荷伝達部141との接着強度が高い領域では、タブ配線20と電荷伝達部141とが接合しているため、集電効率の低下を抑制することができる。つまり、商品寿命内でのトータルの出力を高めた上で、太陽電池素子11及びタブ配線20のストレスを低減することができる。 Thereby, the bus bar electrode 140 has regions having different area occupancy rates of the charge transfer portions 141 for the respective regions, such as the first region and the second region shown in FIGS. That is, the area occupancy of the charge transfer portion 141 becomes non-uniform along the longitudinal direction. In other words, the bus bar electrode 140 has a region (second region) where the adhesive strength between the tab wiring 20 and the charge transfer portion 141 is low (second region) and a region (first region). In the conventional solar cell module, the portion where the tab wiring and the bus bar electrode are not connected is provided uniformly, and the electrical loss occurs uniformly. On the other hand, in the solar cell module according to Embodiment 2, since the portion where the tab wiring 20 and the bus bar electrode 140 are not connected is provided unevenly, the electrical loss is reduced. That is, in the solar cell module according to Embodiment 2, since the portion where the tab wiring 20 and the bus bar electrode 140 are not connected is reduced depending on the location, the electrical loss is reduced. Therefore, the electrical loss is suppressed until a situation such as a cell crack occurs due to a temperature cycle or the like, and even if stress is generated in the solar cell element 11 and the tab wiring 20, the tab wiring 20 and the charge transfer The tab wiring 20 in the region where the adhesive strength with the portion 141 is low is peeled off. Thereby, since stress can be absorbed in the region where the bonding of the tab wiring 20 to the bus bar electrode 140 is peeled off, the stress of the solar cell element 11 and the tab wiring 20 can be reduced thereafter. Further, in the region where the adhesive strength between the tab wiring 20 and the charge transfer portion 141 is high, since the tab wiring 20 and the charge transfer portion 141 are joined, it is possible to suppress a decrease in current collection efficiency. That is, the stress of the solar cell element 11 and the tab wiring 20 can be reduced while increasing the total output within the product life.
 また、バスバー電極140は、開口部142においてタブ配線20と接合していない。したがって、温度サイクル等により太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20のバスバー電極140と接合していない領域にストレスを吸収させることができるので、太陽電池素子11及びタブ配線20のストレスを低減することができる。 Further, the bus bar electrode 140 is not joined to the tab wiring 20 at the opening 142. Therefore, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the stress can be absorbed in a region that is not joined to the bus bar electrode 140 of the tab wiring 20. The stress on the tab wiring 20 can be reduced.
 また、複数の開口部142が交差方向に沿って並んで設けられる数は、長尺方向におけるバスバー電極140の中央及び両端のうちのどちらか一方に近いほど多い。 In addition, the number of the plurality of openings 142 provided side by side along the crossing direction increases as the distance from the center and both ends of the bus bar electrode 140 in the longitudinal direction increases.
 また、複数の開口部142の平面視における面積は、長尺方向におけるバスバー電極140の中央及び両端のうちのどちらか一方に近いほど大きい。 Also, the area of the plurality of openings 142 in plan view is larger as it is closer to either the center or both ends of the bus bar electrode 140 in the longitudinal direction.
 これにより、長尺方向におけるバスバー電極140の中央及び両端のうちのどちらか一方側をタブ配線20とバスバー電極140との接着強度が低い領域にすることができる。 Thereby, one of the center and both ends of the bus bar electrode 140 in the longitudinal direction can be an area where the adhesive strength between the tab wiring 20 and the bus bar electrode 140 is low.
 例えば、長尺方向におけるバスバー電極140の中央側をタブ配線20とバスバー電極140との接着強度が低い領域にすることで、中央側でタブ配線20を剥がれやすくすることができる。したがって、太陽電池素子11とタブ配線20との接合強度が高いと、温度サイクル等によるストレスの逃げ場がないので、太陽電池素子11に対するストレスが高まるが、中央側でタブ配線20が剥がれることで、太陽電池素子11に対するストレスが緩和される。 For example, by setting the central side of the bus bar electrode 140 in the longitudinal direction to a region where the adhesive strength between the tab wiring 20 and the bus bar electrode 140 is low, the tab wiring 20 can be easily peeled off at the central side. Therefore, if the bonding strength between the solar cell element 11 and the tab wiring 20 is high, there is no escape from stress due to temperature cycles or the like, so the stress on the solar cell element 11 is increased, but the tab wiring 20 is peeled off at the center side. The stress on the solar cell element 11 is alleviated.
 また、例えば、長尺方向におけるバスバー電極140の両端側をタブ配線20とバスバー電極140との接着強度が低い領域にすることで、両端側でタブ配線20が剥がれやすくすることができる。したがって、タブ配線20の両端での自由度が高まるので、タブ配線20の両端でのストレスを低減できる。 In addition, for example, by setting both end sides of the bus bar electrode 140 in the longitudinal direction to regions where the adhesive strength between the tab wiring 20 and the bus bar electrode 140 is low, the tab wiring 20 can be easily peeled off at both end sides. Therefore, the degree of freedom at both ends of the tab wiring 20 is increased, so that stress at both ends of the tab wiring 20 can be reduced.
 なお、図8~10に示される複数の開口部142の交差方向に沿って並んで設けられる数は、長尺方向におけるバスバー電極140の中央及び両端のうちのどちらか一方に近いほど多かったが、これに限らない。例えば、複数の開口部142の交差方向に沿って並んで設けられる数は、長尺方向に沿って異なればよく、長尺方向におけるバスバー電極140の中央及び両端のうちのどちらか一方から他方に向けて順番に多くならなくてもよい。つまり、バスバー電極140の中央及び両端のうちのどちらか一方の領域ではなく、バスバー電極140の任意の領域をタブ配線20とバスバー電極140との接着強度が低い領域にしてもよい。これにより、温度サイクル等により太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20と電荷伝達部141との接着強度が低い領域のタブ配線20が剥がれる。したがって、タブ配線20のバスバー電極140との接合が剥がれた領域にストレスを吸収させることができるため、太陽電池素子11及びタブ配線20のストレスを低減することができる。 Although the number of the plurality of openings 142 shown in FIGS. 8 to 10 provided side by side along the crossing direction is closer to one of the center and both ends of the bus bar electrode 140 in the longitudinal direction, the number is larger. Not limited to this. For example, the number of the plurality of openings 142 provided side by side along the intersecting direction may be different along the longitudinal direction, from one of the center and both ends of the bus bar electrode 140 in the longitudinal direction to the other. It does not have to increase in order. That is, any area of the bus bar electrode 140 may be an area where the adhesive strength between the tab wiring 20 and the bus bar electrode 140 is low, instead of one of the center and both ends of the bus bar electrode 140. Thereby, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the tab wiring 20 in a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 141 is low is peeled off. Therefore, the stress can be absorbed in the region where the bonding of the tab wiring 20 to the bus bar electrode 140 is peeled off, so that the stress of the solar cell element 11 and the tab wiring 20 can be reduced.
 また、交差方向に沿って隣り合う2つの開口部142の間隔は、交差方向におけるバスバー電極140の中央に近いほど大きい。 Also, the distance between the two openings 142 adjacent in the crossing direction is larger as the distance from the center of the bus bar electrode 140 in the crossing direction is closer.
 これにより、タブ配線20とバスバー電極140との接合が、交差方向にずれた場合であっても、交差方向におけるバスバー電極140の中央に近い交差方向に沿って隣り合う2つの開口部142の間隔が大きいため、タブ配線20と電荷伝達部141とが接合している面積の低下は抑制される。したがって、集電効率の低下を抑制することができる。 Thereby, even when the junction between the tab wiring 20 and the bus bar electrode 140 is shifted in the cross direction, the distance between the two openings 142 adjacent to each other along the cross direction close to the center of the bus bar electrode 140 in the cross direction. Therefore, a decrease in the area where the tab wiring 20 and the charge transfer portion 141 are joined is suppressed. Therefore, it is possible to suppress a decrease in current collection efficiency.
 (実施の形態3)
 次に、実施の形態3に係る太陽電池モジュールについて、図11~15を用いて説明する。
(Embodiment 3)
Next, a solar cell module according to Embodiment 3 will be described with reference to FIGS.
 本実施の形態に係る太陽電池モジュールは、隣り合う2つの太陽電池素子11と、2つの太陽電池素子11を電気的に接続する長尺状のタブ配線20とを備える。2つの太陽電池素子11のそれぞれは、タブ配線20の長尺方向に沿って形成され、タブ配線20と重なって接合する長尺状のバスバー電極240を有する。バスバー電極240は、太陽電池素子11で生成された受光電荷をタブ配線20に伝達する電荷伝達部241と、長尺方向と平面視において交差する交差方向に沿って並ぶ複数の領域に電荷伝達部241を分岐させる開口部242とを有する。ここで、電荷伝達部241における、開口部242によって交差方向に並ぶように分岐させられた領域を分岐部241aと呼ぶ。 The solar cell module according to the present embodiment includes two adjacent solar cell elements 11 and a long tab wiring 20 that electrically connects the two solar cell elements 11. Each of the two solar cell elements 11 has a long bus bar electrode 240 that is formed along the lengthwise direction of the tab wiring 20 and overlaps and is joined to the tab wiring 20. The bus bar electrode 240 includes a charge transfer unit 241 that transmits the received light charges generated by the solar cell element 11 to the tab wiring 20, and a charge transfer unit in a plurality of regions that are aligned along the crossing direction that intersects the long direction in plan view. And an opening 242 for branching 241. Here, the region branched in the crossing direction by the opening 242 in the charge transfer portion 241 is referred to as a branch portion 241a.
 このように、本実施の形態に係る太陽電池モジュールの構造、及び、太陽電池素子11の構造については、実施の形態1に係るそれらと同様であるため詳細な説明を省略し、以下、実施の形態1と異なるバスバー電極240を中心に説明する。 Thus, since the structure of the solar cell module according to the present embodiment and the structure of the solar cell element 11 are the same as those according to the first embodiment, a detailed description thereof will be omitted. The bus bar electrode 240 different from that of the first embodiment will be mainly described.
 [3-1.実施の形態3に係るバスバー電極の構成]
 図11及び図12は、実施の形態3に係るバスバー電極240の構成の一例を示す平面図である。
[3-1. Configuration of Bus Bar Electrode According to Embodiment 3]
11 and 12 are plan views showing an example of the configuration of the bus bar electrode 240 according to the third embodiment.
 電荷伝達部241は、開口部242によって、交差方向に沿って並ぶ複数の分岐部241aに分岐させられる。本実施の形態では、電荷伝達部241は、開口部242によって、交差方向に沿って並ぶ2つの分岐部241aに分岐させられる。また、開口部242は、長尺方向におけるバスバー電極240の両端のうちの少なくとも一端に設けられた切り欠きであってもよい。また、分岐部241aの交差方向の幅は、長尺方向に沿って変化する。なお、分岐部241aの交差方向の幅は、長尺方向におけるバスバー電極240の中央及び両端のうちのどちらか一方から他方に向けて大きくなってもよい。 The charge transfer portion 241 is branched into a plurality of branch portions 241 a arranged along the crossing direction by the opening 242. In the present embodiment, the charge transfer portion 241 is branched into two branch portions 241 a arranged along the crossing direction by the opening 242. Further, the opening 242 may be a notch provided at at least one end of both ends of the bus bar electrode 240 in the longitudinal direction. Moreover, the width | variety of the crossing direction of the branch part 241a changes along a elongate direction. Note that the width of the branching portion 241a in the intersecting direction may increase from one of the center and both ends of the bus bar electrode 240 in the longitudinal direction toward the other.
 図11では、バスバー電極240には、1つの開口部242が設けられる。開口部242は、図11に示されるように、分岐部241aの交差方向の幅が長尺方向におけるバスバー電極240の中央から両端に向けて大きくなるように設けられる。具体的には、開口部342は、長尺方向におけるバスバー電極240の中央から両端に向けて先細りになる形状を有する。これにより、分岐部241aは、分岐部241aの交差方向の幅が長尺方向におけるバスバー電極240の中央から両端に向けて大きくなるような逆テーパ形状を有する。 In FIG. 11, the bus bar electrode 240 is provided with one opening 242. As shown in FIG. 11, the opening 242 is provided so that the width in the intersecting direction of the branching portion 241 a increases from the center of the bus bar electrode 240 in the longitudinal direction toward both ends. Specifically, the opening 342 has a shape that tapers from the center of the bus bar electrode 240 toward both ends in the longitudinal direction. Thereby, the branch part 241a has a reverse taper shape in which the width in the intersecting direction of the branch part 241a increases from the center of the bus bar electrode 240 toward both ends in the longitudinal direction.
 図12では、バスバー電極240には、長尺方向におけるバスバー電極240の両端のそれぞれに切り欠きとして開口部242が設けられる。開口部242は、図12に示されるように、分岐部241aの交差方向の幅が長尺方向におけるバスバー電極240の両端から中央に向けて大きくなるように設けられる。具体的には、開口部242は、長尺方向におけるバスバー電極240の両端から中央に向けて先細りになる形状を有する。これにより、分岐部241aは、分岐部241aの交差方向の幅が長尺方向におけるバスバー電極240の両端から中央に向けて大きくなるような逆テーパ形状を有する。 In FIG. 12, the bus bar electrode 240 is provided with openings 242 as notches at both ends of the bus bar electrode 240 in the longitudinal direction. As shown in FIG. 12, the opening 242 is provided such that the width of the branching portion 241a in the crossing direction increases from both ends of the bus bar electrode 240 toward the center in the longitudinal direction. Specifically, the opening 242 has a shape that tapers from both ends of the bus bar electrode 240 toward the center in the longitudinal direction. Thereby, the branch part 241a has a reverse taper shape in which the width in the crossing direction of the branch part 241a increases from both ends of the bus bar electrode 240 toward the center in the longitudinal direction.
 このように、バスバー電極240は、交差方向の幅が長尺方向に沿って不均一な開口部242を有する。言い換えると、バスバー電極240は、交差方向の幅が長尺方向に沿って不均一な分岐部241aを有する。これにより、バスバー電極240は、例えば、図11及び図12に示される第1の領域及び第2の領域のように、それぞれの領域に対する電荷伝達部241の面積占有率が異なる領域を有する。例えば、第1の領域における電荷伝達部241の面積占有率は、第2の領域における電荷伝達部241の面積占有率よりも大きい。ただし、第1の領域及び第2の領域の大きさは、それぞれ同じ大きさを有する。また、第1の領域及び第2の領域の大きさは、所定の大きさ以上である必要がある。例えば、所定の大きさは、開口部242の一部及び交差方向におけるバスバー電極240の両端を含む大きさである。 Thus, the bus bar electrode 240 has the opening 242 whose width in the crossing direction is not uniform along the longitudinal direction. In other words, the bus bar electrode 240 has a branch portion 241a whose width in the intersecting direction is not uniform along the longitudinal direction. Accordingly, the bus bar electrode 240 has regions having different area occupancy rates of the charge transfer portions 241 for the respective regions, such as the first region and the second region illustrated in FIGS. 11 and 12, for example. For example, the area occupancy of the charge transfer unit 241 in the first region is larger than the area occupancy of the charge transfer unit 241 in the second region. However, the first region and the second region have the same size. Further, the size of the first region and the second region needs to be equal to or larger than a predetermined size. For example, the predetermined size is a size including a part of the opening 242 and both ends of the bus bar electrode 240 in the crossing direction.
 また、分岐部241aの交差方向の幅は、長尺方向におけるバスバー電極240の中央及び両端のうちのどちらか一方から他方に向けて大きくなる。これにより、バスバー電極240は、例えば、図11に示される第1の領域及び第2の領域のように、長尺方向におけるバスバー電極240の両端側の第1の領域ほど、長尺方向におけるバスバー電極240の中央側の第2の領域よりもそれぞれの領域に対する電荷伝達部241の面積占有率が大きい領域を有する。または、バスバー電極240は、例えば、図12に示される第1の領域及び第2の領域のように、長尺方向におけるバスバー電極240の中央側の第1の領域ほど、長尺方向におけるバスバー電極240の両端側の第2の領域よりもそれぞれの領域に対する電荷伝達部241の面積占有率が大きい領域を有する。 Further, the width of the branching portion 241a in the crossing direction increases from one of the center and both ends of the bus bar electrode 240 in the long direction toward the other. Thereby, the bus bar electrode 240 is, for example, the first region on both ends of the bus bar electrode 240 in the longitudinal direction as in the first region and the second region shown in FIG. The region having a larger area occupancy ratio of the charge transfer portion 241 for each region than the second region on the center side of the electrode 240 is provided. Alternatively, the bus bar electrode 240 is, for example, the first region on the central side of the bus bar electrode 240 in the longitudinal direction as in the first region and the second region shown in FIG. The area occupying area of the charge transfer portion 241 with respect to each region is larger than the second regions on both ends of 240.
 なお、第1の領域及び第2の領域は、図11及び図12に示される領域に限らず、図11及び図12に示される領域とは異なる位置の領域であってもよい。 Note that the first region and the second region are not limited to the regions illustrated in FIGS. 11 and 12, and may be regions at positions different from the regions illustrated in FIGS. 11 and 12.
 [3-2.実施の形態3の変形例に係るバスバー電極の構成]
 図13及び図14は、実施の形態3の変形例に係るバスバー電極240aの構成の一例を示す平面図である。
[3-2. Configuration of Bus Bar Electrode According to Modified Example of Embodiment 3]
13 and 14 are plan views showing an example of the configuration of the bus bar electrode 240a according to a modification of the third embodiment.
 本変形例に係るバスバー電極240aの構成は、図11及び図12に示されるバスバー電極240の構成と比較して、分岐部241aが交差方向に沿って3つ以上並ぶ点が異なる。以下では、図11及び図12に示されるバスバー電極240の構成と同じ点は詳細な説明を省略し、異なる点を中心に説明する。 The configuration of the bus bar electrode 240a according to the present modification is different from the configuration of the bus bar electrode 240 shown in FIGS. 11 and 12 in that three or more branch portions 241a are arranged along the crossing direction. Hereinafter, detailed description of the same points as the configuration of the bus bar electrode 240 shown in FIGS. 11 and 12 will be omitted, and different points will be mainly described.
 図13に示されるバスバー電極240aでは、開口部242は、長尺方向における開口部242の両端のそれぞれに、電荷伝達部241を交差方向に沿って並ぶ4つの分岐部241aに分岐させる形状を有する。具体的には、開口部242は、長尺方向における開口部242の両端のそれぞれに、長尺方向におけるバスバー電極240の中央から両端に向けて先細りになる部分が交差方向に沿って3つ並ぶ形状を有する。これにより、交差方向に沿って並ぶ4つの分岐部241aは、分岐部241aの交差方向の幅が長尺方向におけるバスバー電極240の中央から両端に向けて大きくなるような逆テーパ形状を有する。なお、開口部242は、電荷伝達部241を交差方向に沿って並ぶ3つ又は5つ以上の分岐部241aに分岐させる形状を有してもよい。具体的には、開口部242は、長尺方向における開口部242の両端のそれぞれに、長尺方向におけるバスバー電極240の中央から両端に向けて先細りになる部分が交差方向に沿って2つ又は4つ以上並ぶ形状を有してもよい。これにより、交差方向に沿って並ぶ3つ又は5つ以上の分岐部241aは、分岐部241aの交差方向の幅が長尺方向におけるバスバー電極240の中央から両端に向けて大きくなるような逆テーパ形状を有してもよい。 In the bus bar electrode 240a shown in FIG. 13, the opening 242 has a shape that branches the charge transfer part 241 into four branch parts 241a arranged along the crossing direction at both ends of the opening 242 in the longitudinal direction. . Specifically, in the opening 242, three portions that taper from the center of the bus bar electrode 240 toward both ends in the longitudinal direction are arranged along the crossing direction at each of both ends of the opening 242 in the longitudinal direction. Has a shape. Thus, the four branch portions 241a arranged along the cross direction have reverse tapered shapes such that the width of the branch portion 241a in the cross direction increases from the center of the bus bar electrode 240 toward both ends in the longitudinal direction. The opening 242 may have a shape that branches the charge transfer portion 241 into three or five or more branch portions 241a arranged along the crossing direction. Specifically, the opening portion 242 has two portions that taper from the center of the bus bar electrode 240 in the longitudinal direction toward both ends at each of both ends of the opening portion 242 in the longitudinal direction. It may have a shape of four or more. As a result, the three or five or more branch portions 241a arranged along the intersecting direction have a reverse taper such that the width of the branch portion 241a in the intersecting direction increases from the center of the bus bar electrode 240 toward both ends in the longitudinal direction. You may have a shape.
 図14に示されるバスバー電極240aでは、電荷伝達部241は、長尺方向におけるバスバー電極240aの両端のそれぞれにおいて、交差方向に沿って並ぶ2つの開口部(切り欠き)242によって、交差方向に沿って並ぶ3つの分岐部241aに分岐させられる。具体的には、交差方向に沿って並ぶ2つの開口部242は、長尺方向におけるバスバー電極240の両端から中央に向けて先細りになる形状を有する。これにより、交差方向に沿って並ぶ3つの分岐部241aは、分岐部241aの交差方向の幅が長尺方向におけるバスバー電極140の両端から中央に向けて大きくなるような逆テーパ形状を有する。なお、開口部242は、長尺方向におけるバスバー電極240aの両端のそれぞれにおいて、電荷伝達部241を交差方向に沿って並ぶ4つ以上の分岐部241aに分岐させるために、交差方向に沿って3つ以上並ぶように設けられてもよい。具体的には、長尺方向におけるバスバー電極240aの両端のそれぞれにおいて、長尺方向におけるバスバー電極240aの両端から中央に向けて先細りになる形状を有する開口部242が、交差方向に沿って3つ以上並ぶように設けられてもよい。これにより、交差方向に沿って並ぶ4つ以上の分岐部241aは、分岐部241aの交差方向の幅が長尺方向におけるバスバー電極240の両端から中央に向けて大きくなるような逆テーパ形状を有してもよい。 In the bus bar electrode 240a shown in FIG. 14, the charge transfer portion 241 extends along the cross direction by two openings (notches) 242 arranged along the cross direction at each of both ends of the bus bar electrode 240a in the longitudinal direction. Are branched into three branch portions 241a arranged side by side. Specifically, the two openings 242 aligned along the intersecting direction have a shape that tapers from both ends of the bus bar electrode 240 toward the center in the longitudinal direction. As a result, the three branch portions 241a arranged along the cross direction have reverse tapered shapes such that the width of the branch portion 241a in the cross direction increases from both ends of the bus bar electrode 140 toward the center in the longitudinal direction. Note that the opening 242 is formed along the cross direction in order to branch the charge transfer portion 241 into four or more branch portions 241a arranged along the cross direction at both ends of the bus bar electrode 240a in the longitudinal direction. Two or more may be provided. Specifically, at each of both ends of the bus bar electrode 240a in the longitudinal direction, there are three openings 242 having a shape that tapers from both ends of the bus bar electrode 240a in the longitudinal direction toward the center. You may provide so that it may line up. As a result, the four or more branch portions 241a arranged along the intersecting direction have a reverse taper shape in which the width of the intersecting direction of the branch portion 241a increases from both ends of the bus bar electrode 240 toward the center in the longitudinal direction. May be.
 なお、図14に示されるバスバー電極240aのように、バスバー電極240aの交差方向の幅が、長尺方向に沿って変化してもよい。例えば、バスバー電極240aは、長尺方向におけるバスバー電極240aの両端から中央に向けて大きくなるような逆テーパ形状を有してもよい。 In addition, like the bus bar electrode 240a shown in FIG. 14, the width in the crossing direction of the bus bar electrode 240a may change along the longitudinal direction. For example, the bus bar electrode 240a may have a reverse tapered shape that increases from both ends of the bus bar electrode 240a in the longitudinal direction toward the center.
 このように、バスバー電極240aは、交差方向の幅が長尺方向に沿って変化する分岐部241aを、交差方向に沿って3つ以上並ぶように有する。なお、バスバー電極240aが分岐部241aを交差方向に沿って3つ以上並ぶように有する場合であっても、図11及び図12と同様に、バスバー電極240aは、例えば、図13及び図14に示される第1の領域及び第2の領域のように、それぞれの領域に対する電荷伝達部241の面積占有率が異なる領域を有する。 Thus, the bus bar electrode 240a has three or more branching portions 241a whose width in the crossing direction changes along the longitudinal direction so as to be arranged in the crossing direction. Even when the bus bar electrode 240a has three or more branching portions 241a arranged in the crossing direction, the bus bar electrode 240a is, for example, as shown in FIGS. Like the first region and the second region shown, there are regions where the area occupancy rates of the charge transfer portions 241 with respect to the respective regions are different.
 [3-3.効果等]
 本実施の形態に係る太陽電池モジュールは、隣り合う2つの太陽電池素子11と、2つの太陽電池素子11を電気的に接続する長尺状のタブ配線20とを備える。2つの太陽電池素子11のそれぞれは、タブ配線20の長尺方向に沿って形成され、タブ配線20と重なって接合する長尺状のバスバー電極240(240a)を有する。バスバー電極240(240a)は、太陽電池素子11で生成された受光電荷をタブ配線20に伝達する電荷伝達部241と、長尺方向と平面視において交差する方向である交差方向に沿って並ぶ複数の分岐部241aに電荷伝達部241を分岐させる開口部242とを有する。分岐部241aの交差方向の幅は、長尺方向に沿って変化する。
[3-3. Effect]
The solar cell module according to the present embodiment includes two adjacent solar cell elements 11 and a long tab wiring 20 that electrically connects the two solar cell elements 11. Each of the two solar cell elements 11 has a long bus bar electrode 240 (240a) that is formed along the lengthwise direction of the tab wiring 20 and overlaps and is joined to the tab wiring 20. A plurality of bus bar electrodes 240 (240a) are arranged along a crossing direction, which is a direction crossing the long direction in a plan view, with a charge transfer unit 241 that transmits the received light charges generated by the solar cell element 11 to the tab wiring 20. The branch portion 241a has an opening 242 for branching the charge transfer portion 241. The width of the branching portion 241a in the intersecting direction changes along the longitudinal direction.
 これにより、バスバー電極240(240a)は、例えば、図11~14に示される第1の領域及び第2の領域のように、それぞれの領域に対する電荷伝達部241の面積占有率が異なる領域を有する。つまり、電荷伝達部241の面積占有率は、長尺方向に沿って不均一になる。言い換えると、バスバー電極240(240a)は、タブ配線20と電荷伝達部241との接着強度が低い領域(第2の領域)と高い領域(第1の領域)とを有する。従来の太陽電池モジュールでは、タブ配線とバスバー電極とが接続しない部分が一様に設けられており、電気的ロスが一様に発生していた。一方、実施の形態3に係る太陽電池モジュールでは、タブ配線20とバスバー電極240(240a)とが接続しない部分が不均一に設けられるため、電気的ロスを小さくしている。つまり、実施の形態3に係る太陽電池モジュールでは、タブ配線20とバスバー電極240(240a)とが接続しない部分を場所によって小さくしているため、電気的ロスを小さくしている。したがって、温度サイクル等によりセル割れなどの不具合が発生するような状況になるまでは電気的ロスは抑制され、太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20と電荷伝達部241との接着強度が低い領域のタブ配線20が剥がれる。これにより、タブ配線20のバスバー電極240との接合が剥がれた領域にストレスを吸収させることができるため、以降は、太陽電池素子11及びタブ配線20のストレスを低減することができる。また、タブ配線20と電荷伝達部241との接着強度が高い領域では、タブ配線20と電荷伝達部241とが接合しているため、集電効率の低下を抑制することができる。 As a result, the bus bar electrode 240 (240a) has regions having different area occupancy rates of the charge transfer portions 241 for the respective regions, such as the first region and the second region shown in FIGS. . That is, the area occupation ratio of the charge transfer portion 241 becomes non-uniform along the long direction. In other words, the bus bar electrode 240 (240a) includes a region (second region) where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is low (second region) and a region (first region). In the conventional solar cell module, the portion where the tab wiring and the bus bar electrode are not connected is provided uniformly, and the electrical loss occurs uniformly. On the other hand, in the solar cell module according to Embodiment 3, since the portion where the tab wiring 20 and the bus bar electrode 240 (240a) are not connected is provided unevenly, the electrical loss is reduced. That is, in the solar cell module according to Embodiment 3, since the portion where the tab wiring 20 and the bus bar electrode 240 (240a) are not connected is reduced depending on the location, the electrical loss is reduced. Therefore, the electrical loss is suppressed until a situation such as a cell crack occurs due to a temperature cycle or the like, and even if stress is generated in the solar cell element 11 and the tab wiring 20, the tab wiring 20 and the charge transfer The tab wiring 20 in the region where the adhesive strength with the portion 241 is low is peeled off. Thereby, since stress can be absorbed in the region where the bonding of the tab wiring 20 to the bus bar electrode 240 is peeled off, the stress of the solar cell element 11 and the tab wiring 20 can be reduced thereafter. Further, in the region where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is high, since the tab wiring 20 and the charge transfer portion 241 are joined, it is possible to suppress a decrease in current collection efficiency.
 また、バスバー電極240(240a)は、開口部242においてタブ配線20と接合していない。したがって、温度サイクル等により太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20のバスバー電極240(240a)と接合していない領域にストレスを吸収させることができるので、太陽電池素子11及びタブ配線20のストレスを低減することができる。つまり、商品寿命内でのトータルの出力を高めた上で、太陽電池素子11及びタブ配線20のストレスを低減することができる。 Further, the bus bar electrode 240 (240a) is not joined to the tab wiring 20 at the opening 242. Therefore, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the stress can be absorbed in a region of the tab wiring 20 that is not joined to the bus bar electrode 240 (240a). The stress of the element 11 and the tab wiring 20 can be reduced. That is, the stress of the solar cell element 11 and the tab wiring 20 can be reduced while increasing the total output within the product life.
 また、開口部242は、例えば、電荷伝達部241を交差方向に沿って3つ以上並ぶ分岐部241aに分岐させる。これにより、開口部242が電荷伝達部241を細かく分岐させるため、タブ配線20と電荷伝達部241とが接合する面積は増える。したがって、集電効率の低下を抑制することができる。 Further, the opening 242 branches, for example, the charge transfer portion 241 into the branch portions 241a arranged in the three or more directions along the crossing direction. As a result, the opening 242 branches the charge transfer portion 241 finely, so that the area where the tab wiring 20 and the charge transfer portion 241 are joined increases. Therefore, it is possible to suppress a decrease in current collection efficiency.
 また、開口部242は、長尺方向におけるバスバー電極240の両端のうちの少なくとも一端に設けられた切り欠きである。 The opening 242 is a notch provided at at least one end of both ends of the bus bar electrode 240 in the longitudinal direction.
 これにより、開口部242が電荷伝達部241を切り欠いた切り欠きであっても、バスバー電極240(240a)は、例えば、図12及び図14に示される第1の領域及び第2の領域のように、それぞれの領域に対する電荷伝達部241の面積占有率が異なる領域を有する。つまり、電荷伝達部241の面積占有率は、長尺方向に沿って不均一になる。言い換えると、バスバー電極240(240a)は、タブ配線20と電荷伝達部241との接着強度が低い領域(第2の領域)と高い領域(第1の領域)とを有する。したがって、温度サイクル等により太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20と電荷伝達部241との接着強度が低い領域のタブ配線20が剥がれるため、太陽電池素子11及びタブ配線20のストレスを低減することができる。 As a result, even if the opening 242 is a cutout formed by cutting out the charge transfer portion 241, the bus bar electrode 240 (240a) is formed in, for example, the first region and the second region shown in FIGS. As described above, there are regions in which the area occupancy ratios of the charge transfer portions 241 with respect to the respective regions are different. That is, the area occupation ratio of the charge transfer portion 241 becomes non-uniform along the long direction. In other words, the bus bar electrode 240 (240a) includes a region (second region) where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is low (second region) and a region (first region). Accordingly, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the tab wiring 20 in a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is low is peeled off. The stress on the tab wiring 20 can be reduced.
 また、分岐部241aの交差方向の幅は、長尺方向におけるバスバー電極240(240a)の中央及び両端のうちのどちらか一方から他方に向けて大きくなる。 Also, the width of the branching portion 241a in the intersecting direction increases from one of the center and both ends of the bus bar electrode 240 (240a) in the longitudinal direction toward the other.
 これにより、長尺方向におけるバスバー電極240(240a)の中央及び両端のうちのどちらか一方側をタブ配線20とバスバー電極240(240a)との接着強度が低い領域にすることができる。 Thereby, either one of the center and both ends of the bus bar electrode 240 (240a) in the longitudinal direction can be set to a region where the adhesive strength between the tab wiring 20 and the bus bar electrode 240 (240a) is low.
 例えば、長尺方向におけるバスバー電極240(240a)の中央側をタブ配線20とバスバー電極240(240a)との接着強度が低い領域にすることで、中央側でタブ配線20を剥がれやすくすることができる。したがって、太陽電池素子11とタブ配線20との接合強度が高いと、温度サイクル等によるストレスの逃げ場がないので、太陽電池素子11に対するストレスが高まるが、中央側でタブ配線20が剥がれることで、太陽電池素子11に対するストレスが緩和される。 For example, by making the central side of the bus bar electrode 240 (240a) in the longitudinal direction an area where the adhesive strength between the tab wiring 20 and the bus bar electrode 240 (240a) is low, the tab wiring 20 can be easily peeled off at the central side. it can. Therefore, if the bonding strength between the solar cell element 11 and the tab wiring 20 is high, there is no escape from stress due to temperature cycles or the like, so the stress on the solar cell element 11 is increased, but the tab wiring 20 is peeled off at the center side. The stress on the solar cell element 11 is alleviated.
 また、例えば、長尺方向におけるバスバー電極240(240a)の両端側をタブ配線20とバスバー電極240(240a)との接着強度が低い領域にすることで、両端側でタブ配線20が剥がれやすくすることができる。したがって、タブ配線20の両端での自由度が高まるので、タブ配線20の両端でのストレスを低減できる。 Further, for example, by setting the both ends of the bus bar electrode 240 (240a) in the longitudinal direction to a region where the adhesive strength between the tab wiring 20 and the bus bar electrode 240 (240a) is low, the tab wiring 20 is easily peeled off at both ends. be able to. Therefore, the degree of freedom at both ends of the tab wiring 20 is increased, so that stress at both ends of the tab wiring 20 can be reduced.
 また、これにより、長尺方向におけるバスバー電極240(240a)の中央及び両端のうちのどちらか一方から他方に向けて、単位長さあたりの抵抗値を小さくすることができる。ここで、タブ配線20とバスバー電極240(240a)とが剥がれた場合の太陽電池素子11における受光電荷の流れを、図15を用いて説明する。 Further, this makes it possible to reduce the resistance value per unit length from one of the center and both ends of the bus bar electrode 240 (240a) in the longitudinal direction toward the other. Here, the flow of received light charges in the solar cell element 11 when the tab wiring 20 and the bus bar electrode 240 (240a) are peeled will be described with reference to FIG.
 図15は、実施の形態3及びその変形例に係る太陽電池素子11における受光電荷の流れを説明する模式図である。図15は、図12のバスバー電極140におけるXV-XVから見た図である。ただし、図15には、バスバー電極240の周囲の構成についても示されている。また、図15に示される矢印は、受光電荷の流れを示しており、矢印が太いほど受光電荷の量が多いことを示している。 FIG. 15 is a schematic diagram for explaining the flow of received light charges in the solar cell element 11 according to Embodiment 3 and its modification. FIG. 15 is a view as seen from XV-XV in the bus bar electrode 140 of FIG. However, FIG. 15 also shows the configuration around the bus bar electrode 240. Further, the arrows shown in FIG. 15 indicate the flow of received light charges, and the thicker the arrows, the greater the amount of received light charges.
 タブ配線20とバスバー電極240とが剥がれていない場合、太陽電池素子11で発生した受光電荷は、フィンガー電極50で集電される。そして、フィンガー電極50で集電された受光電荷は、バスバー電極240へ伝達され、さらに、バスバー電極240の直上に接合されたタブ配線20へ伝達される。 When the tab wiring 20 and the bus bar electrode 240 are not peeled off, the received charge generated in the solar cell element 11 is collected by the finger electrode 50. The light-receiving charges collected by the finger electrode 50 are transmitted to the bus bar electrode 240 and further transmitted to the tab wiring 20 joined immediately above the bus bar electrode 240.
 一方、タブ配線20とバスバー電極240の一部とが剥がれている場合、太陽電池素子11で発生した受光電荷は、フィンガー電極50で集電される。そして、フィンガー電極50で集電された受光電荷は、バスバー電極240へ伝達される。しかし、タブ配線20とバスバー電極240の一部とが剥がれているため、バスバー電極240へ伝達された受光電荷は、タブ配線20とバスバー電極240とが剥がれていない箇所までバスバー電極240を流れる。このとき、バスバー電極240へ伝達された受光電荷は、各フィンガー電極で集電された受光電荷が加わりながら、タブ配線20とバスバー電極240とが剥がれていない箇所までバスバー電極240を流れる。つまり、図15に示される矢印のように、バスバー電極240とフィンガー電極50とが交差する毎に受光電荷の量が多くなる。したがって、受光電荷の量が多いほどバスバー電極240が有する抵抗成分による電力の損失が大きくなってしまう。 On the other hand, when the tab wiring 20 and a part of the bus bar electrode 240 are peeled off, the received charge generated in the solar cell element 11 is collected by the finger electrode 50. The received charge collected by the finger electrode 50 is transmitted to the bus bar electrode 240. However, since the tab wiring 20 and a part of the bus bar electrode 240 are peeled off, the received light charge transmitted to the bus bar electrode 240 flows through the bus bar electrode 240 to a position where the tab wiring 20 and the bus bar electrode 240 are not peeled off. At this time, the received charge transmitted to the bus bar electrode 240 flows through the bus bar electrode 240 to a portion where the tab wiring 20 and the bus bar electrode 240 are not peeled off while the received charge collected by each finger electrode is added. That is, as shown by the arrows in FIG. 15, the amount of received light charges increases each time the bus bar electrode 240 and the finger electrode 50 intersect. Therefore, the greater the amount of received light charge, the greater the power loss due to the resistance component of the bus bar electrode 240.
 そこで、分岐部241aの交差方向の幅を長尺方向におけるバスバー電極240(240a)の中央及び両端のうちのどちらか一方から他方に向けて大きくする。これにより、バスバー電極240(240a)の単位長さあたりの抵抗値を、バスバー電極240(240a)の中央及び両端のうちのどちらか一方から他方に向けて小さくすることができる。例えば、図12に示されるように、分岐部241aの交差方向の幅を長尺方向におけるバスバー電極240の両端から中央に向けて大きくする(W1<W2<W3)。これにより、バスバー電極240の単位長さあたりの抵抗値が長尺方向におけるバスバー電極240の両端から中央に向けて小さくなる。 Therefore, the width of the branching portion 241a in the crossing direction is increased from one of the center and both ends of the bus bar electrode 240 (240a) in the long direction toward the other. Thereby, the resistance value per unit length of the bus bar electrode 240 (240a) can be decreased from one of the center and both ends of the bus bar electrode 240 (240a) toward the other. For example, as shown in FIG. 12, the width of the branching portion 241a in the intersecting direction is increased from both ends of the bus bar electrode 240 in the longitudinal direction toward the center (W1 <W2 <W3). Thereby, the resistance value per unit length of the bus bar electrode 240 decreases from the both ends of the bus bar electrode 240 in the longitudinal direction toward the center.
 これにより、タブ配線20とバスバー電極240(240a)とが剥がれている領域において、バスバー電極240(240a)が有する抵抗成分による電力の損失を抑制することができる。 Thereby, in the region where the tab wiring 20 and the bus bar electrode 240 (240a) are peeled off, power loss due to the resistance component of the bus bar electrode 240 (240a) can be suppressed.
 なお、図11~14に示される分岐部241aの交差方向の幅は、長尺方向におけるバスバー電極240の中央及び両端のうちのどちらか一方から他方に向けて大きくなったが、これに限らない。例えば、分岐部241aの交差方向の幅が長尺方向に沿って変化すればよく、長尺方向におけるバスバー電極240(240a)の中央及び両端のうちのどちらか一方から他方に向けて大きくならなくてもよい。つまり、バスバー電極240(240a)の中央及び両端のうちのどちらか一方の領域ではなく、バスバー電極240(240a)の任意の領域をタブ配線20とバスバー電極240(240a)との接着強度が低い領域にしてもよい。これにより、温度サイクル等により太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20と電荷伝達部241との接着強度が低い領域のタブ配線20が剥がれる。したがって、タブ配線20のバスバー電極240(240a)との接合が剥がれた領域にストレスを吸収させることができるため、太陽電池素子11及びタブ配線20のストレスを低減することができる。 The width of the branching portion 241a shown in FIGS. 11 to 14 is increased from one of the center and both ends of the bus bar electrode 240 toward the other in the longitudinal direction, but is not limited thereto. . For example, the width in the intersecting direction of the branch portion 241a only needs to change along the longitudinal direction, and does not increase from one of the center and both ends of the bus bar electrode 240 (240a) in the longitudinal direction toward the other. May be. That is, the adhesive strength between the tab wiring 20 and the bus bar electrode 240 (240a) is low in any region of the bus bar electrode 240 (240a), not in one of the center and both ends of the bus bar electrode 240 (240a). It may be an area. Thereby, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the tab wiring 20 in a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is low is peeled off. Therefore, the stress can be absorbed in the region where the bonding of the tab wiring 20 to the bus bar electrode 240 (240a) is peeled off, so that the stress of the solar cell element 11 and the tab wiring 20 can be reduced.
 また、バスバー電極240(240a)の交差方向の幅は、長尺方向に沿って変化する。 Further, the width of the bus bar electrode 240 (240a) in the intersecting direction changes along the longitudinal direction.
 これにより、バスバー電極240(240a)の交差方向の幅、つまり、電荷伝達部241の交差方向における上端と下端との間の幅を長尺方向に沿って変化させることで、開口部242の形状を変化させなくても、タブ配線20と電荷伝達部241との接着強度が低い領域と高い領域とを作ることができる。 Thereby, the width of the bus bar electrode 240 (240a) in the crossing direction, that is, the width between the upper end and the lower end in the crossing direction of the charge transfer unit 241 is changed along the longitudinal direction, thereby forming the shape of the opening 242. Even without changing, it is possible to create a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 241 is low and a region where it is high.
 (実施の形態4)
 次に、実施の形態4に係る太陽電池モジュールについて、図16~18を用いて説明する。
(Embodiment 4)
Next, a solar cell module according to Embodiment 4 will be described with reference to FIGS.
 本実施の形態に係る太陽電池モジュールの構造、及び、太陽電池素子11の構造については、実施の形態3に係るそれらと同様であるため詳細な説明を省略し、以下、実施の形態3と異なるバスバー電極340を中心に説明する。 Since the structure of the solar cell module according to the present embodiment and the structure of the solar cell element 11 are the same as those according to the third embodiment, a detailed description thereof will be omitted, and hereinafter, different from the third embodiment. The description will focus on the bus bar electrode 340.
 [4-1.実施の形態4に係るバスバー電極の構成]
 図16~18は、実施の形態4に係るバスバー電極340の構成の一例を示す平面図である。
[4-1. Configuration of Bus Bar Electrode According to Embodiment 4]
16 to 18 are plan views showing an example of the configuration of the bus bar electrode 340 according to the fourth embodiment.
 バスバー電極340は、開口部342を複数有する。開口部342は、長尺方向に沿って並んで設けられる。なお、分岐部341aの交差方向の幅は、長尺方向における開口部342の中央及び両端のうちのどちらか一方から他方に向けて大きくなってもよい。 The bus bar electrode 340 has a plurality of openings 342. The openings 342 are provided side by side along the longitudinal direction. Note that the width of the branching portion 341a in the intersecting direction may increase from one of the center and both ends of the opening 342 in the longitudinal direction toward the other.
 図16及び図17では、バスバー電極340には、図11及び図13に示される開口部242の形状と類似した開口部342が、長尺方向に沿って4つ並んで設けられる。図16及び図17に示されるように、開口部342は、分岐部341aの交差方向の幅が長尺方向における開口部342の両端から中央に向けて大きくなるように設けられる。具体的には、開口部342は、長尺方向における開口部342の中央から両端に向けて先細りになる形状を有する。これにより、バスバー電極340は、分岐部341aの交差方向の幅が長尺方向における開口部342の中央から両端に向けて大きくなるような逆テーパ形状を有する分岐部341aを開口部342毎に有する。 16 and 17, the bus bar electrode 340 is provided with four openings 342 similar to the shape of the opening 242 shown in FIGS. 11 and 13 along the longitudinal direction. As shown in FIGS. 16 and 17, the opening 342 is provided such that the width in the intersecting direction of the branching portion 341 a increases from both ends of the opening 342 in the longitudinal direction toward the center. Specifically, the opening 342 has a shape that tapers from the center of the opening 342 in the longitudinal direction toward both ends. As a result, the bus bar electrode 340 has, for each opening 342, a branching part 341a having a reverse taper shape in which the width in the crossing direction of the branching part 341a increases from the center of the opening 342 toward both ends in the longitudinal direction. .
 図18では、バスバー電極340には、円形の形状の開口部342が4つ設けられる。図18に示されるように、開口部342は、長尺方向に沿って並んで設けられ、開口部342が円形の形状を有することで分岐部341aの交差方向の幅が長尺方向における開口部342の両端から中央に向けて大きくなるように設けられる。これにより、バスバー電極340は、分岐部341aの交差方向の幅が長尺方向における開口部342の中央から両端に向けて大きくなるような逆テーパ形状を有する分岐部341aを開口部342毎に有する。 In FIG. 18, the bus bar electrode 340 is provided with four circular openings 342. As shown in FIG. 18, the openings 342 are provided side by side along the longitudinal direction, and the opening 342 has a circular shape, so that the width in the intersecting direction of the branching part 341 a is the opening in the longitudinal direction. It is provided so as to increase from both ends of 342 toward the center. As a result, the bus bar electrode 340 has, for each opening 342, a branching part 341a having a reverse tapered shape such that the width of the branching part 341a in the crossing direction increases from the center of the opening 342 toward both ends in the longitudinal direction. .
 このように、バスバー電極340は、交差方向の幅が長尺方向に沿って不均一な開口部342を複数有する。言い換えると、バスバー電極340は、交差方向の幅が長尺方向に沿って不均一な分岐部341aを複数有する。これにより、バスバー電極340は、例えば、図16~18に示される第1の領域及び第2の領域のように、それぞれの領域に対する電荷伝達部341の面積占有率が異なる領域を有する。例えば、第1の領域における電荷伝達部341の面積占有率は、第2の領域における電荷伝達部341の面積占有率よりも大きい。ただし、第1の領域及び第2の領域の大きさは、それぞれ同じ大きさを有する。また、第1の領域及び第2の領域の大きさは、所定の大きさ以上である必要がある。例えば、所定の大きさは、開口部342の一部及び交差方向におけるバスバー電極340の両端を含む大きさである。 Thus, the bus bar electrode 340 has a plurality of openings 342 whose width in the intersecting direction is not uniform along the longitudinal direction. In other words, the bus bar electrode 340 has a plurality of branch portions 341a whose width in the crossing direction is not uniform along the longitudinal direction. Accordingly, the bus bar electrode 340 includes regions having different area occupancy rates of the charge transfer portions 341 for the respective regions, such as the first region and the second region illustrated in FIGS. For example, the area occupancy of the charge transfer unit 341 in the first region is larger than the area occupancy of the charge transfer unit 341 in the second region. However, the first region and the second region have the same size. Further, the size of the first region and the second region needs to be equal to or larger than a predetermined size. For example, the predetermined size is a size including a part of the opening 342 and both ends of the bus bar electrode 340 in the crossing direction.
 また、分岐部341aの交差方向の幅は、長尺方向における開口部342の中央及び両端のうちのどちらか一方から他方に向けて大きくなる。これにより、バスバー電極340は、例えば、図16~18に示される第1の領域及び第2の領域のように、長尺方向における開口部342の両端側の第1の領域ほど、長尺方向における開口部342の中央側の第2の領域よりもそれぞれの領域に対する電荷伝達部341の面積占有率が大きい領域を有する。 Also, the width of the branching portion 341a in the intersecting direction increases from one of the center and both ends of the opening 342 in the longitudinal direction toward the other. As a result, the bus bar electrode 340 is formed so that the first region on both ends of the opening 342 in the longitudinal direction is longer in the longitudinal direction, such as the first region and the second region shown in FIGS. The area occupying area of the charge transfer portion 341 in each region is larger than the second region on the center side of the opening 342 in FIG.
 なお、第1の領域及び第2の領域は、図16~18に示される領域に限らず、図16~18に示される領域とは異なる位置の領域であってもよい。 Note that the first region and the second region are not limited to the regions illustrated in FIGS. 16 to 18 and may be regions at positions different from the regions illustrated in FIGS.
 また、図16~18に示される分岐部341aの交差方向の幅は、長尺方向における開口部342の中央及び両端のうちのどちらか一方から他方に向けて大きくなったが、これに限らない。例えば、分岐部341aの交差方向の幅が長尺方向に沿って変化すればよく、長尺方向における開口部342の中央及び両端のうちのどちらか一方から他方に向けて大きくならなくてもよい。 Also, the width in the crossing direction of the branching portion 341a shown in FIGS. 16 to 18 increases from one of the center and both ends of the opening 342 in the longitudinal direction toward the other, but is not limited thereto. . For example, the width in the intersecting direction of the branching portion 341a only needs to change along the longitudinal direction, and does not have to increase from one of the center and both ends of the opening 342 in the longitudinal direction toward the other. .
 また、開口部342は、長尺方向に沿って4つ並んで設けられたが、これに限らない。例えば、開口部342は、長尺方向に沿って2つ、3つ又は5つ以上並んで設けられてもよい。 Moreover, although the four openings 342 are provided side by side along the longitudinal direction, the present invention is not limited to this. For example, two, three, or five or more openings 342 may be provided along the longitudinal direction.
 [4-2.効果等]
 バスバー電極340は、開口部342を複数有し、開口部342は、長尺方向に沿って並んで設けられる。
[4-2. Effect]
The bus bar electrode 340 has a plurality of openings 342, and the openings 342 are provided along the longitudinal direction.
 これにより、バスバー電極340は、例えば、図16~18に示される第1の領域及び第2の領域のように、それぞれの領域に対する電荷伝達部341の面積占有率が異なる領域を有する。つまり、電荷伝達部341の面積占有率は、長尺方向に沿って不均一になる。言い換えると、バスバー電極340は、タブ配線20と電荷伝達部341との接着強度が低い領域(第2の領域)と高い領域(第1の領域)とを有する。従来の太陽電池モジュールでは、タブ配線とバスバー電極とが接続しない部分が一様に設けられており、電気的ロスが一様に発生していた。一方、実施の形態4に係る太陽電池モジュールでは、タブ配線20とバスバー電極340とが接続しない部分が不均一に設けられるため、電気的ロスを小さくしている。つまり、実施の形態4に係る太陽電池モジュールでは、タブ配線20とバスバー電極340とが接続しない部分を場所によって小さくしているため、電気的ロスを小さくしている。したがって、温度サイクル等によりセル割れなどの不具合が発生するような状況になるまでは電気的ロスは抑制され、太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20と電荷伝達部341との接着強度が低い領域のタブ配線20が剥がれる。これにより、タブ配線20のバスバー電極340との接合が剥がれた領域にストレスを吸収させることができるため、以降は、太陽電池素子11及びタブ配線20のストレスを低減することができる。また、タブ配線20と電荷伝達部341との接着強度が高い領域では、タブ配線20と電荷伝達部341とが接合しているため、集電効率の低下を抑制することができる。つまり、商品寿命内でのトータルの出力を高めた上で、太陽電池素子11及びタブ配線20のストレスを低減することができる。 Thereby, the bus bar electrode 340 includes regions having different area occupancy rates of the charge transfer portions 341 for the respective regions, such as the first region and the second region shown in FIGS. That is, the area occupation ratio of the charge transfer portion 341 becomes non-uniform along the long direction. In other words, the bus bar electrode 340 has a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 341 is low (second region) and a region where the adhesive strength is high (first region). In the conventional solar cell module, the portion where the tab wiring and the bus bar electrode are not connected is provided uniformly, and the electrical loss occurs uniformly. On the other hand, in the solar cell module according to Embodiment 4, since the portion where the tab wiring 20 and the bus bar electrode 340 are not connected is provided unevenly, the electrical loss is reduced. That is, in the solar cell module according to Embodiment 4, since the portion where the tab wiring 20 and the bus bar electrode 340 are not connected is reduced depending on the location, the electrical loss is reduced. Therefore, the electrical loss is suppressed until a situation such as a cell crack occurs due to a temperature cycle or the like, and even if stress is generated in the solar cell element 11 and the tab wiring 20, the tab wiring 20 and the charge transfer The tab wiring 20 in the region where the adhesive strength with the portion 341 is low is peeled off. Thereby, stress can be absorbed in the region where the bonding of the tab wiring 20 to the bus bar electrode 340 is peeled off, and thereafter, the stress of the solar cell element 11 and the tab wiring 20 can be reduced. Further, in the region where the adhesive strength between the tab wiring 20 and the charge transfer portion 341 is high, the tab wiring 20 and the charge transfer portion 341 are joined, so that a reduction in current collection efficiency can be suppressed. That is, the stress of the solar cell element 11 and the tab wiring 20 can be reduced while increasing the total output within the product life.
 また、バスバー電極340は、開口部342においてタブ配線20と接合していない。したがって、温度サイクル等により太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20のバスバー電極340と接合していない領域にストレスを吸収させることができるので、太陽電池素子11及びタブ配線20のストレスを低減することができる。 Further, the bus bar electrode 340 is not joined to the tab wiring 20 in the opening 342. Therefore, even if stress is generated in the solar cell element 11 and the tab wiring 20 due to a temperature cycle or the like, the stress can be absorbed in a region that is not joined to the bus bar electrode 340 of the tab wiring 20. The stress on the tab wiring 20 can be reduced.
 分岐部341aの交差方向の幅は、長尺方向における開口部342の中央及び両端のうちのどちらか一方から他方に向けて大きくなる。 The width in the crossing direction of the branching portion 341a increases from one of the center and both ends of the opening 342 in the longitudinal direction toward the other.
 これにより、開口部342毎に、長尺方向における開口部342の中央及び両端のうちのどちらか一方側をタブ配線20とバスバー電極340との接着強度が低い領域にすることができる。 Thus, for each opening 342, either the center or both ends of the opening 342 in the longitudinal direction can be set to a region where the adhesive strength between the tab wiring 20 and the bus bar electrode 340 is low.
 また、タブ配線20とバスバー電極340とが剥がれている領域において、バスバー電極340が有する抵抗成分による電力の損失を抑制することができる。 Further, in the region where the tab wiring 20 and the bus bar electrode 340 are peeled off, power loss due to the resistance component of the bus bar electrode 340 can be suppressed.
 (その他の実施の形態)
 以上、本発明に係る太陽電池モジュールについて、上記実施の形態に基づいて説明したが、本発明は、上記の実施に限定されるものではない。
(Other embodiments)
As mentioned above, although the solar cell module which concerns on this invention was demonstrated based on the said embodiment, this invention is not limited to said implementation.
 例えば、上記実施の形態では、フィンガー電極50は、バスバー電極を貫通するように設けられなかったが、これに限らない。例えば、以下で説明する図19~21に示されるフィンガー電極350のようにバスバー電極440を貫通してもよい。 For example, in the above embodiment, the finger electrode 50 is not provided so as to penetrate the bus bar electrode, but is not limited thereto. For example, the bus bar electrode 440 may be penetrated like a finger electrode 350 shown in FIGS. 19 to 21 described below.
 図19~21は、その他の実施の形態に係るバスバー電極440の構成の一例を示す平面図である。 19 to 21 are plan views showing an example of the configuration of the bus bar electrode 440 according to another embodiment.
 図19には、フィンガー電極450が図13に示されるバスバー電極240aを交差方向に貫通した構成を有するバスバー電極440が示される。これにより、フィンガー電極450は開口部442を交差方向に縦断する。 FIG. 19 shows a bus bar electrode 440 having a configuration in which the finger electrode 450 penetrates the bus bar electrode 240a shown in FIG. 13 in the crossing direction. Thereby, the finger electrode 450 cuts the opening 442 vertically in the crossing direction.
 同様に、図20には、フィンガー電極450が図14に示されるバスバー電極240aを交差方向に貫通した構成を有するバスバー電極440が示される。これにより、フィンガー電極450は開口部442を交差方向に縦断する。 Similarly, FIG. 20 shows a bus bar electrode 440 having a configuration in which the finger electrode 450 penetrates the bus bar electrode 240a shown in FIG. 14 in the crossing direction. Thereby, the finger electrode 450 cuts the opening 442 vertically in the crossing direction.
 同様に、図21には、フィンガー電極450が図17に示されるバスバー電極340を交差方向に貫通した構成を有するバスバー電極440が示される。これにより、フィンガー電極450は開口部442を交差方向に縦断する。 Similarly, FIG. 21 shows a bus bar electrode 440 having a configuration in which the finger electrode 450 penetrates the bus bar electrode 340 shown in FIG. 17 in the crossing direction. Thereby, the finger electrode 450 cuts the opening 442 vertically in the crossing direction.
 これにより、図13、14及び17では、フィンガー電極50に直接接続されていない分岐部241a、341aがあったが、図19~21では、すべての分岐部441aがフィンガー電極450に直接接続される。したがって、タブ配線20とバスバー電極440とが剥がれている領域において、抵抗成分による電力の損失を考慮した複数の分岐部441aに受光電荷が分散されるため、バスバー電極440が有する抵抗成分による電力の損失をより抑制することができる。また、電荷伝達部441の面積占有率が長尺方向に沿って不均一になっている。言い換えると、バスバー電極440は、タブ配線20と電荷伝達部441との接着強度が低い領域と高い領域とを有する。従来の太陽電池モジュールでは、タブ配線とバスバー電極とが接続しない部分が一様に設けられており、電気的ロスが一様に発生していた。一方、その他の実施の形態に係る太陽電池モジュールでは、タブ配線20とバスバー電極440とが接続しない部分が不均一に設けられるため、電気的ロスを小さくしている。つまり、その他の実施の形態に係る太陽電池モジュールでは、タブ配線20とバスバー電極440とが接続しない部分を場所によって小さくしているため、電気的ロスを小さくしている。したがって、温度サイクル等によりセル割れなどの不具合が発生するような状況になるまでは電気的ロスは抑制され、太陽電池素子11及びタブ配線20にストレスが生じたとしても、タブ配線20と電荷伝達部441との接着強度が低い領域のタブ配線20が剥がれる。これにより、タブ配線20のバスバー電極440との接合が剥がれた領域にストレスを吸収させることができるため、太陽電池素子11及びタブ配線20のストレスを低減することができる。つまり、商品寿命内でのトータルの出力を高めた上で、太陽電池素子11及びタブ配線20のストレスを低減することができる。 13, 14 and 17, there are branch portions 241 a and 341 a that are not directly connected to the finger electrode 50, but in FIGS. 19 to 21, all the branch portions 441 a are directly connected to the finger electrode 450. . Therefore, in the region where the tab wiring 20 and the bus bar electrode 440 are peeled off, the received charge is distributed to the plurality of branch portions 441a in consideration of the power loss due to the resistance component. Loss can be further suppressed. Further, the area occupation ratio of the charge transfer portion 441 is non-uniform along the longitudinal direction. In other words, the bus bar electrode 440 has a region where the adhesive strength between the tab wiring 20 and the charge transfer portion 441 is low and a region where the adhesive strength is high. In the conventional solar cell module, the portion where the tab wiring and the bus bar electrode are not connected is provided uniformly, and the electrical loss occurs uniformly. On the other hand, in the solar cell modules according to other embodiments, since the portion where the tab wiring 20 and the bus bar electrode 440 are not connected is provided unevenly, the electrical loss is reduced. That is, in the solar cell module according to the other embodiment, the portion where the tab wiring 20 and the bus bar electrode 440 are not connected is reduced depending on the location, so that the electrical loss is reduced. Therefore, the electrical loss is suppressed until a situation such as a cell crack occurs due to a temperature cycle or the like, and even if stress is generated in the solar cell element 11 and the tab wiring 20, the tab wiring 20 and the charge transfer The tab wiring 20 in the region where the adhesive strength with the portion 441 is low is peeled off. Thereby, since stress can be absorbed in the region where the bonding of the tab wiring 20 to the bus bar electrode 440 is peeled off, the stress of the solar cell element 11 and the tab wiring 20 can be reduced. That is, the stress of the solar cell element 11 and the tab wiring 20 can be reduced while increasing the total output within the product life.
 また、上記実施の形態では、例えば図14に示されるバスバー電極240aの交差方向の幅は、長尺方向に沿って変化したが、これに限らず、その他のバスバー電極の交差方向の幅も長尺方向に沿って変化してもよい。 In the above embodiment, for example, the width in the cross direction of the bus bar electrode 240a shown in FIG. 14 changes along the longitudinal direction. However, the width in the cross direction of other bus bar electrodes is not limited to this. It may change along the scale direction.
 また、上記実施の形態では、フィンガー電極50は、直線であったが直線でなくてもよく、曲線であってもよい。 In the above embodiment, the finger electrode 50 is a straight line, but may not be a straight line, but may be a curved line.
 また、上記実施の形態では、太陽電池モジュールの構成は、複数の太陽電池素子11が面上に行列状配置された構成を示したが、行列状配置に限らない。例えば、太陽電池モジュールの構成は、円環状配置や1次元の直線状又は曲線状に配置された構成であってもよい。 In the above embodiment, the configuration of the solar cell module is a configuration in which a plurality of solar cell elements 11 are arranged in a matrix on the surface, but is not limited to the matrix configuration. For example, the configuration of the solar cell module may be an annular arrangement or a one-dimensional linear or curved arrangement.
 その他、上記実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で上記実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, the present invention can be realized by any combination of the components and functions in the above-described embodiment without departing from the gist of the present invention, and forms obtained by making various modifications conceived by those skilled in the art. Forms are also included in the present invention.
 1  太陽電池モジュール
 11  太陽電池素子
 20  タブ配線
 40、140、240、240a、340、440  バスバー電極
 41、141、141a、141b、241、341、441  電荷伝達部
 42、142、242、342、442  開口部
 241a、341a、441a  分岐部
DESCRIPTION OF SYMBOLS 1 Solar cell module 11 Solar cell element 20 Tab wiring 40,140,240,240a, 340,440 Bus-bar electrode 41,141,141a, 141b, 241,341,441 Charge transfer part 42,142,242,342,442 Opening Section 241a, 341a, 441a Branching section

Claims (13)

  1.  隣り合う2つの太陽電池素子と、
     前記2つの太陽電池素子を電気的に接続する長尺状のタブ配線と、を備え、
     前記2つの太陽電池素子のそれぞれは、
     前記タブ配線の長尺方向に沿って形成され、前記タブ配線と重なって接合する長尺状のバスバー電極を有し、
     前記バスバー電極は、前記太陽電池素子で生成された受光電荷を前記タブ配線に伝達する電荷伝達部と、複数の開口部とを有し、
     前記複数の開口部は、前記長尺方向に沿って並んで設けられ、
     前記複数の開口部には、平面視における面積が異なる開口部が含まれる
     太陽電池モジュール。
    Two adjacent solar cell elements;
    A long tab wiring for electrically connecting the two solar cell elements,
    Each of the two solar cell elements is
    It has a long bus bar electrode that is formed along the lengthwise direction of the tab wiring and overlaps and joins the tab wiring,
    The bus bar electrode includes a charge transfer portion that transmits the received light charges generated by the solar cell element to the tab wiring, and a plurality of openings.
    The plurality of openings are provided side by side along the longitudinal direction,
    The plurality of openings include openings having different areas in plan view.
  2.  前記複数の開口部のうちの面積の異なる開口部の前記長尺方向の幅及び当該長尺方向と平面視において交差する交差方向の幅の少なくとも一方は、異なる
     請求項1に記載の太陽電池モジュール。
    2. The solar cell module according to claim 1, wherein at least one of a width in the longitudinal direction of an opening having a different area among the plurality of openings and a width in an intersecting direction intersecting the longitudinal direction in plan view are different. .
  3.  前記複数の開口部の平面視における面積は、前記長尺方向における前記バスバー電極の中央及び両端のうちのどちらか一方に近いほど大きい
     請求項1又は2に記載の太陽電池モジュール。
    The solar cell module according to claim 1 or 2, wherein an area of the plurality of openings in plan view is larger as it is closer to either the center or both ends of the bus bar electrode in the longitudinal direction.
  4.  隣り合う2つの太陽電池素子と、
     前記2つの太陽電池素子を電気的に接続する長尺状のタブ配線と、を備え、
     前記2つの太陽電池素子のそれぞれは、
     前記タブ配線の長尺方向に沿って形成され、前記タブ配線と重なって接合する長尺状のバスバー電極を有し、
     前記バスバー電極は、前記太陽電池素子で生成された受光電荷を前記タブ配線に伝達する電荷伝達部と、複数の開口部とを有し、
     前記複数の開口部は、前記長尺方向及び当該長尺方向と平面視において交差する交差方向に沿って並んで設けられ、
     前記複数の開口部の前記交差方向に沿って並んで設けられる数は、前記長尺方向に沿って異なる
     太陽電池モジュール。
    Two adjacent solar cell elements;
    A long tab wiring for electrically connecting the two solar cell elements,
    Each of the two solar cell elements is
    It has a long bus bar electrode that is formed along the lengthwise direction of the tab wiring and overlaps and joins the tab wiring,
    The bus bar electrode includes a charge transfer portion that transmits the received light charges generated by the solar cell element to the tab wiring, and a plurality of openings.
    The plurality of openings are provided side by side along the cross direction intersecting the long direction and the long direction in plan view,
    The number of the plurality of openings provided side by side along the intersecting direction is different along the longitudinal direction.
  5.  前記複数の開口部が前記交差方向に沿って並んで設けられる数は、前記長尺方向における前記バスバー電極の中央及び両端のうちのどちらか一方に近いほど多い
     請求項4に記載の太陽電池モジュール。
    The solar cell module according to claim 4, wherein the number of the plurality of openings provided side by side along the intersecting direction increases as the distance from the center and both ends of the bus bar electrode in the longitudinal direction increases. .
  6.  前記複数の開口部の平面視における面積は、前記長尺方向における前記バスバー電極の中央及び両端のうちのどちらか一方に近いほど大きい
     請求項4又は5に記載の太陽電池モジュール。
    6. The solar cell module according to claim 4, wherein an area of the plurality of openings in plan view is larger as closer to one of the center and both ends of the bus bar electrode in the longitudinal direction.
  7.  前記交差方向に沿って隣り合う2つの開口部の間隔は、当該交差方向における前記バスバー電極の中央に近いほど大きい
     請求項4~6のいずれか1項に記載の太陽電池モジュール。
    The solar cell module according to any one of claims 4 to 6, wherein an interval between two openings adjacent to each other in the intersecting direction is larger as it is closer to the center of the bus bar electrode in the intersecting direction.
  8.  隣り合う2つの太陽電池素子と、
     前記2つの太陽電池素子を電気的に接続する長尺状のタブ配線と、を備え、
     前記2つの太陽電池素子のそれぞれは、
     前記タブ配線の長尺方向に沿って形成され、前記タブ配線と重なって接合する長尺状のバスバー電極を有し、
     前記バスバー電極は、前記太陽電池素子で生成された受光電荷を前記タブ配線に伝達する電荷伝達部と、前記長尺方向と平面視において交差する交差方向に沿って並ぶ複数の分岐部に当該電荷伝達部を分岐させる開口部とを有し、
     前記分岐部の前記交差方向の幅は、前記長尺方向に沿って変化する
     太陽電池モジュール。
    Two adjacent solar cell elements;
    A long tab wiring for electrically connecting the two solar cell elements,
    Each of the two solar cell elements is
    It has a long bus bar electrode that is formed along the lengthwise direction of the tab wiring and overlaps and joins the tab wiring,
    The bus bar electrode includes a charge transfer portion that transmits the received light charges generated by the solar cell element to the tab wiring, and a plurality of branch portions that are aligned along a crossing direction that intersects the longitudinal direction in plan view. An opening for branching the transmission part,
    The width | variety of the said crossing direction of the said branch part changes along the said elongate direction.
  9.  前記開口部は、前記長尺方向における前記バスバー電極の両端のうちの少なくとも一端に設けられた切り欠きである
     請求項8に記載の太陽電池モジュール。
    The solar cell module according to claim 8, wherein the opening is a notch provided at at least one end of both ends of the bus bar electrode in the longitudinal direction.
  10.  前記分岐部の前記交差方向の幅は、前記長尺方向における前記バスバー電極の中央及び両端のうちのどちらか一方から他方に向けて大きくなる
     請求項8又は9に記載の太陽電池モジュール。
    10. The solar cell module according to claim 8, wherein a width of the branch portion in the intersecting direction increases from one of the center and both ends of the bus bar electrode in the longitudinal direction toward the other.
  11.  前記バスバー電極は、前記開口部を複数有し、
     前記開口部は、前記長尺方向に沿って並んで設けられる
     請求項8に記載の太陽電池モジュール。
    The bus bar electrode has a plurality of the openings,
    The solar cell module according to claim 8, wherein the opening is provided side by side along the longitudinal direction.
  12.  前記分岐部の前記交差方向の幅は、前記長尺方向における前記開口部の中央及び両端のうちのどちらか一方から他方に向けて大きくなる
     請求項11に記載の太陽電池モジュール。
    The solar cell module according to claim 11, wherein a width of the branching portion in the intersecting direction increases from one of the center and both ends of the opening in the longitudinal direction toward the other.
  13.  前記バスバー電極の前記長尺方向と平面視において交差する交差方向の幅は、前記長尺方向に沿って変化する
     請求項1~12のいずれか1項に記載の太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 12, wherein a width of a crossing direction of the bus bar electrode that intersects the long direction in a plan view changes along the long direction.
PCT/JP2016/002011 2015-06-30 2016-04-14 Solar battery module WO2017002287A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015132159A JP2018137250A (en) 2015-06-30 2015-06-30 Solar cell module
JP2015-132159 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002287A1 true WO2017002287A1 (en) 2017-01-05

Family

ID=57608246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002011 WO2017002287A1 (en) 2015-06-30 2016-04-14 Solar battery module

Country Status (2)

Country Link
JP (1) JP2018137250A (en)
WO (1) WO2017002287A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097615A1 (en) * 2017-11-15 2019-05-23 三菱電機株式会社 Solar battery cell and method of manufacturing solar battery cell
WO2020168380A1 (en) * 2019-02-18 2020-08-27 Newsouth Innovations Pty Limited Method for reducing thermomechanical stress in solar cells
US11462652B2 (en) * 2016-09-27 2022-10-04 Lg Electronics Inc. Solar cell and solar cell panel including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287861A (en) * 2006-04-14 2007-11-01 Sharp Corp Solar cell, solar cell string, and solar cell module
JP2010027778A (en) * 2008-07-17 2010-02-04 Shin-Etsu Chemical Co Ltd Solar cell
WO2013046389A1 (en) * 2011-09-29 2013-04-04 三洋電機株式会社 Solar cell, solar cell module, and method for manufacturing solar cell module
JP2014060311A (en) * 2012-09-19 2014-04-03 Sharp Corp Solar cell
JP2015005754A (en) * 2013-06-21 2015-01-08 エルジー エレクトロニクス インコーポレイティド Solar cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007287861A (en) * 2006-04-14 2007-11-01 Sharp Corp Solar cell, solar cell string, and solar cell module
JP2010027778A (en) * 2008-07-17 2010-02-04 Shin-Etsu Chemical Co Ltd Solar cell
WO2013046389A1 (en) * 2011-09-29 2013-04-04 三洋電機株式会社 Solar cell, solar cell module, and method for manufacturing solar cell module
JP2014060311A (en) * 2012-09-19 2014-04-03 Sharp Corp Solar cell
JP2015005754A (en) * 2013-06-21 2015-01-08 エルジー エレクトロニクス インコーポレイティド Solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11462652B2 (en) * 2016-09-27 2022-10-04 Lg Electronics Inc. Solar cell and solar cell panel including the same
WO2019097615A1 (en) * 2017-11-15 2019-05-23 三菱電機株式会社 Solar battery cell and method of manufacturing solar battery cell
WO2020168380A1 (en) * 2019-02-18 2020-08-27 Newsouth Innovations Pty Limited Method for reducing thermomechanical stress in solar cells
US20220131023A1 (en) * 2019-02-18 2022-04-28 Newsouth Innovations Pty Limited Method for reducing thermomechanical stress in solar cells
EP3928357A4 (en) * 2019-02-18 2022-11-02 NewSouth Innovations Pty Limited Method for reducing thermomechanical stress in solar cells

Also Published As

Publication number Publication date
JP2018137250A (en) 2018-08-30

Similar Documents

Publication Publication Date Title
JP5842170B2 (en) Solar cell module
US9608139B2 (en) Solar cell
JP6624418B2 (en) Solar cell module
JP6611062B2 (en) Solar cell module
WO2016157684A1 (en) Solar cell module
JP6365960B2 (en) Solar cell module
JP2016171299A (en) Solar battery module
WO2020071083A1 (en) Photovoltaic device and photovoltaic module
KR102244597B1 (en) Solar cell module
WO2017002287A1 (en) Solar battery module
KR102196929B1 (en) Solar cell module and rear substrate for the same
JP6624535B2 (en) Solar cell module
JP6628196B2 (en) Solar cell module
US10629763B2 (en) Solar cell module
JP2017050514A (en) Solar battery module
JP2016192436A (en) Solar cell module
WO2018061789A1 (en) Solar cell module
JP2018056454A (en) Solar battery module and manufacturing method of solar battery module
JP5906422B2 (en) Solar cell and solar cell module
WO2022209585A1 (en) Solar cell module and manufacturing method for solar cell module
JP6528196B2 (en) Solar cell module
JP2016072518A (en) Solar battery module
WO2015194147A1 (en) Solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP