WO2018061789A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
WO2018061789A1
WO2018061789A1 PCT/JP2017/033192 JP2017033192W WO2018061789A1 WO 2018061789 A1 WO2018061789 A1 WO 2018061789A1 JP 2017033192 W JP2017033192 W JP 2017033192W WO 2018061789 A1 WO2018061789 A1 WO 2018061789A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solar cell
light reflecting
solar
light
Prior art date
Application number
PCT/JP2017/033192
Other languages
French (fr)
Japanese (ja)
Inventor
朗通 前川
村上 洋平
治寿 橋本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2018542373A priority Critical patent/JP6731660B2/en
Priority to CN201780057934.0A priority patent/CN109716537A/en
Publication of WO2018061789A1 publication Critical patent/WO2018061789A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a solar cell module.
  • a solar cell module includes a solar cell and a reflecting member disposed on the light receiving surface side of the solar cell (for example, Patent Document 1).
  • the solar battery cell and the reflecting member are embedded in a filler containing ethylene vinyl acetate.
  • the light reflecting member that protrudes from the light receiving surface of the solar cell and is inclined with respect to the light receiving surface is provided with the solar cell. It is provided in the gap between cells.
  • An object of the present invention is to provide a solar cell module capable of suppressing a decrease in light reflection performance of a light reflection layer by suppressing corrosion of the light reflection layer.
  • one aspect of a solar cell module according to the present invention is provided so as to project from a solar cell, a filling member containing ethylene vinyl acetate, and an end of the solar cell, A light reflecting layer sandwiched between the solar battery cell and the filling member; and an acid-resistant layer laminated on the light reflecting layer between the filling member and the light reflecting layer.
  • mode of the solar cell module which concerns on this invention is a filling member containing the solar cell string provided with the several photovoltaic cell electrically connected by the wiring material, and ethylene vinyl acetate And a light reflection layer that is provided so as to protrude from an end of the solar battery cell at a position that does not overlap with the wiring member, and sandwiched between the solar battery cell and the filler member, the filler member, and the An acid resistant layer laminated on the light reflecting layer is provided between the light reflecting layer and the light reflecting layer.
  • mode of the solar cell module which concerns on this invention is a solar cell, the filling member containing ethylene vinyl acetate, and the light reflection layer provided so that it may be covered with the said filling member, And an acid resistant layer laminated on the light reflecting layer between the filling member and the light reflecting layer.
  • the deterioration of the light reflection performance of the light reflection layer can be suppressed by suppressing the corrosion of the light reflection layer.
  • FIG. 1 is a plan view of a solar cell module according to an embodiment.
  • FIG. 2 is a partially enlarged plan view when the solar cell module according to the embodiment is viewed from the surface side.
  • FIG. 3 is a cross-sectional view of the solar cell module according to the embodiment taken along line III-III in FIG. 4 is a partially enlarged cross-sectional view of the solar cell module according to the embodiment taken along line IV-IV in FIG.
  • FIG. 5 is a partially enlarged cross-sectional view of a solar cell module according to a modification of the embodiment.
  • FIG. 6 is a partial enlarged cross-sectional view of a solar cell module according to a modification.
  • FIG. 1 is a plan view of a solar cell module according to an embodiment.
  • FIG. 2 is a partially enlarged plan view when the solar cell module according to the embodiment is viewed from the surface side.
  • FIG. 3 is a cross-sectional view of the solar cell module according to the embodiment taken along line III-III in FIG. 4 is a partially enlarged cross-sectional view of the solar cell module according to the embodiment taken along line IV-IV in FIG.
  • the direction in which twelve solar cells 10 arranged at equal intervals along the row direction are arranged is defined as the X-axis direction.
  • the direction in which the six solar cell strings 10S are arranged in the column direction so that the two adjacent solar cell strings 10S are parallel to each other is defined as the Y-axis direction.
  • the vertical direction is defined as the Z-axis direction.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction change depending on the usage mode, and are not limited to this. The same applies to each figure after FIG.
  • the “front surface” of the solar cell module 1 means a surface on which light can be incident on the “front surface” side of the solar cell, and the “back surface” of the solar cell module 1 means the surface on the opposite side.
  • the “front surface” of the solar cell module 1 is the upper side (plus Z-axis direction), and the “back surface” of the solar cell module 1 is the lower side (minus Z-axis direction).
  • the solar cell module 1 includes a plurality of solar cells 10, a wiring member 20, a light reflecting member 30, a surface protection member 40, a back surface protection member 50, and a filling member 60. And a frame 70.
  • the solar cell module 1 has a structure in which a plurality of solar cells 10 are sealed with a filling member 60 between a surface protection member 40 and a back surface protection member 50.
  • the planar view shape of the solar cell module 1 is, for example, a substantially rectangular shape.
  • the solar cell module 1 has a substantially rectangular shape with a horizontal length of about 1600 mm and a vertical length of about 800 mm.
  • the shape of the solar cell module 1 is not limited to a shape in which six solar cell strings 10S each including twelve solar cells 10 are arranged, and is not limited to a rectangular shape.
  • the solar cell 10 is a photoelectric conversion element (photovoltaic element) that converts light such as sunlight into electric power.
  • a plurality of solar cells 10 are arranged in a matrix (matrix) on the same plane.
  • a plurality of solar cells 10 arranged in a straight line form a string by connecting two adjacent solar cells 10 with a wiring material 20.
  • the plurality of solar cells 10 are stringed by being electrically connected by the wiring member 20.
  • a plurality of solar cells 10 in one solar cell string 10S are connected in series by a wiring member 20.
  • each solar cell string 10 ⁇ / b> S is configured by sequentially connecting two solar cells 10 adjacent in the row direction (X-axis direction) with three wiring members 20. All the solar cells 10 corresponding to one row arranged along the direction are connected.
  • a plurality of solar cell strings 10S are formed.
  • the plurality of solar cell strings 10S are arranged along the column direction (Y-axis direction).
  • the six solar cell strings 10S are arranged at equal intervals along the column direction so as to be parallel to each other.
  • the first solar cell 10 in each solar cell string 10S is connected to the connection wiring via the wiring member 20 at both ends in the row direction. Further, the last solar cell 10 in each solar cell string 10 ⁇ / b> S is connected to the connection wiring via the wiring member 20.
  • a plurality of (six in FIG. 1) solar cell strings 10S are connected in series or in parallel to constitute a cell array. In the present embodiment, six adjacent solar battery strings 10S are connected in series to form one series connection body (a structure in which 24 solar battery cells 10 are connected in series).
  • the solar cells 10 adjacent in the row direction and the column direction are arranged with a gap from other adjacent solar cells 10.
  • the light reflecting member 30 is disposed across the gap.
  • the planar view shape of the solar battery cell 10 is a substantially rectangular shape.
  • the solar battery cell 10 has a shape in which a 125 mm square square is missing, and a straight long side and a linear or non-linear short side are alternately connected to approximately eight. It is a square shape. That is, one solar cell string 10S is configured such that one side of two adjacent solar cells 10 faces each other.
  • the shape of the photovoltaic cell 10 is not restricted to a substantially rectangular shape.
  • the solar cell 10 has a semiconductor pn junction as a basic structure, and as an example, the n-type single crystal silicon substrate that is an n-type semiconductor substrate and one main surface side of the n-type single crystal silicon substrate are sequentially formed. , An n-type amorphous silicon layer and an n-side electrode, and a p-type amorphous silicon layer and a p-side electrode sequentially formed on the other main surface side of the n-type single crystal silicon substrate.
  • n-side electrode and the p-side electrode are transparent electrodes such as ITO (Indium Tin Oxide).
  • the photovoltaic cell 10 is arrange
  • the electrode located on the back side does not need to be transparent, and may be a metal electrode having reflectivity, for example. .
  • each solar battery cell 10 the surface is the surface on the surface protection member 40 side, and the back surface is the surface on the back surface protection member 50 side.
  • a front side collector electrode 11 and a back side collector electrode 12 are formed in the solar battery cell 10.
  • the front-side collector electrode 11 is electrically connected to the surface-side electrode (for example, n-side electrode) of the solar battery cell 10.
  • the back side collector electrode 12 is electrically connected to the back side electrode (for example, p side electrode) of the photovoltaic cell 10.
  • Each of the front-side collector electrode 11 and the back-side collector electrode 12 includes, for example, a plurality of finger electrodes formed in a straight line so as to be orthogonal to the extending direction of the wiring member 20, and finger fingers connected to these finger electrodes It is comprised by the several bus-bar electrode formed in linear form along the direction (extension direction of the wiring material 20) orthogonal to an electrode.
  • the number of bus bar electrodes is the same as that of the wiring member 20 and is three in the present embodiment.
  • the front side collector electrode 11 and the back side collector electrode 12 are mutually the same shape, it is not limited to this.
  • the front side collector electrode 11 and the back side collector electrode 12 are made of a low resistance conductive material such as silver (Ag).
  • the front side collector electrode 11 and the back side collector electrode 12 can be formed by screen-printing a conductive paste (silver paste or the like) in which a conductive filler such as silver is dispersed in a binder resin in a predetermined pattern.
  • both the front surface and the back surface can be used as the light receiving surface.
  • carriers are generated in the photoelectric conversion part of the solar battery cell 10.
  • the generated carriers are collected by the front side collector electrode 11 and the back side collector electrode 12 and flow into the wiring member 20.
  • the front side collector electrode 11 and the back side collector electrode 12 the carrier generated in the solar battery cell 10 can be efficiently taken out to the external circuit.
  • the wiring member 20 (interconnector) electrically connects two adjacent solar cells 10 in the solar cell string 10S.
  • two adjacent solar cells 10 are connected by three wiring members 20 arranged substantially in parallel with each other.
  • Each wiring member 20 extends along the X-axis direction with respect to two solar cells 10 arranged in the X-axis direction.
  • the wiring member 20 is a long conductive wiring, and is, for example, a ribbon-like metal foil or a fine-line metal wire.
  • the wiring member 20 can be produced, for example, by cutting a metal foil such as a copper foil or a silver foil that is entirely covered with solder, silver, or the like into a strip shape having a predetermined length.
  • one end of the wiring member 20 is disposed on the surface of one of the two adjacent solar cells 10, and the other end of the wiring member 20 is adjacent to 2. It arrange
  • Each wiring member 20 electrically connects the front side collector electrode 11 of one solar cell 10 and the back side collector electrode 12 of the other solar cell 10 in two adjacent solar cells 10. Yes.
  • the wiring member 20 and the bus bar electrodes of the front-side collector electrode 11 and the back-side collector electrode 12 of the solar battery cell 10 are joined by a conductive adhesive such as solder or resin containing conductive particles.
  • the light reflecting layer 32 is disposed on the back surface side of the solar battery cell 10.
  • the light reflecting layer 32 has light reflectivity at least on the light receiving surface side, and reflects incident light.
  • the light reflecting member 30 is disposed so as to be located in a gap between two adjacent solar cells 10.
  • the light reflecting member 30 is provided in each of the two adjacent solar cells 10 so as to straddle the gap between the two adjacent solar cells 10 in the Y-axis direction. Since each light reflecting member 30 is disposed so as to straddle the gap between two adjacent solar cells 10, the width of each light reflecting member 30 is larger than the gap between the two adjacent solar cells 10. It has become.
  • Each gap between two adjacent solar cells 10 is between one side of one solar cell 10 and one side of the other solar cell 10 facing this one side. That is, the gap between the two adjacent solar cells 10 is long in the row direction and extends in a direction parallel to the solar cell string 10S. That is, the light reflecting member 30 is two solar cells 10 that are adjacent to each other with a gap between them, and one solar cell on the back side of the two adjacent solar cells 10 that are not connected by the wiring member 20. It is provided so as to straddle from the cell 10 to the other solar battery cell 10.
  • the light reflecting member 30 is provided with two light reflecting members 30 in one solar battery cell 10 except for the solar battery cell 10 of the outermost peripheral solar battery string 10S.
  • the light reflecting member 30 has a tape shape extending in the row direction of the solar cell string 10S, and has a long rectangular shape as an example.
  • the light reflecting member 30 is attached along one side of the solar battery cell 10 so that one end in the width direction (Y-axis direction) and the end of the solar battery 10 overlap each other. That is, the light reflecting member 30 is affixed substantially parallel to the wiring member 20.
  • the light reflecting member 30 has a substrate layer 31, a light reflecting layer 32, and an acid resistant layer 33, and is laminated in this order toward the minus Z-axis direction.
  • the light reflecting member 30 is adhered to the solar battery cell 10 by the adhesive layer 34 provided on the back surface side of the solar battery cell 10.
  • the adhesive layer 34 is a transparent adhesive member that is provided so as to be sandwiched between the substrate layer 31 and the solar battery cell 10 and is formed on the solar battery cell 10 side of the substrate layer 31.
  • the adhesive layer 34 is provided on the entire surface of the substrate layer 31. That is, the adhesive layer 34 covers the entire solar cell 10 side of the light reflecting layer 32.
  • the adhesive layer 34 is made of a material softer than the substrate layer 31.
  • the adhesive 36 is a heat-sensitive adhesive or pressure-sensitive adhesive made of ethylene vinyl acetate (which is an abbreviation for ethylene vinyl acetate copolymer, commonly known as EVA: Ethylene-Vinyl Acetate).
  • EVA Ethylene-Vinyl Acetate
  • the adhesive layer 34 by using a material softer than the substrate layer 31 as the material of the adhesive layer 34, when the light reflecting member 30 is bonded to the solar battery cell 10 via the adhesive layer 34, the back surface of the solar battery cell 10 and A fillet of the adhesive layer 34 is formed on the side surface. As a result, since the contact area between the solar battery cell 10 and the adhesive layer 34 can be increased, the adhesive force between the solar battery cell 10 and the light reflecting member 30 is improved.
  • the substrate layer 31, the light reflection layer 32, and the acid resistant layer 33 are used as the light reflecting member 30.
  • an adhesive layer 34 is added to the substrate layer 31, the light reflective layer 32, and the acid resistant layer 33.
  • the light reflecting member 30 may be used, and the substrate layer 31 and the light reflecting layer 32 may be used as the light reflecting member 30. That is, the light reflecting member 30 may have a four-layer structure including the substrate layer 31, the light reflecting layer 32, the acid resistant layer 33, and the adhesive layer 34, or a two-layer structure including the substrate layer 31 and the light reflecting layer 32. .
  • the substrate layer 31 is made of, for example, polyethylene terephthalate (PET) or acrylic.
  • the light reflecting layer 32 is a metal film made of a metal such as aluminum or silver, and is an aluminum vapor deposition film in the present embodiment.
  • the light reflection layer 32 is sandwiched between the solar battery cell 10 and the filling member 60. That is, the substrate layer 31 is provided between the adhesive layer 34 on the back surface of the solar battery cell 10 and the light reflecting layer 32.
  • the light reflecting layer 32 is provided in the solar battery cell 10 via the substrate layer 31 and the adhesive layer 34.
  • the substrate layer 31 is provided so as to straddle the gap between two adjacent solar battery cells 10.
  • the substrate layer 31 exists on the main light receiving surface side of the solar cell module 1 with respect to the light reflecting layer 32. Therefore, the material of the substrate layer 31 is composed of a translucent material such as a transparent material in order to reflect the light incident from the main light receiving surface of the solar cell module 1 on the surface of the light reflecting layer 32 on the main light receiving surface side. Has been.
  • the specific material of the substrate layer 31 is, for example, polyethylene terephthalate (PET) or acrylic.
  • PET polyethylene terephthalate
  • acrylic acrylic
  • the substrate layer 31 is a transparent PET sheet.
  • An uneven shape processing structure 31 a is formed on the back surface of the substrate layer 31.
  • the height between the concave portion (valley portion) and the convex portion (peak portion) is 5 ⁇ m or more and 100 ⁇ m or less, and the interval (pitch) between adjacent convex portions is 20 ⁇ m or more and 400 ⁇ m or less.
  • the height between a recessed part and a convex part is 12 micrometers, and the space
  • the shape processing structure 31 a of the substrate layer 31 has, for example, a triangular groove shape along the longitudinal direction of the light reflecting member 30.
  • the shape of the shape processing structure 31a is not limited to this, and a conical shape, a quadrangular pyramid shape, a polygonal pyramid shape, or a combination of these shapes, as long as it can scatter light It may be a shape or the like.
  • the light reflecting layer 32 is formed on the back surface of the shape processing structure 31a.
  • the light reflection layer 32 is a metal film (metal reflection film) made of a metal such as aluminum or silver.
  • the light reflecting layer 32 made of a metal film is formed on the back surface of the shape processing structure 31a of the substrate layer 31, for example, by vapor deposition. Therefore, the surface shape of the light reflection layer 32 becomes an uneven shape following the uneven shape of the shape processing structure 31a. That is, the light reflection layer 32 has a repeated structure of a plurality of convex portions and a plurality of concave portions.
  • the light reflecting layer 32 is an aluminum vapor deposition film.
  • the acid resistant layer 33 is a thin film formed on the back surface of the light reflecting layer 32, and has a thickness of about 30 nm, for example.
  • the acid resistant layer 33 is a layer made of, for example, an inorganic optical layer, a metal layer, a resin layer, or the like.
  • the inorganic optical layer include magnesium fluoride, silicon dioxide, lithium fluoride, and calcium fluoride.
  • An example of the metal layer is nickel, silver, or the like.
  • the resin layer are polyolefin resin, acrylic resin, epoxy resin, fluororesin, polyvinylidene chloride, polycarbonate, and the like.
  • the inorganic optical layer, the metal layer, the resin layer, and the like have a property of suppressing transmission of acetic acid derived (generated) from the filling member 60 containing ethylene vinyl acetate.
  • the acid resistant layer 33 is laminated on the light reflecting layer 32 between the filling member 60 and the light reflecting layer 32.
  • the light reflecting layer 32 is covered from the back side so that the light reflecting layer 32 does not come into contact with the filling member 62. That is, the acid resistant layer 33 covers the light reflecting layer 32 so that even if acetic acid is generated in the filling member 62 containing ethylene vinyl acetate, the light reflecting layer 32 is not dissolved by acetic acid.
  • the acid resistant layer 33 is formed at the interface of the light reflecting layer 32.
  • the acid resistant layer 33 is formed on the back surface of the shape processing structure 31a of the substrate layer 31, for example, by vapor deposition. Therefore, since the surface shape of the light reflecting layer 32 is an uneven shape following the uneven shape of the shape processing structure 31 a, the acid-resistant layer 33 also becomes an uneven shape following the uneven shape of the light reflecting layer 32. That is, the acid resistant layer 33 also has a repeated structure of a plurality of convex portions and a plurality of concave portions. Further, when the acid-resistant layer 33 is formed of a resin layer, the surface of the acid-resistant layer 33 has a concavo-convex shape lower than that of the shape processed structure 31a or a shape that does not have a concavo-convex shape.
  • the light reflecting member 30 has a laminated structure of a substrate layer 31, a light reflecting layer 32, and an acid resistant layer 33. That is, the light reflecting member 30 having the light reflecting layer 32 formed on the back surface of the substrate layer 31 is used.
  • the light reflecting member 30 has a light reflecting function of reflecting incident light.
  • Each light reflecting member 30 is a tape-like light reflecting sheet extending in the longitudinal direction of the solar cell string 10S, and has a long rectangular shape and a thin plate shape as an example.
  • Each light reflecting member 30 has, for example, a length of 100 mm to 130 mm, a width of 1 mm to 20 mm, and a thickness of 0.05 mm to 0.5 mm.
  • the light reflecting member 30 has a length of 125 mm, a width of 5 mm, and a thickness of 0.1 mm.
  • the light reflecting member 30 since the light reflecting member 30 has the uneven light reflecting layer 32, the light incident on the light reflecting member 30 can be diffusely reflected in a predetermined direction. That is, the light reflection member 30 is a light diffusion reflection sheet that functions as a light diffusion reflection member.
  • the light reflecting member 30 is disposed on the back side of the solar battery cell 10.
  • an effective area (power generation area) of the solar battery cell 10 is shielded by the light reflecting member 30 in a portion where the light reflecting member 30 and the solar battery cell 10 overlap.
  • a light-blocking loss occurs, such a light-blocking loss can be reduced by arranging the light reflecting member 30 on the back surface side of the solar battery cell 10.
  • the light reflecting member 30 is disposed so that the back surface of the light reflecting layer 32 faces the back surface protecting member 50. That is, the light reflecting member 30 is disposed so that the substrate layer 31 is located on the front surface protection member 40 side and the light reflecting layer 32 is located on the back surface protection member 50 side.
  • the light reflecting member 30 is sealed by the filling member 60. Specifically, the light reflecting member 30 is sealed with the front surface side filling member 61 and the back surface side filling member 62. More specifically, the surface protection member 40 side (main light receiving surface side) of the light reflecting member 30 is covered with the surface side filling member 61, and the back surface protection member 50 side of the light reflecting member 30 is filled with the back surface side. Covered by a member 62. In other words, the light reflecting member 30 is provided so as to be sandwiched between the solar battery cell 10 and the back surface side filling member 62.
  • the gap between two adjacent solar cells 10 (the other solar cells 10 adjacent to the solar cells 10) is covered by the light reflecting member 30 (the light reflecting layer 32).
  • the light incident on the gap between two adjacent solar cells 10 among the light incident on the solar cell module 1 from the main light receiving surface side is the surface protection member 40, the surface side filling member 61, and the adhesive layer 34.
  • the diffusely reflected light is reflected at the interface between the surface protection member 40 and the air layer or the interface between the surface protection member 40 and the filling member 60 and guided to the solar battery cell 10.
  • the two adjacent power generation invalid regions (in this embodiment, the region between the two adjacent solar cell strings 10S, which is the region where the incident light cannot contribute to power generation).
  • the light generation efficiency of the solar cell module 1 is improved by causing light incident on the gap region between the solar cells 10 to effectively contribute to power generation.
  • the surface protection member 40 is a member that protects the surface on the front side of the solar cell module 1, and the inside of the solar cell module 1 (solar cell 10 or the like) is exposed to outside such as wind and rain or external impact. Protect from the environment.
  • the surface protection member 40 is disposed on the front surface side of the solar battery cell 10 and protects the light receiving surface on the front surface side of the solar battery cell 10.
  • the surface protection member 40 is made of a translucent member that transmits light in a wavelength band used for photoelectric conversion in the solar battery cell 10.
  • the surface protection member 40 is, for example, a glass substrate made of a transparent glass material, or a resin substrate made of a hard resin material having film-like or plate-like translucency and water shielding properties.
  • the back surface protection member 50 is a member that protects the back surface of the solar cell module 1 and protects the inside of the solar cell module 1 from the external environment.
  • the back surface protection member 50 is disposed on the back surface side of the solar battery cell 10 and protects the light receiving surface on the back surface side of the solar battery cell 10.
  • the back surface protection member 50 is a film-like or plate-like resin sheet made of a resin material such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the back surface protection member 50 may be an opaque plate or film.
  • an opaque member such as a black member or a laminated film such as a resin film having a metal foil such as an aluminum foil therein may be used.
  • the back surface protection member 50 is not limited to the light-impermeable member, and may be a light-transmissive member such as a glass sheet or a glass substrate made of a glass material.
  • a filling member 60 is filled between the front surface protection member 40 and the back surface protection member 50.
  • the front surface protection member 40 and the back surface protection member 50 and the solar battery cell 10 are bonded and fixed by the filling member 60.
  • the filling member 60 is disposed between the front surface protection member 40 and the back surface protection member 50.
  • the filling member 60 is filled so as to fill a space between the surface protection member 40 and the back surface protection member 50.
  • the filling member 60 is composed of a front surface side filling member 61 and a back surface side filling member 62. Each of the front surface side filling member 61 and the back surface side filling member 62 covers a plurality of solar cells 10 arranged in a matrix.
  • the front surface side filling member 61 is formed so as to cover the solar battery cell 10 and the light reflection layer 32 from the front surface side of each solar battery cell 10. Specifically, the surface-side filling member 61 is formed so as to cover all the solar cells 10 and all the light reflecting members 30 from the surface protection member 40 side.
  • the front side filling member 61 may not contain EVA and may be the same material as the back side filling member 62.
  • the back surface side filling member 62 is formed so as to cover the solar battery cell 10 and the light reflection layer 32 from the back surface side of each solar battery cell 10. Specifically, the back surface side filling member 62 is formed so as to cover all the solar cells 10 and all the light reflecting members 30 from the back surface protection member 50 side.
  • the back surface side filling member 62 is made of a material containing EVA.
  • the plurality of solar cells 10 are entirely covered with the filling member 60 by performing a laminating process (lamination process) while being sandwiched between, for example, a sheet-like front side filling member 61 and a back side filling member 62.
  • the plurality of solar cell strings 10S are sandwiched between the front surface side filling member 61 and the back surface side filling member 62. Furthermore, the surface protection member 40 and the back surface protection member 50 are disposed above and below, and thermocompression bonding is performed in a vacuum at a temperature of, for example, 100 ° C. or higher. By this thermocompression bonding, the front surface side filling member 61 and the back surface side filling member 62 are heated and melted to form a filling member 60 that seals the solar battery cell 10.
  • the surface-side filling member 61 before the lamination process is a resin sheet made of, for example, a resin material such as EVA or polyolefin, and is disposed between the plurality of solar cells 10 and the surface protection member 40.
  • the front-side filling member 61 is mainly filled by a laminating process so as to fill a gap between the solar battery cell 10 and the surface protection member 40.
  • the front-side filling member 61 is made of a translucent material.
  • a transparent resin sheet made of EVA is used as the front-side filling member 61 before the lamination process.
  • the back surface side filling member 62 before the laminating process is a white resin sheet made of a resin material such as EVA, and is disposed between the plurality of solar cells 10 and the back surface protection member 50.
  • the back surface side filling member 62 is mainly filled by a laminating process so as to fill a gap between the solar battery cell 10 and the back surface protection member 50.
  • the back surface side filling member 62 is not limited to a light-transmitting material, and may be made of a coloring material such as a black material or a white material. .
  • a white resin sheet made of EVA is used as the back surface side filling member 62 before the lamination process.
  • the frame 70 is an outer frame that covers the peripheral edge of the solar cell module 1.
  • the frame 70 is, for example, an aluminum frame (aluminum frame) made of aluminum.
  • Four frames 70 are used, and are mounted on each of the four sides of the solar cell module 1.
  • the frame 70 is fixed to each side of the solar cell module 1 with an adhesive, for example.
  • the solar cell module 1 is provided with a terminal box for taking out the electric power generated by the solar cells 10.
  • the terminal box is fixed to the back surface protection member 50, for example.
  • the terminal box contains a plurality of circuit components mounted on the circuit board.
  • the solar cell module 1 according to Embodiment 1 is provided so as to project from the solar cell 10, the filling member 60 containing ethylene vinyl acetate, and the end of the solar cell 10.
  • a light reflecting layer 32 sandwiched between the cell 10 and the filling member 60 and an acid resistant layer 33 laminated on the light reflecting layer 32 between the filling member 60 and the light reflecting layer 32 are provided.
  • the acid resistant layer 33 is laminated on the light reflecting layer 32 between the filling member 60 and the light reflecting layer 32. Therefore, permeation of acetic acid generated in the filling member 60 can be suppressed. For this reason, the light reflection layer 32 is hardly corroded by acetic acid generated in the filling member 62. As a result, the light reflecting performance of the light reflecting layer 32 is unlikely to deteriorate.
  • the solar cell module 1 the deterioration of the light reflection performance of the light reflection layer 32 can be suppressed by suppressing the corrosion of the light reflection layer 32.
  • the light reflecting layer 32 is provided so as to protrude from the end of the solar battery cell 10 at a position that does not overlap with the solar battery cell 10, and is sandwiched between the solar battery cell 10 and the filling member 60.
  • the acid-resistant layer 33 has lower acetic acid solubility than the light reflecting layer 32 or lower acetic acid permeability than the filling member 60.
  • the acid-resistant layer 33 is more soluble in acetic acid than the light reflecting layer 32, the acid-resistant layer 33 is difficult to dissolve.
  • the acid-resistant layer 33 has a lower acetic acid permeability than the filling member 60, it is difficult for acetic acid to contact the light reflecting layer 32.
  • the light reflecting layer 32 covered with the substrate layer 31 and the acid resistant layer 33 is hardly corroded. As a result, the light reflecting performance of the light reflecting layer 32 is unlikely to deteriorate.
  • the acid-resistant layer 33 is an inorganic optical layer, a metal layer, or a resin layer that suppresses contact of acetic acid derived from ethylene vinyl acetate with the light reflecting layer 32. .
  • the acid-resistant layer 33 is an inorganic optical layer, a metal layer, or a resin layer, the contact of acetic acid with the light reflecting layer 32 can be suppressed. That is, in the solar cell module 1, it is difficult to impair the light reflection performance of the light reflection layer 32.
  • the surface of the light reflecting layer 32 has a triangular groove-shaped repeating structure formed in a direction along the end of the solar cell 10.
  • the solar cell module 1 according to Embodiment 1 further includes a surface protection member 40 provided on the front surface side of the solar cell 10 and a back surface protection member 50 provided on the back surface side of the solar cell 10.
  • the filling member 60 is a front surface side of the solar battery cell 10 and is provided between the solar battery cell 10 and the surface protection member 40.
  • a back surface side filling member 62 provided between the battery cell 10 and the back surface protection member 50.
  • the light reflecting layer 32 is arranged so that the light reflected by the light reflecting layer 32 is reflected by the interface of the surface protection member 40 and guided to the solar battery cell 10.
  • the light incident on the gap between the two adjacent solar cells 10 out of the light incident on the solar cell module 1 from the main light receiving surface side is transmitted through the surface-side filling member 61, for example, and the light reflecting member. 30, passes through the substrate layer 31, and is diffusely reflected (scattered) by the uneven shape of the light reflecting layer 32.
  • the diffusely reflected light is totally reflected at the interface between the surface protection member 40 and the air layer or at the interface between the surface protection member 40 and the surface-side filling member 61 and guided to the solar battery cell 10.
  • two adjacent solar cells that are ineffective regions regions in the present embodiment that are gaps between two adjacent strings 10S and that cannot make incident light contribute to power generation. Since the light incident on the region between the gaps 10 can also contribute to power generation effectively, the power generation efficiency of the solar cell module 1 is improved. The same applies when light enters from the back side of the solar cell module 1.
  • the surface of the light reflection layer 32 has a triangular groove-shaped repetitive structure formed in a direction crossing the direction in which adjacent solar cell strings 10S are arranged. This configuration also has the same effect.
  • a plurality of solar cell strings 10S are provided.
  • the light reflection layer 32 is provided so that it may straddle from the one photovoltaic cell 10 of the adjacent photovoltaic cell strings 10S to the other photovoltaic cell 10 of the adjacent photovoltaic cell strings 10S.
  • the light incident on the region of the gap between the two adjacent solar cells 10 can be more effectively contributed to the power generation, so that the power generation efficiency of the solar cell module 1 is improved.
  • the effective area (power generation area) of the solar battery cell 10 is shielded by the light reflecting member 30 in the overlapping portion of the light reflecting member 30 and the solar battery cell 10. May cause a light-shielding loss.
  • a light shielding loss By disposing the light reflecting member 30 on the back surface side of the solar battery cell 10, such a light shielding loss can be reduced.
  • FIG. 5 is a partial enlarged cross-sectional view of a solar cell module 1 according to a modification of the embodiment.
  • the solar cell module 1 in the present modification is different from the embodiment in that the light reflecting member 30 is provided on the surface side of the solar cell 10.
  • the light reflecting member 30 is different from the embodiment only in that the light reflecting member 30 is provided in a plane-symmetrical position with respect to the plane defined in the X-axis direction and the Y-axis direction.
  • the same reference numerals are assigned to the same components, and descriptions thereof are omitted.
  • the light reflecting member 30 is provided in each of the two adjacent solar cells 10 so as to straddle the gap between the two adjacent solar cells 10 in the Y-axis direction. Yes. That is, the light reflecting member 30 is provided so as to straddle from one solar battery cell 10 to the other solar battery cell 10 on the surface side of two adjacent solar battery cells 10 arranged with a gap.
  • the light reflecting member 30 includes a substrate layer 31, a light reflecting layer 32, and an acid resistant layer 33, and is laminated in this order toward the plus Z-axis direction.
  • the light reflecting member 30 is adhered to the surface side of the solar cell 10 by an adhesive layer 34 provided on the surface side of the solar cell 10.
  • the adhesive layer 34 is a transparent adhesive member that is provided so as to be sandwiched between the substrate layer 31 and the solar battery cell 10 and is formed on the solar battery cell 10 side of the substrate layer 31.
  • the acid resistant layer 33 is a thin film formed on the surface of the light reflecting layer 32.
  • the acid resistant layer 33 covers the light reflecting layer 32 from the surface side so that the light reflecting layer 32 does not contact the filling member 62. That is, the acid-resistant layer 33 is formed so that the light reflecting layer 32 is in close contact with the light reflecting layer 32 so that acetic acid is not in contact with the light reflecting layer 32 even if acetic acid is generated in the filling member 62 containing ethylene vinyl acetate. Covering.
  • the acid resistant layer 33 is a transparent material having translucency. That is, when the acid-resistant layer 33 is an inorganic optical layer, for example, a transparent material such as magnesium fluoride, silicon dioxide, lithium fluoride, or calcium fluoride is used for the acid-resistant layer 33.
  • a transparent material such as magnesium fluoride, silicon dioxide, lithium fluoride, or calcium fluoride is used for the acid-resistant layer 33.
  • the acid resistant layer 33 is a resin layer, for example, a transparent material such as polyolefin resin, acrylic resin, epoxy resin, fluororesin, polyvinylidene chloride, and polycarbonate is used for the acid resistant layer 33.
  • the acid resistant layer 33 is a metal layer, the metal layer may have a light reflecting function.
  • the acid resistant layer 33 may be made of silver having a higher light reflectance than other metals. In this case, the light that has passed through the surface protection member 40 and the filling member 61 also passes through the acid-resistant layer 33 and is scattered by the light reflecting
  • the light reflecting member 30 is provided in the power generation invalid region at the end of the solar battery cell 10. Specifically, the light reflecting member 30 is provided at an end portion of the solar battery cell 10 in a region where the front side collecting electrode 11 is not provided. Thereby, productivity can be improved and the power generation capacity of the solar battery cell 10 can be used efficiently.
  • Such a solar cell module 1 includes a solar cell 10, a filling member 60 containing ethylene vinyl acetate, a light reflecting layer 32 provided so as to be covered with the filling member 60, and a filling member 60. Between the light reflecting layer 32, an acid resistant layer 33 laminated on the light reflecting layer 32 is provided. This configuration also has the same effect.
  • the solar cell module 1 further includes a wiring member 20 connected to the light receiving surface side of the solar cell 10.
  • the light reflecting layer 32 is provided on the light receiving surface side of the wiring member 20.
  • the acid resistant layer 33 is provided on the light receiving surface side of the light reflecting layer 32.
  • the light that has entered the gap (power generation invalid region) between two adjacent solar cells 10 in plan view is diffusely reflected (scattered) by the light reflecting member 30 and is transmitted to the solar cells 10. Led. For this reason, since the light incident on the power generation invalid region can be effectively contributed to the power generation, the power generation efficiency of the solar cell module 1 is improved.
  • the acid-resistant layer 33 is an inorganic optical layer, a metal layer, or a resin layer that suppresses contact of acetic acid derived from ethylene vinyl acetate with the light reflecting layer 32. This configuration also has the same effect.
  • the surface of the light reflection layer 32 further has a triangular groove-shaped repeating structure formed along the extending direction of the wiring member 20. This configuration also has the same effect.
  • the light reflecting member is disposed so as not to overlap the back-side collector electrode of the solar battery cell, but is not limited thereto.
  • the light reflecting member may be disposed so as to overlap with the end portion of the back surface side collecting electrode of the solar battery cell (end portion of the finger electrode).
  • FIG. 6 is a partial enlarged cross-sectional view of a solar cell module according to a modification. Further, in each of the above embodiments, as shown in FIG. 6, the acid-resistant layer 33 does not have to follow the uneven shape of the light reflecting layer 32, and is filled in the recesses between adjacent protrusions. Also good.
  • the light reflecting member is disposed in the gap between two adjacent solar cell strings, but is not limited thereto.
  • the light reflecting member has the same configuration as the light reflecting member, and can be attached to the solar battery cell in the same arrangement and shape as the light reflecting member.
  • the light reflecting member is provided for each gap between the adjacent solar cells in the gap between the two adjacent solar cell strings, but is not limited thereto.
  • the light reflecting member may be provided across a plurality of solar cells along the longitudinal direction of the solar cell string in the gap between two adjacent solar cell strings.
  • the light reflecting member may be a single long light reflecting sheet covering the entire solar cell string.
  • the light reflecting member is provided in the gaps in all the solar cell strings, but may be provided only in a part of the gaps. In other words, there may be a space between solar cells in which no light reflecting member is provided.
  • the light reflecting member is provided in the gap in the solar cell string, but may be provided in a region where incident light cannot contribute to power generation other than the gap in the solar cell string.
  • the light reflecting member may be provided on the light receiving surface side of the solar cell and on the light receiving surface of the wiring member.
  • a light reflecting member is provided on the light receiving surface side of the wiring material connected to the light receiving surface side of the solar battery cell. This configuration is preferably applied when the surface side filling member of the solar cell module contains ethylene vinyl acetate.
  • the light reflecting member provided on the light receiving surface of the wiring member is configured to be in contact with the surface-side filling member via the acid resistant layer.
  • the uneven shape of the light reflecting layer is such that a plurality of convex portions and a plurality of concave portions formed along the extending direction of the wiring material are repeatedly arranged in a direction intersecting with the extending direction of the wiring material. Is preferred.
  • the semiconductor substrate of the solar cell is an n-type semiconductor substrate, but the semiconductor substrate may be a p-type semiconductor substrate.
  • the semiconductor material of the photoelectric conversion part of the solar battery cell is silicon.
  • the present invention is not limited to this.
  • As a semiconductor material of the photoelectric conversion portion of the solar battery cell gallium arsenide (GaAs), indium phosphide (InP), or the like may be used.

Abstract

A solar cell module (1) comprises: solar cells (10); a filler member (60) containing ethylene vinyl acetate; a light-reflecting layer (32) which is provided so as to protrude beyond the edges of the solar cells (10), and is sandwiched between the solar cells (10) and the filler member (60); and an acid-resistant layer (33) which is laminated on the light-reflecting layer (32) between the filler member (60) and the light-reflecting layer (32).

Description

太陽電池モジュールSolar cell module
 本発明は、太陽電池モジュールに関する。 The present invention relates to a solar cell module.
 従来、太陽電池モジュールは、太陽電池セルと、太陽電池セルの受光面側に配置された反射部材とを備えている(例えば特許文献1)。太陽電池セル及び反射部材は、エチレンビニルアセテートを含む充填材の内部に埋め込まれている。 Conventionally, a solar cell module includes a solar cell and a reflecting member disposed on the light receiving surface side of the solar cell (for example, Patent Document 1). The solar battery cell and the reflecting member are embedded in a filler containing ethylene vinyl acetate.
 この太陽電池モジュールでは、太陽電池セル同士の隙間に照射される太陽光を有効に利用するために、太陽電池セルの受光面よりも突出するとともに受光面に対して傾斜した光反射部材を太陽電池セル間の隙間に設けている。 In this solar cell module, in order to effectively use the sunlight irradiated to the gap between the solar cells, the light reflecting member that protrudes from the light receiving surface of the solar cell and is inclined with respect to the light receiving surface is provided with the solar cell. It is provided in the gap between cells.
特開2013-98496号公報JP 2013-98496 A
 しかしながら、太陽電池モジュールは、通常、屋外に設置するため、雨にさらされ易い環境にある。この場合、充填部材に水が浸透することでエチレンビニルアセテートが分解され酢酸が発生する。光反射層は、主に金属であるため、充填部材の内部で発生した酢酸が光反射層を腐食させ、金属光沢が失われる。その結果、光反射層の光反射性能が低下する。 However, since solar cell modules are usually installed outdoors, they are easily exposed to rain. In this case, when vinyl penetrates into the filling member, ethylene vinyl acetate is decomposed and acetic acid is generated. Since the light reflecting layer is mainly made of metal, acetic acid generated inside the filling member corrodes the light reflecting layer, and the metallic luster is lost. As a result, the light reflecting performance of the light reflecting layer is lowered.
 本発明は、光反射層の腐食を抑制することで、光反射層の光反射性能の低下を抑制することができる太陽電池モジュールを提供することを目的とする。 An object of the present invention is to provide a solar cell module capable of suppressing a decrease in light reflection performance of a light reflection layer by suppressing corrosion of the light reflection layer.
 上記目的を達成するために、本発明に係る太陽電池モジュールの一態様は、太陽電池セルと、エチレンビニルアセテートを含む充填部材と、前記太陽電池セルの端部から張り出すように設けられ、前記太陽電池セルと充填部材とにより挟まれる光反射層と、前記充填部材と前記光反射層との間で、前記光反射層に積層される耐酸性層とを備える。 In order to achieve the above object, one aspect of a solar cell module according to the present invention is provided so as to project from a solar cell, a filling member containing ethylene vinyl acetate, and an end of the solar cell, A light reflecting layer sandwiched between the solar battery cell and the filling member; and an acid-resistant layer laminated on the light reflecting layer between the filling member and the light reflecting layer.
 また、上記目的を達成するために、本発明に係る太陽電池モジュールの一態様は、配線材によって電気的に接続された複数の太陽電池セルを備える太陽電池ストリングと、エチレンビニルアセテートを含む充填部材と、前記配線材と重ならない位置であって、前記太陽電池セルの端部から張り出すように設けられ、前記太陽電池セルと前記充填部材とにより挟まれる光反射層と、前記充填部材と前記光反射層との間で、前記光反射層に積層される耐酸性層とを備える。 Moreover, in order to achieve the said objective, the one aspect | mode of the solar cell module which concerns on this invention is a filling member containing the solar cell string provided with the several photovoltaic cell electrically connected by the wiring material, and ethylene vinyl acetate And a light reflection layer that is provided so as to protrude from an end of the solar battery cell at a position that does not overlap with the wiring member, and sandwiched between the solar battery cell and the filler member, the filler member, and the An acid resistant layer laminated on the light reflecting layer is provided between the light reflecting layer and the light reflecting layer.
 また、上記目的を達成するために、本発明に係る太陽電池モジュールの一態様は、太陽電池セルと、エチレンビニルアセテートを含む充填部材と、前記充填部材に覆われるように設けられる光反射層と、前記充填部材と前記光反射層との間で、前記光反射層に積層される耐酸性層とを備える。 Moreover, in order to achieve the said objective, one aspect | mode of the solar cell module which concerns on this invention is a solar cell, the filling member containing ethylene vinyl acetate, and the light reflection layer provided so that it may be covered with the said filling member, And an acid resistant layer laminated on the light reflecting layer between the filling member and the light reflecting layer.
 本発明によれば、光反射層の腐食を抑制することで、光反射層の光反射性能の低下を抑制することができる。 According to the present invention, the deterioration of the light reflection performance of the light reflection layer can be suppressed by suppressing the corrosion of the light reflection layer.
図1は、実施の形態に係る太陽電池モジュールの平面図である。FIG. 1 is a plan view of a solar cell module according to an embodiment. 図2は、実施の形態に係る太陽電池モジュールを表面側から見たときの部分拡大平面図である。FIG. 2 is a partially enlarged plan view when the solar cell module according to the embodiment is viewed from the surface side. 図3は、図1のIII-III線における実施の形態に係る太陽電池モジュールの断面図である。FIG. 3 is a cross-sectional view of the solar cell module according to the embodiment taken along line III-III in FIG. 図4は、図2のIV-IV線における実施の形態に係る太陽電池モジュールの部分拡大断面図である。4 is a partially enlarged cross-sectional view of the solar cell module according to the embodiment taken along line IV-IV in FIG. 図5は、実施の形態の変形例に係る太陽電池モジュールの部分拡大断面図である。FIG. 5 is a partially enlarged cross-sectional view of a solar cell module according to a modification of the embodiment. 図6は、変形例にかかる太陽電池モジュールの部分拡大断面図である。FIG. 6 is a partial enlarged cross-sectional view of a solar cell module according to a modification.
 以下、本発明の実施の形態について、図面を参照しながら説明する。以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、並びに、工程及び工程の順序等は、一例であって本発明を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. Accordingly, numerical values, shapes, materials, components, arrangement positions and connection forms of components, and steps and order of steps shown in the following embodiments are merely examples and are not intended to limit the present invention. . Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims showing the highest concept of the present invention are described as optional constituent elements.
 また、「略**」との記載は、「略同一」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。 In addition, the description of “substantially **” is intended to include not only exactly the same, but also those that are recognized as substantially the same, with “substantially identical” taken as an example.
 なお、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。 Each figure is a schematic diagram and is not necessarily shown strictly. Moreover, in each figure, the same code | symbol is attached | subjected to the substantially same structure, The overlapping description is abbreviate | omitted or simplified.
 (実施の形態)
 [太陽電池モジュールの構成]
 まず、本実施の形態に係る太陽電池モジュール1の概略構成について、図1~図4を用いて説明する。図1は、実施の形態に係る太陽電池モジュールの平面図である。図2は、実施の形態に係る太陽電池モジュールを表面側から見たときの部分拡大平面図である。図3は、図1のIII-III線における実施の形態に係る太陽電池モジュールの断面図である。図4は、図2のIV-IV線における実施の形態に係る太陽電池モジュールの部分拡大断面図である。
(Embodiment)
[Configuration of solar cell module]
First, a schematic configuration of the solar cell module 1 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a plan view of a solar cell module according to an embodiment. FIG. 2 is a partially enlarged plan view when the solar cell module according to the embodiment is viewed from the surface side. FIG. 3 is a cross-sectional view of the solar cell module according to the embodiment taken along line III-III in FIG. 4 is a partially enlarged cross-sectional view of the solar cell module according to the embodiment taken along line IV-IV in FIG.
 図1では、行方向に沿って等間隔に配列された12枚の太陽電池セル10が並ぶ方向をX軸方向と規定する。隣り合う2つの太陽電池ストリング10Sが互いに平行となるように列方向に6つの太陽電池ストリング10Sが並ぶ方向をY軸方向と規定する。そして、上下方向をZ軸方向と規定する。なお、図1では、X軸方向と、Y軸方向とZ軸方向とは、使用態様によって変化するため、これには限定されない。図1以降の各図においても、同様である。 In FIG. 1, the direction in which twelve solar cells 10 arranged at equal intervals along the row direction are arranged is defined as the X-axis direction. The direction in which the six solar cell strings 10S are arranged in the column direction so that the two adjacent solar cell strings 10S are parallel to each other is defined as the Y-axis direction. The vertical direction is defined as the Z-axis direction. In FIG. 1, the X-axis direction, the Y-axis direction, and the Z-axis direction change depending on the usage mode, and are not limited to this. The same applies to each figure after FIG.
 太陽電池モジュール1の「表面」とは、太陽電池セルの「表面」側に光が入射可能な面を意味し、太陽電池モジュール1の「裏面」とは、その反対側の面を意味する。また、太陽電池モジュール1の「表面」とは上側(プラスZ軸方向)であり、太陽電池モジュール1の「裏面」とは下側(マイナスZ軸方向)である。 The “front surface” of the solar cell module 1 means a surface on which light can be incident on the “front surface” side of the solar cell, and the “back surface” of the solar cell module 1 means the surface on the opposite side. The “front surface” of the solar cell module 1 is the upper side (plus Z-axis direction), and the “back surface” of the solar cell module 1 is the lower side (minus Z-axis direction).
 図1~図3に示すように、太陽電池モジュール1は、複数の太陽電池セル10と、配線材20と、光反射部材30と、表面保護部材40と、裏面保護部材50と、充填部材60と、フレーム70とを備える。太陽電池モジュール1は、表面保護部材40と裏面保護部材50との間に、複数の太陽電池セル10が充填部材60で封止された構造となっている。 As shown in FIGS. 1 to 3, the solar cell module 1 includes a plurality of solar cells 10, a wiring member 20, a light reflecting member 30, a surface protection member 40, a back surface protection member 50, and a filling member 60. And a frame 70. The solar cell module 1 has a structure in which a plurality of solar cells 10 are sealed with a filling member 60 between a surface protection member 40 and a back surface protection member 50.
 図1に示すように、太陽電池モジュール1の平面視形状は、例えば略矩形状である。一例として、太陽電池モジュール1は、横の長さが約1600mmで、縦の長さが約800mmの略矩形状である。なお、太陽電池モジュール1の形状は、12枚の太陽電池セル10を備える太陽電池ストリング10Sを6つ並べた形状に限るものではなく、また、矩形状に限るものではない。 As shown in FIG. 1, the planar view shape of the solar cell module 1 is, for example, a substantially rectangular shape. As an example, the solar cell module 1 has a substantially rectangular shape with a horizontal length of about 1600 mm and a vertical length of about 800 mm. In addition, the shape of the solar cell module 1 is not limited to a shape in which six solar cell strings 10S each including twelve solar cells 10 are arranged, and is not limited to a rectangular shape.
 [太陽電池セル]
 太陽電池セル10は、太陽光等の光を電力に変換する光電変換素子(光起電力素子)である。太陽電池セル10は、同一平面において行列状(マトリクス状)に複数枚配列されている。
[Solar cells]
The solar cell 10 is a photoelectric conversion element (photovoltaic element) that converts light such as sunlight into electric power. A plurality of solar cells 10 are arranged in a matrix (matrix) on the same plane.
 直線状に配列された複数の太陽電池セル10は、隣り合う2つの太陽電池セル10同士が配線材20によって連結されてストリングを構成している。複数の太陽電池セル10は、配線材20によって電気的に接続されることでストリング化されている。1つの太陽電池ストリング10S内の複数の太陽電池セル10は、配線材20によって直列接続されている。 A plurality of solar cells 10 arranged in a straight line form a string by connecting two adjacent solar cells 10 with a wiring material 20. The plurality of solar cells 10 are stringed by being electrically connected by the wiring member 20. A plurality of solar cells 10 in one solar cell string 10S are connected in series by a wiring member 20.
 本実施の形態では、行方向(X軸方向)に沿って等間隔に配列された12枚の太陽電池セル10が配線材20で接続されることで1つの太陽電池ストリング10Sを構成している。より具体的には、各太陽電池ストリング10Sは、行方向(X軸方向)に隣り合う2つの太陽電池セル10を3本の配線材20で順次連結していくことで構成されており、行方向に沿って配列された一列分全ての太陽電池セル10が連結されている。 In the present embodiment, twelve solar cells 10 arranged at equal intervals along the row direction (X-axis direction) are connected by the wiring member 20 to constitute one solar cell string 10S. . More specifically, each solar cell string 10 </ b> S is configured by sequentially connecting two solar cells 10 adjacent in the row direction (X-axis direction) with three wiring members 20. All the solar cells 10 corresponding to one row arranged along the direction are connected.
 太陽電池ストリング10Sは、複数形成されている。複数の太陽電池ストリング10Sは、列方向(Y軸方向)に沿って並べられている。本実施の形態では、6つの太陽電池ストリング10Sが互いに平行となるように列方向に沿って等間隔で並べられている。 A plurality of solar cell strings 10S are formed. The plurality of solar cell strings 10S are arranged along the column direction (Y-axis direction). In the present embodiment, the six solar cell strings 10S are arranged at equal intervals along the column direction so as to be parallel to each other.
 なお、各太陽電池ストリング10Sにおける先頭の太陽電池セル10は、行方向の両端側で配線材20を介して接続配線に接続されている。また、各太陽電池ストリング10Sにおける最後尾の太陽電池セル10は、配線材20を介して接続配線に接続されている。これにより、複数(図1では6つ)の太陽電池ストリング10Sが直列接続又は並列接続されてセルアレイが構成される。本実施の形態では、隣り合う6つの太陽電池ストリング10Sが直列接続されて1つの直列接続体(24枚の太陽電池セル10が直列接続されたもの)が構成されている。 Note that the first solar cell 10 in each solar cell string 10S is connected to the connection wiring via the wiring member 20 at both ends in the row direction. Further, the last solar cell 10 in each solar cell string 10 </ b> S is connected to the connection wiring via the wiring member 20. Thereby, a plurality of (six in FIG. 1) solar cell strings 10S are connected in series or in parallel to constitute a cell array. In the present embodiment, six adjacent solar battery strings 10S are connected in series to form one series connection body (a structure in which 24 solar battery cells 10 are connected in series).
 図1及び図2に示すように、行方向及び列方向に隣り合う太陽電池セル10は、隣接する他の太陽電池セル10と隙間をあけて配置されている。後述するように、この隙間を跨ぐように光反射部材30が配置されている。 As shown in FIG. 1 and FIG. 2, the solar cells 10 adjacent in the row direction and the column direction are arranged with a gap from other adjacent solar cells 10. As will be described later, the light reflecting member 30 is disposed across the gap.
 本実施の形態において、太陽電池セル10の平面視形状は、略矩形状である。具体的には、太陽電池セル10は、125mm角の正方形の角が欠けた形状であって、直線状の長辺と、直線状または非直線状の短辺と、が交互に繋がった略八角形の形状である。つまり、1つの太陽電池ストリング10Sは、隣り合う2つの太陽電池セル10の一辺同士が対向するように構成されている。なお、太陽電池セル10の形状は、略矩形状に限らない。 In the present embodiment, the planar view shape of the solar battery cell 10 is a substantially rectangular shape. Specifically, the solar battery cell 10 has a shape in which a 125 mm square square is missing, and a straight long side and a linear or non-linear short side are alternately connected to approximately eight. It is a square shape. That is, one solar cell string 10S is configured such that one side of two adjacent solar cells 10 faces each other. In addition, the shape of the photovoltaic cell 10 is not restricted to a substantially rectangular shape.
 太陽電池セル10は、半導体pn接合を基本構造としており、一例として、n型の半導体基板であるn型単結晶シリコン基板と、n型単結晶シリコン基板の一方の主面側に順次形成された、n型非晶質シリコン層及びn側電極と、n型単結晶シリコン基板の他方の主面側に順次形成された、p型非晶質シリコン層及びp側電極とによって構成されている。n型単結晶シリコン基板とn型非晶質シリコン層との間、または、n型単結晶シリコン基板とp型非晶質シリコン層との間に、i型非晶質シリコン層や酸化シリコン層のようなパッシベーション層を設けて、発生したキャリアの再結合を抑制してもよい。n側電極及びp側電極は、例えばITO(Indium Tin Oxide)等の透明電極である。 The solar cell 10 has a semiconductor pn junction as a basic structure, and as an example, the n-type single crystal silicon substrate that is an n-type semiconductor substrate and one main surface side of the n-type single crystal silicon substrate are sequentially formed. , An n-type amorphous silicon layer and an n-side electrode, and a p-type amorphous silicon layer and a p-side electrode sequentially formed on the other main surface side of the n-type single crystal silicon substrate. An i-type amorphous silicon layer or a silicon oxide layer between the n-type single crystal silicon substrate and the n-type amorphous silicon layer or between the n-type single crystal silicon substrate and the p-type amorphous silicon layer Such a passivation layer may be provided to suppress recombination of the generated carriers. The n-side electrode and the p-side electrode are transparent electrodes such as ITO (Indium Tin Oxide).
 なお、本実施の形態において、太陽電池セル10は、n側電極が太陽電池モジュール1の主受光面側(図3の表面保護部材40側)となるように配置されているが、これに限るものではない。また、太陽電池モジュール1は片面受光方式であれば、裏面側に位置する電極(本実施の形態ではp側電極)は透明である必要はなく、例えば反射性を有する金属電極であってもよい。 In addition, in this Embodiment, although the photovoltaic cell 10 is arrange | positioned so that the n side electrode may become the main light-receiving surface side (surface protection member 40 side of FIG. 3) of the solar cell module 1, it does not restrict to this. It is not a thing. Further, if the solar cell module 1 is a single-sided light receiving system, the electrode located on the back side (p-side electrode in the present embodiment) does not need to be transparent, and may be a metal electrode having reflectivity, for example. .
 図3に示すように、各太陽電池セル10において、表面は表面保護部材40側の面であり、裏面は裏面保護部材50側の面である。太陽電池セル10には、表側集電極11と裏側集電極12とが形成されている。表側集電極11は、太陽電池セル10の表面側電極(例えばn側電極)に電気的に接続される。裏側集電極12は、太陽電池セル10の裏面側電極(例えばp側電極)に電気的に接続される。 As shown in FIG. 3, in each solar battery cell 10, the surface is the surface on the surface protection member 40 side, and the back surface is the surface on the back surface protection member 50 side. A front side collector electrode 11 and a back side collector electrode 12 are formed in the solar battery cell 10. The front-side collector electrode 11 is electrically connected to the surface-side electrode (for example, n-side electrode) of the solar battery cell 10. The back side collector electrode 12 is electrically connected to the back side electrode (for example, p side electrode) of the photovoltaic cell 10.
 表側集電極11及び裏側集電極12の各々は、例えば、配線材20の延設方向と直交するように直線状に形成された複数本のフィンガー電極と、これらのフィンガー電極に接続されるとともにフィンガー電極に直交する方向(配線材20の延設方向)に沿って直線状に形成された複数本のバスバー電極とによって構成されている。バスバー電極の本数は、例えば、配線材20と同数であり、本実施の形態では、3本である。なお、表側集電極11及び裏側集電極12は、互いに同じ形状となっているが、これに限定されるものではない。 Each of the front-side collector electrode 11 and the back-side collector electrode 12 includes, for example, a plurality of finger electrodes formed in a straight line so as to be orthogonal to the extending direction of the wiring member 20, and finger fingers connected to these finger electrodes It is comprised by the several bus-bar electrode formed in linear form along the direction (extension direction of the wiring material 20) orthogonal to an electrode. For example, the number of bus bar electrodes is the same as that of the wiring member 20 and is three in the present embodiment. In addition, although the front side collector electrode 11 and the back side collector electrode 12 are mutually the same shape, it is not limited to this.
 表側集電極11及び裏側集電極12は、銀(Ag)等の低抵抗導電材料からなる。例えば、表側集電極11及び裏側集電極12は、バインダー樹脂中に銀等の導電性フィラーが分散した導電性ペースト(銀ペースト等)を所定のパターンでスクリーン印刷することで形成することができる。 The front side collector electrode 11 and the back side collector electrode 12 are made of a low resistance conductive material such as silver (Ag). For example, the front side collector electrode 11 and the back side collector electrode 12 can be formed by screen-printing a conductive paste (silver paste or the like) in which a conductive filler such as silver is dispersed in a binder resin in a predetermined pattern.
 この太陽電池セル10では、表面及び裏面の両方を受光面とできる。太陽電池セル10に光が入射すると太陽電池セル10の光電変換部でキャリアが発生する。発生したキャリアは、表側集電極11及び裏側集電極12で収集されて配線材20に流れ込む。このように、表側集電極11及び裏側集電極12を設けることで、太陽電池セル10で発生したキャリアを外部回路に効率的に取り出せる。 In the solar battery cell 10, both the front surface and the back surface can be used as the light receiving surface. When light enters the solar battery cell 10, carriers are generated in the photoelectric conversion part of the solar battery cell 10. The generated carriers are collected by the front side collector electrode 11 and the back side collector electrode 12 and flow into the wiring member 20. Thus, by providing the front side collector electrode 11 and the back side collector electrode 12, the carrier generated in the solar battery cell 10 can be efficiently taken out to the external circuit.
 [接続配線]
 配線材20(インターコネクタ)は、太陽電池ストリング10Sにおいて、隣り合う2つの太陽電池セル10同士を電気的に接続する。本実施の形態では、隣り合う2つの太陽電池セル10は、互いに略平行に配置された3本の配線材20によって接続されている。各配線材20は、X軸方向に並んだ2つの太陽電池セル10に対してX軸方向に沿って延設されている。
[Connection wiring]
The wiring member 20 (interconnector) electrically connects two adjacent solar cells 10 in the solar cell string 10S. In the present embodiment, two adjacent solar cells 10 are connected by three wiring members 20 arranged substantially in parallel with each other. Each wiring member 20 extends along the X-axis direction with respect to two solar cells 10 arranged in the X-axis direction.
 配線材20は、長尺状の導電性配線であって、例えば、リボン状の金属箔や細線状の金属ワイヤである。配線材20は、例えば、銅箔や銀箔等の金属箔の表面全体を半田や銀等で被覆したものを所定の長さに短冊状に切断することによって作製することができる。 The wiring member 20 is a long conductive wiring, and is, for example, a ribbon-like metal foil or a fine-line metal wire. The wiring member 20 can be produced, for example, by cutting a metal foil such as a copper foil or a silver foil that is entirely covered with solder, silver, or the like into a strip shape having a predetermined length.
 各配線材20については、配線材20の一端部が、隣り合う2つの太陽電池セル10のうちの一方の太陽電池セル10の表面に配置され、配線材20の他端部が、隣り合う2つの太陽電池セル10のうちの他方の太陽電池セル10の裏面に配置されている。 For each wiring member 20, one end of the wiring member 20 is disposed on the surface of one of the two adjacent solar cells 10, and the other end of the wiring member 20 is adjacent to 2. It arrange | positions at the back surface of the other photovoltaic cell 10 among the two photovoltaic cells 10. FIG.
 各配線材20は、隣り合う2つの太陽電池セル10において、一方の太陽電池セル10の表面側集電極11と、他方の太陽電池セル10の裏面側集電極12とを電気的に接続している。例えば、配線材20と、太陽電池セル10の表側集電極11及び裏面側集電極12のバスバー電極とは、半田や導電性粒子を含む樹脂等の導電性を有する接着剤で接合されている。 Each wiring member 20 electrically connects the front side collector electrode 11 of one solar cell 10 and the back side collector electrode 12 of the other solar cell 10 in two adjacent solar cells 10. Yes. For example, the wiring member 20 and the bus bar electrodes of the front-side collector electrode 11 and the back-side collector electrode 12 of the solar battery cell 10 are joined by a conductive adhesive such as solder or resin containing conductive particles.
 [光反射部材]
 図4に示すように、太陽電池セル10の裏面側には、光反射層32が配置されている。光反射層32は、少なくとも受光面側が光反射性を有しており、入射した光を反射する。
[Light reflecting member]
As shown in FIG. 4, the light reflecting layer 32 is disposed on the back surface side of the solar battery cell 10. The light reflecting layer 32 has light reflectivity at least on the light receiving surface side, and reflects incident light.
 光反射部材30は、隣り合う2つの太陽電池セル10の間の隙間に位置するように配置されている。本実施の形態において、光反射部材30は、Y軸方向における隣り合う2つの太陽電池セル10の隙間を跨ぐように、この隣り合う2つの太陽電池セル10の各々に設けられている。各光反射部材30は、隣り合う2つの太陽電池セル10の隙間に跨るように配置されるので、各光反射部材30の幅は、隣り合う2つの太陽電池セル10の隙間の間隔よりも大きくなっている。 The light reflecting member 30 is disposed so as to be located in a gap between two adjacent solar cells 10. In the present embodiment, the light reflecting member 30 is provided in each of the two adjacent solar cells 10 so as to straddle the gap between the two adjacent solar cells 10 in the Y-axis direction. Since each light reflecting member 30 is disposed so as to straddle the gap between two adjacent solar cells 10, the width of each light reflecting member 30 is larger than the gap between the two adjacent solar cells 10. It has become.
 隣り合う2つの太陽電池セル10の各々の隙間は、一方の太陽電池セル10の一辺と、この一辺と対向する他方の太陽電池セル10の一辺との間である。つまり、この隣り合う2つの太陽電池セル10の隙間は、行方向に長尺であり、太陽電池ストリング10Sと平行な方向に延びている。つまり、光反射部材30は、隙間をあけて配置された隣り合う2つの太陽電池セル10であって、配線材20によって接続されない隣り合う2つの太陽電池セル10の裏面側において、一方の太陽電池セル10から他方の太陽電池セル10まで跨るように設けられている。 Each gap between two adjacent solar cells 10 is between one side of one solar cell 10 and one side of the other solar cell 10 facing this one side. That is, the gap between the two adjacent solar cells 10 is long in the row direction and extends in a direction parallel to the solar cell string 10S. That is, the light reflecting member 30 is two solar cells 10 that are adjacent to each other with a gap between them, and one solar cell on the back side of the two adjacent solar cells 10 that are not connected by the wiring member 20. It is provided so as to straddle from the cell 10 to the other solar battery cell 10.
 本実施の形態では、光反射部材30は、最外周の太陽電池ストリング10Sの太陽電池セル10を除いて、1つの太陽電池セル10には2つの光反射部材30が設けられている。光反射部材30は、太陽電池ストリング10Sの行方向に延在するテープ状であり、一例として、長尺な矩形状である。光反射部材30は、幅方向(Y軸方向)の一方の端部と太陽電池セル10の端部とが重なるようにして、太陽電池セル10の一辺に沿って貼り付けられている。つまり、光反射部材30は、配線材20と略平行に貼り付けられている。 In the present embodiment, the light reflecting member 30 is provided with two light reflecting members 30 in one solar battery cell 10 except for the solar battery cell 10 of the outermost peripheral solar battery string 10S. The light reflecting member 30 has a tape shape extending in the row direction of the solar cell string 10S, and has a long rectangular shape as an example. The light reflecting member 30 is attached along one side of the solar battery cell 10 so that one end in the width direction (Y-axis direction) and the end of the solar battery 10 overlap each other. That is, the light reflecting member 30 is affixed substantially parallel to the wiring member 20.
 光反射部材30は、基板層31と、光反射層32と、耐酸性層33とを有し、マイナスZ軸方向に向かってこの順番で積層される。 The light reflecting member 30 has a substrate layer 31, a light reflecting layer 32, and an acid resistant layer 33, and is laminated in this order toward the minus Z-axis direction.
 本実施の形態では、光反射部材30は、太陽電池セル10の裏面側に設けられた接着層34により、太陽電池セル10に接着している。接着層34は、基板層31と太陽電池セル10との間で挟まれるように設けられ、基板層31の太陽電池セル10側に形成された透明な接着部材である。接着層34は、基板層31の表面全面に設けられている。つまり、接着層34は、光反射層32の太陽電池セル10側全体を覆っている。 In the present embodiment, the light reflecting member 30 is adhered to the solar battery cell 10 by the adhesive layer 34 provided on the back surface side of the solar battery cell 10. The adhesive layer 34 is a transparent adhesive member that is provided so as to be sandwiched between the substrate layer 31 and the solar battery cell 10 and is formed on the solar battery cell 10 side of the substrate layer 31. The adhesive layer 34 is provided on the entire surface of the substrate layer 31. That is, the adhesive layer 34 covers the entire solar cell 10 side of the light reflecting layer 32.
 接着層34は、基板層31よりも柔らかい材料によって構成されている。例えば、接着剤36はエチレンビニルアセテート(エチレン酢酸ビニル共重合体の略称であり、通称EVA:Ethylene-Vinyl Acetate)からなる感熱接着剤又は感圧接着剤である。これにより、加熱圧着によって光反射部材30を太陽電池セル10に接着固定できる。 The adhesive layer 34 is made of a material softer than the substrate layer 31. For example, the adhesive 36 is a heat-sensitive adhesive or pressure-sensitive adhesive made of ethylene vinyl acetate (which is an abbreviation for ethylene vinyl acetate copolymer, commonly known as EVA: Ethylene-Vinyl Acetate). Thereby, the light reflection member 30 can be bonded and fixed to the solar battery cell 10 by thermocompression bonding.
 このように、接着層34の材料として基板層31よりも柔らかい材料を用いることによって、接着層34を介して光反射部材30を太陽電池セル10に接着する際に、太陽電池セル10の裏面及び側面に接着層34のフィレットが形成される。この結果、太陽電池セル10と接着層34との接触面積を大きくすることができるので、太陽電池セル10と光反射部材30との接着力が向上する。 Thus, by using a material softer than the substrate layer 31 as the material of the adhesive layer 34, when the light reflecting member 30 is bonded to the solar battery cell 10 via the adhesive layer 34, the back surface of the solar battery cell 10 and A fillet of the adhesive layer 34 is formed on the side surface. As a result, since the contact area between the solar battery cell 10 and the adhesive layer 34 can be increased, the adhesive force between the solar battery cell 10 and the light reflecting member 30 is improved.
 なお、本実施の形態では、基板層31、光反射層32及び耐酸性層33を光反射部材30としたが、基板層31、光反射層32及び耐酸性層33に接着層34を加えたものを光反射部材30としてもよく、基板層31及び光反射層32を光反射部材30としてもよい。つまり、光反射部材30は、基板層31、光反射層32及び耐酸性層33及び接着層34との4層構造、又は、基板層31及び光反射層32の2層構造であってもよい。 In the present embodiment, the substrate layer 31, the light reflection layer 32, and the acid resistant layer 33 are used as the light reflecting member 30. However, an adhesive layer 34 is added to the substrate layer 31, the light reflective layer 32, and the acid resistant layer 33. The light reflecting member 30 may be used, and the substrate layer 31 and the light reflecting layer 32 may be used as the light reflecting member 30. That is, the light reflecting member 30 may have a four-layer structure including the substrate layer 31, the light reflecting layer 32, the acid resistant layer 33, and the adhesive layer 34, or a two-layer structure including the substrate layer 31 and the light reflecting layer 32. .
 基板層31は、例えばポリエチレンテレフタレート(PET)又はアクリル等によって構成される。また、光反射層32は、例えばアルミニウム又は銀等の金属からなる金属膜であり、本実施の形態では、アルミニウム蒸着膜である。 The substrate layer 31 is made of, for example, polyethylene terephthalate (PET) or acrylic. The light reflecting layer 32 is a metal film made of a metal such as aluminum or silver, and is an aluminum vapor deposition film in the present embodiment.
 光反射層32は、太陽電池セル10と充填部材60とにより挟まれる。つまり、太陽電池セル10の裏面の接着層34と光反射層32との間には基板層31が設けられている。光反射層32は、基板層31及び接着層34を介して太陽電池セル10に設けられている。本実施の形態において、基板層31は、光反射層32と同様に、隣り合う2つの太陽電池セル10の隙間を跨ぐように設けられている。 The light reflection layer 32 is sandwiched between the solar battery cell 10 and the filling member 60. That is, the substrate layer 31 is provided between the adhesive layer 34 on the back surface of the solar battery cell 10 and the light reflecting layer 32. The light reflecting layer 32 is provided in the solar battery cell 10 via the substrate layer 31 and the adhesive layer 34. In the present embodiment, similarly to the light reflecting layer 32, the substrate layer 31 is provided so as to straddle the gap between two adjacent solar battery cells 10.
 基板層31は、光反射層32よりも太陽電池モジュール1の主受光面側に存在する。したがって、基板層31の材料は、太陽電池モジュール1の主受光面から入射した光を光反射層32の当該主受光面側の面で反射させるために、透明材料等の透光性材料によって構成されている。 The substrate layer 31 exists on the main light receiving surface side of the solar cell module 1 with respect to the light reflecting layer 32. Therefore, the material of the substrate layer 31 is composed of a translucent material such as a transparent material in order to reflect the light incident from the main light receiving surface of the solar cell module 1 on the surface of the light reflecting layer 32 on the main light receiving surface side. Has been.
 基板層31の具体的な材料としては、例えばポリエチレンテレフタレート(PET)又はアクリル等であり、本実施の形態において、基板層31は、透明なPETシートである。 The specific material of the substrate layer 31 is, for example, polyethylene terephthalate (PET) or acrylic. In the present embodiment, the substrate layer 31 is a transparent PET sheet.
 基板層31の裏面には、凹凸形状の形状加工構造31aが形成されている。基板層31は、例えば、凹部(谷部)と凸部(山部)との間の高さが5μm以上100μm以下であり、隣り合う凸部の間隔(ピッチ)が20μm以上400μm以下である。本実施の形態では、凹部と凸部との間の高さが12μmであり、隣り合う凸部の間隔(ピッチ)が40μmである。 An uneven shape processing structure 31 a is formed on the back surface of the substrate layer 31. In the substrate layer 31, for example, the height between the concave portion (valley portion) and the convex portion (peak portion) is 5 μm or more and 100 μm or less, and the interval (pitch) between adjacent convex portions is 20 μm or more and 400 μm or less. In this Embodiment, the height between a recessed part and a convex part is 12 micrometers, and the space | interval (pitch) of an adjacent convex part is 40 micrometers.
 基板層31の形状加工構造31aは、一例として、光反射部材30の長手方向に沿った三角溝形状としている。ただし、形状加工構造31aの形状は、これに限定されるものではなく、光を散乱させることができるものであれば、円錐形状、四角錐形状又は多角錐形状、あるいは、これらの形状を組み合わせた形状等であってもよい。 The shape processing structure 31 a of the substrate layer 31 has, for example, a triangular groove shape along the longitudinal direction of the light reflecting member 30. However, the shape of the shape processing structure 31a is not limited to this, and a conical shape, a quadrangular pyramid shape, a polygonal pyramid shape, or a combination of these shapes, as long as it can scatter light It may be a shape or the like.
 光反射層32は、形状加工構造31aの裏面に形成されている。光反射層32は、例えばアルミニウム又は銀等の金属からなる金属膜(金属反射膜)である。金属膜からなる光反射層32は、例えば蒸着等によって基板層31の形状加工構造31aの裏面に形成される。したがって、光反射層32の表面形状は、形状加工構造31aの凹凸形状に倣って凹凸形状となる。つまり、光反射層32は、複数の凸部と複数の凹部との繰り返し構造である。なお、本実施の形態において、光反射層32は、アルミニウム蒸着膜である。 The light reflecting layer 32 is formed on the back surface of the shape processing structure 31a. The light reflection layer 32 is a metal film (metal reflection film) made of a metal such as aluminum or silver. The light reflecting layer 32 made of a metal film is formed on the back surface of the shape processing structure 31a of the substrate layer 31, for example, by vapor deposition. Therefore, the surface shape of the light reflection layer 32 becomes an uneven shape following the uneven shape of the shape processing structure 31a. That is, the light reflection layer 32 has a repeated structure of a plurality of convex portions and a plurality of concave portions. In the present embodiment, the light reflecting layer 32 is an aluminum vapor deposition film.
 耐酸性層33は、光反射層32の裏面に形成されている薄膜であり、例えば約30nmの膜厚である。耐酸性層33は、例えば無機光学層、金属層、樹脂層等からなる層である。無機光学層の一例としては、フッ化マグネシウム、二酸化ケイ素、フッ化リチウム、フッ化カルシウム等である。金属層の一例としては、ニッケル、銀等である。樹脂層の一例としては、ポリオレフィン系樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂、ポリ塩化ビニリデン、ポリカーボネート等である。無機光学層、金属層、樹脂層等は、エチレンビニルアセテートを含む充填部材60に由来する(生じる)酢酸の透過を抑制する性質を有する。 The acid resistant layer 33 is a thin film formed on the back surface of the light reflecting layer 32, and has a thickness of about 30 nm, for example. The acid resistant layer 33 is a layer made of, for example, an inorganic optical layer, a metal layer, a resin layer, or the like. Examples of the inorganic optical layer include magnesium fluoride, silicon dioxide, lithium fluoride, and calcium fluoride. An example of the metal layer is nickel, silver, or the like. Examples of the resin layer are polyolefin resin, acrylic resin, epoxy resin, fluororesin, polyvinylidene chloride, polycarbonate, and the like. The inorganic optical layer, the metal layer, the resin layer, and the like have a property of suppressing transmission of acetic acid derived (generated) from the filling member 60 containing ethylene vinyl acetate.
 耐酸性層33は、充填部材60と光反射層32との間で、光反射層32に積層される。光反射層32が充填部材62と接触しないように、光反射層32を裏面側から覆っている。つまり、耐酸性層33は、エチレンビニルアセテートを含む充填部材62に酢酸が発生しても、光反射層32が酢酸で溶解しないように、光反射層32を覆っている。本実施の形態では、耐酸性層33は、光反射層32の界面に形成されている。 The acid resistant layer 33 is laminated on the light reflecting layer 32 between the filling member 60 and the light reflecting layer 32. The light reflecting layer 32 is covered from the back side so that the light reflecting layer 32 does not come into contact with the filling member 62. That is, the acid resistant layer 33 covers the light reflecting layer 32 so that even if acetic acid is generated in the filling member 62 containing ethylene vinyl acetate, the light reflecting layer 32 is not dissolved by acetic acid. In the present embodiment, the acid resistant layer 33 is formed at the interface of the light reflecting layer 32.
 耐酸性層33は、例えば蒸着等によって基板層31の形状加工構造31aの裏面に形成される。したがって、光反射層32の表面形状は、形状加工構造31aの凹凸形状に倣って凹凸形状となっているため、耐酸性層33も、光反射層32の凹凸形状に倣って凹凸形状となる。つまり、耐酸性層33も、複数の凸部と複数の凹部との繰り返し構造である。また、耐酸性層33を樹脂層によって形成する場合、耐酸性層33の表面は形状加工構造31aより低い凹凸形状となるか、または、凹凸形状とならない形状となる。 The acid resistant layer 33 is formed on the back surface of the shape processing structure 31a of the substrate layer 31, for example, by vapor deposition. Therefore, since the surface shape of the light reflecting layer 32 is an uneven shape following the uneven shape of the shape processing structure 31 a, the acid-resistant layer 33 also becomes an uneven shape following the uneven shape of the light reflecting layer 32. That is, the acid resistant layer 33 also has a repeated structure of a plurality of convex portions and a plurality of concave portions. Further, when the acid-resistant layer 33 is formed of a resin layer, the surface of the acid-resistant layer 33 has a concavo-convex shape lower than that of the shape processed structure 31a or a shape that does not have a concavo-convex shape.
 光反射部材30は、基板層31と光反射層32と耐酸性層33との積層構造である。つまり、基板層31の裏面に光反射層32が形成されたものを光反射部材30として用いている。光反射部材30は、入射した光を反射する光反射機能を有する。 The light reflecting member 30 has a laminated structure of a substrate layer 31, a light reflecting layer 32, and an acid resistant layer 33. That is, the light reflecting member 30 having the light reflecting layer 32 formed on the back surface of the substrate layer 31 is used. The light reflecting member 30 has a light reflecting function of reflecting incident light.
 図1及び図2に示すように、光反射部材30は、複数設けられる。各光反射部材30は、太陽電池ストリング10Sの長手方向に延在するテープ状の光反射シートであり、一例として、長尺矩形状かつ薄板状である。各光反射部材30は、例えば、長さが100mm~130mmであり、幅が1mm~20mmであり、厚さが0.05mm~0.5mmである。一例として、光反射部材30は、長さが125mmであり、幅が5mmであり、厚さが0.1mmである。 As shown in FIGS. 1 and 2, a plurality of light reflecting members 30 are provided. Each light reflecting member 30 is a tape-like light reflecting sheet extending in the longitudinal direction of the solar cell string 10S, and has a long rectangular shape and a thin plate shape as an example. Each light reflecting member 30 has, for example, a length of 100 mm to 130 mm, a width of 1 mm to 20 mm, and a thickness of 0.05 mm to 0.5 mm. As an example, the light reflecting member 30 has a length of 125 mm, a width of 5 mm, and a thickness of 0.1 mm.
 本実施の形態において、光反射部材30は、凹凸形状の光反射層32を有するので、光反射部材30に入射した光を所定の方向に拡散反射させることができる。つまり、光反射部材30は、光拡散反射部材として機能する光拡散反射シートである。 In the present embodiment, since the light reflecting member 30 has the uneven light reflecting layer 32, the light incident on the light reflecting member 30 can be diffusely reflected in a predetermined direction. That is, the light reflection member 30 is a light diffusion reflection sheet that functions as a light diffusion reflection member.
 本実施の形態において、光反射部材30は、太陽電池セル10の裏面側に配置されている。光反射部材30を太陽電池セル10の表面側に配置すると、光反射部材30と太陽電池セル10との重なる部分において太陽電池セル10の有効領域(発電領域)が光反射部材30で遮光されて遮光ロスが発生する可能性があるが、光反射部材30を太陽電池セル10の裏面側に配置することで、このような遮光ロスを軽減することができる。 In the present embodiment, the light reflecting member 30 is disposed on the back side of the solar battery cell 10. When the light reflecting member 30 is arranged on the surface side of the solar battery cell 10, an effective area (power generation area) of the solar battery cell 10 is shielded by the light reflecting member 30 in a portion where the light reflecting member 30 and the solar battery cell 10 overlap. Although there is a possibility that a light-blocking loss occurs, such a light-blocking loss can be reduced by arranging the light reflecting member 30 on the back surface side of the solar battery cell 10.
 図3及び図4に示すように、また、光反射部材30は、光反射層32の裏面が裏面保護部材50に対面するように配置される。つまり、光反射部材30は、基板層31が表面保護部材40側に位置し、かつ、光反射層32が裏面保護部材50側に位置するように配置されている。 3 and 4, the light reflecting member 30 is disposed so that the back surface of the light reflecting layer 32 faces the back surface protecting member 50. That is, the light reflecting member 30 is disposed so that the substrate layer 31 is located on the front surface protection member 40 side and the light reflecting layer 32 is located on the back surface protection member 50 side.
 光反射部材30は、充填部材60によって封止されている。具体的には、光反射部材30は、表面側充填部材61と裏面側充填部材62とで封止されている。より具体的には、光反射部材30の表面保護部材40側(主受光面側)は、表面側充填部材61によって覆われており、光反射部材30の裏面保護部材50側は、裏面側充填部材62によって覆われている。言い換えれば、光反射部材30は、太陽電池セル10と裏面側充填部材62とで挟まれるように設けられている。 The light reflecting member 30 is sealed by the filling member 60. Specifically, the light reflecting member 30 is sealed with the front surface side filling member 61 and the back surface side filling member 62. More specifically, the surface protection member 40 side (main light receiving surface side) of the light reflecting member 30 is covered with the surface side filling member 61, and the back surface protection member 50 side of the light reflecting member 30 is filled with the back surface side. Covered by a member 62. In other words, the light reflecting member 30 is provided so as to be sandwiched between the solar battery cell 10 and the back surface side filling member 62.
 このように、隣り合う2つの太陽電池セル10(太陽電池セル10と隣り合う他の太陽電池セル10)の間の隙間は、光反射部材30(光反射層32)によって覆われている。 Thus, the gap between two adjacent solar cells 10 (the other solar cells 10 adjacent to the solar cells 10) is covered by the light reflecting member 30 (the light reflecting layer 32).
 これにより、主受光面側から太陽電池モジュール1に入射した光のうち隣り合う2つの太陽電池セル10の間の隙間に入射する光は、表面保護部材40、表面側充填部材61及び接着層34を透過して光反射部材30に到達し、光反射部材30の基板層31を透過して光反射層32の凹凸形状によって拡散反射(散乱)する。この拡散反射した光は、表面保護部材40と空気層との界面又は表面保護部材40と充填部材60との界面で反射して、太陽電池セル10へと導かれる。この結果、発電無効領域(本実施の形態では、隣り合う2つの太陽電池ストリング10Sの間の隙間の領域であって、入射した光を発電に寄与させることができない領域)である隣り合う2つの太陽電池セル10の間の隙間の領域に入射する光も有効に発電に寄与させることで、太陽電池モジュール1の発電効率が向上する。 Thereby, the light incident on the gap between two adjacent solar cells 10 among the light incident on the solar cell module 1 from the main light receiving surface side is the surface protection member 40, the surface side filling member 61, and the adhesive layer 34. Is transmitted through the substrate layer 31 of the light reflecting member 30 and diffusely reflected (scattered) by the uneven shape of the light reflecting layer 32. The diffusely reflected light is reflected at the interface between the surface protection member 40 and the air layer or the interface between the surface protection member 40 and the filling member 60 and guided to the solar battery cell 10. As a result, the two adjacent power generation invalid regions (in this embodiment, the region between the two adjacent solar cell strings 10S, which is the region where the incident light cannot contribute to power generation). The light generation efficiency of the solar cell module 1 is improved by causing light incident on the gap region between the solar cells 10 to effectively contribute to power generation.
 [表面保護部材、裏面保護部材]
 図3に示すように、表面保護部材40は、太陽電池モジュール1の表側の面を保護する部材であり、太陽電池モジュール1の内部(太陽電池セル10等)を、風雨や外部衝撃等の外部環境から保護する。表面保護部材40は、太陽電池セル10の表面側に配設されており、太陽電池セル10の表面側の受光面を保護している。
[Surface protection member, back surface protection member]
As shown in FIG. 3, the surface protection member 40 is a member that protects the surface on the front side of the solar cell module 1, and the inside of the solar cell module 1 (solar cell 10 or the like) is exposed to outside such as wind and rain or external impact. Protect from the environment. The surface protection member 40 is disposed on the front surface side of the solar battery cell 10 and protects the light receiving surface on the front surface side of the solar battery cell 10.
 表面保護部材40は、太陽電池セル10において光電変換に利用される波長帯域の光を透過する透光性部材によって構成されている。表面保護部材40は、例えば、透明ガラス材料からなるガラス基板、又は、フィルム状や板状の透光性及び遮水性を有する硬質の樹脂材料からなる樹脂基板である。 The surface protection member 40 is made of a translucent member that transmits light in a wavelength band used for photoelectric conversion in the solar battery cell 10. The surface protection member 40 is, for example, a glass substrate made of a transparent glass material, or a resin substrate made of a hard resin material having film-like or plate-like translucency and water shielding properties.
 一方、裏面保護部材50は、太陽電池モジュール1の裏側の面を保護する部材であり、太陽電池モジュール1の内部を外部環境から保護する。裏面保護部材50は、太陽電池セル10の裏面側に配設されており、太陽電池セル10の裏面側の受光面を保護している。 On the other hand, the back surface protection member 50 is a member that protects the back surface of the solar cell module 1 and protects the inside of the solar cell module 1 from the external environment. The back surface protection member 50 is disposed on the back surface side of the solar battery cell 10 and protects the light receiving surface on the back surface side of the solar battery cell 10.
 裏面保護部材50は、例えば、ポリエチレンテレフタレート(PET)又はポリエチレンナフタレート(PEN)等の樹脂材料からなるフィルム状や板状の樹脂シートである。 The back surface protection member 50 is a film-like or plate-like resin sheet made of a resin material such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN).
 本実施の形態における太陽電池モジュール1は片面受光方式であるので、裏面保護部材50は、不透光の板体又はフィルムとしてもよい。この場合、裏面保護部材50としては、例えば、黒色部材、又は、アルミ箔等の金属箔を内部に有する樹脂フィルム等の積層フィルム等、不透光部材(遮光性の部材)を用いてもよい。なお、裏面保護部材50は、不透光部材に限るものではなく、ガラス材料からなるガラスシート又はガラス基板等の透光部材であってもよい。 Since the solar cell module 1 in the present embodiment is a single-sided light receiving method, the back surface protection member 50 may be an opaque plate or film. In this case, as the back surface protection member 50, for example, an opaque member (light-shielding member) such as a black member or a laminated film such as a resin film having a metal foil such as an aluminum foil therein may be used. . Note that the back surface protection member 50 is not limited to the light-impermeable member, and may be a light-transmissive member such as a glass sheet or a glass substrate made of a glass material.
 表面保護部材40及び裏面保護部材50の間には充填部材60が充填されている。表面保護部材40及び裏面保護部材50と太陽電池セル10とは、この充填部材60によって接着されて固定されている。 A filling member 60 is filled between the front surface protection member 40 and the back surface protection member 50. The front surface protection member 40 and the back surface protection member 50 and the solar battery cell 10 are bonded and fixed by the filling member 60.
 [充填部材]
 充填部材60は、表面保護部材40と裏面保護部材50との間に配置される。本実施の形態において、充填部材60は、表面保護部材40と裏面保護部材50との間を埋めるように充填されている。
[Filling member]
The filling member 60 is disposed between the front surface protection member 40 and the back surface protection member 50. In the present embodiment, the filling member 60 is filled so as to fill a space between the surface protection member 40 and the back surface protection member 50.
 充填部材60は、表面側充填部材61と裏面側充填部材62とによって構成されている。表面側充填部材61及び裏面側充填部材62の各々は、マトリクス状に配置された複数の太陽電池セル10を覆っている。 The filling member 60 is composed of a front surface side filling member 61 and a back surface side filling member 62. Each of the front surface side filling member 61 and the back surface side filling member 62 covers a plurality of solar cells 10 arranged in a matrix.
 表面側充填部材61は、各太陽電池セル10の表面側から太陽電池セル10及び光反射層32を覆うように形成される。具体的には、表面側充填部材61は、表面保護部材40側から、全ての太陽電池セル10及び全ての光反射部材30を覆うように形成される。表面側充填部材61は、EVAを含まなくてもよく、裏面側充填部材62と同じ材料であってもよい。 The front surface side filling member 61 is formed so as to cover the solar battery cell 10 and the light reflection layer 32 from the front surface side of each solar battery cell 10. Specifically, the surface-side filling member 61 is formed so as to cover all the solar cells 10 and all the light reflecting members 30 from the surface protection member 40 side. The front side filling member 61 may not contain EVA and may be the same material as the back side filling member 62.
 裏面側充填部材62は、各太陽電池セル10の裏面側から太陽電池セル10及び光反射層32を覆うように形成される。具体的には、裏面側充填部材62は、裏面保護部材50側から、全ての太陽電池セル10及び全ての光反射部材30を覆うように形成される。裏面側充填部材62は、EVAを含む材料で構成される。 The back surface side filling member 62 is formed so as to cover the solar battery cell 10 and the light reflection layer 32 from the back surface side of each solar battery cell 10. Specifically, the back surface side filling member 62 is formed so as to cover all the solar cells 10 and all the light reflecting members 30 from the back surface protection member 50 side. The back surface side filling member 62 is made of a material containing EVA.
 複数の太陽電池セル10は、例えばシート状の表面側充填部材61と裏面側充填部材62とで挟み込まれた状態でラミネート処理(ラミネート加工)を行うことで充填部材60によって全体が覆われる。 The plurality of solar cells 10 are entirely covered with the filling member 60 by performing a laminating process (lamination process) while being sandwiched between, for example, a sheet-like front side filling member 61 and a back side filling member 62.
 具体的には、複数の太陽電池セル10を配線材20で連結して太陽電池ストリング10Sを形成した後、複数本の太陽電池ストリング10Sを表面側充填部材61と裏面側充填部材62とで挟み込み、さらに、その上下に表面保護部材40と裏面保護部材50とを配置して、例えば100℃以上の温度で、真空中で熱圧着を行う。この熱圧着によって、表面側充填部材61及び裏面側充填部材62が加熱されて溶融し、太陽電池セル10を封止する充填部材60となる。 Specifically, after a plurality of solar cells 10 are connected by the wiring member 20 to form the solar cell string 10S, the plurality of solar cell strings 10S are sandwiched between the front surface side filling member 61 and the back surface side filling member 62. Furthermore, the surface protection member 40 and the back surface protection member 50 are disposed above and below, and thermocompression bonding is performed in a vacuum at a temperature of, for example, 100 ° C. or higher. By this thermocompression bonding, the front surface side filling member 61 and the back surface side filling member 62 are heated and melted to form a filling member 60 that seals the solar battery cell 10.
 ラミネート処理前の表面側充填部材61は、例えばEVA又はポリオレフィン等の樹脂材料によって構成された樹脂シートであり、複数の太陽電池セル10と表面保護部材40との間に配置される。表面側充填部材61は、ラミネート処理によって主に太陽電池セル10と表面保護部材40との間の隙間を埋めるように充填される。 The surface-side filling member 61 before the lamination process is a resin sheet made of, for example, a resin material such as EVA or polyolefin, and is disposed between the plurality of solar cells 10 and the surface protection member 40. The front-side filling member 61 is mainly filled by a laminating process so as to fill a gap between the solar battery cell 10 and the surface protection member 40.
 表面側充填部材61は、透光性材料によって構成されている。本実施の形態では、ラミネート処理前の表面側充填部材61として、EVAからなる透明樹脂シートを用いている。 The front-side filling member 61 is made of a translucent material. In the present embodiment, a transparent resin sheet made of EVA is used as the front-side filling member 61 before the lamination process.
 ラミネート処理前の裏面側充填部材62は、例えばEVA等の樹脂材料によって構成された白色樹脂シートであり、複数の太陽電池セル10と裏面保護部材50との間に配置される。裏面側充填部材62は、ラミネート処理によって主に太陽電池セル10と裏面保護部材50との間の隙間を埋めるように充填される。 The back surface side filling member 62 before the laminating process is a white resin sheet made of a resin material such as EVA, and is disposed between the plurality of solar cells 10 and the back surface protection member 50. The back surface side filling member 62 is mainly filled by a laminating process so as to fill a gap between the solar battery cell 10 and the back surface protection member 50.
 本実施の形態における太陽電池モジュール1は片面受光方式であるので、裏面側充填部材62は、透光性材料に限るものではなく、黒色材料又は白色材料等の着色材料によって構成されていてもよい。一例として、ラミネート処理前の裏面側充填部材62としては、EVAからなる白色樹脂シートを用いている。 Since the solar cell module 1 according to the present embodiment is a single-sided light receiving method, the back surface side filling member 62 is not limited to a light-transmitting material, and may be made of a coloring material such as a black material or a white material. . As an example, a white resin sheet made of EVA is used as the back surface side filling member 62 before the lamination process.
 [フレーム]
 図1に示すように、フレーム70は、太陽電池モジュール1の周縁端部を覆う外枠である。フレーム70は、例えば、アルミ製のアルミフレーム(アルミ枠)である。フレーム70は、4本用いられており、それぞれ太陽電池モジュール1の4辺の各々に装着されている。フレーム70は、例えば、接着剤によって太陽電池モジュール1の各辺に固着されている。
[flame]
As shown in FIG. 1, the frame 70 is an outer frame that covers the peripheral edge of the solar cell module 1. The frame 70 is, for example, an aluminum frame (aluminum frame) made of aluminum. Four frames 70 are used, and are mounted on each of the four sides of the solar cell module 1. The frame 70 is fixed to each side of the solar cell module 1 with an adhesive, for example.
 なお、図示しないが、太陽電池モジュール1には、太陽電池セル10で発電された電力を取り出すための端子ボックスが設けられている。端子ボックスは、例えば裏面保護部材50に固定されている。端子ボックスには、回路基板に実装された複数の回路部品が内蔵されている。 Although not shown, the solar cell module 1 is provided with a terminal box for taking out the electric power generated by the solar cells 10. The terminal box is fixed to the back surface protection member 50, for example. The terminal box contains a plurality of circuit components mounted on the circuit board.
 [効果等]
 次に、本実施の形態における太陽電池モジュール1の効果について説明する。
[Effects]
Next, the effect of the solar cell module 1 in the present embodiment will be described.
 上述したように、実施の形態1に係る太陽電池モジュール1は、太陽電池セル10と、エチレンビニルアセテートを含む充填部材60と、太陽電池セル10の端部から張り出すように設けられ、太陽電池セル10と充填部材60とにより挟まれる光反射層32と、充填部材60と光反射層32との間で、光反射層32に積層される耐酸性層33とを備える。 As described above, the solar cell module 1 according to Embodiment 1 is provided so as to project from the solar cell 10, the filling member 60 containing ethylene vinyl acetate, and the end of the solar cell 10. A light reflecting layer 32 sandwiched between the cell 10 and the filling member 60 and an acid resistant layer 33 laminated on the light reflecting layer 32 between the filling member 60 and the light reflecting layer 32 are provided.
 この構成によれば、充填部材62に浸透した水によって充填部材62内に酢酸が発生しても、耐酸性層33が充填部材60と光反射層32との間で光反射層32に積層されているため、充填部材60に生じる酢酸の透過を抑制することができる。このため、充填部材62で発生した酢酸で光反射層32が腐食し難い。その結果、光反射層32の光反射性能が低下し難い。 According to this configuration, even if acetic acid is generated in the filling member 62 due to water that has permeated the filling member 62, the acid resistant layer 33 is laminated on the light reflecting layer 32 between the filling member 60 and the light reflecting layer 32. Therefore, permeation of acetic acid generated in the filling member 60 can be suppressed. For this reason, the light reflection layer 32 is hardly corroded by acetic acid generated in the filling member 62. As a result, the light reflecting performance of the light reflecting layer 32 is unlikely to deteriorate.
 したがって、この太陽電池モジュール1によれば、光反射層32の腐食を抑制することで、光反射層32の光反射性能の低下を抑制することができる。 Therefore, according to the solar cell module 1, the deterioration of the light reflection performance of the light reflection layer 32 can be suppressed by suppressing the corrosion of the light reflection layer 32.
 また、実施の形態1に係る太陽電池モジュール1では、配線材20によって電気的に接続された複数の太陽電池セル10を備える太陽電池ストリング10Sと、エチレンビニルアセテートを含む充填部材60と、配線材20と重ならない位置であって、太陽電池セル10の端部から張り出すように設けられ、太陽電池セル10と充填部材60とにより挟まれる光反射層32と、充填部材60と光反射層32との間で、光反射層32に積層される耐酸性層33とを備える。この構成においても同様の作用効果を奏する。 Moreover, in the solar cell module 1 according to Embodiment 1, a solar cell string 10S including a plurality of solar cells 10 electrically connected by the wiring member 20, a filling member 60 containing ethylene vinyl acetate, and a wiring member The light reflecting layer 32 is provided so as to protrude from the end of the solar battery cell 10 at a position that does not overlap with the solar battery cell 10, and is sandwiched between the solar battery cell 10 and the filling member 60. And an acid resistant layer 33 laminated on the light reflecting layer 32. This configuration also has the same effect.
 また、実施の形態1に係る太陽電池モジュール1において、耐酸性層33は、光反射層32よりも酢酸による溶解度が低い、又は充填部材60よりも酢酸の透過度が低い。 Further, in the solar cell module 1 according to Embodiment 1, the acid-resistant layer 33 has lower acetic acid solubility than the light reflecting layer 32 or lower acetic acid permeability than the filling member 60.
 この構成によれば、耐酸性層33が光反射層32よりも酢酸による溶解度が高いため、耐酸性層33が溶解し難い。また、耐酸性層33が充填部材60よりも酢酸の透過度が低いため、光反射層32に酢酸が接触し難い。これらのため、基板層31と耐酸性層33とで覆われた光反射層32は腐食し難い。その結果、光反射層32の光反射性能が低下し難い。 According to this configuration, since the acid-resistant layer 33 is more soluble in acetic acid than the light reflecting layer 32, the acid-resistant layer 33 is difficult to dissolve. In addition, since the acid-resistant layer 33 has a lower acetic acid permeability than the filling member 60, it is difficult for acetic acid to contact the light reflecting layer 32. For these reasons, the light reflecting layer 32 covered with the substrate layer 31 and the acid resistant layer 33 is hardly corroded. As a result, the light reflecting performance of the light reflecting layer 32 is unlikely to deteriorate.
 また、実施の形態1に係る太陽電池モジュール1において、耐酸性層33は、エチレンビニルアセテートに由来する酢酸の光反射層32への接触を抑制する、無機光学層、金属層、樹脂層である。 In the solar cell module 1 according to Embodiment 1, the acid-resistant layer 33 is an inorganic optical layer, a metal layer, or a resin layer that suppresses contact of acetic acid derived from ethylene vinyl acetate with the light reflecting layer 32. .
 耐酸性層33が無機光学層、金属層、樹脂層であれば、酢酸の光反射層32への接触を抑制することができる。つまり、この太陽電池モジュール1では、光反射層32の光反射性能を損ね難い。 If the acid-resistant layer 33 is an inorganic optical layer, a metal layer, or a resin layer, the contact of acetic acid with the light reflecting layer 32 can be suppressed. That is, in the solar cell module 1, it is difficult to impair the light reflection performance of the light reflection layer 32.
 また、実施の形態1に係る太陽電池モジュール1において、光反射層32の表面は、太陽電池セル10の端部に沿う方向に形成された三角溝形状の繰り返し構造を有する。 Moreover, in the solar cell module 1 according to Embodiment 1, the surface of the light reflecting layer 32 has a triangular groove-shaped repeating structure formed in a direction along the end of the solar cell 10.
 また、実施の形態1に係る太陽電池モジュール1は、太陽電池セル10の表面側に設けられる表面保護部材40と、太陽電池セル10の裏面側に設けられる裏面保護部材50とをさらに備える。また、充填部材60は、太陽電池セル10の表面側であって太陽電池セル10と表面保護部材40との間に設けられる表面側充填部材61と、太陽電池セル10の裏面側であって太陽電池セル10と裏面保護部材50との間に設けられる裏面側充填部材62とを含む。そして、光反射層32は、光反射層32にて反射した光が表面保護部材40の界面で反射して、太陽電池セル10へと導かれるように配置される。 Moreover, the solar cell module 1 according to Embodiment 1 further includes a surface protection member 40 provided on the front surface side of the solar cell 10 and a back surface protection member 50 provided on the back surface side of the solar cell 10. In addition, the filling member 60 is a front surface side of the solar battery cell 10 and is provided between the solar battery cell 10 and the surface protection member 40. A back surface side filling member 62 provided between the battery cell 10 and the back surface protection member 50. The light reflecting layer 32 is arranged so that the light reflected by the light reflecting layer 32 is reflected by the interface of the surface protection member 40 and guided to the solar battery cell 10.
 これらにより、主受光面側から太陽電池モジュール1に入射した光のうち隣り合う2つの太陽電池セル10の間の隙間に入射した光は、例えば、表面側充填部材61を透過して光反射部材30に到達し、基板層31を透過して光反射層32の凹凸形状によって拡散反射(散乱)する。この拡散反射した光は、表面保護部材40と空気層との界面又は表面保護部材40と表面側充填部材61との界面で全反射して、太陽電池セル10へと導かれる。この結果、無効領域(本実施の形態では、隣り合う2つのストリング10Sの間の隙間の領域であって、入射した光を発電に寄与させることができない領域)である隣り合う2つの太陽電池セル10の間の隙間の領域に入射する光も有効に発電に寄与させることができるため、太陽電池モジュール1の発電効率が向上する。なお、太陽電池モジュール1の裏面側から光が入射した場合においても同様である。 As a result, the light incident on the gap between the two adjacent solar cells 10 out of the light incident on the solar cell module 1 from the main light receiving surface side is transmitted through the surface-side filling member 61, for example, and the light reflecting member. 30, passes through the substrate layer 31, and is diffusely reflected (scattered) by the uneven shape of the light reflecting layer 32. The diffusely reflected light is totally reflected at the interface between the surface protection member 40 and the air layer or at the interface between the surface protection member 40 and the surface-side filling member 61 and guided to the solar battery cell 10. As a result, two adjacent solar cells that are ineffective regions (regions in the present embodiment that are gaps between two adjacent strings 10S and that cannot make incident light contribute to power generation). Since the light incident on the region between the gaps 10 can also contribute to power generation effectively, the power generation efficiency of the solar cell module 1 is improved. The same applies when light enters from the back side of the solar cell module 1.
 また、実施の形態1に係る太陽電池モジュール1において、光反射層32の表面は、隣り合う太陽電池ストリング10Sの並ぶ方向に交差する方向に形成された三角溝形状の繰り返し構造を有する。この構成においても同様の作用効果を奏する。 In the solar cell module 1 according to Embodiment 1, the surface of the light reflection layer 32 has a triangular groove-shaped repetitive structure formed in a direction crossing the direction in which adjacent solar cell strings 10S are arranged. This configuration also has the same effect.
 また、実施の形態1に係る太陽電池モジュール1では、太陽電池ストリング10Sが複数設けられる。そして、光反射層32は、隣り合う太陽電池ストリング10Sのうちの一方の太陽電池セル10から、隣り合う太陽電池ストリング10Sのうちの他方の太陽電池セル10まで跨るように設けられる。 Moreover, in the solar cell module 1 according to Embodiment 1, a plurality of solar cell strings 10S are provided. And the light reflection layer 32 is provided so that it may straddle from the one photovoltaic cell 10 of the adjacent photovoltaic cell strings 10S to the other photovoltaic cell 10 of the adjacent photovoltaic cell strings 10S.
 この構成によれば、隣り合う2つの太陽電池セル10の間の隙間の領域に入射する光をより有効に発電に寄与させることができるため、太陽電池モジュール1の発電効率が向上する。 According to this configuration, the light incident on the region of the gap between the two adjacent solar cells 10 can be more effectively contributed to the power generation, so that the power generation efficiency of the solar cell module 1 is improved.
 なお、光反射部材30を太陽電池セル10の裏面側に配置すると、光反射部材30と太陽電池セル10との重なる部分において太陽電池セル10の有効領域(発電領域)が光反射部材30で遮光されて遮光ロスが発生する可能性がある。光反射部材30を太陽電池セル10の裏面側に配置することで、このような遮光ロスを軽減することができる。 When the light reflecting member 30 is disposed on the back surface side of the solar battery cell 10, the effective area (power generation area) of the solar battery cell 10 is shielded by the light reflecting member 30 in the overlapping portion of the light reflecting member 30 and the solar battery cell 10. May cause a light-shielding loss. By disposing the light reflecting member 30 on the back surface side of the solar battery cell 10, such a light shielding loss can be reduced.
 (実施の形態の変形例)
 図5は、実施の形態の変形例に係る太陽電池モジュール1の部分拡大断面図である。
(Modification of the embodiment)
FIG. 5 is a partial enlarged cross-sectional view of a solar cell module 1 according to a modification of the embodiment.
 図5に示すように、本変形例における太陽電池モジュール1では、光反射部材30が太陽電池セル10の表面側に設けられている点で、実施の形態と異なっている。なお、変形例では、光反射部材30は、実施の形態に対し、X軸方向及びY軸方向で規定される面に対して面対称の位置に設けられる点で異なるだけであり、他の構成については同様であるため、同一の構成については、同一の符号を付し、その説明を省略する。 As shown in FIG. 5, the solar cell module 1 in the present modification is different from the embodiment in that the light reflecting member 30 is provided on the surface side of the solar cell 10. In the modification, the light reflecting member 30 is different from the embodiment only in that the light reflecting member 30 is provided in a plane-symmetrical position with respect to the plane defined in the X-axis direction and the Y-axis direction. Are the same, the same reference numerals are assigned to the same components, and descriptions thereof are omitted.
 本変形例における太陽電池モジュール1では、光反射部材30は、Y軸方向における隣り合う2つの太陽電池セル10の隙間を跨ぐように、この隣り合う2つの太陽電池セル10の各々に設けられている。つまり、光反射部材30は、隙間をあけて配置された隣り合う2つの太陽電池セル10の表面側において、一方の太陽電池セル10から他方の太陽電池セル10まで跨るように設けられている。 In the solar cell module 1 in the present modification, the light reflecting member 30 is provided in each of the two adjacent solar cells 10 so as to straddle the gap between the two adjacent solar cells 10 in the Y-axis direction. Yes. That is, the light reflecting member 30 is provided so as to straddle from one solar battery cell 10 to the other solar battery cell 10 on the surface side of two adjacent solar battery cells 10 arranged with a gap.
 本変形例では、光反射部材30は、基板層31と、光反射層32と、耐酸性層33とを有し、プラスZ軸方向に向かってこの順番で積層される。 In this modification, the light reflecting member 30 includes a substrate layer 31, a light reflecting layer 32, and an acid resistant layer 33, and is laminated in this order toward the plus Z-axis direction.
 光反射部材30は、太陽電池セル10の表面側に設けられた接着層34により、太陽電池セル10の表面側に接着している。接着層34は、基板層31と太陽電池セル10との間で挟まれるように設けられ、基板層31の太陽電池セル10側に形成された透明な接着部材である。 The light reflecting member 30 is adhered to the surface side of the solar cell 10 by an adhesive layer 34 provided on the surface side of the solar cell 10. The adhesive layer 34 is a transparent adhesive member that is provided so as to be sandwiched between the substrate layer 31 and the solar battery cell 10 and is formed on the solar battery cell 10 side of the substrate layer 31.
 耐酸性層33は、光反射層32の表面に形成されている薄膜である。耐酸性層33は、光反射層32が充填部材62と接触しないように、光反射層32を表面側から覆っている。つまり、耐酸性層33は、エチレンビニルアセテートを含む充填部材62に酢酸が発生しても、光反射層32に酢酸が接触しないように、光反射層32と密着した状態で光反射層32を覆っている。 The acid resistant layer 33 is a thin film formed on the surface of the light reflecting layer 32. The acid resistant layer 33 covers the light reflecting layer 32 from the surface side so that the light reflecting layer 32 does not contact the filling member 62. That is, the acid-resistant layer 33 is formed so that the light reflecting layer 32 is in close contact with the light reflecting layer 32 so that acetic acid is not in contact with the light reflecting layer 32 even if acetic acid is generated in the filling member 62 containing ethylene vinyl acetate. Covering.
 耐酸性層33は、透光性を有する透明な材料である。つまり、耐酸性層33が無機光学層である場合、例えば、フッ化マグネシウム、二酸化ケイ素、フッ化リチウム、フッ化カルシウム等の透明な材料を耐酸性層33に用いる。また、耐酸性層33が樹脂層である場合、例えば、ポリオレフィン系樹脂、アクリル樹脂、エポキシ樹脂、フッ素樹脂、ポリ塩化ビニリデン、ポリカーボネート等の透明な材料を耐酸性層33に用いる。さらに、耐酸性層33が金属層である場合、この金属層が光反射機能を有していてもよい。特に、耐酸性層33には、他の金属に比べて光反射率が高い銀を用いてもよい。この場合、表面保護部材40及び充填部材61を透過した光が耐酸性層33も透過し、光反射層32で散乱するため、光反射部材30の光反射機能を損ねない。 The acid resistant layer 33 is a transparent material having translucency. That is, when the acid-resistant layer 33 is an inorganic optical layer, for example, a transparent material such as magnesium fluoride, silicon dioxide, lithium fluoride, or calcium fluoride is used for the acid-resistant layer 33. When the acid resistant layer 33 is a resin layer, for example, a transparent material such as polyolefin resin, acrylic resin, epoxy resin, fluororesin, polyvinylidene chloride, and polycarbonate is used for the acid resistant layer 33. Furthermore, when the acid resistant layer 33 is a metal layer, the metal layer may have a light reflecting function. In particular, the acid resistant layer 33 may be made of silver having a higher light reflectance than other metals. In this case, the light that has passed through the surface protection member 40 and the filling member 61 also passes through the acid-resistant layer 33 and is scattered by the light reflecting layer 32, so that the light reflecting function of the light reflecting member 30 is not impaired.
 また、本変形例では、光反射部材30は、太陽電池セル10の端部の発電無効領域に設けられている。具体的には、光反射部材30は、太陽電池セル10の端部であって、表側集電極11が設けられない領域に設けられている。これにより、生産性が向上するとともに太陽電池セル10の発電能力を効率よく利用することができる。 In this modification, the light reflecting member 30 is provided in the power generation invalid region at the end of the solar battery cell 10. Specifically, the light reflecting member 30 is provided at an end portion of the solar battery cell 10 in a region where the front side collecting electrode 11 is not provided. Thereby, productivity can be improved and the power generation capacity of the solar battery cell 10 can be used efficiently.
 このような本変形例に係る太陽電池モジュール1は、太陽電池セル10と、エチレンビニルアセテートを含む充填部材60と、充填部材60に覆われるように設けられる光反射層32と、充填部材60と光反射層32との間で、光反射層32に積層される耐酸性層33とを備える。この構成においても同様の作用効果を奏する。 Such a solar cell module 1 according to this modification includes a solar cell 10, a filling member 60 containing ethylene vinyl acetate, a light reflecting layer 32 provided so as to be covered with the filling member 60, and a filling member 60. Between the light reflecting layer 32, an acid resistant layer 33 laminated on the light reflecting layer 32 is provided. This configuration also has the same effect.
 また、本変形例に係る太陽電池モジュール1において、太陽電池セル10の受光面側に接続される配線材20をさらに備える。また、光反射層32は、配線材20の受光面側に設けられる。そして、耐酸性層33は、光反射層32の受光面側に設けられる。 Moreover, the solar cell module 1 according to this modification further includes a wiring member 20 connected to the light receiving surface side of the solar cell 10. The light reflecting layer 32 is provided on the light receiving surface side of the wiring member 20. The acid resistant layer 33 is provided on the light receiving surface side of the light reflecting layer 32.
 この場合においても、平面視で隣り合う2つの太陽電池セル10の間の隙間(発電無効領域)に入射した光は、光反射部材30で拡散反射(散乱)して、太陽電池セル10へと導かれる。このため、発電無効領域に入射する光を有効に発電に寄与させることができるため、太陽電池モジュール1の発電効率が向上する。 Even in this case, the light that has entered the gap (power generation invalid region) between two adjacent solar cells 10 in plan view is diffusely reflected (scattered) by the light reflecting member 30 and is transmitted to the solar cells 10. Led. For this reason, since the light incident on the power generation invalid region can be effectively contributed to the power generation, the power generation efficiency of the solar cell module 1 is improved.
 また、本変形例に係る太陽電池モジュール1において、耐酸性層33は、エチレンビニルアセテートに由来する酢酸の光反射層32への接触を抑制する、無機光学層、金属層、樹脂層である。この構成においても同様の作用効果を奏する。 Moreover, in the solar cell module 1 according to this modification, the acid-resistant layer 33 is an inorganic optical layer, a metal layer, or a resin layer that suppresses contact of acetic acid derived from ethylene vinyl acetate with the light reflecting layer 32. This configuration also has the same effect.
 また、本変形例に係る太陽電池モジュール1において、さらに、光反射層32の表面は、配線材20の延設方向に沿って形成された三角溝形状の繰り返し構造を有する。この構成においても同様の作用効果を奏する。 Further, in the solar cell module 1 according to the present modification, the surface of the light reflection layer 32 further has a triangular groove-shaped repeating structure formed along the extending direction of the wiring member 20. This configuration also has the same effect.
 本変形例における他の作用効果についても、実施の形態と同様の作用効果を奏する。 The other operational effects in the present modification also have the same operational effects as in the embodiment.
 (その他の変形例等)
 以上、本発明に係る太陽電池モジュールについて、実施の形態に基づいて説明したが、本発明は、上記実施の形態に限定されるものではない。
(Other variations)
As mentioned above, although the solar cell module which concerns on this invention was demonstrated based on embodiment, this invention is not limited to the said embodiment.
 例えば、上記の各実施の形態において、光反射部材は、太陽電池セルの裏面側集電極に重ならないように配置したが、これに限らない。具体的には、光反射部材は、太陽電池セルの裏面側集電極の端部(フィンガー電極の端部)と重なるように配置してもよい。 For example, in each of the above-described embodiments, the light reflecting member is disposed so as not to overlap the back-side collector electrode of the solar battery cell, but is not limited thereto. Specifically, the light reflecting member may be disposed so as to overlap with the end portion of the back surface side collecting electrode of the solar battery cell (end portion of the finger electrode).
 図6は、変形例にかかる太陽電池モジュールの部分拡大断面図である。また、上記の各実施の形態において、図6のように、耐酸性層33は、光反射層32の凹凸形状に倣わなくてもよく、隣り合う凸部の間の凹部に充填されていてもよい。 FIG. 6 is a partial enlarged cross-sectional view of a solar cell module according to a modification. Further, in each of the above embodiments, as shown in FIG. 6, the acid-resistant layer 33 does not have to follow the uneven shape of the light reflecting layer 32, and is filled in the recesses between adjacent protrusions. Also good.
 また、上記の各実施の形態において、光反射部材は、隣り合う2つの太陽電池ストリングの間の隙間に配置したが、これに限るものではない。例えば、太陽電池ストリング内において隣り合う太陽電池セルの間の隙間に光反射部材を配置してもよい。光反射部材は、光反射部材と同様の構成であり、光反射部材と同様の配置及び形状で太陽電池セルに貼り付けることができる。 In each of the above embodiments, the light reflecting member is disposed in the gap between two adjacent solar cell strings, but is not limited thereto. For example, you may arrange | position a light reflection member in the clearance gap between the adjacent photovoltaic cells in a solar cell string. The light reflecting member has the same configuration as the light reflecting member, and can be attached to the solar battery cell in the same arrangement and shape as the light reflecting member.
 また、上記の各実施の形態において、光反射部材は、隣り合う2つの太陽電池ストリングの間の隙間において、隣り合う太陽電池セルの隙間ごとに設けられていたが、これに限るものではない。例えば、光反射部材は、隣り合う2つの太陽電池ストリングの間の隙間において、太陽電池ストリングの長手方向に沿って複数の太陽電池セルに跨るように設けられていてもよい。一例として、光反射部材は、太陽電池ストリングの全体にわたる1枚の長尺状の光反射シートであってもよい。 Further, in each of the above-described embodiments, the light reflecting member is provided for each gap between the adjacent solar cells in the gap between the two adjacent solar cell strings, but is not limited thereto. For example, the light reflecting member may be provided across a plurality of solar cells along the longitudinal direction of the solar cell string in the gap between two adjacent solar cell strings. As an example, the light reflecting member may be a single long light reflecting sheet covering the entire solar cell string.
 また、上記の各実施の形態において、光反射部材は、全ての太陽電池ストリングにおける隙間に設けられていたが、一部の隙間のみに設けられていてもよい。つまり、光反射部材が設けられていない太陽電池セル間が存在していてもよい。 Further, in each of the above embodiments, the light reflecting member is provided in the gaps in all the solar cell strings, but may be provided only in a part of the gaps. In other words, there may be a space between solar cells in which no light reflecting member is provided.
 また、上記の各実施の形態において、光反射部材は、太陽電池ストリングにおける隙間に設けられていたが、太陽電池ストリングにおける隙間以外の、入射光が発電に寄与できない領域に設けられてもよい。例えば、光反射部材を、太陽電池セルの受光面側であって、配線材の受光面上に設けても良い。具体的には、配線材のうち、太陽電池セルの受光面側に接続される配線材の受光面側に、光反射部材を設ける。この構成は、太陽電池モジュールの表面側充填部材がエチレンビニルアセテートを含む場合に適用することが好ましい。配線材の受光面上に設けられた光反射部材は、耐酸性層を介して表面側充填部材と接する構成となる。このとき、光反射層の凹凸形状は、配線材の延設方向に沿って形成された、複数の凸部と複数の凹部とが、配線材の延設方向と交わる方向に繰り返し配置されることが好ましい。 In each of the above embodiments, the light reflecting member is provided in the gap in the solar cell string, but may be provided in a region where incident light cannot contribute to power generation other than the gap in the solar cell string. For example, the light reflecting member may be provided on the light receiving surface side of the solar cell and on the light receiving surface of the wiring member. Specifically, a light reflecting member is provided on the light receiving surface side of the wiring material connected to the light receiving surface side of the solar battery cell. This configuration is preferably applied when the surface side filling member of the solar cell module contains ethylene vinyl acetate. The light reflecting member provided on the light receiving surface of the wiring member is configured to be in contact with the surface-side filling member via the acid resistant layer. At this time, the uneven shape of the light reflecting layer is such that a plurality of convex portions and a plurality of concave portions formed along the extending direction of the wiring material are repeatedly arranged in a direction intersecting with the extending direction of the wiring material. Is preferred.
 また、上記の各実施の形態において、太陽電池セルの半導体基板はn型半導体基板としたが、半導体基板は、p型半導体基板であってもよい。 In each of the above embodiments, the semiconductor substrate of the solar cell is an n-type semiconductor substrate, but the semiconductor substrate may be a p-type semiconductor substrate.
 また、上記の各実施の形態において、太陽電池セルの光電変換部の半導体材料は、シリコンであったが、これに限るものではない。太陽電池セルの光電変換部の半導体材料としては、ガリウム砒素(GaAs)又はインジウムリン(InP)等を用いてもよい。 In each of the above embodiments, the semiconductor material of the photoelectric conversion part of the solar battery cell is silicon. However, the present invention is not limited to this. As a semiconductor material of the photoelectric conversion portion of the solar battery cell, gallium arsenide (GaAs), indium phosphide (InP), or the like may be used.
 なお、その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。 In addition, it is realized by arbitrarily combining the components and functions in the embodiment without departing from the scope of the present invention, or the form obtained by subjecting the embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.
 1 太陽電池モジュール
 10 太陽電池セル
 10S 太陽電池ストリング
 20 配線材
 30 光反射部材
 31 基板層
 32 光反射層
 33 耐酸性層
 40 表面保護部材
 50 裏面保護部材
 60 充填部材
 61 表面側充填部材(充填部材)
 62 裏面側充填部材(充填部材)
DESCRIPTION OF SYMBOLS 1 Solar cell module 10 Solar cell 10S Solar cell string 20 Wiring material 30 Light reflection member 31 Substrate layer 32 Light reflection layer 33 Acid-resistant layer 40 Surface protection member 50 Back surface protection member 60 Filling member 61 Surface side filling member (filling member)
62 Back side filling member (filling member)

Claims (12)

  1.  太陽電池セルと、
     エチレンビニルアセテートを含む充填部材と、
     前記太陽電池セルの端部から張り出すように設けられ、前記太陽電池セルと充填部材とにより挟まれる光反射層と、
     前記充填部材と前記光反射層との間で、前記光反射層に積層される耐酸性層とを備える
     太陽電池モジュール。
    Solar cells,
    A filling member comprising ethylene vinyl acetate;
    A light reflection layer provided so as to protrude from an end of the solar battery cell, and sandwiched between the solar battery cell and a filling member;
    A solar cell module comprising an acid-resistant layer laminated on the light reflecting layer between the filling member and the light reflecting layer.
  2.  前記耐酸性層は、前記光反射層よりも酢酸による溶解度が低い、又は前記充填部材よりも酢酸の透過度が低い
     請求項1記載の太陽電池モジュール。
    The solar cell module according to claim 1, wherein the acid-resistant layer has lower solubility in acetic acid than the light reflection layer, or lower acetic acid permeability than the filling member.
  3.  前記耐酸性層は、エチレンビニルアセテートに由来する酢酸の前記光反射層への接触を抑制する、無機光学層、金属層、樹脂層である
     請求項1又は2記載の太陽電池モジュール。
    The solar cell module according to claim 1, wherein the acid-resistant layer is an inorganic optical layer, a metal layer, or a resin layer that suppresses contact of acetic acid derived from ethylene vinyl acetate with the light reflecting layer.
  4.  前記光反射層の表面は、前記太陽電池セルの端部に沿う方向に形成された三角溝形状の繰り返し構造を有する
     請求項1~3のいずれか1項に記載の太陽電池モジュール。
    The solar cell module according to any one of claims 1 to 3, wherein a surface of the light reflecting layer has a triangular groove-shaped repetitive structure formed in a direction along an end portion of the solar battery cell.
  5.  配線材によって電気的に接続された複数の太陽電池セルを備える太陽電池ストリングと、
     エチレンビニルアセテートを含む充填部材と、
     前記配線材と重ならない位置であって、前記太陽電池セルの端部から張り出すように設けられ、前記太陽電池セルと前記充填部材とにより挟まれる光反射層と、
     前記充填部材と前記光反射層との間で、前記光反射層に積層される耐酸性層とを備える
     太陽電池モジュール。
    A solar cell string comprising a plurality of solar cells electrically connected by a wiring material;
    A filling member comprising ethylene vinyl acetate;
    A position that does not overlap with the wiring material, provided so as to protrude from an end of the solar battery cell, and a light reflection layer sandwiched between the solar battery cell and the filling member;
    A solar cell module comprising an acid-resistant layer laminated on the light reflecting layer between the filling member and the light reflecting layer.
  6.  前記太陽電池ストリングが複数設けられ、
     前記光反射層は、隣り合う前記太陽電池ストリングのうちの一方の前記太陽電池セルから、隣り合う前記太陽電池ストリングのうちの他方の太陽電池セルまで跨るように設けられる
     請求項5記載の太陽電池モジュール。
    A plurality of the solar cell strings are provided,
    The solar cell according to claim 5, wherein the light reflection layer is provided so as to straddle from one solar cell of the adjacent solar cell strings to the other solar cell of the adjacent solar cell strings. module.
  7.  前記光反射層の表面は、隣り合う前記太陽電池ストリングの並ぶ方向に交差する方向に形成された三角溝形状の繰り返し構造を有する
     請求項5又は6記載の太陽電池モジュール。
    7. The solar cell module according to claim 5, wherein a surface of the light reflecting layer has a triangular groove-shaped repetitive structure formed in a direction intersecting a direction in which the adjacent solar cell strings are arranged.
  8.  前記太陽電池セルの表面側に設けられる表面保護部材と、
     前記太陽電池セルの裏面側に設けられる裏面保護部材と、をさらに備え、
     前記充填部材は、前記太陽電池セルの表面側であって前記太陽電池セルと前記表面保護部材との間に設けられる表面側充填部材と、前記太陽電池セルの裏面側であって前記太陽電池セルと前記裏面保護部材との間に設けられる裏面側充填部材と、を含み、
     前記光反射層は、前記光反射層にて反射した光が前記表面保護部材の界面で反射して、前記太陽電池セルへと導かれるように配置される
     請求項7記載の太陽電池モジュール。
    A surface protection member provided on the surface side of the solar cell;
    A back surface protection member provided on the back surface side of the solar battery cell,
    The filling member is a front surface side of the solar battery cell and provided between the solar battery cell and the surface protection member, and a back surface side of the solar battery cell and the solar battery cell. And a back surface side filling member provided between the back surface protection member,
    The solar cell module according to claim 7, wherein the light reflection layer is arranged such that light reflected by the light reflection layer is reflected at an interface of the surface protection member and guided to the solar cell.
  9.  太陽電池セルと、
     エチレンビニルアセテートを含む充填部材と、
     前記充填部材に覆われるように設けられる光反射層と、
     前記充填部材と前記光反射層との間で、前記光反射層に積層される耐酸性層とを備える
     太陽電池モジュール。
    Solar cells,
    A filling member comprising ethylene vinyl acetate;
    A light reflecting layer provided so as to be covered with the filling member;
    A solar cell module comprising an acid-resistant layer laminated on the light reflecting layer between the filling member and the light reflecting layer.
  10.  前記太陽電池セルの受光面側に接続される配線材をさらに備え、
     前記光反射層は、前記配線材の前記受光面側に設けられ、
     前記耐酸性層は、前記光反射層の前記受光面側に設けられる
     請求項9記載の太陽電池モジュール。
    Further comprising a wiring material connected to the light receiving surface side of the solar battery cell,
    The light reflecting layer is provided on the light receiving surface side of the wiring material,
    The solar cell module according to claim 9, wherein the acid resistant layer is provided on the light receiving surface side of the light reflecting layer.
  11.  前記耐酸性層は、前記光反射層よりも酢酸による溶解度が低い、又は前記充填部材よりも酢酸の透過度が低い
     請求項10記載の太陽電池モジュール。
    The solar cell module according to claim 10, wherein the acid-resistant layer has lower solubility in acetic acid than the light reflection layer, or lower acetic acid permeability than the filling member.
  12.  前記光反射層の表面は、前記配線材の延設方向に沿って形成された三角溝形状の繰り返し構造を有する
     請求項10又は11記載の太陽電池モジュール。
    The solar cell module according to claim 10 or 11, wherein the surface of the light reflecting layer has a triangular groove-shaped repetitive structure formed along the extending direction of the wiring member.
PCT/JP2017/033192 2016-09-29 2017-09-14 Solar cell module WO2018061789A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018542373A JP6731660B2 (en) 2016-09-29 2017-09-14 Solar cell module
CN201780057934.0A CN109716537A (en) 2016-09-29 2017-09-14 Solar cell module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016192317 2016-09-29
JP2016-192317 2016-09-29

Publications (1)

Publication Number Publication Date
WO2018061789A1 true WO2018061789A1 (en) 2018-04-05

Family

ID=61760630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/033192 WO2018061789A1 (en) 2016-09-29 2017-09-14 Solar cell module

Country Status (3)

Country Link
JP (1) JP6731660B2 (en)
CN (1) CN109716537A (en)
WO (1) WO2018061789A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100206352A1 (en) * 2009-02-13 2010-08-19 Applied Materials, Inc. Low-concentration flat profile photovoltaic modules
JP2011003855A (en) * 2009-06-22 2011-01-06 Toppan Printing Co Ltd Reflecting protective sheet, and semiconductor power generation device including the same
JP2011159747A (en) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd Insulating substrate for solar cell, solar cell module, and method of manufacturing insulating substrate for solar cell
JP2014007384A (en) * 2012-06-22 2014-01-16 Lg Electronics Inc Solar cell module and ribbon assembly applied to the same
JP2016171299A (en) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 Solar battery module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6660930B1 (en) * 2002-06-12 2003-12-09 Rwe Schott Solar, Inc. Solar cell modules with improved backskin
JP4404753B2 (en) * 2004-11-24 2010-01-27 三洋電機株式会社 Solar cell module
JP2011158751A (en) * 2010-02-02 2011-08-18 Konica Minolta Opto Inc Film mirror, method of manufacturing the same, and reflecting device for solar power generation using the same
JP2012023122A (en) * 2010-07-13 2012-02-02 Toppan Printing Co Ltd Backside protective sheet for solar battery module and solar battery module
JP2013004948A (en) * 2011-06-22 2013-01-07 Toray Ind Inc Solar cell module

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100206352A1 (en) * 2009-02-13 2010-08-19 Applied Materials, Inc. Low-concentration flat profile photovoltaic modules
JP2011003855A (en) * 2009-06-22 2011-01-06 Toppan Printing Co Ltd Reflecting protective sheet, and semiconductor power generation device including the same
JP2011159747A (en) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd Insulating substrate for solar cell, solar cell module, and method of manufacturing insulating substrate for solar cell
JP2014007384A (en) * 2012-06-22 2014-01-16 Lg Electronics Inc Solar cell module and ribbon assembly applied to the same
JP2016171299A (en) * 2015-03-13 2016-09-23 パナソニックIpマネジメント株式会社 Solar battery module

Also Published As

Publication number Publication date
JPWO2018061789A1 (en) 2019-04-04
CN109716537A (en) 2019-05-03
JP6731660B2 (en) 2020-07-29

Similar Documents

Publication Publication Date Title
EP3067939B1 (en) Solar cell module
JP6709977B2 (en) Solar cell module
EP3067937B1 (en) Solar cell module
US10879410B2 (en) Solar cell module
JP6611062B2 (en) Solar cell module
WO2020071083A1 (en) Photovoltaic device and photovoltaic module
JP7270631B2 (en) solar module
WO2020121694A1 (en) Solar cell device and solar cell module
JP6384801B2 (en) Solar cell module
WO2018061789A1 (en) Solar cell module
JP6771200B2 (en) Solar cell module
JP2017050514A (en) Solar battery module
JP6722910B2 (en) Solar cell module and method of manufacturing solar cell module
WO2018056043A1 (en) Solar battery module
JP7433340B2 (en) Solar cells, solar devices and solar modules
JP6883750B2 (en) Solar cell module
JP2017063140A (en) Solar battery module
JP6528196B2 (en) Solar cell module
JP2018056454A (en) Solar battery module and manufacturing method of solar battery module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018542373

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855745

Country of ref document: EP

Kind code of ref document: A1