WO2015194147A1 - Solar cell module - Google Patents
Solar cell module Download PDFInfo
- Publication number
- WO2015194147A1 WO2015194147A1 PCT/JP2015/002956 JP2015002956W WO2015194147A1 WO 2015194147 A1 WO2015194147 A1 WO 2015194147A1 JP 2015002956 W JP2015002956 W JP 2015002956W WO 2015194147 A1 WO2015194147 A1 WO 2015194147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solar cell
- cell module
- back surface
- cell elements
- filling member
- Prior art date
Links
- 239000000463 material Substances 0.000 claims abstract description 30
- 229920000098 polyolefin Polymers 0.000 claims abstract description 27
- 239000002861 polymer material Substances 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 19
- 238000010521 absorption reaction Methods 0.000 claims abstract description 7
- 238000009792 diffusion process Methods 0.000 claims description 24
- -1 polyethylene terephthalate Polymers 0.000 claims description 24
- 229920000642 polymer Polymers 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000002184 metal Substances 0.000 claims description 20
- 229920005989 resin Polymers 0.000 claims description 13
- 239000011347 resin Substances 0.000 claims description 13
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 12
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 12
- 239000000853 adhesive Substances 0.000 claims description 11
- 230000001070 adhesive effect Effects 0.000 claims description 11
- 239000005038 ethylene vinyl acetate Substances 0.000 claims description 3
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical group C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 claims description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 abstract description 3
- 239000000945 filler Substances 0.000 description 17
- 229910021417 amorphous silicon Inorganic materials 0.000 description 13
- 239000004698 Polyethylene Substances 0.000 description 11
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- 229920000573 polyethylene Polymers 0.000 description 11
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 10
- 230000008961 swelling Effects 0.000 description 10
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/054—Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/072—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
- H01L31/0745—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
- H01L31/0747—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/52—PV systems with concentrators
Definitions
- the present invention relates to a solar cell module.
- the solar cell module Since a solar cell module including a plurality of solar cell elements is assumed to be installed outdoors, high heat resistance and high moisture resistance are required. In order to ensure high heat resistance and high moisture resistance, the solar cell module employs a structure in which a plurality of solar cell elements are enclosed with a substrate and a filler.
- Patent Document 1 discloses a solar cell module in which a front-side filler layer is disposed between a transparent front substrate and a solar cell element, and a back-side filler layer is disposed between a back surface protective sheet and the solar cell element. A structure is disclosed. Both the front-side filler layer and the back-side filler layer are made of polyethylene and a polyolefin-based filler that is a polyethylene polymer. The polyolefin-based filler is a material that can suppress corrosion of the solar cell element in that acetic acid is not generated by hydrolysis. According to the solar cell module disclosed in Patent Document 1, by adjusting the filler to a low density, crystallization of polyethylene can be prevented even when there is a temperature change due to a hot spot phenomenon or the like. It becomes possible to suppress cloudiness.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a solar cell module capable of suppressing corrosion of a solar cell element and preventing swelling and peeling.
- a solar cell module includes a plurality of solar cell elements, a surface filling member including a polyolefin-based material, disposed on the surface side of the plurality of solar cell elements, and the plurality of solar cell modules.
- a back surface filling member disposed on the back surface side of the solar cell element, a wiring member disposed on the front surface side of the plurality of solar cell elements and connecting the plurality of solar cell elements, the wiring member, and the surface filling member
- the surface filling member is sandwiched between the plurality of solar cell elements and an intermediate member including a polymer material having a higher polarity than the polyolefin-based material or a higher water absorption than the polyolefin-based material.
- the surface protection member arrange
- the solar cell module according to the present invention it is possible to suppress the corrosion of the solar cell element and to suppress the swelling and peeling.
- FIG. 1 is a schematic plan view of a solar cell module according to an embodiment.
- FIG. 2 is a plan view of the solar cell element according to the embodiment.
- FIG. 3 is a cross-sectional view illustrating a stacked structure of solar cell elements according to the embodiment.
- FIG. 4 is a structural cross-sectional view in the column direction of the solar cell module according to the embodiment.
- FIG. 5A is a structural cross-sectional view in the row direction of the solar cell module according to the embodiment.
- FIG. 5B is a structural cross-sectional view in the row direction of the solar cell module according to Modification 1 of the embodiment.
- FIG. 6 is a structural cross-sectional view of a light diffusing member according to Modification 2 of the embodiment.
- FIG. 1 is a schematic plan view of a solar cell module according to an embodiment.
- FIG. 2 is a plan view of the solar cell element according to the embodiment.
- FIG. 3 is a cross-sectional view illustrating a stacked structure of solar cell
- FIG. 7 is a structural cross-sectional view of a light diffusing member according to Modification 3 of the embodiment.
- FIG. 8A is a diagram illustrating a first example of adjusting the length of the light diffusing member.
- FIG. 8B is a diagram illustrating a second example of adjusting the length of the light diffusing member.
- the “front surface” of a solar cell element means a surface that allows more light to enter the interior than the “back surface” that is the opposite surface (over 50% to 100% light is the surface). And the case where no light enters the interior from the “back surface” side.
- the “surface” of the solar cell module means a surface on which light on the side facing the “surface” of the solar cell element can be incident, and the “back surface” means a surface on the opposite side.
- descriptions such as “providing the second member on the first member” do not intend only when the first and second members are provided in direct contact unless specifically limited. That is, this description includes a case where another member exists between the first and second members.
- the description of “substantially **” is intended to include not only exactly the same, but also those that are recognized as being substantially the same, with “substantially identical” as an example.
- FIG. 1 is a schematic plan view of a solar cell module according to an embodiment.
- the solar cell module 1 shown in the figure includes a plurality of solar cell elements 11, a tab wiring 20, a cross wiring 25, a frame body 50, and a light diffusion member 70.
- the solar cell module 1 further includes a surface filling member, a back surface filling member, an intermediate member, a surface protection member, and a back surface protection member.
- the solar cell elements 11 are flat-plate photovoltaic elements that are arranged in a matrix on a plane and generate power by light irradiation.
- the tab wiring 20 is a wiring member that electrically connects the solar cell elements 11 adjacent in the column direction.
- the cross wiring 25 is a wiring member for connecting the solar cell strings.
- the solar cell string is an aggregate of a plurality of solar cell elements 11 arranged in the column direction and connected by the tab wiring 20.
- the frame body 50 is an outer frame member that covers the outer periphery of a panel in which a plurality of solar cell elements 11 are two-dimensionally arranged.
- the light diffusion member 70 is a member having a light diffusion function, and covers the upper surface of the tab wiring 20 above the tab wiring 20 and the cross wiring 25 arranged on the front surface side of the solar cell element 11 (on the front surface side). It is formed as follows.
- the intermediate member, the surface filling member, the back surface filling member, the surface protection member, and the back surface protection member will be described in detail with reference to FIGS. 4, 5A, and 5B described later.
- FIG. 2 is a plan view of the solar cell element according to the embodiment.
- the solar cell element 11 has a substantially square shape in plan view.
- a plurality of striped bus bar electrodes 112 are formed in parallel to each other, and a plurality of striped finger electrodes 111 are formed in parallel to each other so as to be orthogonal to the bus bar electrodes 112. Yes.
- the bus bar electrode 112 and the finger electrode 111 constitute a collector electrode 110.
- the collector electrode 110 is formed of, for example, a conductive paste containing conductive particles such as Ag (silver).
- the line width of the bus bar electrode 112 is, for example, 1.5 mm
- the line width of the finger electrode 111 is, for example, 100 ⁇ m
- the pitch of the finger electrodes 111 is, for example, 2 mm.
- the tab wiring 20 is bonded on the bus bar electrode 112.
- FIG. 3 is a cross-sectional view showing a laminated structure of solar cell elements according to the embodiment. 2 is a CC cross-sectional view of the solar cell element 11 in FIG.
- an i-type amorphous silicon film 121 and a p-type amorphous silicon film 122 are formed in this order on the main surface of an n-type single crystal silicon wafer 101.
- the n-type single crystal silicon wafer 101, the i-type amorphous silicon film 121, and the p-type amorphous silicon film 122 form a photoelectric conversion layer, and the n-type single crystal silicon wafer 101 serves as a main power generation layer.
- the light receiving surface electrode 102 is formed on the p-type amorphous silicon film 122.
- a collecting electrode 110 including a plurality of bus bar electrodes 112 and a plurality of finger electrodes 111 is formed on the light receiving surface electrode 102.
- FIG. 3 only the finger electrode 111 of the collector electrode 110 is shown.
- an i-type amorphous silicon film 123 and an n-type amorphous silicon film 124 are formed in this order on the back surface of the n-type single crystal silicon wafer 101. Further, a light receiving surface electrode 103 is formed on the n-type amorphous silicon film 124, and a collecting electrode 110 including a plurality of bus bar electrodes 112 and a plurality of finger electrodes 111 is formed on the light receiving surface electrode 103.
- the p-type amorphous silicon layer 122 is formed on the back surface side of the n-type single crystal silicon wafer 101 and the n-type amorphous silicon layer 124 is formed on the light-receiving surface side of the n-type single crystal silicon wafer 101, respectively. Good.
- the collector electrode 110 can be formed by a printing method such as screen printing using a thermosetting resin-type conductive paste using a resin material as a binder and conductive particles such as silver particles as a filler, for example. .
- the solar cell element 11 is provided between the n-type single crystal silicon wafer 101 and the p-type amorphous silicon film 122 or the n-type amorphous silicon film 124 in order to improve the pn junction characteristics.
- the i-type amorphous silicon film 121 is provided.
- the light-receiving surface electrode 102 on the front surface side and the light-receiving surface electrode 103 on the back surface side of the n-type single crystal silicon wafer 101 are light-receiving surfaces. Carriers generated in the n-type single crystal silicon wafer 101 diffuse as photocurrents to the light-receiving surface electrodes 102 and 103 on the front surface side and the back surface side, and are collected by the collector electrode 110.
- the light receiving surface electrodes 102 and 103 are transparent electrodes made of, for example, ITO (indium tin oxide), SnO 2 (tin oxide), ZnO (zinc oxide), or the like.
- ITO indium tin oxide
- SnO 2 tin oxide
- ZnO zinc oxide
- the light receiving surface electrode 103 on the back surface side may be a metal electrode that is not transparent.
- an electrode formed on the entire surface of the light receiving surface electrode 103 may be used instead of the collector electrode 110.
- FIG. 4 is a structural cross-sectional view in the column direction of the solar cell module according to the embodiment
- FIG. 5A is a structural cross-sectional view in the row direction of the solar cell module according to the embodiment.
- FIG. 4 is a cross-sectional view taken along the line AA in the plan view of FIG. 1
- FIG. 5A is a cross-sectional view taken along the line BB of the plan view of FIG.
- tab wirings 20 are arranged on the front surface and the back surface of the solar cell element 11.
- the tab wiring 20 disposed on the surface of one solar cell element 11 is also disposed on the back surface of the other solar cell element 11. More specifically, the lower surface of one end of the tab wiring 20 is joined to a bus bar electrode 112 (not shown) on the surface side of one solar cell element 11. Further, the upper surface of the other end portion of the tab wiring 20 is joined to a bus bar electrode 112 (not shown) on the back surface side of the other solar cell element 11.
- the solar cell string composed of a plurality of solar cell elements 11 arranged in the column direction has a configuration in which the plurality of solar cell elements 11 are connected in series in the column direction.
- the tab wiring 20 and the bus bar electrode 112 are joined by, for example, a resin adhesive member 41 shown in FIG. 5A. That is, the tab wiring 20 is connected to the solar cell element 11 through the resin adhesive member 41.
- the resin adhesive member 41 is preferably cured at a temperature below the melting point of the eutectic solder, that is, at a temperature of about 200 ° C. or less.
- the resin bonding member 41 for example, a two-component reaction type bonding in which a curing agent is mixed with an epoxy resin, an acrylic resin, or a urethane resin in addition to a thermosetting resin adhesive such as an acrylic resin or a highly flexible polyurethane system. An agent or the like can be used.
- the resin adhesive may contain a plurality of conductive particles. As such particles, nickel, nickel with gold coating, or the like can be used.
- the portion of the tab wiring 20 that is disposed on the surface side of the solar cell element 11 is joined to the intermediate member 42. Further, the intermediate member 42 is also joined to the light diffusion member 70 disposed so as to cover the tab wiring 20.
- a conductive material such as a solder coated copper foil can be used.
- a surface protection member 80 is disposed on the front surface side of the plurality of solar cell elements 11, and a back surface protection member 90 is disposed on the back surface side.
- the surface filling member 60 is arrange
- a member 65 is disposed. The front surface protection member 80 and the back surface protection member 90 are fixed by a front surface filling member 60 and a back surface filling member 65, respectively.
- the surface filling member 60 is disposed on the front surface side of the plurality of solar cell elements 11, and the back surface filling member 65 is on the back surface side of the plurality of solar cell elements 11, and a plurality of solar cells are combined with the surface filling member 60. It arrange
- the surface protection member 80 is a member that protects the inside of the solar cell module 1 from wind and rain, external impact, fire, and the like, and ensures long-term reliability of the solar cell module 1 in outdoor exposure. From this point of view, the surface protection member 80 may be made of, for example, glass having translucency and water shielding properties, a resin member having light translucency and water shielding properties such as film or plate.
- the back surface protection member 90 is a member that protects the back surface of the solar cell module 1 from the external environment, and has, for example, a resin film such as PET (Polyethylene Terephthalate) or a structure in which an Al foil is sandwiched between resin films. A laminated film or the like can be used.
- the front surface filling member 60 is a filler filled in a space between the plurality of solar cell elements 11 and the surface protection member 80, and the back surface filling member 65 is formed between the plurality of solar cell elements 11 and the back surface protection member 90. It is a filler filled in the space between.
- the front surface filling member 60 and the back surface filling member 65 have a sealing function for blocking the solar cell element 11 from the external environment. With the arrangement of the front surface filling member 60 and the back surface filling member 65, it is possible to ensure high heat resistance and high moisture resistance of the solar cell module 1 assumed to be installed outdoors.
- the surface filling member 60 is mainly composed of a polyolefin-based filler.
- the polyolefin filler include polyethylene (polyethylene), polypropylene (polypropylene), and a polymer of polyethylene and polypropylene.
- acetic acid due to hydrolysis is not generated, and corrosion of the solar cell element 11 due to acetic acid can be suppressed.
- the back surface filling member 65 may be a polymer material having a sealing function. Note that the back surface filling member 65 is preferably made of the same material as the surface filling member 60 from the viewpoint of simplification of the manufacturing process and adhesion at the interface with the surface filling member 60. In order to improve the output by utilizing the reflection of light from the back surface filling member 65, it is preferable to include white particles such as titanium oxide in the back surface filling member 65.
- a frame 50 made of, for example, Al is attached via an adhesive so as to surround the surface protection member 80, the back surface protection member 90, the surface filling member 60, the back surface filling member 65, and the intermediate member 42.
- the intermediate member 42 is in contact with the side surface of the tab wiring 20 and the surface filling member 60.
- the intermediate member 42 is sandwiched between the side surface of the tab wiring 20 and the surface filling member 60.
- the surface of the solar cell element 11 and the surface of the light diffusion member 70 are not in contact with the intermediate member 42 but are in contact with the surface filling member 60.
- the intermediate member 42 is mainly composed of a polymer material having higher polarity than the polyolefin material.
- the intermediate member 42 is mainly composed of a polymer material having higher water absorption than the polyolefin-based material.
- the intermediate member 42 has a material that can absorb water, which is a polar molecule, more than the polyolefin-based material.
- a water absorption is mentioned as one of the physical quantities which judge the level of water absorption.
- the intermediate member 42 has, at least one of ethylene vinyl acetate (EVA) and polyethylene terephthalate is mentioned.
- EVA ethylene vinyl acetate
- polyethylene terephthalate examples of the polymer material of the intermediate member 42 include polymer materials having a hydrophilic group such as polyvinyl alcohol, ethylene-vinyl alcohol copolymer, and polyvinyl acetate.
- the above-described “polarity” can be evaluated by, for example, an SP value (Solubility Parameter) that is a solubility parameter that is a measure of the solubility of the two-component solution. From the evaluation of the solubility parameter, it can be determined that the solubility of the two components is higher as the difference between the SP values of the two components is smaller. If this is applied to the present embodiment, it can be determined that a material having an SP value closer to the SP value of water is more likely to dissolve water. From this point of view, the polymer material of the intermediate member 42 has a higher polarity than the first polyolefin material and the second polyolefin material.
- SP value Solubility Parameter
- the SP value of the polymer material is the first polyolefin material and the second polyolefin. This means that it is closer to the SP value of water, which is a polar substance, than the SP value of the system material.
- the first polyolefin material and the second polyolefin material are polyethylene and the polymer material of the intermediate member 42 is polyethylene terephthalate.
- the SP value (theoretical value) of water is 23.4
- the SP value of polyethylene is 7.9
- the SP value of polyethylene terephthalate is 10.7. That is, the difference in SP value between water and polyethylene is 15.5, whereas the difference in SP value between water and polyethylene terephthalate is 12.7.
- the SP value (10.7) of polyethylene terephthalate is closer to the SP value (23.4) of water than the SP value (7.9) of polyethylene. Therefore, it is determined that polyethylene terephthalate has a higher polarity than polyethylene.
- the surface filling is performed between the surface filling member 60 and the tab wiring 20 even if the inherent moisture is vaporized due to a rapid temperature change.
- the intermediate member 42 disposed in contact with the member 60 and the tab wiring 20 absorbs the vaporized water.
- the intermediate member 42 does not expand in volume, and it becomes possible to suppress the expansion (volume expansion) and the generation of bubbles at the interface between the surface filling member 60 and the tab wiring 20. Therefore, corrosion of the solar cell element 11 can be prevented by the surface filling member 60 having a polyolefin-based material as a main component, and swelling and peeling can be suppressed by the intermediate member 42.
- the intermediate member 42 can have not only a function of suppressing swelling and peeling but also an adhesive function for joining the light diffusion member 70 and the tab wiring 20.
- the intermediate member 42 may be disposed not only at the interface between the surface filling member 60 and the tab wiring 20 but also at the interface between the surface filling member 60 and the wiring 25. That is, even in this arrangement, the intermediate member 42 is arranged so as to be in contact with the surface filling member 60 and the wiring member.
- the intermediate member 42 is disposed so as to be sandwiched between the surface filling member 60 and the side surface of the tab wiring 20, but may not be in contact with the side surface of the tab wiring 20. What is necessary is just to touch the upper surface.
- FIG. 5B is a structural cross-sectional view in the row direction of the solar cell module according to Modification 1 of the embodiment. Specifically, FIG. 5B corresponds to a BB cross-sectional view of the plan view of FIG.
- the intermediate member 43 is not in contact with the side surface of the tab wiring 20 but is in contact with the upper surface of the tab wiring 20 and the surface filling member 60. Further, the surface of the solar cell element 11, the surface of the light diffusing member 70, and the side surface of the tab wiring 20 are not in contact with the intermediate member 43 but in contact with the surface filling member 60.
- the intermediate member 43 since the intermediate member 43 is in contact with the tab wiring 20 and the surface filling member 60, the water vaporized at the interface between the tab wiring 20 and the surface filling member 60 can be absorbed. Thereby, the intermediate member 43 does not expand in volume, and it becomes possible to suppress the expansion (volume expansion) and the generation of bubbles at the interface between the surface filling member 60 and the tab wiring 20.
- the light diffusing member 70 is not limited to a structure having a flat top surface and side surfaces as shown in FIGS. 4, 5 ⁇ / b> A, and 5 ⁇ / b> B. You may have the structure which can diffuse light more effectively than the light-diffusion structure which the light-diffusion member 70 has.
- FIG. 6 is a structural cross-sectional view of a light diffusing member according to Modification 2 of the embodiment.
- the light diffusing member 70 ⁇ / b> A shown in the figure includes a polymer layer 71 and a metal layer 72.
- the polymer layer 71 is a member whose bottom is in contact with the intermediate member 42 and whose main component is a polymer material that is harder than the polymer material that the intermediate member 42 has.
- the polymer layer 71 has a plurality of irregularities.
- a hard polymer material as the material of the polymer layer 71, the controllability of the surface processing of the polymer layer 71 is improved, and the accuracy of the uneven shape can be increased.
- PET polyethylene terephthalate
- the metal layer 72 is a metal member formed on the surface of the polymer layer 71, and the surface not in contact with the polymer layer 71 is in contact with the surface filling member 60.
- the metal layer 72 is preferably made of Al having a high reflectance with respect to light, for example.
- the metal layer 72 has a plurality of irregularities. Thereby, light incident from the surface side is reflected in multiple directions on the surface of the metal layer 72. That is, the light diffusion member 70A has a light diffusion and light reflection function. Therefore, since the light blocked from entering the solar cell element 11 by the tab wiring 20 can be redistributed to the solar cell element 11, it is possible to improve the photoelectric conversion efficiency of the entire solar cell module.
- corrugated shape of the metal layer 72 and the polymer layer 71 shown by FIG. 6 is a regular shape, this uneven
- the surface of the polymer layer 71 shown in FIG. 6 has a concavo-convex shape, but is not limited thereto, and the surface of the polymer layer 71 is a flat shape, and only the metal layer 72 has a concavo-convex shape. It may be a structure. In this case, what is necessary is just to adjust the thickness of the metal layer 72 according to required uneven
- the light diffusing member 70A shown in FIG. 6 is configured to include the metal layer 72
- the present invention is not limited thereto, and may be configured such that the metal layer 72 is not formed. Even with this configuration, it is possible to have a light diffusion function.
- the light diffusing member 70A shown in FIG. the surface of the metal layer 72 is preferably mirror-finished. Thereby, it becomes possible to have a light reflection function.
- the light diffusing member 70 is continuously formed across a plurality of solar cell elements 11 arranged in the column direction, that is, a solar cell string.
- the light diffusing member 70 contracts in the column direction due to heat addition in the manufacturing process.
- the light diffusion member 70 may be displaced and peeled off on the solar cell element 11.
- a configuration for preventing the light diffusion member 70 from being displaced and peeled will be described.
- FIG. 7 is a structural cross-sectional view of a light diffusing member according to Modification 3 of the embodiment.
- the figure shows a part of the solar cell string in plan view.
- the light diffusion member 70 ⁇ / b> B is divided for each solar cell element 11.
- the stress in the column direction due to heat addition is dispersed. Therefore, the position shift of the light diffusing member 70B can be reduced on the solar cell element 11, and peeling can be prevented.
- FIG. 8A is a diagram illustrating a first example of adjusting the length of the light diffusing member.
- the light diffusing member 70C having the column direction length L1 is arranged so that both end portions in the column direction of the light diffusing member 70C protrude from the end portions of the solar cell elements 11. According to this, even if the light diffusing member 70 ⁇ / b> C is contracted by the heat addition process (column length L ⁇ b> 2), it is possible to cover all the solar cell elements 11 in the column direction. Therefore, since the light blocked from entering the solar cell element 11 by the tab wiring 20 can be efficiently re-distributed to the solar cell element 11, the photoelectric conversion efficiency of the entire solar cell module can be improved. .
- FIG. 8B is a diagram illustrating a second example of adjusting the length of the light diffusing member.
- the light diffusion member 70D having the column direction length L3 is arranged in a state where the length of the light diffusion member 70D in the column direction is shorter than the length of the solar cell element 11 in the column direction. According to this, it becomes possible to make the stress in the column direction generated when the light diffusing member 70 ⁇ / b> D contracts due to the heat application process smaller. Therefore, it is possible to provide a highly reliable solar cell module against environmental temperature changes.
- Solar cell module 1 includes a plurality of solar cell elements 11 arranged side by side on a surface, and a surface filling member 60 including a polyolefin-based material disposed on the surface side of the plurality of solar cell elements 11.
- a back surface filling member 65 disposed on the back surface side of the plurality of solar cell elements 11, and a tab wiring 20 disposed on the front surface side of the plurality of solar cell elements 11 and electrically connecting the plurality of solar cell elements 11.
- the intermediate member 42 in contact with the tab wiring 20 and the surface filling member 60 and including a polymer material having a higher polarity than the polyolefin-based material or a higher water absorption than the polyolefin-based material, and the plurality of solar cell elements 11
- a surface protection member 80 arranged so as to sandwich the surface filling member 60 and a back surface protection member 90 arranged so as to sandwich the back surface filling member 65 between the plurality of solar cell elements 11 are provided. That.
- the intermediate member 42 disposed at the interface between the surface filling member 60 and the tab wiring 20 absorbs the vaporized moisture.
- the intermediate member 42 does not expand in volume, and it becomes possible to suppress the expansion (volume expansion) and the generation of bubbles at the interface between the surface filling member 60 and the tab wiring 20. Therefore, corrosion of the solar cell element 11 can be prevented by the surface filling member 60 having a polyolefin-based material as a main component, and swelling and peeling can be suppressed by the intermediate member 42.
- the intermediate member 42 may be sandwiched between the side surface of the tab wiring 20 and the surface filling member 60.
- the intermediate member 42 is interposed on the side surface of the tab wiring 20 having a large contact area with the surface filling member 60, swelling (volume expansion) at the interface between the surface filling member 60 and the tab wiring 20 and air bubbles Generation
- production can be suppressed more effectively.
- a light diffusing member 70 is formed on the tab wiring 20 so as to cover the upper surface of the tab wiring 20, and the light diffusing member 70 and the tab wiring 20 are bonded via an intermediate member 42. Also good.
- a plurality of irregularities may be formed on the surface of the light diffusion member 70A.
- the light blocked from entering the solar cell element 11 by the tab wiring 20 is diffused on the surface of the light diffusion member 70A. Therefore, since light that does not directly enter the solar cell element 11 can be redistributed to the solar cell element 11, it is possible to improve the photoelectric conversion efficiency of the entire solar cell module.
- the light diffusion member 70A includes a polymer layer 71 mainly composed of a polymer material harder than the polymer material included in the intermediate member 42, and a metal layer 72 formed on the surface of the polymer layer 71. Also good.
- the polymer layer 71 and the metal layer 72 may have a plurality of irregularities.
- the light incident from the surface side is reflected and diffused on the surface of the metal layer 72. Therefore, since light that does not directly enter the solar cell element 11 can be redistributed to the solar cell element 11, it is possible to improve the photoelectric conversion efficiency of the entire solar cell module.
- the tab wiring 20 is disposed on the surface of the solar cell element 11 via the resin adhesive member 41, the intermediate member 42 is disposed on the tab wiring 20, and the light diffusion member 70 is disposed on the intermediate member 42.
- the polymer material included in the intermediate member 42 may be ethylene vinyl acetate, and the polymer material included in the polymer layer 71 may be polyethylene terephthalate.
- the solar cell element 11 only needs to have a function as a photovoltaic power, and is not limited to the structure of the solar cell element.
- the configuration in which the plurality of solar cell elements 11 are arranged in a matrix on the surface is shown, but the configuration is not limited to the matrix arrangement.
- positioning, the one-dimensional linear form, or curved form may be sufficient.
- the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Energy (AREA)
- Photovoltaic Devices (AREA)
Abstract
This solar cell module (1) is provided with: a plurality of solar cell elements (11); a front surface filling member (60) which is arranged on the front surface side of the plurality of solar cell elements (11) and contains a polyolefin material; a back surface filling member (65) which is arranged on the back surface side of the plurality of solar cell elements (11); a tab wire (20) which is arranged on the front surface side of the plurality of solar cell elements (11) and electrically connects the plurality of solar cell elements (11); an intermediate member (42) which is in contact with the tab wire (20) and the front surface filling member (60) and contains a polymer material that has higher polarity or higher water absorption than the polyolefin material; a front surface protective member (80) which is arranged so as to sandwich the front surface filling member (60) between itself and the plurality of solar cell elements (11); and a back surface protective member (90) which is arranged so as to sandwich the back surface filling member (65) between itself and the plurality of solar cell elements (11).
Description
本発明は、太陽電池モジュールに関する。
The present invention relates to a solar cell module.
複数の太陽電池素子を備える太陽電池モジュールは、屋外設置が想定されるため、高耐熱性及び高耐湿性が要求される。高耐熱性及び高耐湿性を確保すべく、上記太陽電池モジュールには、複数の太陽電池素子を基板及び充填材で封入した構造が採用されている。
Since a solar cell module including a plurality of solar cell elements is assumed to be installed outdoors, high heat resistance and high moisture resistance are required. In order to ensure high heat resistance and high moisture resistance, the solar cell module employs a structure in which a plurality of solar cell elements are enclosed with a substrate and a filler.
特許文献1には、透明前面基板と太陽電池素子との間に表側充填材層が配置され、裏面保護シートと太陽電池素子との間に裏側充填材層が配置された太陽電池モジュールの封止構造が開示されている。上記表側充填材層及び裏側充填材層は、共に、ポリエチレン及びポリエチレン重合体であるポリオレフィン系の充填材で構成されている。ポリオレフィン系の充填材は、加水分解による酢酸を発生させないという点で、太陽電池素子の腐食を抑制できる材料である。特許文献1に開示された太陽電池モジュールによれば、上記充填材を低密度に調整することにより、ホットスポット現象などで温度変化があった場合でも、ポリエチレンの結晶化を防止でき、充填材の白濁を抑制することが可能となる。
Patent Document 1 discloses a solar cell module in which a front-side filler layer is disposed between a transparent front substrate and a solar cell element, and a back-side filler layer is disposed between a back surface protective sheet and the solar cell element. A structure is disclosed. Both the front-side filler layer and the back-side filler layer are made of polyethylene and a polyolefin-based filler that is a polyethylene polymer. The polyolefin-based filler is a material that can suppress corrosion of the solar cell element in that acetic acid is not generated by hydrolysis. According to the solar cell module disclosed in Patent Document 1, by adjusting the filler to a low density, crystallization of polyethylene can be prevented even when there is a temperature change due to a hot spot phenomenon or the like. It becomes possible to suppress cloudiness.
しかしながら、特許文献1に開示された太陽電池モジュールでは、水分を含んだ状態でホットスポット等により急激な温度変化が起こると、当該水分が気化し、太陽電池素子どうしを電気的に接続する配線部材と表側充填材層との界面で膨れ(体積膨張)及び気泡が発生する。また、膨れ及び気泡により、上記界面での剥がれが発生する。
However, in the solar cell module disclosed in Patent Document 1, when a sudden temperature change occurs due to a hot spot or the like in a state containing moisture, the moisture is vaporized, and the wiring member that electrically connects the solar cell elements to each other Swelling (volume expansion) and bubbles are generated at the interface between the surface and the front filler layer. Also, peeling at the interface occurs due to swelling and bubbles.
そこで、本発明は、上記課題を解決するためになされたものであって、太陽電池素子の腐食を抑制し、かつ、膨れや剥がれを防止することが可能な太陽電池モジュールを提供することを目的とする。
Therefore, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a solar cell module capable of suppressing corrosion of a solar cell element and preventing swelling and peeling. And
上記課題を解決するために、本発明に係る太陽電池モジュールは、複数の太陽電池素子と、前記複数の太陽電池素子の表面側に配置された、ポリオレフィン系材料を含む表面充填部材と、前記複数の太陽電池素子の裏面側に配置された裏面充填部材と、前記複数の太陽電池素子の表面側に配置され、前記複数の太陽電池素子を接続する配線部材と、前記配線部材及び前記表面充填部材と接し、前記ポリオレフィン系材料よりも極性の高い、または、前記ポリオレフィン系材料よりも吸水性の高い高分子材料を含む中間部材と、前記複数の太陽電池素子とで前記表面充填部材を挟むように配置された表面保護部材と、前記複数の太陽電池素子とで前記裏面充填部材を挟むように配置された裏面保護部材とを備える。
In order to solve the above problems, a solar cell module according to the present invention includes a plurality of solar cell elements, a surface filling member including a polyolefin-based material, disposed on the surface side of the plurality of solar cell elements, and the plurality of solar cell modules. A back surface filling member disposed on the back surface side of the solar cell element, a wiring member disposed on the front surface side of the plurality of solar cell elements and connecting the plurality of solar cell elements, the wiring member, and the surface filling member The surface filling member is sandwiched between the plurality of solar cell elements and an intermediate member including a polymer material having a higher polarity than the polyolefin-based material or a higher water absorption than the polyolefin-based material. The surface protection member arrange | positioned and the back surface protection member arrange | positioned so that the said back surface filling member may be pinched | interposed with these solar cell elements.
本発明に係る太陽電池モジュールによれば、太陽電池素子の腐食を抑制し、かつ、膨れや剥がれを抑制することが可能となる。
According to the solar cell module according to the present invention, it is possible to suppress the corrosion of the solar cell element and to suppress the swelling and peeling.
以下では、本発明の実施の形態に係る太陽電池モジュールについて、図面を用いて詳細に説明する。以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
Hereinafter, the solar cell module according to the embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, components, component arrangements, connection forms, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。
Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected about the same structural member.
本明細書において、太陽電池素子の「表面」とは、その反対側の面である「裏面」に比べ、光が多く内部へ入射可能な面を意味(50%超過~100%の光が表面から内部に入射する)し、「裏面」側から光が内部に全く入らない場合も含む。また太陽電池モジュールの「表面」とは、太陽電池素子の「表面」と対向する側の光が入射可能な面を意味し、「裏面」とはその反対側の面を意味する。また、「第1の部材上に第2の部材を設ける」等の記載は、特に限定を付さない限り、第1及び第2の部材が直接接触して設けられる場合のみを意図しない。即ち、この記載は、第1及び第2の部材の間に他の部材が存在する場合を含む。また、「略**」との記載は、「略同一」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。
In this specification, the “front surface” of a solar cell element means a surface that allows more light to enter the interior than the “back surface” that is the opposite surface (over 50% to 100% light is the surface). And the case where no light enters the interior from the “back surface” side. The “surface” of the solar cell module means a surface on which light on the side facing the “surface” of the solar cell element can be incident, and the “back surface” means a surface on the opposite side. In addition, descriptions such as “providing the second member on the first member” do not intend only when the first and second members are provided in direct contact unless specifically limited. That is, this description includes a case where another member exists between the first and second members. In addition, the description of “substantially **” is intended to include not only exactly the same, but also those that are recognized as being substantially the same, with “substantially identical” as an example.
(実施の形態)
[1.太陽電池モジュールの基本構成]
本実施の形態に係る太陽電池モジュールの基本構成の一例について、図1を用いて説明する。 (Embodiment)
[1. Basic configuration of solar cell module]
An example of the basic configuration of the solar cell module according to this embodiment will be described with reference to FIG.
[1.太陽電池モジュールの基本構成]
本実施の形態に係る太陽電池モジュールの基本構成の一例について、図1を用いて説明する。 (Embodiment)
[1. Basic configuration of solar cell module]
An example of the basic configuration of the solar cell module according to this embodiment will be described with reference to FIG.
図1は、実施の形態に係る太陽電池モジュールの概観平面図である。同図に示された太陽電池モジュール1は、複数の太陽電池素子11と、タブ配線20と、わたり配線25と、枠体50と、光拡散部材70とを備える。なお、図1には示していないが、太陽電池モジュール1は、さらに、表面充填部材と、裏面充填部材と、中間部材と、表面保護部材と、裏面保護部材とを備える。
FIG. 1 is a schematic plan view of a solar cell module according to an embodiment. The solar cell module 1 shown in the figure includes a plurality of solar cell elements 11, a tab wiring 20, a cross wiring 25, a frame body 50, and a light diffusion member 70. Although not shown in FIG. 1, the solar cell module 1 further includes a surface filling member, a back surface filling member, an intermediate member, a surface protection member, and a back surface protection member.
太陽電池素子11は、平面上に行列状に配置され、光照射により電力を発生する平板状の光起電力素子である。
The solar cell elements 11 are flat-plate photovoltaic elements that are arranged in a matrix on a plane and generate power by light irradiation.
タブ配線20は、列方向に隣接する太陽電池素子11を電気的に接続する配線部材である。
The tab wiring 20 is a wiring member that electrically connects the solar cell elements 11 adjacent in the column direction.
わたり配線25は、太陽電池ストリングどうしを接続する配線部材である。なお、太陽電池ストリングとは、列方向に配置されタブ配線20により接続された複数の太陽電池素子11の集合体である。
The cross wiring 25 is a wiring member for connecting the solar cell strings. The solar cell string is an aggregate of a plurality of solar cell elements 11 arranged in the column direction and connected by the tab wiring 20.
枠体50は、複数の太陽電池素子11が2次元配列されたパネルの外周部を覆う外枠部材である。
The frame body 50 is an outer frame member that covers the outer periphery of a panel in which a plurality of solar cell elements 11 are two-dimensionally arranged.
光拡散部材70は、光拡散機能を有する部材であり、太陽電池素子11の表面側に配置されたタブ配線20及びわたり配線25の上方(表面側)であって、タブ配線20の上面を覆うように形成されている。
The light diffusion member 70 is a member having a light diffusion function, and covers the upper surface of the tab wiring 20 above the tab wiring 20 and the cross wiring 25 arranged on the front surface side of the solar cell element 11 (on the front surface side). It is formed as follows.
中間部材、表面充填部材、裏面充填部材、表面保護部材、及び裏面保護部材については、後述する図4、図5A及び図5Bにて詳細に説明する。
The intermediate member, the surface filling member, the back surface filling member, the surface protection member, and the back surface protection member will be described in detail with reference to FIGS. 4, 5A, and 5B described later.
[2.太陽電池素子の構造]
太陽電池モジュール1の主たる構成要素である太陽電池素子11の構造について説明する。 [2. Structure of solar cell element]
The structure of thesolar cell element 11 which is the main component of the solar cell module 1 will be described.
太陽電池モジュール1の主たる構成要素である太陽電池素子11の構造について説明する。 [2. Structure of solar cell element]
The structure of the
図2は、実施の形態に係る太陽電池素子の平面図である。同図に示すように、太陽電池素子11は、平面視において略正方形状である。また、太陽電池素子11の表面上には、ストライプ状の複数のバスバー電極112が互いに平行に形成され、バスバー電極112と直交するようにストライプ状の複数のフィンガー電極111が互いに平行に形成されている。バスバー電極112及びフィンガー電極111は、集電極110を構成する。集電極110は、例えば、Ag(銀)等の導電性粒子を含む導電性ペーストにより形成される。なお、バスバー電極112の線幅は、例えば、1.5mmであり、フィンガー電極111の線幅は、例えば、100μmであり、フィンガー電極111のピッチは、例えば、2mmである。また、バスバー電極112の上には、タブ配線20が接合されている。
FIG. 2 is a plan view of the solar cell element according to the embodiment. As shown in the figure, the solar cell element 11 has a substantially square shape in plan view. Further, on the surface of the solar cell element 11, a plurality of striped bus bar electrodes 112 are formed in parallel to each other, and a plurality of striped finger electrodes 111 are formed in parallel to each other so as to be orthogonal to the bus bar electrodes 112. Yes. The bus bar electrode 112 and the finger electrode 111 constitute a collector electrode 110. The collector electrode 110 is formed of, for example, a conductive paste containing conductive particles such as Ag (silver). The line width of the bus bar electrode 112 is, for example, 1.5 mm, the line width of the finger electrode 111 is, for example, 100 μm, and the pitch of the finger electrodes 111 is, for example, 2 mm. Further, the tab wiring 20 is bonded on the bus bar electrode 112.
図3は、実施の形態に係る太陽電池素子の積層構造を表す断面図である。なお、同図は、図2における太陽電池素子11のC-C断面図である。図3に示すように、n型単結晶シリコンウエハ101の主面上にi型非晶質シリコン膜121及びp型非晶質シリコン膜122が、この順で形成されている。n型単結晶シリコンウエハ101、i型非晶質シリコン膜121及びp型非晶質シリコン膜122は、光電変換層を形成し、n型単結晶シリコンウエハ101が主たる発電層となる。さらに、p型非晶質シリコン膜122上に、受光面電極102が形成されている。図2に示したように、受光面電極102上には、複数のバスバー電極112及び複数のフィンガー電極111からなる集電極110が形成されている。なお、図3では、集電極110のうち、フィンガー電極111のみが示されている。
FIG. 3 is a cross-sectional view showing a laminated structure of solar cell elements according to the embodiment. 2 is a CC cross-sectional view of the solar cell element 11 in FIG. As shown in FIG. 3, an i-type amorphous silicon film 121 and a p-type amorphous silicon film 122 are formed in this order on the main surface of an n-type single crystal silicon wafer 101. The n-type single crystal silicon wafer 101, the i-type amorphous silicon film 121, and the p-type amorphous silicon film 122 form a photoelectric conversion layer, and the n-type single crystal silicon wafer 101 serves as a main power generation layer. Further, the light receiving surface electrode 102 is formed on the p-type amorphous silicon film 122. As shown in FIG. 2, a collecting electrode 110 including a plurality of bus bar electrodes 112 and a plurality of finger electrodes 111 is formed on the light receiving surface electrode 102. In FIG. 3, only the finger electrode 111 of the collector electrode 110 is shown.
また、n型単結晶シリコンウエハ101の裏面には、i型非晶質シリコン膜123及びn型非晶質シリコン膜124が、この順で形成されている。さらに、n型非晶質シリコン膜124上に、受光面電極103が形成され、受光面電極103上に、複数のバスバー電極112及び複数のフィンガー電極111からなる集電極110が形成されている。
Further, an i-type amorphous silicon film 123 and an n-type amorphous silicon film 124 are formed in this order on the back surface of the n-type single crystal silicon wafer 101. Further, a light receiving surface electrode 103 is formed on the n-type amorphous silicon film 124, and a collecting electrode 110 including a plurality of bus bar electrodes 112 and a plurality of finger electrodes 111 is formed on the light receiving surface electrode 103.
なお、p型非晶質シリコン層122がn型単結晶シリコンウエハ101の裏面側に、n型非晶質シリコン層124がn型単結晶シリコンウエハ101の受光面側にそれぞれ形成されていてもよい。
Even if the p-type amorphous silicon layer 122 is formed on the back surface side of the n-type single crystal silicon wafer 101 and the n-type amorphous silicon layer 124 is formed on the light-receiving surface side of the n-type single crystal silicon wafer 101, respectively. Good.
集電極110は、例えば、樹脂材料をバインダとし、銀粒子等の導電性粒子をフィラーとした熱硬化型である樹脂型導電性ペーストを用いて、スクリーン印刷などの印刷法により形成することができる。
The collector electrode 110 can be formed by a printing method such as screen printing using a thermosetting resin-type conductive paste using a resin material as a binder and conductive particles such as silver particles as a filler, for example. .
本実施の形態に係る太陽電池素子11は、pn接合特性を改善するために、n型単結晶シリコンウエハ101とp型非晶質シリコン膜122又はn型非晶質シリコン膜124との間に、i型非晶質シリコン膜121を設けた構造を有している。
The solar cell element 11 according to the present embodiment is provided between the n-type single crystal silicon wafer 101 and the p-type amorphous silicon film 122 or the n-type amorphous silicon film 124 in order to improve the pn junction characteristics. The i-type amorphous silicon film 121 is provided.
本実施の形態に係る太陽電池素子11では、n型単結晶シリコンウエハ101の表面側の受光面電極102及び裏面側の受光面電極103がそれぞれ受光面となる。n型単結晶シリコンウエハ101において発生したキャリアは、光電流として表面側及び裏面側の受光面電極102及び103に拡散し、集電極110で収集される。
In the solar cell element 11 according to the present embodiment, the light-receiving surface electrode 102 on the front surface side and the light-receiving surface electrode 103 on the back surface side of the n-type single crystal silicon wafer 101 are light-receiving surfaces. Carriers generated in the n-type single crystal silicon wafer 101 diffuse as photocurrents to the light-receiving surface electrodes 102 and 103 on the front surface side and the back surface side, and are collected by the collector electrode 110.
受光面電極102及び103は、例えば、ITO(インジウム錫酸化物)、SnO2(酸化錫)、ZnO(酸化亜鉛)等からなる透明電極である。なお、表面側の受光面電極102側のみから光を入射させる場合には、裏面側の受光面電極103は、透明でない金属電極であってもよい。
The light receiving surface electrodes 102 and 103 are transparent electrodes made of, for example, ITO (indium tin oxide), SnO 2 (tin oxide), ZnO (zinc oxide), or the like. When light is incident only from the light receiving surface electrode 102 side on the front surface side, the light receiving surface electrode 103 on the back surface side may be a metal electrode that is not transparent.
なお、裏面側の集電極としては、集電極110の代わりに受光面電極103上の全面に形成された電極を用いてもよい。
In addition, as the collector electrode on the back surface side, an electrode formed on the entire surface of the light receiving surface electrode 103 may be used instead of the collector electrode 110.
[3.太陽電池モジュールの構造]
次に、本実施の形態に係る太陽電池モジュール1の構造について、要部特徴を中心に説明する。 [3. Structure of solar cell module]
Next, the structure of thesolar cell module 1 according to the present embodiment will be described focusing on the main features.
次に、本実施の形態に係る太陽電池モジュール1の構造について、要部特徴を中心に説明する。 [3. Structure of solar cell module]
Next, the structure of the
図4は、実施の形態に係る太陽電池モジュールの列方向における構造断面図であり、図5Aは、実施の形態に係る太陽電池モジュールの行方向における構造断面図である。具体的には、図4は図1の平面図のA-A断面図であり、図5Aは図1の平面図のB-B断面図である。
4 is a structural cross-sectional view in the column direction of the solar cell module according to the embodiment, and FIG. 5A is a structural cross-sectional view in the row direction of the solar cell module according to the embodiment. Specifically, FIG. 4 is a cross-sectional view taken along the line AA in the plan view of FIG. 1, and FIG. 5A is a cross-sectional view taken along the line BB of the plan view of FIG.
図4に示すように、本実施の形態に係る太陽電池モジュール1では、太陽電池素子11の表面及び裏面にタブ配線20が配置されている。列方向に隣接する2つの太陽電池素子11において、一方の太陽電池素子11の表面に配置されたタブ配線20は、他方の太陽電池素子11の裏面にも配置される。より具体的には、タブ配線20の一端部の下面は、一方の太陽電池素子11の表面側のバスバー電極112(図示せず)に接合される。また、タブ配線20の他端部の上面は、他方の太陽電池素子11の裏面側のバスバー電極112(図示せず)に接合される。これにより、列方向に配置された複数の太陽電池素子11からなる太陽電池ストリングは、当該複数の太陽電池素子11が列方向に直列接続された構成となっている。
As shown in FIG. 4, in the solar cell module 1 according to the present embodiment, tab wirings 20 are arranged on the front surface and the back surface of the solar cell element 11. In the two solar cell elements 11 adjacent to each other in the column direction, the tab wiring 20 disposed on the surface of one solar cell element 11 is also disposed on the back surface of the other solar cell element 11. More specifically, the lower surface of one end of the tab wiring 20 is joined to a bus bar electrode 112 (not shown) on the surface side of one solar cell element 11. Further, the upper surface of the other end portion of the tab wiring 20 is joined to a bus bar electrode 112 (not shown) on the back surface side of the other solar cell element 11. Thereby, the solar cell string composed of a plurality of solar cell elements 11 arranged in the column direction has a configuration in which the plurality of solar cell elements 11 are connected in series in the column direction.
タブ配線20とバスバー電極112とは、例えば、図5Aに示す樹脂接着部材41により接合される。つまり、タブ配線20は、樹脂接着部材41を介して太陽電池素子11に接続される。樹脂接着部材41は、共晶半田の融点以下、即ち、約200℃以下の温度で硬化することが好ましい。樹脂接着部材41としては、例えば、アクリル樹脂、柔軟性の高いポリウレタン系などの熱硬化性樹脂接着剤の他、エポキシ樹脂、アクリル樹脂、あるいはウレタン樹脂に硬化剤を混合させた2液反応系接着剤などを用いることができる。また、樹脂接着剤には、導電性を有する複数の粒子が含まれていてもよい。このような粒子としては、ニッケル、金コート付きニッケルなどを用いることができる。
The tab wiring 20 and the bus bar electrode 112 are joined by, for example, a resin adhesive member 41 shown in FIG. 5A. That is, the tab wiring 20 is connected to the solar cell element 11 through the resin adhesive member 41. The resin adhesive member 41 is preferably cured at a temperature below the melting point of the eutectic solder, that is, at a temperature of about 200 ° C. or less. As the resin bonding member 41, for example, a two-component reaction type bonding in which a curing agent is mixed with an epoxy resin, an acrylic resin, or a urethane resin in addition to a thermosetting resin adhesive such as an acrylic resin or a highly flexible polyurethane system. An agent or the like can be used. The resin adhesive may contain a plurality of conductive particles. As such particles, nickel, nickel with gold coating, or the like can be used.
図4及び図5Aに示すように、タブ配線20のうち、太陽電池素子11の表面側に配置された部分は、中間部材42と接合されている。さらに中間部材42は、タブ配線20を覆うように配置された光拡散部材70とも接合されている。
4 and 5A, the portion of the tab wiring 20 that is disposed on the surface side of the solar cell element 11 is joined to the intermediate member 42. Further, the intermediate member 42 is also joined to the light diffusion member 70 disposed so as to cover the tab wiring 20.
なお、タブ配線20としては、例えば、はんだコート銅箔等の導電性材料を用いることができる。
As the tab wiring 20, for example, a conductive material such as a solder coated copper foil can be used.
図4及び図5Aに示すように、複数の太陽電池素子11の表面側には表面保護部材80が配設され、裏面側には裏面保護部材90が配設されている。そして、複数の太陽電池素子11を含む面と表面保護部材80との間には表面充填部材60が配置され、複数の太陽電池素子11を含む面と裏面保護部材90との間には裏面充填部材65が配置されている。表面保護部材80及び裏面保護部材90は、それぞれ、表面充填部材60及び裏面充填部材65により固定されている。言い換えると、表面充填部材60は、複数の太陽電池素子11の表面側に配置され、裏面充填部材65は、複数の太陽電池素子11の裏面側であって、表面充填部材60とで複数の太陽電池素子11を挟むように配置されている。また、表面保護部材80は、複数の太陽電池素子11とで表面充填部材60を挟むように配置され、裏面保護部材90は、複数の太陽電池素子11とで裏面充填部材65を挟むように配置されている。
4 and 5A, a surface protection member 80 is disposed on the front surface side of the plurality of solar cell elements 11, and a back surface protection member 90 is disposed on the back surface side. And the surface filling member 60 is arrange | positioned between the surface containing the several solar cell element 11 and the surface protection member 80, and back surface filling is carried out between the surface containing the several solar cell element 11 and the back surface protection member 90. A member 65 is disposed. The front surface protection member 80 and the back surface protection member 90 are fixed by a front surface filling member 60 and a back surface filling member 65, respectively. In other words, the surface filling member 60 is disposed on the front surface side of the plurality of solar cell elements 11, and the back surface filling member 65 is on the back surface side of the plurality of solar cell elements 11, and a plurality of solar cells are combined with the surface filling member 60. It arrange | positions so that the battery element 11 may be pinched | interposed. Further, the surface protection member 80 is disposed so as to sandwich the surface filling member 60 with the plurality of solar cell elements 11, and the back surface protection member 90 is disposed so as to sandwich the back surface filling member 65 with the plurality of solar cell elements 11. Has been.
表面保護部材80は、太陽電池モジュール1の内部を風雨や外部衝撃、火災などから保護し、太陽電池モジュール1の屋外暴露における長期信頼性を確保するための部材である。この観点から表面保護部材80は、例えば、透光性及び遮水性を有するガラス、フィルム状または板状の硬質の透光性及び遮水性を有する樹脂部材等を用いることができる。裏面保護部材90は、太陽電池モジュール1の裏面を外部環境から保護する部材であり、例えば、PET(Polyethylene Terephthalate:ポリエチレンテレフタレート)等の樹脂フィルム、または、Al箔を樹脂フィルムでサンドイッチした構造を有する積層フィルムなどを用いることができる。
The surface protection member 80 is a member that protects the inside of the solar cell module 1 from wind and rain, external impact, fire, and the like, and ensures long-term reliability of the solar cell module 1 in outdoor exposure. From this point of view, the surface protection member 80 may be made of, for example, glass having translucency and water shielding properties, a resin member having light translucency and water shielding properties such as film or plate. The back surface protection member 90 is a member that protects the back surface of the solar cell module 1 from the external environment, and has, for example, a resin film such as PET (Polyethylene Terephthalate) or a structure in which an Al foil is sandwiched between resin films. A laminated film or the like can be used.
表面充填部材60は、複数の太陽電池素子11と表面保護部材80との間の空間に充填された充填材であり、裏面充填部材65は、複数の太陽電池素子11と裏面保護部材90との間の空間に充填された充填材である。表面充填部材60及び裏面充填部材65は、太陽電池素子11を外部環境から遮断するための封止機能を有している。表面充填部材60及び裏面充填部材65の配置により、屋外設置が想定される太陽電池モジュール1の高耐熱性及び高耐湿性を確保することが可能となる。
The front surface filling member 60 is a filler filled in a space between the plurality of solar cell elements 11 and the surface protection member 80, and the back surface filling member 65 is formed between the plurality of solar cell elements 11 and the back surface protection member 90. It is a filler filled in the space between. The front surface filling member 60 and the back surface filling member 65 have a sealing function for blocking the solar cell element 11 from the external environment. With the arrangement of the front surface filling member 60 and the back surface filling member 65, it is possible to ensure high heat resistance and high moisture resistance of the solar cell module 1 assumed to be installed outdoors.
表面充填部材60は、ポリオレフィン系の充填材を主成分としている。ここで、ポリオレフィン系の充填材とは、例えば、ポリエチレン(Polyethylene)、ポリプロピレン(Polypropylene)、及びポリエチレンとポリプロピレンとの重合体などが挙げられる。
The surface filling member 60 is mainly composed of a polyolefin-based filler. Here, examples of the polyolefin filler include polyethylene (polyethylene), polypropylene (polypropylene), and a polymer of polyethylene and polypropylene.
表面充填部材60としてポリオレフィン系の充填材を適用することにより、加水分解による酢酸を発生させず、酢酸による太陽電池素子11の腐食を抑制することが可能となる。
By applying a polyolefin-based filler as the surface filling member 60, acetic acid due to hydrolysis is not generated, and corrosion of the solar cell element 11 due to acetic acid can be suppressed.
裏面充填部材65は、封止機能を有する高分子材料であればよい。なお、製造工程の簡素化、及び、表面充填部材60との界面の密着性といった観点から、裏面充填部材65は、表面充填部材60と同じ材料であることが好ましい。裏面充填部材65からの光の反射を利用して出力を向上させるために酸化チタン等の白色粒子を裏面充填部材65に含有させることが好ましい。
The back surface filling member 65 may be a polymer material having a sealing function. Note that the back surface filling member 65 is preferably made of the same material as the surface filling member 60 from the viewpoint of simplification of the manufacturing process and adhesion at the interface with the surface filling member 60. In order to improve the output by utilizing the reflection of light from the back surface filling member 65, it is preferable to include white particles such as titanium oxide in the back surface filling member 65.
表面保護部材80、裏面保護部材90、表面充填部材60、裏面充填部材65、及び中間部材42の周囲を取り囲むように、接着剤を介して、例えばAl製の枠体50が取り付けられている。
A frame 50 made of, for example, Al is attached via an adhesive so as to surround the surface protection member 80, the back surface protection member 90, the surface filling member 60, the back surface filling member 65, and the intermediate member 42.
中間部材42は、図5Aに示すように、タブ配線20の側面及び表面充填部材60と接している。言い換えれば、中間部材42は、タブ配線20の側面と表面充填部材60とで挟まれている。また、太陽電池素子11の表面及び光拡散部材70の表面は、中間部材42とは接しておらず、表面充填部材60と接している。
As shown in FIG. 5A, the intermediate member 42 is in contact with the side surface of the tab wiring 20 and the surface filling member 60. In other words, the intermediate member 42 is sandwiched between the side surface of the tab wiring 20 and the surface filling member 60. Further, the surface of the solar cell element 11 and the surface of the light diffusion member 70 are not in contact with the intermediate member 42 but are in contact with the surface filling member 60.
中間部材42は、ポリオレフィン系材料よりも極性の高い高分子材料を主成分としている。
The intermediate member 42 is mainly composed of a polymer material having higher polarity than the polyolefin material.
または、中間部材42は、ポリオレフィン系材料よりも吸水性の高い高分子材料を主成分としている。
Alternatively, the intermediate member 42 is mainly composed of a polymer material having higher water absorption than the polyolefin-based material.
つまり、中間部材42は、極性分子である水を、ポリオレフィン系材料よりも多く吸収することが可能な材料を有している。なお、吸水性の高低を判定する物理量の一つとして、吸水率が挙げられる。
That is, the intermediate member 42 has a material that can absorb water, which is a polar molecule, more than the polyolefin-based material. In addition, a water absorption is mentioned as one of the physical quantities which judge the level of water absorption.
なお、中間部材42が有する好適な高分子材料としては、エチレンビニルアセテート(EVA)及びポリエチレンテレフタレートの少なくとも一方が挙げられる。また、中間部材42が有する高分子材料としては、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、及びポリビニルアセテート、等の親水性基を有する高分子材料が挙げられる。
In addition, as a suitable polymeric material which the intermediate member 42 has, at least one of ethylene vinyl acetate (EVA) and polyethylene terephthalate is mentioned. Examples of the polymer material of the intermediate member 42 include polymer materials having a hydrophilic group such as polyvinyl alcohol, ethylene-vinyl alcohol copolymer, and polyvinyl acetate.
なお、上述した「極性」の高低については、例えば、2成分系溶液の溶解度の目安となる溶解パラメータであるSP値(Solubility Parameter)により評価することが可能である。上記溶解パラメータの評価により、2つの成分のSP値の差が小さいほど2成分の溶解度は高いと判定できる。これを本実施の形態に適用すれば、水のSP値に近いSP値を有する材料ほど、水が溶解し易いと判定できる。この観点から、中間部材42が有する高分子材料が第1ポリオレフィン系材料及び第2ポリオレフィン系材料よりも極性が高いとは、当該高分子材料のSP値が、第1ポリオレフィン系材料及び第2ポリオレフィン系材料のSP値よりも、極性物質である水のSP値に近いということである。ここで、第1ポリオレフィン系材料及び第2ポリオレフィン系材料がポリエチレンであり、中間部材42が有する高分子材料がポリエチレンテレフタレートである場合を例示する。この場合、水のSP値(理論値)が23.4であるのに対して、ポリエチレンのSP値は7.9であり、ポリエチレンテレフタレートのSP値は10.7である。つまり、水及びポリエチレンのSP値の差は15.5であるのに対して、水及びポリエチレンテレフタレートのSP値の差は12.7である。言い換えれば、ポリエチレンテレフタレートのSP値(10.7)は、ポリエチレンのSP値(7.9)よりも水のSP値(23.4)に近い。よって、ポリエチレンテレフタレートは、ポリエチレンよりも極性が高いと判定される。
The above-described “polarity” can be evaluated by, for example, an SP value (Solubility Parameter) that is a solubility parameter that is a measure of the solubility of the two-component solution. From the evaluation of the solubility parameter, it can be determined that the solubility of the two components is higher as the difference between the SP values of the two components is smaller. If this is applied to the present embodiment, it can be determined that a material having an SP value closer to the SP value of water is more likely to dissolve water. From this point of view, the polymer material of the intermediate member 42 has a higher polarity than the first polyolefin material and the second polyolefin material. The SP value of the polymer material is the first polyolefin material and the second polyolefin. This means that it is closer to the SP value of water, which is a polar substance, than the SP value of the system material. Here, the case where the first polyolefin material and the second polyolefin material are polyethylene and the polymer material of the intermediate member 42 is polyethylene terephthalate is exemplified. In this case, the SP value (theoretical value) of water is 23.4, whereas the SP value of polyethylene is 7.9, and the SP value of polyethylene terephthalate is 10.7. That is, the difference in SP value between water and polyethylene is 15.5, whereas the difference in SP value between water and polyethylene terephthalate is 12.7. In other words, the SP value (10.7) of polyethylene terephthalate is closer to the SP value (23.4) of water than the SP value (7.9) of polyethylene. Therefore, it is determined that polyethylene terephthalate has a higher polarity than polyethylene.
表面充填材層と配線部材との間に上記中間部材が介在していない従来の太陽電池モジュールの構成では、急激な温度変化により、内在する水分が気化した場合、特に、表面充填材層と配線部材との界面での膨れ(体積膨張)及び気泡が発生してしまう。これにより、上記界面での剥がれや変形が生じてしまう恐れがある。
In the configuration of the conventional solar cell module in which the intermediate member is not interposed between the surface filler layer and the wiring member, in particular, when the inherent moisture is vaporized due to a rapid temperature change, the surface filler layer and the wiring Swelling (volume expansion) and bubbles are generated at the interface with the member. Thereby, there exists a possibility that peeling and a deformation | transformation may arise in the said interface.
これに対して、本実施の形態に係る太陽電池モジュール1によれば、急激な温度変化により、内在する水分が気化しても、表面充填部材60とタブ配線20との間であって表面充填部材60及びタブ配線20接して配置された中間部材42が、気化した水分を吸収する。これにより、中間部材42は体積膨張せず、表面充填部材60とタブ配線20との界面での膨れ(体積膨張)及び気泡の発生を抑制することが可能となる。よって、ポリオレフィン系材料を主成分とする表面充填部材60により太陽電池素子11の腐食を防止し、かつ、中間部材42により、膨れや剥がれを抑制することが可能となる。
On the other hand, according to the solar cell module 1 according to the present embodiment, the surface filling is performed between the surface filling member 60 and the tab wiring 20 even if the inherent moisture is vaporized due to a rapid temperature change. The intermediate member 42 disposed in contact with the member 60 and the tab wiring 20 absorbs the vaporized water. Thereby, the intermediate member 42 does not expand in volume, and it becomes possible to suppress the expansion (volume expansion) and the generation of bubbles at the interface between the surface filling member 60 and the tab wiring 20. Therefore, corrosion of the solar cell element 11 can be prevented by the surface filling member 60 having a polyolefin-based material as a main component, and swelling and peeling can be suppressed by the intermediate member 42.
さらに、中間部材42は、膨れや剥がれを抑制する機能だけでなく、光拡散部材70とタブ配線20とを接合する接着機能を有することが可能となる。
Furthermore, the intermediate member 42 can have not only a function of suppressing swelling and peeling but also an adhesive function for joining the light diffusion member 70 and the tab wiring 20.
なお、中間部材42は、表面充填部材60とタブ配線20との界面に配置されるだけでなく、表面充填部材60とわたり配線25との界面に配置されていてもよい。つまり、この配置であっても、中間部材42は、表面充填部材60及び配線部材と接するように配置されている。
The intermediate member 42 may be disposed not only at the interface between the surface filling member 60 and the tab wiring 20 but also at the interface between the surface filling member 60 and the wiring 25. That is, even in this arrangement, the intermediate member 42 is arranged so as to be in contact with the surface filling member 60 and the wiring member.
[4.中間部材の変形例]
本実施の形態では、中間部材42は、表面充填部材60とタブ配線20の側面とで挟まれるように配置されているが、タブ配線20の側面に接していなくてもよく、タブ配線20の上面と接していればよい。 [4. Modification of intermediate member]
In the present embodiment, theintermediate member 42 is disposed so as to be sandwiched between the surface filling member 60 and the side surface of the tab wiring 20, but may not be in contact with the side surface of the tab wiring 20. What is necessary is just to touch the upper surface.
本実施の形態では、中間部材42は、表面充填部材60とタブ配線20の側面とで挟まれるように配置されているが、タブ配線20の側面に接していなくてもよく、タブ配線20の上面と接していればよい。 [4. Modification of intermediate member]
In the present embodiment, the
図5Bは、実施の形態の変形例1に係る太陽電池モジュールの行方向における構造断面図である。具体的には、図5Bは図1の平面図のB-B断面図に相当する。図5Bに示すように、中間部材43は、タブ配線20の側面と接しておらず、タブ配線20の上面及び表面充填部材60と接している。また、太陽電池素子11の表面、光拡散部材70の表面及びタブ配線20の側面は、中間部材43とは接しておらず、表面充填部材60と接している。
FIG. 5B is a structural cross-sectional view in the row direction of the solar cell module according to Modification 1 of the embodiment. Specifically, FIG. 5B corresponds to a BB cross-sectional view of the plan view of FIG. As shown in FIG. 5B, the intermediate member 43 is not in contact with the side surface of the tab wiring 20 but is in contact with the upper surface of the tab wiring 20 and the surface filling member 60. Further, the surface of the solar cell element 11, the surface of the light diffusing member 70, and the side surface of the tab wiring 20 are not in contact with the intermediate member 43 but in contact with the surface filling member 60.
この構成であっても、中間部材43が、タブ配線20及び表面充填部材60と接しているので、タブ配線20と表面充填部材60との界面で気化した水分を吸収することができる。これにより、中間部材43は体積膨張せず、表面充填部材60とタブ配線20との界面での膨れ(体積膨張)及び気泡の発生を抑制することが可能となる。
Even in this configuration, since the intermediate member 43 is in contact with the tab wiring 20 and the surface filling member 60, the water vaporized at the interface between the tab wiring 20 and the surface filling member 60 can be absorbed. Thereby, the intermediate member 43 does not expand in volume, and it becomes possible to suppress the expansion (volume expansion) and the generation of bubbles at the interface between the surface filling member 60 and the tab wiring 20.
[5.光拡散部材の変形例]
光拡散部材70は、図4、図5A及び図5Bに示されたような、上面及び側面が平坦な構造に限られない。光拡散部材70が有する光拡散構造よりも、より効果的に光拡散可能な構造を有していてもよい。 [5. Modification of light diffusing member]
Thelight diffusing member 70 is not limited to a structure having a flat top surface and side surfaces as shown in FIGS. 4, 5 </ b> A, and 5 </ b> B. You may have the structure which can diffuse light more effectively than the light-diffusion structure which the light-diffusion member 70 has.
光拡散部材70は、図4、図5A及び図5Bに示されたような、上面及び側面が平坦な構造に限られない。光拡散部材70が有する光拡散構造よりも、より効果的に光拡散可能な構造を有していてもよい。 [5. Modification of light diffusing member]
The
図6は、実施の形態の変形例2に係る光拡散部材の構造断面図である。同図に示された光拡散部材70Aは、高分子層71と、金属層72とを備える。
FIG. 6 is a structural cross-sectional view of a light diffusing member according to Modification 2 of the embodiment. The light diffusing member 70 </ b> A shown in the figure includes a polymer layer 71 and a metal layer 72.
高分子層71は、底面が中間部材42と接しており、中間部材42が有する上記高分子材料よりも硬質である高分子材料を主成分とする部材である。なお、高分子層71には、複数の凹凸が形成されている。高分子層71の材料として硬質な高分子材料を適用することにより、高分子層71の表面加工の制御性が向上し、凹凸形状の精度を上げることが可能となる。高分子層71が有する上記高分子材料は、例えば、ポリエチレンテレフタレート(PET)が好適である。
The polymer layer 71 is a member whose bottom is in contact with the intermediate member 42 and whose main component is a polymer material that is harder than the polymer material that the intermediate member 42 has. The polymer layer 71 has a plurality of irregularities. By applying a hard polymer material as the material of the polymer layer 71, the controllability of the surface processing of the polymer layer 71 is improved, and the accuracy of the uneven shape can be increased. For example, polyethylene terephthalate (PET) is suitable as the polymer material that the polymer layer 71 has.
金属層72は、高分子層71の表面上に形成された金属部材であり、高分子層71と接していない面は、表面充填部材60と接している。金属層72は、例えば、光に対して反射率の高いAlなどが好適である。
The metal layer 72 is a metal member formed on the surface of the polymer layer 71, and the surface not in contact with the polymer layer 71 is in contact with the surface filling member 60. The metal layer 72 is preferably made of Al having a high reflectance with respect to light, for example.
金属層72には、複数の凹凸が形成されている。これにより、表面側から入射してきた光は、金属層72の表面で多方向に反射される。つまり、光拡散部材70Aは、光拡散及び光反射機能を有する。よって、タブ配線20により太陽電池素子11への入射を遮られた光を、太陽電池素子11へと再配光できるので、太陽電池モジュール全体の光電変換効率を向上させることが可能となる。
The metal layer 72 has a plurality of irregularities. Thereby, light incident from the surface side is reflected in multiple directions on the surface of the metal layer 72. That is, the light diffusion member 70A has a light diffusion and light reflection function. Therefore, since the light blocked from entering the solar cell element 11 by the tab wiring 20 can be redistributed to the solar cell element 11, it is possible to improve the photoelectric conversion efficiency of the entire solar cell module.
なお、図6に示された金属層72及び高分子層71の凹凸形状は、規則的な形状となっているが、この凹凸形状はランダム形状であってもよい。
In addition, although the uneven | corrugated shape of the metal layer 72 and the polymer layer 71 shown by FIG. 6 is a regular shape, this uneven | corrugated shape may be a random shape.
図6に示された高分子層71の表面は凹凸形状を有しているが、これには限られず、高分子層71の表面が平坦形状であって、金属層72のみに凹凸形状を有する構造であってもよい。この場合には、必要な凹凸高さに応じて金属層72の厚みを調整すればよい。
The surface of the polymer layer 71 shown in FIG. 6 has a concavo-convex shape, but is not limited thereto, and the surface of the polymer layer 71 is a flat shape, and only the metal layer 72 has a concavo-convex shape. It may be a structure. In this case, what is necessary is just to adjust the thickness of the metal layer 72 according to required uneven | corrugated height.
図6に示された光拡散部材70Aは、金属層72を備える構成であるが、これには限られず、金属層72が形成されていない構成であってもよい。この構成であっても、光拡散機能を有することが可能となる。
Although the light diffusing member 70A shown in FIG. 6 is configured to include the metal layer 72, the present invention is not limited thereto, and may be configured such that the metal layer 72 is not formed. Even with this configuration, it is possible to have a light diffusion function.
図6に示された光拡散部材70Aにおいて、凹凸形状がない構成であってもよい。この場合には、金属層72の表面は鏡面加工されていることが好ましい。これにより、光反射機能を有することが可能となる。
The light diffusing member 70A shown in FIG. In this case, the surface of the metal layer 72 is preferably mirror-finished. Thereby, it becomes possible to have a light reflection function.
上記実施の形態では、図1に示すように、光拡散部材70は、列方向に配置された複数の太陽電池素子11、つまり太陽電池ストリングにわたり連続形成されている。ここで、光拡散部材70と太陽電池素子11とで熱膨張係数に差異が生じる場合、製造工程における熱付加により光拡散部材70が列方向に収縮することが想定される。この結果、太陽電池素子11上において光拡散部材70の位置ずれ及び剥がれが生じることが懸念される。以下の変形例では、光拡散部材70の位置ずれ及び剥がれを防止する構成を説明する。
In the above embodiment, as shown in FIG. 1, the light diffusing member 70 is continuously formed across a plurality of solar cell elements 11 arranged in the column direction, that is, a solar cell string. Here, when a difference arises in the thermal expansion coefficient between the light diffusing member 70 and the solar cell element 11, it is assumed that the light diffusing member 70 contracts in the column direction due to heat addition in the manufacturing process. As a result, there is a concern that the light diffusion member 70 may be displaced and peeled off on the solar cell element 11. In the following modification, a configuration for preventing the light diffusion member 70 from being displaced and peeled will be described.
図7は、実施の形態の変形例3に係る光拡散部材の構造断面図である。同図には、平面視における太陽電池ストリングの一部が表されている。ここで、光拡散部材70Bは、太陽電池素子11ごとに分割されている。
FIG. 7 is a structural cross-sectional view of a light diffusing member according to Modification 3 of the embodiment. The figure shows a part of the solar cell string in plan view. Here, the light diffusion member 70 </ b> B is divided for each solar cell element 11.
これにより、光拡散部材70Bと太陽電池素子11とで熱膨張係数に差異が生じる場合であっても、熱付加による列方向の応力が分散される。よって、太陽電池素子11上において光拡散部材70Bの位置ずれを低減でき、また、剥がれを防止できる。
Thus, even in the case where a difference occurs in the thermal expansion coefficient between the light diffusing member 70B and the solar cell element 11, the stress in the column direction due to heat addition is dispersed. Therefore, the position shift of the light diffusing member 70B can be reduced on the solar cell element 11, and peeling can be prevented.
上記変形例3のように光拡散部材を分割するにあたり、太陽電池モジュールの仕様に応じて図8Aまたは図8Bのように光拡散部材を調整することが可能である。
When dividing the light diffusing member as in Modification 3, it is possible to adjust the light diffusing member as shown in FIG. 8A or FIG. 8B according to the specifications of the solar cell module.
図8Aは、光拡散部材の長さ調整の第一例を説明する図である。同図において、光拡散部材70Cの列方向の両端部が太陽電池素子11の端部からはみ出すように、列方向長さL1を有する光拡散部材70Cを配置する。これによれば、熱付加工程により光拡散部材70Cが収縮しても(列方向長さL2)、太陽電池素子11を列方向において全て覆うことが可能となる。よって、タブ配線20により太陽電池素子11への入射を遮られた光を、効率よく太陽電池素子11へと再配光できるので、太陽電池モジュール全体の光電変換効率を向上させることが可能となる。
FIG. 8A is a diagram illustrating a first example of adjusting the length of the light diffusing member. In the figure, the light diffusing member 70C having the column direction length L1 is arranged so that both end portions in the column direction of the light diffusing member 70C protrude from the end portions of the solar cell elements 11. According to this, even if the light diffusing member 70 </ b> C is contracted by the heat addition process (column length L <b> 2), it is possible to cover all the solar cell elements 11 in the column direction. Therefore, since the light blocked from entering the solar cell element 11 by the tab wiring 20 can be efficiently re-distributed to the solar cell element 11, the photoelectric conversion efficiency of the entire solar cell module can be improved. .
図8Bは、光拡散部材の長さ調整の第二例を説明する図である。同図において、光拡散部材70Dの列方向の長さが太陽電池素子11の列方向の長さよりも短い状態で、列方向長さL3を有する光拡散部材70Dを配置する。これによれば、熱付加工程により光拡散部材70Dが収縮した場合に発生する列方向の応力を、より小さくすることが可能となる。よって、環境温度変化に対して、信頼性の高い太陽電池モジュールを提供することが可能となる。
FIG. 8B is a diagram illustrating a second example of adjusting the length of the light diffusing member. In the drawing, the light diffusion member 70D having the column direction length L3 is arranged in a state where the length of the light diffusion member 70D in the column direction is shorter than the length of the solar cell element 11 in the column direction. According to this, it becomes possible to make the stress in the column direction generated when the light diffusing member 70 </ b> D contracts due to the heat application process smaller. Therefore, it is possible to provide a highly reliable solar cell module against environmental temperature changes.
[6.効果など]
本実施の形態に係る太陽電池モジュール1は、面上に並べて配置された複数の太陽電池素子11と、複数の太陽電池素子11の表面側に配置された、ポリオレフィン系材料を含む表面充填部材60と、複数の太陽電池素子11の裏面側に配置された裏面充填部材65と、複数の太陽電池素子11の表面側に配置され、複数の太陽電池素子11を電気的に接続するタブ配線20と、タブ配線20及び表面充填部材60と接し、ポリオレフィン系材料よりも極性の高い、または、ポリオレフィン系材料よりも吸水性の高い高分子材料を含む中間部材42と、複数の太陽電池素子11とで表面充填部材60を挟むように配置された表面保護部材80と、複数の太陽電池素子11とで裏面充填部材65を挟むように配置された裏面保護部材90とを備える。 [6. Effect etc.]
Solar cell module 1 according to the present embodiment includes a plurality of solar cell elements 11 arranged side by side on a surface, and a surface filling member 60 including a polyolefin-based material disposed on the surface side of the plurality of solar cell elements 11. A back surface filling member 65 disposed on the back surface side of the plurality of solar cell elements 11, and a tab wiring 20 disposed on the front surface side of the plurality of solar cell elements 11 and electrically connecting the plurality of solar cell elements 11. The intermediate member 42 in contact with the tab wiring 20 and the surface filling member 60 and including a polymer material having a higher polarity than the polyolefin-based material or a higher water absorption than the polyolefin-based material, and the plurality of solar cell elements 11 A surface protection member 80 arranged so as to sandwich the surface filling member 60 and a back surface protection member 90 arranged so as to sandwich the back surface filling member 65 between the plurality of solar cell elements 11 are provided. That.
本実施の形態に係る太陽電池モジュール1は、面上に並べて配置された複数の太陽電池素子11と、複数の太陽電池素子11の表面側に配置された、ポリオレフィン系材料を含む表面充填部材60と、複数の太陽電池素子11の裏面側に配置された裏面充填部材65と、複数の太陽電池素子11の表面側に配置され、複数の太陽電池素子11を電気的に接続するタブ配線20と、タブ配線20及び表面充填部材60と接し、ポリオレフィン系材料よりも極性の高い、または、ポリオレフィン系材料よりも吸水性の高い高分子材料を含む中間部材42と、複数の太陽電池素子11とで表面充填部材60を挟むように配置された表面保護部材80と、複数の太陽電池素子11とで裏面充填部材65を挟むように配置された裏面保護部材90とを備える。 [6. Effect etc.]
上記構成によれば、急激な温度変化により、内在する水分が気化しても、表面充填部材60とタブ配線20との界面に配置された中間部材42が、気化した水分を吸収する。これにより、中間部材42は体積膨張せず、表面充填部材60とタブ配線20との界面での膨れ(体積膨張)及び気泡の発生を抑制することが可能となる。よって、ポリオレフィン系材料を主成分とする表面充填部材60により太陽電池素子11の腐食を防止し、かつ、中間部材42により、膨れや剥がれを抑制することが可能となる。
According to the above configuration, even if the inherent moisture is vaporized due to a rapid temperature change, the intermediate member 42 disposed at the interface between the surface filling member 60 and the tab wiring 20 absorbs the vaporized moisture. Thereby, the intermediate member 42 does not expand in volume, and it becomes possible to suppress the expansion (volume expansion) and the generation of bubbles at the interface between the surface filling member 60 and the tab wiring 20. Therefore, corrosion of the solar cell element 11 can be prevented by the surface filling member 60 having a polyolefin-based material as a main component, and swelling and peeling can be suppressed by the intermediate member 42.
中間部材42は、タブ配線20の側面と表面充填部材60とで挟まれていてもよい。
The intermediate member 42 may be sandwiched between the side surface of the tab wiring 20 and the surface filling member 60.
これにより、表面充填部材60との接触面積が大きいタブ配線20の側面に中間部材42が介在しているので、表面充填部材60とタブ配線20との界面での膨れ(体積膨張)及び気泡の発生を、より効果的に抑制することが可能となる。
Thereby, since the intermediate member 42 is interposed on the side surface of the tab wiring 20 having a large contact area with the surface filling member 60, swelling (volume expansion) at the interface between the surface filling member 60 and the tab wiring 20 and air bubbles Generation | occurrence | production can be suppressed more effectively.
さらに、タブ配線20の上であってタブ配線20の上面を覆うように形成された光拡散部材70を備え、光拡散部材70とタブ配線20とは、中間部材42を介して接着されていてもよい。
Furthermore, a light diffusing member 70 is formed on the tab wiring 20 so as to cover the upper surface of the tab wiring 20, and the light diffusing member 70 and the tab wiring 20 are bonded via an intermediate member 42. Also good.
これによれば、膨れや剥がれを抑制する機能だけでなく、光拡散部材70とタブ配線20とを接合する接着機能を有することが可能となる。
According to this, it is possible to have not only a function of suppressing swelling and peeling but also an adhesive function of joining the light diffusion member 70 and the tab wiring 20.
光拡散部材70Aの表面には、複数の凹凸が形成されていてもよい。
A plurality of irregularities may be formed on the surface of the light diffusion member 70A.
これにより、タブ配線20により太陽電池素子11への入射を遮られた光は、光拡散部材70Aの表面で拡散する。よって、太陽電池素子11に直接入射しない光を、太陽電池素子11へと再配光できるので、太陽電池モジュール全体の光電変換効率を向上させることが可能となる。
Thereby, the light blocked from entering the solar cell element 11 by the tab wiring 20 is diffused on the surface of the light diffusion member 70A. Therefore, since light that does not directly enter the solar cell element 11 can be redistributed to the solar cell element 11, it is possible to improve the photoelectric conversion efficiency of the entire solar cell module.
光拡散部材70Aは、中間部材42が有する高分子材料よりも硬質である高分子材料を主成分とする高分子層71と、高分子層71の表面に形成された金属層72とを備えてもよい。
The light diffusion member 70A includes a polymer layer 71 mainly composed of a polymer material harder than the polymer material included in the intermediate member 42, and a metal layer 72 formed on the surface of the polymer layer 71. Also good.
これにより、表面側から入射してきた光は、金属層72の表面で反射する。よって、太陽電池素子11に直接入射しない光を、太陽電池素子11へと再配光できるので、太陽電池モジュール全体の光電変換効率を向上させることが可能となる。
Thereby, the light incident from the surface side is reflected by the surface of the metal layer 72. Therefore, since light that does not directly enter the solar cell element 11 can be redistributed to the solar cell element 11, it is possible to improve the photoelectric conversion efficiency of the entire solar cell module.
高分子層71及び金属層72には、複数の凹凸が形成されていてもよい。
The polymer layer 71 and the metal layer 72 may have a plurality of irregularities.
これにより、表面側から入射してきた光は、金属層72の表面で反射及び拡散する。よって、太陽電池素子11に直接入射しない光を、太陽電池素子11へと再配光できるので、太陽電池モジュール全体の光電変換効率を向上させることが可能となる。
Thereby, the light incident from the surface side is reflected and diffused on the surface of the metal layer 72. Therefore, since light that does not directly enter the solar cell element 11 can be redistributed to the solar cell element 11, it is possible to improve the photoelectric conversion efficiency of the entire solar cell module.
また、太陽電池素子11の表面上に、樹脂接着部材41を介してタブ配線20が配置され、タブ配線20の上に、中間部材42が配置され、中間部材42の上に、光拡散部材70が配置され、中間部材42に含まれる高分子材料は、エチレンビニルアセテートであり、高分子層71に含まれる高分子材料は、ポリエチレンテレフタレートであってもよい。
Further, the tab wiring 20 is disposed on the surface of the solar cell element 11 via the resin adhesive member 41, the intermediate member 42 is disposed on the tab wiring 20, and the light diffusion member 70 is disposed on the intermediate member 42. The polymer material included in the intermediate member 42 may be ethylene vinyl acetate, and the polymer material included in the polymer layer 71 may be polyethylene terephthalate.
(その他)
以上、本発明に係る太陽電池モジュールについて、上記実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。 (Other)
As mentioned above, although the solar cell module which concerns on this invention was demonstrated based on the said embodiment, this invention is not limited to said embodiment.
以上、本発明に係る太陽電池モジュールについて、上記実施の形態に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。 (Other)
As mentioned above, although the solar cell module which concerns on this invention was demonstrated based on the said embodiment, this invention is not limited to said embodiment.
例えば、上記実施の形態では、太陽電池素子11は、光起電力としての機能を有するものであればよく、太陽電池素子の構造に限定されない。
For example, in the above embodiment, the solar cell element 11 only needs to have a function as a photovoltaic power, and is not limited to the structure of the solar cell element.
上記実施の形態に係る太陽電池モジュール1では、複数の太陽電池素子11が面上に行列状配置された構成を示したが、行列状配置に限られない。例えば、円環状配置や1次元の直線状または曲線状に配置された構成であってもよい。
In the solar cell module 1 according to the above embodiment, the configuration in which the plurality of solar cell elements 11 are arranged in a matrix on the surface is shown, but the configuration is not limited to the matrix arrangement. For example, the structure arrange | positioned at annular | circular shape arrangement | positioning, the one-dimensional linear form, or curved form may be sufficient.
その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
In addition, the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
1 太陽電池モジュール
11 太陽電池素子
20 タブ配線(配線部材)
25 わたり配線(配線部材)
41 樹脂接着部材
42、43 中間部材
60 表面充填部材
65 裏面充填部材
70、70A、70B、70C、70D 光拡散部材
71 高分子層
72 金属層
80 表面保護部材
90 裏面保護部材 DESCRIPTION OFSYMBOLS 1 Solar cell module 11 Solar cell element 20 Tab wiring (wiring member)
25 Cross wiring (wiring member)
41 resin adhesive member 42, 43 intermediate member 60 surface filling member 65 back surface filling member 70, 70A, 70B, 70C, 70D light diffusion member 71 polymer layer 72 metal layer 80 surface protection member 90 back surface protection member
11 太陽電池素子
20 タブ配線(配線部材)
25 わたり配線(配線部材)
41 樹脂接着部材
42、43 中間部材
60 表面充填部材
65 裏面充填部材
70、70A、70B、70C、70D 光拡散部材
71 高分子層
72 金属層
80 表面保護部材
90 裏面保護部材 DESCRIPTION OF
25 Cross wiring (wiring member)
41
Claims (7)
- 複数の太陽電池素子と、
前記複数の太陽電池素子の表面側に配置された、ポリオレフィン系材料を含む表面充填部材と、
前記複数の太陽電池素子の裏面側に配置された裏面充填部材と、
前記複数の太陽電池素子の表面側に配置され、前記複数の太陽電池素子を接続する配線部材と、
前記配線部材及び前記表面充填部材と接し、前記ポリオレフィン系材料よりも極性の高い、または、前記ポリオレフィン系材料よりも吸水性の高い高分子材料を含む中間部材と、
前記複数の太陽電池素子とで前記表面充填部材を挟むように配置された表面保護部材と、
前記複数の太陽電池素子とで前記裏面充填部材を挟むように配置された裏面保護部材とを備える
太陽電池モジュール。 A plurality of solar cell elements;
A surface filling member including a polyolefin-based material, disposed on the surface side of the plurality of solar cell elements;
A back surface filling member disposed on the back surface side of the plurality of solar cell elements;
A wiring member disposed on the surface side of the plurality of solar cell elements and connecting the plurality of solar cell elements;
An intermediate member in contact with the wiring member and the surface filling member, having a higher polarity than the polyolefin-based material, or a polymer material having a higher water absorption than the polyolefin-based material,
A surface protection member arranged to sandwich the surface filling member with the plurality of solar cell elements;
A solar cell module, comprising: a back surface protection member arranged to sandwich the back surface filling member with the plurality of solar cell elements. - 前記中間部材は、前記配線部材の側面と前記表面充填部材とで挟まれている
請求項1に記載の太陽電池モジュール。 The solar cell module according to claim 1, wherein the intermediate member is sandwiched between a side surface of the wiring member and the surface filling member. - 前記配線部材の上であって前記配線部材の上面を覆うように形成された光拡散部材をさらに備え、
前記光拡散部材と前記配線部材とは、前記中間部材を介して接着されている
請求項1または2に記載の太陽電池モジュール。 A light diffusing member formed on the wiring member so as to cover the upper surface of the wiring member;
The solar cell module according to claim 1 or 2, wherein the light diffusion member and the wiring member are bonded via the intermediate member. - 前記光拡散部材の表面には、複数の凹凸が形成されている
請求項3に記載の太陽電池モジュール。 The solar cell module according to claim 3, wherein a plurality of irregularities are formed on a surface of the light diffusion member. - 前記光拡散部材は、
前記高分子材料よりも硬質である高分子材料を主成分とする高分子層と、
前記高分子層の表面に形成された金属層とを備える
請求項3に記載の太陽電池モジュール。 The light diffusing member is
A polymer layer composed mainly of a polymer material that is harder than the polymer material;
The solar cell module according to claim 3, further comprising: a metal layer formed on a surface of the polymer layer. - 前記高分子層及び前記金属層には、複数の凹凸が形成されている
請求項5に記載の太陽電池モジュール。 The solar cell module according to claim 5, wherein a plurality of irregularities are formed in the polymer layer and the metal layer. - 前記太陽電池素子の表面上に、樹脂接着部材を介して前記配線部材が配置され、
前記配線部材の上に、前記中間部材が配置され、
前記中間部材の上に、前記光拡散部材が配置され、
前記中間部材に含まれる前記高分子材料は、エチレンビニルアセテートであり、
前記高分子層に含まれる前記高分子材料は、ポリエチレンテレフタレートである
請求項5または6に記載の太陽電池モジュール。 The wiring member is disposed on the surface of the solar cell element via a resin adhesive member,
The intermediate member is disposed on the wiring member,
The light diffusing member is disposed on the intermediate member,
The polymer material contained in the intermediate member is ethylene vinyl acetate,
The solar cell module according to claim 5 or 6, wherein the polymer material contained in the polymer layer is polyethylene terephthalate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016529034A JPWO2015194147A1 (en) | 2014-06-18 | 2015-06-12 | Solar cell module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014125752 | 2014-06-18 | ||
JP2014-125752 | 2014-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015194147A1 true WO2015194147A1 (en) | 2015-12-23 |
Family
ID=54935154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/002956 WO2015194147A1 (en) | 2014-06-18 | 2015-06-12 | Solar cell module |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2015194147A1 (en) |
WO (1) | WO2015194147A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005019901A (en) * | 2003-06-27 | 2005-01-20 | Sanyo Electric Co Ltd | Solar cell module |
WO2011093383A1 (en) * | 2010-01-29 | 2011-08-04 | 三洋電機株式会社 | Solar cell module |
WO2012053042A1 (en) * | 2010-10-19 | 2012-04-26 | Fujifilm Corporation | Solar cell module and method of manufacturing the same |
WO2012073751A1 (en) * | 2010-11-30 | 2012-06-07 | 三洋電機株式会社 | Solar cell module and production method therefor |
JP2013012589A (en) * | 2011-06-29 | 2013-01-17 | Sanyo Electric Co Ltd | Solar cell module |
JP2013125778A (en) * | 2011-12-13 | 2013-06-24 | Fuji Electric Co Ltd | Solar cell module and manufacturing method of the same |
JP2014007384A (en) * | 2012-06-22 | 2014-01-16 | Lg Electronics Inc | Solar cell module and ribbon assembly applied to the same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013149863A (en) * | 2012-01-20 | 2013-08-01 | Mitsubishi Electric Corp | Solar cell module |
CN202977482U (en) * | 2012-07-20 | 2013-06-05 | 合肥海润光伏科技有限公司 | Photovoltaic reflection film |
JP6255669B2 (en) * | 2012-10-24 | 2018-01-10 | 大日本印刷株式会社 | Sealing material sheet |
JP6197277B2 (en) * | 2012-10-25 | 2017-09-20 | 大日本印刷株式会社 | Solar cell module |
JP2014083530A (en) * | 2012-10-26 | 2014-05-12 | Tsutsui Kogyo Kk | Method for manufacturing resin-coated reinforcement, and resin-coated reinforcement |
-
2015
- 2015-06-12 JP JP2016529034A patent/JPWO2015194147A1/en active Pending
- 2015-06-12 WO PCT/JP2015/002956 patent/WO2015194147A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005019901A (en) * | 2003-06-27 | 2005-01-20 | Sanyo Electric Co Ltd | Solar cell module |
WO2011093383A1 (en) * | 2010-01-29 | 2011-08-04 | 三洋電機株式会社 | Solar cell module |
WO2012053042A1 (en) * | 2010-10-19 | 2012-04-26 | Fujifilm Corporation | Solar cell module and method of manufacturing the same |
WO2012073751A1 (en) * | 2010-11-30 | 2012-06-07 | 三洋電機株式会社 | Solar cell module and production method therefor |
JP2013012589A (en) * | 2011-06-29 | 2013-01-17 | Sanyo Electric Co Ltd | Solar cell module |
JP2013125778A (en) * | 2011-12-13 | 2013-06-24 | Fuji Electric Co Ltd | Solar cell module and manufacturing method of the same |
JP2014007384A (en) * | 2012-06-22 | 2014-01-16 | Lg Electronics Inc | Solar cell module and ribbon assembly applied to the same |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015194147A1 (en) | 2017-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6526774B2 (en) | Solar cell module | |
JP6624418B2 (en) | Solar cell module | |
EP3067937B1 (en) | Solar cell module | |
WO2013168612A1 (en) | Solar cell module | |
JP6709977B2 (en) | Solar cell module | |
US20180013025A1 (en) | Solar cell module | |
US20170373210A1 (en) | Solar cell module | |
JPWO2020054130A1 (en) | Solar cell module | |
US20180331243A1 (en) | Solar cell module | |
US20170365727A1 (en) | Solar cell module | |
US10784392B2 (en) | Solar cell module and method for manufacturing the same | |
JP2006278695A (en) | Solar cell module | |
TWM502963U (en) | Solar cell module | |
WO2015194147A1 (en) | Solar cell module | |
US10629763B2 (en) | Solar cell module | |
JP6731660B2 (en) | Solar cell module | |
JP2017050514A (en) | Solar battery module | |
JP6495650B2 (en) | Solar cell module and solar cell array using the same | |
JP5906422B2 (en) | Solar cell and solar cell module | |
JP6224696B2 (en) | Solar cell module | |
JP6528196B2 (en) | Solar cell module | |
JP7483382B2 (en) | Solar Cell Module | |
JP2018056454A (en) | Solar battery module and manufacturing method of solar battery module | |
JP2011222836A (en) | Solar battery module |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15810255 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016529034 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15810255 Country of ref document: EP Kind code of ref document: A1 |