JP6628196B2 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
JP6628196B2
JP6628196B2 JP2017559951A JP2017559951A JP6628196B2 JP 6628196 B2 JP6628196 B2 JP 6628196B2 JP 2017559951 A JP2017559951 A JP 2017559951A JP 2017559951 A JP2017559951 A JP 2017559951A JP 6628196 B2 JP6628196 B2 JP 6628196B2
Authority
JP
Japan
Prior art keywords
solar cell
electrode
bus bar
bar electrode
finger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017559951A
Other languages
Japanese (ja)
Other versions
JPWO2017119036A1 (en
Inventor
直宏 月出
直宏 月出
翔士 佐藤
翔士 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2017119036A1 publication Critical patent/JPWO2017119036A1/en
Application granted granted Critical
Publication of JP6628196B2 publication Critical patent/JP6628196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、太陽電池モジュールに関する。   The present invention relates to a solar cell module.

従来、光エネルギーを電気エネルギーに変換する光電変換装置として、太陽電池モジュールの開発が進められている。太陽電池モジュールは、無尽蔵の太陽光を直接電気に変換できることから、また、化石燃料による発電と比べて環境負荷が小さくクリーンであることから、新しいエネルギー源として期待されている。   Conventionally, solar cell modules have been developed as photoelectric conversion devices that convert light energy into electric energy. A solar cell module is expected as a new energy source because it can directly convert inexhaustible sunlight into electricity, and has a smaller environmental load and is cleaner than power generation using fossil fuels.

太陽電池モジュールは、例えば、表面保護部材と裏面保護部材との間に複数の太陽電池素子が充填部材で封止された構造となっている。太陽電池モジュールにおいて、複数の太陽電池素子は、マトリクス状に配置されている。行方向または列方向の一方に沿って直線状に配列された複数の太陽電池素子は、隣り合う2つの太陽電池素子同士がタブ配線によって連結されてストリングを構成している。   The solar cell module has, for example, a structure in which a plurality of solar cell elements are sealed with a filling member between a front surface protection member and a back surface protection member. In a solar cell module, a plurality of solar cell elements are arranged in a matrix. A plurality of solar cell elements arranged linearly along one of the row direction and the column direction form a string in which two adjacent solar cell elements are connected by tab wiring.

特許文献1では、2つの太陽電池素子を接続するタブ配線と、太陽電池素子の表面に形成されたバスバー電極との間に、複数の導電性粒子を含む樹脂からなる接続層が配置された太陽電池モジュールが提案されている。   In Patent Literature 1, a solar cell in which a connection layer made of a resin containing a plurality of conductive particles is arranged between a tab wiring connecting two solar cell elements and a bus bar electrode formed on the surface of the solar cell element. Battery modules have been proposed.

特開2008−135654号公報JP 2008-135654 A

しかしながら、従来の太陽電池モジュールでは、温度サイクルによる太陽電池素子およびタブ配線の膨張および収縮により、太陽電池素子間においてタブ配線または太陽電池素子にストレスが生じる可能性がある。   However, in the conventional solar cell module, stress may occur in the tab wiring or the solar cell element between the solar cell elements due to expansion and contraction of the solar cell element and the tab wiring due to the temperature cycle.

そこで、本発明は、上記課題を解決するためになされたものであって、タブ配線および太陽電池素子のストレスを低減できる太陽電池モジュールを提供することを目的とする。   Then, this invention is made in order to solve the said subject, and an object of this invention is to provide the solar cell module which can reduce the stress of a tab wiring and a solar cell element.

上記課題を解決するために、本発明に係る太陽電池モジュールは、受光面に平行な方向で隣り合う2つの太陽電池素子と、前記2つの太陽電池素子の一方の表面および他方の裏面に配置され、前記2つの太陽電池素子を電気的に接続するタブ配線と、前記表面および前記裏面に形成され、太陽電池素子で生成された受光電荷を集電する複数のフィンガー電極と、前記表面および前記裏面であって前記複数のフィンガー電極のそれぞれと交差する方向に延びるように形成され、前記複数のフィンガー電極を電気的に接続するバスバー電極と、前記バスバー電極と前記タブ配線とが前記受光面を平面視した場合に重なるように、前記バスバー電極と前記タブ配線とを接着する接着部材とを備え、前記表面および前記裏面の少なくとも一方において、前記バスバー電極の前記フィンガー電極と交差する交差部分の膜厚は、前記バスバー電極の隣り合う前記交差部分で挟まれた部分の膜厚よりも厚い。   In order to solve the above problem, a solar cell module according to the present invention is arranged on two solar cell elements adjacent in a direction parallel to a light receiving surface, and on one surface and the other back surface of the two solar cell elements. A tab wire for electrically connecting the two solar cell elements; a plurality of finger electrodes formed on the front surface and the rear surface for collecting light-receiving charges generated by the solar cell elements; and the front surface and the rear surface. A bus bar electrode formed so as to extend in a direction intersecting each of the plurality of finger electrodes, and a bus bar electrode for electrically connecting the plurality of finger electrodes; An adhesive member for adhering the bus bar electrode and the tab wiring so as to be overlapped when viewed, and at least one of the front surface and the rear surface The film thickness of the intersecting portion which intersects with the finger electrodes of the bus bar electrode is thicker than the thickness of the sandwiched by intersection adjacent portions of the bus bar electrode.

本発明に係る太陽電池モジュールによれば、タブ配線および太陽電池素子のストレスを低減することが可能となる。   ADVANTAGE OF THE INVENTION According to the solar cell module which concerns on this invention, it becomes possible to reduce the stress of a tab wiring and a solar cell element.

図1は、実施の形態1に係る太陽電池モジュールの概観平面図である。FIG. 1 is a schematic plan view of the solar cell module according to Embodiment 1. 図2は、実施の形態1に係る太陽電池素子の平面図である。FIG. 2 is a plan view of the solar cell element according to Embodiment 1. 図3は、実施の形態1に係る太陽電池素子の積層構造を表す断面図である。FIG. 3 is a cross-sectional view illustrating a stacked structure of the solar cell element according to Embodiment 1. 図4は、実施の形態1に係る太陽電池モジュールの列方向における構造断面図である。FIG. 4 is a structural cross-sectional view of the solar cell module according to Embodiment 1 in the column direction. 図5Aは、実施の形態1に係る太陽電池素子の列方向における構造断面図である。FIG. 5A is a structural cross-sectional view of the solar cell element according to Embodiment 1 in the column direction. 図5Bは、従来の太陽電池素子の列方向における構造断面図である。FIG. 5B is a structural sectional view of a conventional solar cell element in a column direction. 図5Cは、実施の形態1に係る太陽電池素子の列方向における構造断面の変形例を示す図である。FIG. 5C is a diagram showing a modification of the structural cross section in the column direction of the solar cell element according to Embodiment 1. 図6は、実施の形態1に係る太陽電池素子の電極構成を示す平面図および断面図である。FIG. 6 is a plan view and a cross-sectional view illustrating an electrode configuration of the solar cell element according to Embodiment 1. 図7は、実施の形態1の変形例1に係る太陽電池素子の電極構成を示す平面図および断面図である。FIG. 7 is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element according to Modification 1 of Embodiment 1. 図8は、実施の形態1の変形例2に係る太陽電池素子の電極構成を示す平面図および断面図である。FIG. 8 is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element according to Modification 2 of Embodiment 1. 図9Aは、実施の形態2に係る太陽電池素子の電極構成を示す平面図および断面図である。FIG. 9A is a plan view and a cross-sectional view illustrating an electrode configuration of the solar cell element according to Embodiment 2. 図9Bは、実施の形態2の変形例1に係る太陽電池素子の電極構成を示す平面図および断面図である。FIG. 9B is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element according to Modification Example 1 of Embodiment 2. 図9Cは、実施の形態2の変形例2に係る太陽電池素子の電極構成を示す平面図および断面図である。FIG. 9C is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element according to Modification 2 of Embodiment 2. 図10は、実施の形態2の変形例3に係る太陽電池素子の電極構成を示す平面図および断面図である。FIG. 10 is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element according to Modification 3 of Embodiment 2. 図11Aは、実施の形態3に係る太陽電池素子の電極構成を示す平面図および断面図である。FIG. 11A is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element according to Embodiment 3. 図11Bは、実施の形態3の変形例に係る太陽電池素子の電極形成工程を示す図である。FIG. 11B is a diagram showing a step of forming electrodes of a solar cell element according to a modification of the third embodiment. 図12は、その他の実施の形態に係る太陽電池素子の電極構成を示す平面図および断面図である。FIG. 12 is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element according to another embodiment. 図13は、その他の実施の形態に係る太陽電池素子の電極構成を示す平面図および断面図である。FIG. 13 is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element according to another embodiment.

以下では、本発明の実施の形態に係る太陽電池モジュールについて、図面を用いて詳細に説明する。以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。   Hereinafter, a solar cell module according to an embodiment of the present invention will be described in detail with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. Therefore, the numerical values, shapes, materials, constituent elements, arrangement and connection forms of the constituent elements, and the like shown in the following embodiments are merely examples, and do not limit the present invention. Therefore, among the components in the following embodiments, components that are not described in independent claims that represent the highest concept of the present invention are described as arbitrary components.

各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。   Each drawing is a schematic diagram, and is not necessarily illustrated exactly. In each of the drawings, the same components are denoted by the same reference numerals.

本明細書において、太陽電池素子の「表面」とは、その反対側の面である「裏面」に比べ、光が多く内部へ入射可能な面を意味(50%超過〜100%の光が表面から内部に入射する)、し、「裏面」側から光が内部に全く入らない場合も含む。また太陽電池モジュールの「表面」とは、太陽電池素子の「表面」と対向する側の光が入射可能な面を意味し、「裏面」とはその反対側の面を意味する。また、「第1の部材上に第2の部材を設ける」などの記載は、特に限定を付さない限り、第1および第2の部材が直接接触して設けられる場合のみを意図しない。即ち、この記載は、第1および第2の部材の間に他の部材が存在する場合を含む。また、「略**」との記載は、「略同一」を例に挙げて説明すると、全く同一はもとより、実質的に同一と認められるものを含む意図である。   In the present specification, the “front surface” of the solar cell element means a surface on which more light can enter the inside than the “back surface” which is the opposite surface (more than 50% to 100% of the light is on the front surface). From the inside), and also includes the case where no light enters the inside from the “back side” side. Further, the “front surface” of the solar cell module refers to a surface on which light on the side facing the “front surface” of the solar cell element can enter, and the “back surface” refers to a surface on the opposite side. Further, a description such as "providing a second member on a first member" is not intended only when the first and second members are provided in direct contact with each other, unless otherwise specified. That is, this description includes the case where another member exists between the first and second members. In addition, the description of “substantially **” is intended to include not only exactly the same but also substantially recognized as the same when describing “substantially the same” as an example.

(実施の形態1)
[1−1.太陽電池モジュールの基本構成]
本実施の形態に係る太陽電池モジュールの基本構成の一例について、図1を用いて説明する。
(Embodiment 1)
[1-1. Basic configuration of solar cell module]
An example of the basic configuration of the solar cell module according to the present embodiment will be described with reference to FIG.

図1は、実施の形態1に係る太陽電池モジュール1の概観平面図である。同図に示された太陽電池モジュール1は、複数の太陽電池素子11と、タブ配線20と、わたり配線30と、枠体50とを備える。   FIG. 1 is a schematic plan view of a solar cell module 1 according to Embodiment 1. FIG. The solar cell module 1 shown in FIG. 1 includes a plurality of solar cell elements 11, tab wires 20, crossover wires 30, and a frame 50.

太陽電池素子11は、受光面に2次元状に配置され、光照射により電力を発生する平板状の光起電力セルである。   The solar cell element 11 is a flat photovoltaic cell which is two-dimensionally arranged on the light receiving surface and generates electric power by light irradiation.

タブ配線20は、太陽電池素子11の表面に配置され、列方向に隣り合う太陽電池素子11を電気的に接続する配線部材である。なお、タブ配線20は、光入射側の面に光拡散形状を有していてもよい。光拡散形状とは、光拡散機能を有する形状である。この光拡散形状により、タブ配線20上に入射した光をタブ配線20の表面で拡散し、当該拡散光を太陽電池素子11に再配光できる。   The tab wiring 20 is a wiring member arranged on the surface of the solar cell element 11 and electrically connecting the solar cell elements 11 adjacent in the column direction. Note that the tab wiring 20 may have a light diffusion shape on the light incident side surface. The light diffusion shape is a shape having a light diffusion function. With this light diffusion shape, light incident on the tab wiring 20 can be diffused on the surface of the tab wiring 20, and the diffused light can be redistributed to the solar cell element 11.

わたり配線30は、太陽電池ストリングどうしを接続する配線部材である。なお、太陽電池ストリングとは、列方向に配置されタブ配線20により接続された複数の太陽電池素子11の集合体である。なお、わたり配線30の光入射側の面に、光拡散形状が形成されていてもよい。これにより、太陽電池素子11と枠体50との間に入射した光をわたり配線30の表面で拡散し、当該拡散光を太陽電池素子11に再配光できる。   The wiring 30 is a wiring member that connects the solar cell strings. The solar cell string is an aggregate of a plurality of solar cell elements 11 arranged in the column direction and connected by the tab wiring 20. A light diffusion shape may be formed on the light incident side surface of the crossover wiring 30. Thereby, the light incident between the solar cell element 11 and the frame body 50 is diffused across the surface of the wiring 30, and the diffused light can be redistributed to the solar cell element 11.

枠体50は、複数の太陽電池素子11が2次元配列されたパネルの外周部を覆う外枠部材である。   The frame body 50 is an outer frame member that covers an outer peripheral portion of a panel in which the plurality of solar cell elements 11 are two-dimensionally arranged.

また、図示していないが、隣り合う太陽電池素子11の間に、光拡散部材が配置されていてもよい。これにより、太陽電池素子11の間の隙間領域へ入射した光を、太陽電池素子11へと再配光できるので、太陽電池素子11の集光効率が向上する。よって、太陽電池モジュール全体の光電変換効率を向上させることが可能となる。   Although not shown, a light diffusing member may be arranged between adjacent solar cell elements 11. Thereby, the light incident on the gap region between the solar cell elements 11 can be redistributed to the solar cell elements 11, so that the light collection efficiency of the solar cell elements 11 is improved. Therefore, it is possible to improve the photoelectric conversion efficiency of the entire solar cell module.

[1−2.太陽電池素子の構造]
太陽電池モジュール1の主たる構成要素である太陽電池素子11の構造について説明する。
[1-2. Structure of solar cell element]
The structure of the solar cell element 11, which is a main component of the solar cell module 1, will be described.

図2は、実施の形態1に係る太陽電池素子11の平面図である。同図に示すように、太陽電池素子11は、平面視において略正方形状である。太陽電池素子11は、例えば、縦125mm×横125mm×厚み200μmである。また、太陽電池素子11の表面上には、ストライプ状の複数のバスバー電極112が互いに平行に形成され、バスバー電極112と直交するようにストライプ状の複数のフィンガー電極111が互いに平行に形成されている。バスバー電極112およびフィンガー電極111は、集電極110を構成する。   FIG. 2 is a plan view of the solar cell element 11 according to Embodiment 1. As shown in the figure, the solar cell element 11 has a substantially square shape in plan view. The solar cell element 11 is, for example, 125 mm long × 125 mm wide × 200 μm thick. A plurality of stripe-shaped bus bar electrodes 112 are formed on the surface of the solar cell element 11 in parallel with each other, and a plurality of stripe-shaped finger electrodes 111 are formed in parallel with each other so as to be orthogonal to the bus bar electrodes 112. I have. The bus bar electrode 112 and the finger electrode 111 constitute the collector electrode 110.

集電極110は、例えば、樹脂材料をバインダとし、銀粒子などの導電性粒子をフィラーとした熱硬化型である樹脂型導電性ペーストを用いて、スクリーン印刷などの印刷法により形成することができる。   For example, the collector electrode 110 can be formed by a printing method such as screen printing using a thermosetting resin-type conductive paste using a resin material as a binder and conductive particles such as silver particles as a filler. .

なお、バスバー電極112の線幅は、例えば、150μmであり、フィンガー電極111の線幅は、例えば、100μm であり、フィンガー電極111のピッチは、例えば、2mmである。また、バスバー電極112の上には、タブ配線20が接合されている。   The line width of the bus bar electrode 112 is, for example, 150 μm, the line width of the finger electrode 111 is, for example, 100 μm, and the pitch of the finger electrodes 111 is, for example, 2 mm. The tab wiring 20 is joined on the bus bar electrode 112.

図3は、実施の形態1に係る太陽電池素子11の積層構造を表す断面図である。なお、同図は、図2における太陽電池素子11のIII−III断面図である。図3に示すように、n型単結晶シリコンウエハ101の主面上にi型非晶質シリコン膜121およびp型非晶質シリコン膜122が、この順で形成されている。n型単結晶シリコンウエハ101、i型非晶質シリコン膜121およびp型非晶質シリコン膜122は、光電変換層を形成し、n型単結晶シリコンウエハ101が主たる発電層となる。さらに、p型非晶質シリコン膜122上に、受光面電極102が形成されている。図2に示したように、受光面電極102上には、複数のバスバー電極112および複数のフィンガー電極111からなる集電極110が形成されている。なお、図3では、集電極110のうち、フィンガー電極111のみが示されている。   FIG. 3 is a cross-sectional view illustrating a stacked structure of solar cell element 11 according to Embodiment 1. FIG. 3 is a sectional view of the solar cell element 11 taken along the line III-III in FIG. As shown in FIG. 3, an i-type amorphous silicon film 121 and a p-type amorphous silicon film 122 are formed in this order on a main surface of an n-type single crystal silicon wafer 101. The n-type single-crystal silicon wafer 101, the i-type amorphous silicon film 121, and the p-type amorphous silicon film 122 form a photoelectric conversion layer, and the n-type single-crystal silicon wafer 101 becomes a main power generation layer. Further, the light receiving surface electrode 102 is formed on the p-type amorphous silicon film 122. As shown in FIG. 2, on the light receiving surface electrode 102, a collecting electrode 110 including a plurality of bus bar electrodes 112 and a plurality of finger electrodes 111 is formed. FIG. 3 shows only the finger electrodes 111 among the collecting electrodes 110.

また、n型単結晶シリコンウエハ101の裏面には、i型非晶質シリコン膜123およびn型非晶質シリコン膜124が、この順で形成されている。さらに、n型非晶質シリコン膜124上に、受光面電極103が形成され、受光面電極103上に、複数のバスバー電極112および複数のフィンガー電極111からなる集電極110が形成されている。   On the back surface of the n-type single crystal silicon wafer 101, an i-type amorphous silicon film 123 and an n-type amorphous silicon film 124 are formed in this order. Further, a light receiving surface electrode 103 is formed on the n-type amorphous silicon film 124, and a collecting electrode 110 including a plurality of bus bar electrodes 112 and a plurality of finger electrodes 111 is formed on the light receiving surface electrode 103.

なお、p型非晶質シリコン膜122がn型単結晶シリコンウエハ101の裏面側に、n型非晶質シリコン膜124がn型単結晶シリコンウエハ101の受光面側にそれぞれ形成されていてもよい。   Note that even if the p-type amorphous silicon film 122 is formed on the back surface side of the n-type single crystal silicon wafer 101 and the n-type amorphous silicon film 124 is formed on the light receiving surface side of the n-type single crystal silicon wafer 101, respectively. Good.

なお、図3に示すように、裏面のフィンガー電極111のピッチは、表面のフィンガー電極のピッチよりも小さくてもよい。言い換えると、裏面のフィンガー電極111の本数は、表面のフィンガー電極の本数よりも多くてもよい。つまり、裏面に形成された集電極の面積占有率は、表面に形成された集電極の面積占有率よりも高くてもよい。ここで、集電極の面積占有率とは、平面視における太陽電池素子11の面積に対する、平面視におけるバスバー電極112およびフィンガー電極111のトータル面積の割合である。   Note that, as shown in FIG. 3, the pitch of the finger electrodes 111 on the back surface may be smaller than the pitch of the finger electrodes on the front surface. In other words, the number of finger electrodes 111 on the back surface may be larger than the number of finger electrodes on the front surface. That is, the area occupancy of the collector electrode formed on the back surface may be higher than the area occupancy of the collector electrode formed on the front surface. Here, the area occupancy of the collector electrode is a ratio of the total area of the bus bar electrodes 112 and the finger electrodes 111 in plan view to the area of the solar cell element 11 in plan view.

裏面における上記電極配置の場合、裏面における集電効率は増加するが、表面に比べて遮光ロスが増加する。しかしながら、本実施の形態に係る太陽電池素子11は受光面が表面である片面受光型であるので、裏面における遮光ロスの増加が与える影響よりも、裏面における集電効率の増加が与える影響のほうが大きい。よって、太陽電池素子11の集電効果を向上させることが可能となる。   In the case of the above-described electrode arrangement on the back surface, the current collection efficiency on the back surface increases, but the light shielding loss increases as compared with the front surface. However, since the solar cell element 11 according to the present embodiment is a single-sided light-receiving type in which the light-receiving surface is the front surface, the effect of the increase in current collection efficiency on the back surface is more significant than the effect of the increase in light-blocking loss on the back surface. large. Therefore, the current collection effect of the solar cell element 11 can be improved.

本実施の形態に係る太陽電池素子11は、pn接合特性を改善するために、n型単結晶シリコンウエハ101とp型非晶質シリコン膜122またはn型非晶質シリコン膜124との間に、i型非晶質シリコン膜121を設けた構造を有している。   The solar cell element 11 according to the present embodiment has a structure in which the n-type single-crystal silicon wafer 101 and the p-type amorphous silicon film 122 or the n-type amorphous silicon film 124 are provided to improve pn junction characteristics. , An i-type amorphous silicon film 121 is provided.

本実施の形態に係る太陽電池素子11は、片面受光型であり、n型単結晶シリコンウエハ101の表面側の受光面電極102が受光面となる。n型単結晶シリコンウエハ101において発生したキャリアは、光電流として表面側および裏面側の受光面電極102および103に拡散し、集電極110で収集される。   Solar cell element 11 according to the present embodiment is a single-sided light-receiving type, and light-receiving surface electrode 102 on the front side of n-type single-crystal silicon wafer 101 serves as a light-receiving surface. Carriers generated in the n-type single-crystal silicon wafer 101 are diffused as photocurrents into the light-receiving surface electrodes 102 and 103 on the front surface side and the rear surface side, and are collected by the collecting electrode 110.

受光面電極102および103は、例えば、ITO(インジウム錫酸化物)、SnO(酸化錫)、ZnO(酸化亜鉛)などからなる透明電極である。なお、裏面側の受光面電極103は、透明でない金属電極であってもよい。また、裏面側の集電極としては、集電極110の代わりに、受光面電極103上の全面に形成された電極を用いてもよい。The light receiving surface electrodes 102 and 103 are transparent electrodes made of, for example, ITO (indium tin oxide), SnO 2 (tin oxide), ZnO (zinc oxide), or the like. The light-receiving surface electrode 103 on the back side may be a non-transparent metal electrode. In addition, an electrode formed on the entire surface of the light receiving surface electrode 103 may be used instead of the collector electrode 110 as the back electrode.

なお、本実施の形態に係る太陽電池素子は、両面受光型であってもよい。この場合には、n型単結晶シリコンウエハ101の表面側の受光面電極102および裏面側の受光面電極103がそれぞれ受光面となる。n型単結晶シリコンウエハ101において発生したキャリアは、光電流として表面側および裏面側の受光面電極102及び103に拡散し、集電極110で収集される。また、受光面電極102及び103は、透明電極である。   Note that the solar cell element according to the present embodiment may be of a double-sided light receiving type. In this case, the light receiving surface electrode 102 on the front side and the light receiving surface electrode 103 on the back side of the n-type single crystal silicon wafer 101 are light receiving surfaces. Carriers generated in the n-type single-crystal silicon wafer 101 are diffused as photocurrents into the light receiving surface electrodes 102 and 103 on the front surface side and the rear surface side, and are collected by the collecting electrode 110. The light receiving surface electrodes 102 and 103 are transparent electrodes.

[1−3.太陽電池モジュールの構造]
次に、本実施の形態に係る太陽電池モジュール1の具体的構造について説明する。
[1-3. Structure of solar cell module]
Next, a specific structure of solar cell module 1 according to the present embodiment will be described.

図4は、実施の形態1に係る太陽電池モジュール1の列方向における構造断面図である。具体的には、図4は、図1の太陽電池モジュール1におけるIV−IV断面図である。同図に示された太陽電池モジュール1は、表面および裏面に集電極110が形成された太陽電池素子11と、タブ配線20と、接着部材40と、表面充填部材70Aおよび裏面充填部材70Bと、表面保護部材80および裏面保護部材90とを備える。   FIG. 4 is a structural cross-sectional view of the solar cell module 1 according to Embodiment 1 in the column direction. Specifically, FIG. 4 is a cross-sectional view taken along line IV-IV of the solar cell module 1 of FIG. The solar cell module 1 shown in FIG. 1 includes a solar cell element 11 having a collector electrode 110 formed on the front and back surfaces, a tab wiring 20, an adhesive member 40, a surface filling member 70A and a back surface filling member 70B, The front surface protection member 80 and the back surface protection member 90 are provided.

タブ配線20は、長尺状の導電性配線であって、例えば、リボン状の金属箔である。タブ配線20は、例えば、銅箔や銀箔等の金属箔の表面全体を銀または半田等で被覆したものを所定の長さに短冊状に切断することによって作製することができる。列方向に隣接する2つの太陽電池素子11において、一方の太陽電池素子11の表面に配置されたタブ配線20は、他方の太陽電池素子11の裏面にも配置される。より具体的には、タブ配線20の一端部の下面は、一方の太陽電池素子11の表面側のバスバー電極112(図2参照)に、バスバー電極112の長尺方向にそって接合される。また、タブ配線20の他端部の上面は、他方の太陽電池素子11の裏面側のバスバー電極に、バスバー電極112の長尺方向にそって接合される。これにより、列方向に配置された複数の太陽電池素子11からなる太陽電池ストリングは、当該複数の太陽電池素子11が列方向に直列接続された構成となっている。   The tab wiring 20 is a long conductive wiring, for example, a ribbon-shaped metal foil. The tab wiring 20 can be produced, for example, by cutting a metal foil, such as a copper foil or a silver foil, whose entire surface is covered with silver, solder, or the like, into a strip having a predetermined length. In two solar cell elements 11 adjacent in the column direction, the tab wiring 20 arranged on the front surface of one solar cell element 11 is also arranged on the back surface of the other solar cell element 11. More specifically, the lower surface of one end of the tab wiring 20 is joined to the bus bar electrode 112 (see FIG. 2) on the front surface side of one of the solar cell elements 11 along the longitudinal direction of the bus bar electrode 112. The upper surface of the other end of the tab wiring 20 is joined to the bus bar electrode on the back surface side of the other solar cell element 11 along the longitudinal direction of the bus bar electrode 112. Thereby, the solar cell string including the plurality of solar cell elements 11 arranged in the column direction has a configuration in which the plurality of solar cell elements 11 are connected in series in the column direction.

タブ配線20とバスバー電極112(図2参照)とは、接着部材40により接合される。つまり、接着部材40は、バスバー電極112とタブ配線20とが受光面を平面視した場合に重なるように、バスバー電極112とタブ配線20とを接着する。これにより、タブ配線20は、接着部材を介して太陽電池素子11に接続される。   The tab wiring 20 and the bus bar electrode 112 (see FIG. 2) are joined by the adhesive member 40. That is, the bonding member 40 bonds the bus bar electrode 112 and the tab wiring 20 such that the bus bar electrode 112 and the tab wiring 20 overlap when the light receiving surface is viewed in plan. Thereby, the tab wiring 20 is connected to the solar cell element 11 via the adhesive member.

接着部材40としては、例えば、導電性接着ペースト、導電性接着フィルム、異方性導電フィルム、又は導電性粘着テープ等を用いることができる。導電性接着剤ペーストは、例えば、エポキシ樹脂、アクリル樹脂またはウレタン樹脂等の熱硬化型の接着性樹脂材料に導電性粒子を分散させたペースト状の接着剤である。導電性接着フィルムおよび異方性導電フィルムは、熱硬化型の接着性樹脂材料に導電性粒子を分散させてフィルム状に形成されたものである。また、接着部材40としては、非導電性の接着剤を用いることも可能である。この場合には、樹脂接着剤の塗布厚みを適切に設計することにより、熱圧着時の加圧時に樹脂接着剤が軟化し、バスバー電極112の表面とタブ配線20とを直接接触させて電気的に接続させることができる。   As the adhesive member 40, for example, a conductive adhesive paste, a conductive adhesive film, an anisotropic conductive film, a conductive adhesive tape, or the like can be used. The conductive adhesive paste is, for example, a paste adhesive in which conductive particles are dispersed in a thermosetting adhesive resin material such as an epoxy resin, an acrylic resin, or a urethane resin. The conductive adhesive film and the anisotropic conductive film are formed into a film by dispersing conductive particles in a thermosetting adhesive resin material. Further, as the bonding member 40, a non-conductive bonding agent can be used. In this case, by appropriately designing the application thickness of the resin adhesive, the resin adhesive is softened at the time of pressurization during thermocompression bonding, and the surface of the bus bar electrode 112 and the tab wiring 20 are brought into direct contact with each other to provide electrical connection. Can be connected.

この構成により、複数のフィンガー電極111は、太陽電池素子11で生成された受光電荷を集電し、バスバー電極112は、複数のフィンガー電極111のそれぞれと交差する方向に延びるように形成され、当該受光電荷をタブ配線20に伝達する。   According to this configuration, the plurality of finger electrodes 111 collect light-receiving charges generated by the solar cell element 11, and the bus bar electrodes 112 are formed so as to extend in a direction crossing each of the plurality of finger electrodes 111. The received charges are transmitted to the tab wiring 20.

また、図4に示すように、複数の太陽電池素子11の表面側には表面保護部材80が配設され、裏面側には裏面保護部材90が配設されている。そして、複数の太陽電池素子11を含む面と表面保護部材80との間には表面充填部材70Aが配置され、複数の太陽電池素子11を含む面と裏面保護部材90との間には裏面充填部材70Bが配置されている。表面保護部材80および裏面保護部材90は、それぞれ、表面充填部材70Aおよび裏面充填部材70Bにより固定されている。   Further, as shown in FIG. 4, a front surface protection member 80 is provided on the front surface side of the plurality of solar cell elements 11, and a rear surface protection member 90 is provided on the back surface side. A surface filling member 70A is disposed between the surface including the plurality of solar cell elements 11 and the surface protection member 80, and a back surface filling member is provided between the surface including the plurality of solar cell elements 11 and the back surface protection member 90. The member 70B is arranged. The front surface protection member 80 and the back surface protection member 90 are fixed by a front surface filling member 70A and a back surface filling member 70B, respectively.

表面保護部材80は、太陽電池素子11の表面側に配置された保護部材である。表面保護部材80は、太陽電池モジュール1の内部を風雨や外部衝撃、火災などから保護し、太陽電池モジュール1の屋外暴露における長期信頼性を確保するための部材である。この観点から表面保護部材80は、例えば、透光性および遮水性を有するガラス、フィルム状または板状の硬質の透光性および遮水性を有する樹脂部材などを用いることができる。   The surface protection member 80 is a protection member arranged on the surface side of the solar cell element 11. The surface protection member 80 is a member for protecting the inside of the solar cell module 1 from wind and rain, external impact, fire, and the like, and ensuring long-term reliability of the solar cell module 1 in outdoor exposure. From this viewpoint, the surface protection member 80 can be made of, for example, a glass having a light-transmitting property and a water-blocking property, or a resin material having a film-like or plate-like hard light-transmitting and water-blocking property.

裏面保護部材90は、太陽電池素子11の裏面側に配置された保護部材である。裏面保護部材90は、太陽電池モジュール1の裏面を外部環境から保護する部材であり、例えば、ポリエチレンテレフタレートなどの樹脂フィルム、または、Al箔を樹脂フィルムでサンドイッチした構造を有する積層フィルムなどを用いることができる。   The back surface protection member 90 is a protection member arranged on the back surface side of the solar cell element 11. The back surface protection member 90 is a member that protects the back surface of the solar cell module 1 from the external environment. For example, a resin film such as polyethylene terephthalate or a laminated film having a structure in which an Al foil is sandwiched between resin films is used. Can be.

表面充填部材70Aは、複数の太陽電池素子11と表面保護部材80との間の空間に充填された充填材であり、裏面充填部材70Bは、複数の太陽電池素子11と裏面保護部材90との間の空間に充填された充填材である。表面充填部材70Aおよび裏面充填部材70Bは、太陽電池素子11を外部環境から遮断するための封止機能を有している。表面充填部材70Aおよび裏面充填部材70Bの配置により、屋外設置が想定される太陽電池モジュール1の高耐熱性および高耐湿性を確保することが可能となる。   The surface filling member 70A is a filler filled in a space between the plurality of solar cell elements 11 and the surface protection member 80, and the back surface filling member 70B is formed of the plurality of solar cell elements 11 and the back surface protection member 90. It is a filler filled in the space between them. The front surface filling member 70A and the back surface filling member 70B have a sealing function for shielding the solar cell element 11 from the external environment. By arranging the surface filling member 70A and the back surface filling member 70B, it is possible to ensure high heat resistance and high moisture resistance of the solar cell module 1 which is assumed to be installed outdoors.

表面充填部材70Aは、封止機能を有する透光性の高分子材料からなる。表面充填部材70Aの高分子材料は、例えば、エチレンビニルアセテート(EVA)等の透光性樹脂材料が挙げられる。   The surface filling member 70A is made of a translucent polymer material having a sealing function. As the polymer material of the surface filling member 70A, for example, a translucent resin material such as ethylene vinyl acetate (EVA) is used.

裏面充填部材70Bは、封止機能を有する高分子材料からなる。ここで、裏面充填部材70Bは、例えば、白色加工されている。裏面充填部材70Bの高分子材料は、例えば、EVA等が白色加工された樹脂材料が挙げられる。   The back surface filling member 70B is made of a polymer material having a sealing function. Here, the back surface filling member 70B is, for example, white processed. As the polymer material of the back surface filling member 70B, for example, a resin material obtained by subjecting EVA or the like to white processing is used.

なお、製造工程の簡素化および表面充填部材70Aと裏面充填部材70Bとの界面の密着性といった観点から、表面充填部材70Aと裏面充填部材70Bとは、同じ材料系であることが好ましい。表面充填部材70Aおよび裏面充填部材70Bは、複数の太陽電池素子11(セルストリング)を挟んだ2つの樹脂シート(透光性のEVAシートと白色加工されたEVAシート)をラミネート処理(ラミネート加工)することで形成される。   In addition, it is preferable that the surface filling member 70A and the back surface filling member 70B are the same material system from the viewpoint of simplification of the manufacturing process and the adhesion of the interface between the surface filling member 70A and the back surface filling member 70B. The front filling member 70A and the back filling member 70B are formed by laminating two resin sheets (a translucent EVA sheet and a white EVA sheet) sandwiching a plurality of solar cell elements 11 (cell strings) (lamination processing). It is formed by doing.

[1−4.タブ配線と太陽電池素子との接着構造]
図5Aは、実施の形態1に係る太陽電池素子11の列方向における構造断面図である。より具体的には、図5Aは、図4の構造断面図における太陽電池素子11の表面付近を拡大した断面図である。同図に示すように、バスバー電極112とタブ配線20とは、接着部材40により接着されている。
[1-4. Adhesion structure between tab wiring and solar cell element]
FIG. 5A is a structural cross-sectional view of the solar cell element 11 according to Embodiment 1 in the column direction. More specifically, FIG. 5A is a cross-sectional view in which the vicinity of the surface of solar cell element 11 in the structural cross-sectional view of FIG. 4 is enlarged. As shown in the figure, the bus bar electrode 112 and the tab wiring 20 are bonded by the bonding member 40.

また、図5Bは、従来の太陽電池素子の列方向における構造断面図である。図5Bに示すように、従来の太陽電池モジュールでは、太陽電池素子11とタブ配線20とが、接着部材540により、タブ配線20の長尺方向における太陽電池素子11の全域にわたり一様に接着されている。このため、温度サイクルにより太陽電池素子11およびタブ配線20が膨張および収縮を繰り返すと、太陽電池セル間においてタブ配線20または太陽電池セルにストレスが生じる可能性がある。   FIG. 5B is a structural sectional view of a conventional solar cell element in a column direction. As shown in FIG. 5B, in the conventional solar cell module, the solar cell element 11 and the tab wiring 20 are uniformly bonded by the adhesive member 540 over the entire area of the solar cell element 11 in the longitudinal direction of the tab wiring 20. ing. For this reason, when the solar cell element 11 and the tab wiring 20 repeat expansion and contraction due to the temperature cycle, stress may occur in the tab wiring 20 or the solar cell between the solar cells.

これに対して、本実施の形態に係る太陽電池モジュール1では、バスバー電極112とフィンガー電極111とが交差する交差部分Pxにおけるバスバー電極112の膜厚は、隣り合う交差部分Pxで挟まれたバスバー電極112の非交差部分Pyの膜厚よりも厚いことを特徴とする。この構成によれば、バスバー電極112とタブ配線20とは、交差部分Pxで最近接して電気的に導通状態となり、非交差部分Pyではバスバー電極112とタブ配線20とは接着部材40を介して離間する。つまり、バスバー電極112とタブ配線20とは、バスバー電極112の長尺方向に断続的に接触または最近接することとなる。言い換えれば、非交差部分Pyにおけるバスバー電極112とタブ配線20との間に介在する樹脂材料(接着部材40)の量(厚さ)は、交差部分Pxにおけるバスバー電極112とタブ配線20との間に介在する接着部材40の量(厚さ)よりも多い(厚い)。このため、太陽電池素子11およびタブ配線20が熱膨張および熱収縮を繰り返しても、太陽電池素子11とタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を、非交差部分Pyにより緩和できる。よって、太陽電池素子間のタブ配線20および太陽電池素子のストレスを低減できる。   On the other hand, in the solar cell module 1 according to the present embodiment, the thickness of the bus bar electrode 112 at the intersection Px where the bus bar electrode 112 and the finger electrode 111 intersect is such that the bus bar sandwiched between the adjacent intersections Px It is characterized in that it is thicker than the film thickness of the non-intersecting portion Py of the electrode 112. According to this configuration, the bus bar electrode 112 and the tab wiring 20 are closest to each other at the intersection Px and are in an electrically conductive state, and at the non-intersection Py, the bus bar electrode 112 and the tab wiring 20 are connected via the adhesive member 40. Separate. That is, the bus bar electrode 112 and the tab wiring 20 are intermittently contacted or closest to the bus bar electrode 112 in the longitudinal direction. In other words, the amount (thickness) of the resin material (adhesive member 40) interposed between the bus bar electrode 112 and the tab wiring 20 in the non-intersecting portion Py depends on the distance between the bus bar electrode 112 and the tab wiring 20 in the intersecting portion Px. Is larger (thicker) than the amount (thickness) of the adhesive member 40 interposed in the second member. For this reason, even if the solar cell element 11 and the tab wiring 20 repeat thermal expansion and thermal contraction, the stress generated in the long direction due to the difference in the thermal expansion coefficient between the solar cell element 11 and the tab wiring 20 does not intersect. It can be alleviated by the portion Py. Therefore, stress on the tab wiring 20 between the solar cell elements and the solar cell elements can be reduced.

なお、バスバー電極112とタブ配線20とが交差部分Pxで電気的に導通していれば、太陽電池素子11内部で生成されフィンガー電極111で集電された受光電荷をタブ配線20に伝達することが可能である。よって、非交差部分Pyでは、バスバー電極112とタブ配線20とは、接着部材40を介して接着されていなくてもよい。   If the bus bar electrode 112 and the tab wiring 20 are electrically connected at the intersection Px, the received charge generated in the solar cell element 11 and collected by the finger electrode 111 is transmitted to the tab wiring 20. Is possible. Therefore, at the non-intersecting portion Py, the bus bar electrode 112 and the tab wiring 20 need not be bonded via the bonding member 40.

図5Cは、実施の形態1に係る太陽電池素子の列方向における構造断面の変形例を示す図である。同図に示されたように、例えば、接着部材40が樹脂からなる非導電性の接着剤である場合には、交差部分Pxにてバスバー電極112の表面とタブ配線20とを直接接触させて電気的に接続させればよい。これにより、バスバー電極112とタブ配線20とは、タブ配線20の長尺方向に断続的に接触することとなり、交差部分Pxにて電気的接続を確保しつつ、太陽電池素子11とタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を、非交差部分Pyにより緩和できる。   FIG. 5C is a diagram showing a modification of the structural cross section in the column direction of the solar cell element according to Embodiment 1. As shown in the figure, for example, when the adhesive member 40 is a non-conductive adhesive made of resin, the surface of the bus bar electrode 112 and the tab wiring 20 are brought into direct contact at the intersection Px. What is necessary is just to electrically connect. As a result, the bus bar electrode 112 and the tab wiring 20 are intermittently contacted in the longitudinal direction of the tab wiring 20, and the solar cell element 11 and the tab wiring 20 are secured while maintaining electrical connection at the intersection Px. The stress generated in the longitudinal direction due to the difference in the coefficient of thermal expansion with the non-intersecting portion Py can be reduced.

また、非交差部分Pyにおけるバスバー電極112とタブ配線20との間には、接着部材40が介在しているのではなく、表面充填部材70Aまたは裏面充填部材70Bが介在していてもよい。   In addition, between the bus bar electrode 112 and the tab wiring 20 at the non-intersecting portion Py, the surface filling member 70A or the back surface filling member 70B may be interposed instead of the adhesive member 40 interposed.

[1−5.実施の形態1に係る集電極とタブ配線との接続構成]
図6は、実施の形態1に係る太陽電池素子11Aの電極構成を示す平面図および断面図である。より具体的には、図6は、図4の構造断面図における太陽電池素子11の表面付近を拡大した透視平面図および断面図である。
[1-5. Connection configuration between collector electrode and tab wiring according to the first embodiment]
FIG. 6 is a plan view and a cross-sectional view illustrating an electrode configuration of solar cell element 11A according to Embodiment 1. More specifically, FIG. 6 is a perspective plan view and a sectional view in which the vicinity of the surface of the solar cell element 11 in the structural sectional view of FIG. 4 is enlarged.

図6の透視平面図に示すように、太陽電池素子11Aの表面には、バスバー電極112Aと、バスバー電極112Aと直交し互いに平行な複数のフィンガー電極111Aとが配置されている。また、バスバー電極112Aとタブ配線20とが受光面を平面視した場合に重なるように、バスバー電極112Aとタブ配線20とを接着する接着部材40が配置されている。なお、図6の透視平面図には、接着部材40は図示されていないが、接着部材40は、太陽電池素子11Aと対向するタブ配線20の下面全体に形成されている、または、タブ配線20の下面のうちフィンガー電極111Aおよびバスバー電極112Aと対向する領域に形成されている。   As shown in the perspective plan view of FIG. 6, a bus bar electrode 112A and a plurality of finger electrodes 111A orthogonal to and parallel to the bus bar electrode 112A are arranged on the surface of the solar cell element 11A. The bonding member 40 for bonding the bus bar electrode 112A and the tab wiring 20 is arranged such that the bus bar electrode 112A and the tab wiring 20 overlap when the light receiving surface is viewed in plan. Although the adhesive member 40 is not shown in the perspective plan view of FIG. 6, the adhesive member 40 is formed on the entire lower surface of the tab wiring 20 facing the solar cell element 11A. Is formed in a region facing the finger electrode 111A and the bus bar electrode 112A on the lower surface of the substrate.

ここで、バスバー電極112Aとフィンガー電極111Aとの交差部分Pxにおけるフィンガー電極111Aの電極幅W1sは、フィンガー電極111Aの他の部分である非交差部分Pzの電極幅W1nよりも広い。   Here, the electrode width W1s of the finger electrode 111A at the intersection Px between the bus bar electrode 112A and the finger electrode 111A is wider than the electrode width W1n of the non-intersection portion Pz, which is another part of the finger electrode 111A.

フィンガー電極111Aおよびバスバー電極112Aは、前述したように、例えば、樹脂材料をバインダとし、銀粒子などの導電性粒子をフィラーとした熱硬化型である樹脂型導電性ペーストを用いて、スクリーン印刷などの印刷法により形成される。この場合、フィンガー電極111Aおよびバスバー電極112Aは、メッシュパターンにより樹脂型導電性ペーストを透過させるスクリーンマスクを用いて同時形成される。このため、スクリーンマスクの線幅を相対的に広くすると、印刷形成された電極の線幅が相対的に広くなるとともに、膜厚を相対的に厚くすることが可能である。ここで、電極の膜厚を制御する手法としては、例えば、スクリーン印刷時に使用されるスクリーン版のメッシュ、および、乳剤の仕様を調整した上で乳剤の開口を狭くする、または、広くすることにより、ペースト吐出量を減らす、または、増やすことが挙げられる。これにより、電極の膜厚を薄くする、または、厚くするという制御を積極的に実行することが可能となる。   As described above, for example, the finger electrode 111A and the bus bar electrode 112A are screen-printed using a thermosetting resin-type conductive paste using a resin material as a binder and conductive particles such as silver particles as a filler. Is formed by the printing method described above. In this case, the finger electrodes 111A and the bus bar electrodes 112A are simultaneously formed using a screen mask that allows the resin-type conductive paste to pass through in a mesh pattern. For this reason, if the line width of the screen mask is relatively widened, the line width of the printed electrode can be relatively widened and the film thickness can be relatively thick. Here, as a method of controlling the thickness of the electrode, for example, by adjusting the mesh of the screen plate used during screen printing, and the specifications of the emulsion, to narrow or widen the opening of the emulsion And reducing or increasing the amount of paste discharged. This makes it possible to positively execute the control of reducing or increasing the film thickness of the electrode.

フィンガー電極111Aの交差部分Pxおよび非交差部分Pzにおける電極幅の差異(W1s>W1n)、および、スクリーン印刷による電極幅と膜厚との相関関係により、フィンガー電極111Aの交差部分Pxにおける膜厚は、フィンガー電極111Aの非交差部分Pzにおける膜厚よりも厚くなる。   Due to the difference in electrode width (W1s> W1n) between the intersecting portion Px and the non-intersecting portion Pz of the finger electrode 111A and the correlation between the electrode width and the film thickness by screen printing, the film thickness at the intersecting portion Px of the finger electrode 111A is Is thicker than the film thickness at the non-intersecting portion Pz of the finger electrode 111A.

よって、図6の断面図に示すように、バスバー電極112Aの交差部分Pxは、バスバー電極112Aの非交差部分Pyよりも厚くなる。   Therefore, as shown in the cross-sectional view of FIG. 6, the intersection Px of the bus bar electrode 112A is thicker than the non-intersection Py of the bus bar electrode 112A.

前述したように、接着部材40であるテープ状またはシート状の樹脂材料は、例えば、バスバー電極112Aとタブ配線20との間に挟んで熱圧着されることで軟化する。これにより、タブ配線20とバスバー電極112Aとが接合される。   As described above, the tape-shaped or sheet-shaped resin material serving as the adhesive member 40 is softened by being thermocompression-bonded between the bus bar electrode 112A and the tab wiring 20, for example. Thereby, the tab wiring 20 and the bus bar electrode 112A are joined.

バスバー電極112Aの長尺方向における上記膜厚分布、および、樹脂材料による上記接合方法によれば、交差部分Pxでは、バスバー電極112Aとタブ配線20とが接触または最近接し、非交差部分Pyでは、バスバー電極112Aとタブ配線20とは、上記樹脂材料を介して離間する。   According to the thickness distribution in the longitudinal direction of the bus bar electrode 112A and the bonding method using the resin material, the bus bar electrode 112A and the tab wiring 20 are in contact with or closest to each other at the intersection Px, and The bus bar electrode 112A and the tab wiring 20 are separated via the resin material.

上記接続構成によれば、太陽電池素子11Aおよびタブ配線20が熱膨張および熱収縮を繰り返しても、バスバー電極112Aとタブ配線20との電気的導通を確保しつつ、太陽電池素子11Aとタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を緩和できる。よって、バスバー電極112Aとタブ配線20とが上記長尺方向にわたり均一な厚みを有する接着部材により接合されている場合に比べて、太陽電池素子11A間のタブ配線20および太陽電池素子11Aのストレスを低減できる。   According to the above connection configuration, even when the solar cell element 11A and the tab wiring 20 repeat thermal expansion and thermal contraction, the solar cell element 11A and the tab wiring 20 are maintained while maintaining electrical continuity between the bus bar electrode 112A and the tab wiring 20. The stress generated in the longitudinal direction can be reduced due to the difference in the coefficient of thermal expansion from the coefficient of thermal expansion. Therefore, as compared with the case where the bus bar electrode 112A and the tab wiring 20 are joined by the adhesive member having a uniform thickness in the longitudinal direction, the stress of the tab wiring 20 and the solar cell element 11A between the solar cell elements 11A is reduced. Can be reduced.

なお、図6において、隣り合うフィンガー電極111Aの間に、フィンガー電極111Aと平行な方向に延び、バスバー電極112Aと交差し、フィンガー電極111Aよりも短い電極群が配置されていてもよい。この電極群は、タブ配線20と太陽電池素子11Aとの接着を補強するためのものであるが、当該電極群をフィンガー電極111Aとみなしてもよい。つまり、バスバー電極112と電極群とが交差する交差部分におけるバスバー電極112の膜厚は、隣り合う交差部分で挟まれたバスバー電極112の非交差部分の膜厚よりも厚くてもよい。これにより、上記交差部分にて電気的接続を確保しつつ、太陽電池素子11とタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を、上記非交差部分により緩和できる。また、以降の実施の形態およびその変形例においても、同様に、複数のフィンガー電極の間に配置された電極群をフィンガー電極とみなすことが可能であり、同様の効果を奏することが可能となる。   In FIG. 6, an electrode group that extends in a direction parallel to the finger electrode 111A, intersects with the bus bar electrode 112A, and is shorter than the finger electrode 111A may be arranged between the adjacent finger electrodes 111A. Although this electrode group is for reinforcing the adhesion between the tab wiring 20 and the solar cell element 11A, the electrode group may be regarded as a finger electrode 111A. That is, the thickness of the bus bar electrode 112 at the intersection where the bus bar electrode 112 intersects with the electrode group may be greater than the thickness of the non-intersecting portion of the bus bar electrode 112 sandwiched between adjacent intersections. Thereby, the stress generated in the longitudinal direction due to the difference in the thermal expansion coefficient between the solar cell element 11 and the tab wiring 20 can be reduced by the non-intersecting portion, while ensuring electrical connection at the intersecting portion. Further, in the following embodiments and modifications thereof, similarly, an electrode group arranged between a plurality of finger electrodes can be regarded as a finger electrode, and the same effect can be obtained. .

また、図6において、交差部分Pxのフィンガー電極111Aの延伸方向の長さは、タブ配線20の幅より大きくても小さくてもよい。但し、交差部分Pxが太陽電池素子11Aに入射する光を遮らないように、交差部分Pxの上記延伸方向の長さは、タブ配線20の幅よりも小さい(交差部分Pxがタブ配線20に覆われる)ことが好ましい。   In FIG. 6, the length in the extending direction of the finger electrode 111 </ b> A at the intersection Px may be larger or smaller than the width of the tab wiring 20. However, the length of the intersection Px in the extending direction is smaller than the width of the tab wiring 20 (the intersection Px covers the tab wiring 20 so that the intersection Px does not block light incident on the solar cell element 11A). Preferably).

[1−6.実施の形態1の変形例1に係る集電極とタブ配線との接続構成]
図7は、実施の形態1の変形例1に係る太陽電池素子11Bの電極構成を示す平面図および断面図である。より具体的には、図7は、図4の構造断面図における太陽電池素子11の表面付近を拡大した透視平面図および断面図である。本変形例に係る太陽電池素子11Bの電極構成は、図6に示された太陽電池素子11Aの電極構成と比較して、バスバー電極112Bの構成のみが異なる。以下では、図6に示された太陽電池素子11Aの電極構成と同じ点は説明を省略し、異なる点を中心に説明する。
[1-6. Connection configuration between collector electrode and tab wiring according to Modification 1 of Embodiment 1]
FIG. 7 is a plan view and a cross-sectional view illustrating an electrode configuration of solar cell element 11B according to Modification Example 1 of Embodiment 1. More specifically, FIG. 7 is a perspective plan view and a sectional view in which the vicinity of the surface of the solar cell element 11 in the structural sectional view of FIG. 4 is enlarged. The electrode configuration of the solar cell element 11B according to this modification is different from the electrode configuration of the solar cell element 11A shown in FIG. 6 only in the configuration of the bus bar electrode 112B. In the following, description of the same points as those of the electrode configuration of solar cell element 11A shown in FIG. 6 will be omitted, and different points will be mainly described.

図7の透視平面図に示すように、太陽電池素子11Bの表面には、バスバー電極112Bと、バスバー電極112Bと交差し互いに平行な複数のフィンガー電極111Bとが配置されている。また、バスバー電極112Bとタブ配線20とが受光面を平面視した場合に重なるように、バスバー電極112Bとタブ配線20とを接着する接着部材40が配置されている。なお、図7の透視平面図には、接着部材40は図示されていないが、接着部材40は、太陽電池素子11Bと対向するタブ配線20の下面全体に形成されている、または、タブ配線20の下面のうちフィンガー電極111Bおよびバスバー電極112Bと対向する領域に形成されている。   As shown in the perspective plan view of FIG. 7, a bus bar electrode 112B and a plurality of finger electrodes 111B crossing the bus bar electrode 112B and being parallel to each other are arranged on the surface of the solar cell element 11B. The bonding member 40 that bonds the bus bar electrode 112B and the tab wiring 20 is arranged so that the bus bar electrode 112B and the tab wiring 20 overlap when the light receiving surface is viewed in plan. Although the adhesive member 40 is not shown in the perspective plan view of FIG. 7, the adhesive member 40 is formed on the entire lower surface of the tab wiring 20 facing the solar cell element 11B. Is formed in a region facing the finger electrode 111B and the bus bar electrode 112B on the lower surface of the substrate.

バスバー電極112Bは、タブ配線20が配置された長尺方向に平行な直線形状ではなく、当該長尺方向に対して斜め方向に延びる成分を有し、フィンガー電極111Bと交差するごとに当該斜め方向を転換するジグザグ形状を有している。   The bus bar electrode 112B does not have a linear shape parallel to the elongate direction where the tab wiring 20 is arranged, but has a component that extends in an oblique direction with respect to the elongate direction. Has a zigzag shape that converts

ここで、バスバー電極112Bとフィンガー電極111Bとの交差部分Pxにおけるフィンガー電極111Bの電極幅W1sは、フィンガー電極111Bの他の部分である非交差部分Pzの電極幅W1nよりも広い。   Here, the electrode width W1s of the finger electrode 111B at the intersection Px between the bus bar electrode 112B and the finger electrode 111B is wider than the electrode width W1n of the non-intersection part Pz, which is another part of the finger electrode 111B.

フィンガー電極111Bの、交差部分Pxおよび非交差部分Pzの電極幅の差異、および、スクリーン印刷による電極幅と膜厚との相関関係により、フィンガー電極111Bの交差部分Pxにおける膜厚は、フィンガー電極111Bの非交差部分Pzにおける膜厚よりも厚くなる。   Due to the difference in electrode width between the intersecting portion Px and the non-intersecting portion Pz of the finger electrode 111B and the correlation between the electrode width and the film thickness by screen printing, the film thickness at the intersecting portion Px of the finger electrode 111B becomes smaller than the finger electrode 111B. Is thicker than the film thickness at the non-intersecting portion Pz.

よって、図7の断面図に示すように、バスバー電極112Bの交差部分Pxは、バスバー電極112Bの非交差部分Pyよりも厚くなる。   Therefore, as shown in the cross-sectional view of FIG. 7, the intersection Px of the bus bar electrode 112B is thicker than the non-intersection Py of the bus bar electrode 112B.

バスバー電極112Bの長尺方向における上記膜厚分布によれば、交差部分Pxでは、バスバー電極112Bとタブ配線20とが接触または最近接し、非交差部分Pyでは、バスバー電極112Bとタブ配線20とは、上記樹脂材料を介在して離間している。   According to the film thickness distribution in the longitudinal direction of the bus bar electrode 112B, at the intersection Px, the bus bar electrode 112B and the tab wiring 20 are in contact with or closest to each other, and at the non-crossing part Py, the bus bar electrode 112B and the tab wiring 20 , And are separated by the resin material.

上記接続構成によれば、太陽電池素子11Bおよびタブ配線20が熱膨張および熱収縮を繰り返しても、バスバー電極112Bとタブ配線20との電気的導通を確保しつつ、太陽電池素子11Bとタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を緩和できる。よって、太陽電池素子11B間のタブ配線20および太陽電池素子11Bのストレスを低減できる。   According to the above connection configuration, even when the solar cell element 11B and the tab wiring 20 repeat thermal expansion and thermal contraction, electrical connection between the bus bar electrode 112B and the tab wiring 20 is maintained, and the solar cell element 11B and the tab wiring 20 are maintained. The stress generated in the longitudinal direction can be reduced due to the difference in the coefficient of thermal expansion from the coefficient of thermal expansion. Therefore, the stress of the tab wiring 20 between the solar cell elements 11B and the solar cell element 11B can be reduced.

[1−7.実施の形態1の変形例2に係る集電極とタブ配線との接続構成]
図8は、実施の形態1の変形例2に係る太陽電池素子11Cの電極構成を示す平面図および断面図である。より具体的には、図8は、図4の構造断面図における太陽電池素子11の表面付近を拡大した透視平面図および断面図である。本変形例に係る太陽電池素子11Cの電極構成は、図6に示された太陽電池素子11Aの電極構成と比較して、特徴的な電極構成が形成された領域をセル端部領域に特定している点のみが異なる。以下では、図6に示された太陽電池素子11Aの電極構成と同じ点は説明を省略し、異なる点を中心に説明する。
[1-7. Connection configuration between collector electrode and tab wiring according to Modification 2 of Embodiment 1]
FIG. 8 is a plan view and a cross-sectional view illustrating an electrode configuration of solar cell element 11C according to Modification 2 of Embodiment 1. More specifically, FIG. 8 is a perspective plan view and a sectional view in which the vicinity of the surface of the solar cell element 11 in the structural sectional view of FIG. 4 is enlarged. The electrode configuration of the solar cell element 11C according to the present modification specifies a region where a characteristic electrode configuration is formed as a cell end region, as compared with the electrode configuration of the solar cell element 11A shown in FIG. Only the difference. In the following, description of the same points as those of the electrode configuration of solar cell element 11A shown in FIG. 6 will be omitted, and different points will be mainly described.

図8の透視平面図に示すように、太陽電池素子11Cの表面には、バスバー電極112Cと、バスバー電極112Cと直交し互いに平行な複数のフィンガー電極111CCおよび111CPとが配置されている。また、バスバー電極112Cとタブ配線20とが受光面を平面視した場合に重なるように、バスバー電極112Cとタブ配線20とを接着する接着部材40が配置されている。なお、図8の透視平面図には、接着部材40は図示されていないが、接着部材40は、太陽電池素子11Cと対向するタブ配線20の下面全体に形成されている、または、タブ配線20の下面のうちフィンガー電極111CC、1111CP、およびバスバー電極112Aと対向する領域に形成されている。   As shown in the perspective plan view of FIG. 8, a bus bar electrode 112C and a plurality of finger electrodes 111CC and 111CP orthogonal to the bus bar electrode 112C and parallel to each other are arranged on the surface of the solar cell element 11C. Further, the bonding member 40 for bonding the bus bar electrode 112C and the tab wiring 20 is arranged so that the bus bar electrode 112C and the tab wiring 20 overlap when the light receiving surface is viewed in plan. Although the adhesive member 40 is not shown in the perspective plan view of FIG. 8, the adhesive member 40 is formed on the entire lower surface of the tab wiring 20 facing the solar cell element 11C. Are formed in a region facing the finger electrodes 111CC, 1111CP and the bus bar electrode 112A on the lower surface of the substrate.

フィンガー電極111CCは、太陽電池素子11Cの中央領域Acに形成されており、フィンガー電極111CPは、太陽電池素子11Cの端部領域Apに形成されている。   Finger electrode 111CC is formed in central region Ac of solar cell element 11C, and finger electrode 111CP is formed in end area Ap of solar cell element 11C.

ここで、バスバー電極112Cとフィンガー電極111CPとの交差部分Pxにおけるフィンガー電極111CPの電極幅W1psは、フィンガー電極111CPの他の部分である非交差部分Pzの電極幅W1pnよりも広い。   Here, the electrode width W1ps of the finger electrode 111CP at the intersection Px between the bus bar electrode 112C and the finger electrode 111CP is wider than the electrode width W1pn of the non-intersection portion Pz, which is another part of the finger electrode 111CP.

フィンガー電極111CPの、交差部分Pxおよび非交差部分Pzの電極幅の差異、および、スクリーン印刷による電極幅と膜厚との相関関係により、端部領域Apにおいて、フィンガー電極111CPの交差部分Pxにおける膜厚は、フィンガー電極111CPの非交差部分Pzにおける膜厚よりも厚くなる。   Due to the difference in electrode width between the intersecting portion Px and the non-intersecting portion Pz of the finger electrode 111CP and the correlation between the electrode width and the film thickness by screen printing, the film at the intersecting portion Px of the finger electrode 111CP in the end region Ap. The thickness is larger than the film thickness at the non-intersecting portion Pz of the finger electrode 111CP.

よって、図8の断面図に示すように、端部領域Apにおけるバスバー電極112Cの交差部分Pxは、バスバー電極112Cの非交差部分Pyよりも厚くなる。   Accordingly, as shown in the cross-sectional view of FIG. 8, the intersection Px of the bus bar electrode 112C in the end region Ap is thicker than the non-intersection Py of the bus bar electrode 112C.

バスバー電極112Cの長尺方向における上記膜厚分布によれば、端部領域Apにおける交差部分Pxでは、バスバー電極112Cとタブ配線20とが接触または最近接し、端部領域Apにおける非交差部分Pyでは、バスバー電極112Cとタブ配線20とは、上記樹脂材料を介して離間している。   According to the film thickness distribution in the longitudinal direction of the bus bar electrode 112C, at the intersection Px in the end region Ap, the bus bar electrode 112C is in contact with or closest to the tab wiring 20, and at the non-intersection Py in the end region Ap. The bus bar electrode 112C and the tab wiring 20 are separated from each other via the resin material.

上記接続構成によれば、太陽電池素子11Bおよびタブ配線20が熱膨張および熱収縮を繰り返しても、バスバー電極112Bとタブ配線20との電気的導通を確保しつつ、太陽電池素子11Bとタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を太陽電池素子11Cの端部領域Apにて緩和できる。よって、特に、タブ配線20がストレスを受け易い端部領域Apにおいて、太陽電池素子11C間のタブ配線20および太陽電池素子11Cのストレスをより効果的に低減できる。   According to the above connection configuration, even when the solar cell element 11B and the tab wiring 20 repeat thermal expansion and thermal contraction, electrical connection between the bus bar electrode 112B and the tab wiring 20 is maintained, and the solar cell element 11B and the tab wiring 20 are maintained. The stress generated in the longitudinal direction due to the difference in the coefficient of thermal expansion from 20 can be reduced in the end region Ap of the solar cell element 11C. Therefore, the stress of the tab wiring 20 between the solar cell elements 11C and the solar cell element 11C can be reduced more effectively, particularly in the end region Ap where the tab wiring 20 is easily subjected to stress.

(実施の形態2)
本実施の形態に係る太陽電池モジュールでは、実施の形態1に係る太陽電池モジュール1と同様に、バスバー電極のフィンガー電極と交差する交差部分Pxがバスバー電極の非交差部分Pyよりも厚いことを特徴とする。これを実現するため、実施の形態1では、交差部分Pxにおけるフィンガー電極111Aの電極幅W1sを、フィンガー電極111Aの非交差部分Pzの電極幅W1nよりも広くしている。これに対して、本実施の形態では、バスバー電極の電極幅を、フィンガー電極の電極幅よりも狭くしている。
(Embodiment 2)
In the solar cell module according to the present embodiment, as in solar cell module 1 according to Embodiment 1, the intersection Px that intersects the finger electrode of the bus bar electrode is thicker than the non-intersection portion Py of the bus bar electrode. And In order to realize this, in the first embodiment, the electrode width W1s of the finger electrode 111A at the intersection Px is wider than the electrode width W1n of the non-intersection Pz of the finger electrode 111A. On the other hand, in the present embodiment, the electrode width of the bus bar electrode is smaller than the electrode width of the finger electrode.

本実施の形態に係る太陽電池モジュールの基本構成などは、実施の形態1に係るそれらと同様であるため説明を省略し、以下、実施の形態1と異なる太陽電池素子11Dの電極構成および断面構造を中心に説明する。   The basic configuration and the like of the solar cell module according to the present embodiment are the same as those according to the first embodiment, and thus description thereof is omitted. Hereinafter, the electrode configuration and cross-sectional structure of solar cell element 11D different from the first embodiment This will be mainly described.

[2−1.実施の形態2に係る集電極とタブ配線との接続構成]
図9Aは、実施の形態2に係る太陽電池素子11Dの電極構成を示す平面図および断面図である。より具体的には、図9Aは、図4の構造断面図における太陽電池素子11の表面付近を拡大した透視平面図および断面図である。
[2-1. Connection configuration between collector electrode and tab wiring according to Embodiment 2]
FIG. 9A is a plan view and a cross-sectional view illustrating an electrode configuration of solar cell element 11D according to Embodiment 2. More specifically, FIG. 9A is a perspective plan view and a sectional view in which the vicinity of the surface of the solar cell element 11 in the structural sectional view of FIG. 4 is enlarged.

図9Aの透視平面図に示すように、太陽電池素子11Dの表面には、バスバー電極112Dと、バスバー電極112Dと直交し互いに平行な複数のフィンガー電極111Dとが配置されている。また、バスバー電極112Dとタブ配線20とが受光面を平面視した場合に重なるように、バスバー電極112Dとタブ配線20とを接着する接着部材40が配置されている。なお、図9Aの透視平面図には、接着部材40は図示されていないが、接着部材40は、太陽電池素子11Dと対向するタブ配線20の下面全体に形成されている、または、タブ配線20の下面のうちフィンガー電極111Dおよびバスバー電極112Dと対向する領域に形成されている。   As shown in the perspective plan view of FIG. 9A, a bus bar electrode 112D and a plurality of finger electrodes 111D that are orthogonal to and parallel to the bus bar electrode 112D are arranged on the surface of the solar cell element 11D. Further, the bonding member 40 for bonding the bus bar electrode 112D and the tab wiring 20 is arranged so that the bus bar electrode 112D and the tab wiring 20 overlap when the light receiving surface is viewed in a plan view. Although the adhesive member 40 is not shown in the perspective plan view of FIG. 9A, the adhesive member 40 is formed on the entire lower surface of the tab wiring 20 facing the solar cell element 11D. Is formed in a region facing the finger electrode 111D and the bus bar electrode 112D on the lower surface of the substrate.

ここで、バスバー電極112Dの電極幅W2nは、フィンガー電極111Dの電極幅W1nよりも狭い。   Here, the electrode width W2n of the bus bar electrode 112D is smaller than the electrode width W1n of the finger electrode 111D.

フィンガー電極111Dおよびバスバー電極112Dは、例えば、スクリーン印刷などの印刷法により形成することができる。この場合、フィンガー電極111Dおよびバスバー電極112Dは、メッシュパターンにより樹脂型導電性ペーストを透過させるスクリーンマスクを用いて同時形成される。このため、スクリーンマスクの線幅を相対的に広くすると、印刷形成された電極の線幅が相対的に広くなるとともに、膜厚も相対的に厚くなる。   The finger electrodes 111D and the bus bar electrodes 112D can be formed by, for example, a printing method such as screen printing. In this case, the finger electrodes 111D and the busbar electrodes 112D are simultaneously formed using a screen mask that allows the resin-type conductive paste to pass therethrough in a mesh pattern. For this reason, when the line width of the screen mask is relatively widened, the line width of the printed electrode is relatively wide, and the film thickness is relatively thick.

バスバー電極112Dとフィンガー電極111Dとの電極幅の差異、および、スクリーン印刷による電極幅と膜厚との相関関係により、フィンガー電極111Dの膜厚は、バスバー電極112Dの膜厚よりも厚くなる。   Due to the difference in electrode width between the bus bar electrode 112D and the finger electrode 111D, and the correlation between the electrode width and the film thickness by screen printing, the thickness of the finger electrode 111D is larger than the thickness of the bus bar electrode 112D.

よって、図9Aの断面図に示すように、バスバー電極112Dの交差部分Pxは、バスバー電極112Dの非交差部分Pyよりも厚くなる。   Therefore, as shown in the cross-sectional view of FIG. 9A, the intersection Px of the bus bar electrode 112D is thicker than the non-intersection Py of the bus bar electrode 112D.

前述したように、接着部材40であるテープ状またはシート状の樹脂材料は、例えば、バスバー電極112Dとタブ配線20との間に挟んで熱圧着されることで軟化する。これにより、タブ配線20とバスバー電極112Dとが接合される。   As described above, the tape-shaped or sheet-shaped resin material as the adhesive member 40 is softened by being thermocompression-bonded between the bus bar electrode 112D and the tab wiring 20, for example. Thereby, the tab wiring 20 and the bus bar electrode 112D are joined.

バスバー電極112Dの長尺方向における上記膜厚分布、および、樹脂材料による上記接合方法によれば、交差部分Pxでは、バスバー電極112Dとタブ配線20とが接触または最近接し、非交差部分Pyでは、バスバー電極112Dとタブ配線20とは、上記樹脂材料を介して離間する。   According to the thickness distribution in the longitudinal direction of the bus bar electrode 112D and the bonding method using the resin material, the bus bar electrode 112D and the tab wiring 20 are in contact with or closest to the intersection Px, and The bus bar electrode 112D and the tab wiring 20 are separated via the resin material.

上記接続構成によれば、太陽電池素子11Dおよびタブ配線20が熱膨張および熱収縮を繰り返しても、バスバー電極112Dとタブ配線20との電気的導通を確保しつつ、太陽電池素子11Dとタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を緩和できる。よって、バスバー電極112Dとタブ配線20とが上記長尺方向にわたり均一な厚みを有する接着部材により接合されている場合に比べて、太陽電池素子11D間のタブ配線20および太陽電池素子11Dのストレスを低減できる。   According to the above-described connection configuration, even when the solar cell element 11D and the tab wiring 20 repeat thermal expansion and thermal contraction, the solar cell element 11D and the tab wiring 20 are maintained while maintaining electrical continuity between the bus bar electrode 112D and the tab wiring 20. The stress generated in the longitudinal direction can be reduced due to the difference in the coefficient of thermal expansion from the coefficient of thermal expansion. Therefore, compared to the case where the bus bar electrode 112D and the tab wiring 20 are joined by the adhesive member having a uniform thickness in the longitudinal direction, the stress of the tab wiring 20 and the solar cell element 11D between the solar cell elements 11D is reduced. Can be reduced.

[2−2.実施の形態2の変形例1に係る集電極とタブ配線との接続構成]
図9Bは、実施の形態2の変形例1に係る太陽電池素子の電極構成を示す平面図および断面図である。より具体的には、図9Bは、図4の構造断面図における太陽電池素子11の表面付近を拡大した透視平面図および断面図である。本変形例に係る太陽電池素子11Hの電極構成は、図9Aに示された太陽電池素子11Dの電極構成と比較して、特徴的な電極構成を、セル端部領域とセル中央領域とで異ならせている点が異なる。以下では、図9Aに示された太陽電池素子11Dの電極構成と同じ点は説明を省略し、異なる点を中心に説明する。
[2-2. Connection configuration between collector electrode and tab wiring according to Modification 1 of Embodiment 2]
FIG. 9B is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element according to Modification Example 1 of Embodiment 2. More specifically, FIG. 9B is a perspective plan view and a sectional view in which the vicinity of the surface of the solar cell element 11 in the structural sectional view of FIG. 4 is enlarged. The electrode configuration of the solar cell element 11H according to this modification is different from the electrode configuration of the solar cell element 11D shown in FIG. 9A in that the characteristic electrode configuration is different between the cell end region and the cell central region. Is different. In the following, the same points as those of the electrode configuration of solar cell element 11D shown in FIG. 9A will not be described, and different points will be mainly described.

図9Bの透視平面図に示すように、太陽電池素子11Hの表面には、バスバー電極112Hと、バスバー電極112Hと直交し互いに平行な複数のフィンガー電極111HCおよび111HPとが配置されている。また、バスバー電極112Hとタブ配線20とが受光面を平面視した場合に重なるように、バスバー電極112Hとタブ配線20とを接着する接着部材40が配置されている。なお、図9Bの透視平面図には、接着部材40は図示されていないが、接着部材40は、太陽電池素子11Hと対向するタブ配線20の下面全体に形成されている、または、タブ配線20の下面のうちフィンガー電極111HC、1111HP、およびバスバー電極112Hと対向する領域に形成されている。   As shown in the perspective plan view of FIG. 9B, a bus bar electrode 112H and a plurality of finger electrodes 111HC and 111HP that are orthogonal to and parallel to the bus bar electrode 112H are arranged on the surface of the solar cell element 11H. The bonding member 40 that bonds the bus bar electrode 112H and the tab wiring 20 is arranged so that the bus bar electrode 112H and the tab wiring 20 overlap when the light receiving surface is viewed in plan. Although the bonding member 40 is not shown in the perspective plan view of FIG. 9B, the bonding member 40 is formed on the entire lower surface of the tab wiring 20 facing the solar cell element 11H. Is formed in a region facing the finger electrodes 111HC, 1111HP and the bus bar electrode 112H on the lower surface of the.

フィンガー電極111HCは、太陽電池素子11Hの中央領域Acに形成されており、フィンガー電極111HPは、太陽電池素子11Hの端部領域Apに形成されている。   Finger electrode 111HC is formed in central region Ac of solar cell element 11H, and finger electrode 111HP is formed in end area Ap of solar cell element 11H.

ここで、フィンガー電極111HPの電極幅W1npは、フィンガー電極111HCの電極幅W1ncよりも広い。   Here, the electrode width W1np of the finger electrode 111HP is wider than the electrode width W1nc of the finger electrode 111HC.

フィンガー電極111HPおよび111HCの電極幅の差異、および、スクリーン印刷による電極幅と膜厚との相関関係により、端部領域Apにおけるフィンガー電極111HPとバスバー電極112Hとの交差部分Pxpにおける電極膜厚は、中央領域Acにおけるフィンガー電極111HCとバスバー電極112Hとの交差部分Pxcにおける電極膜厚よりも厚くなる。   Due to the difference between the electrode widths of the finger electrodes 111HP and 111HC, and the correlation between the electrode width and the film thickness by screen printing, the electrode film thickness at the intersection Pxp between the finger electrode 111HP and the bus bar electrode 112H in the end region Ap is: The electrode thickness at the intersection Pxc between the finger electrode 111HC and the bus bar electrode 112H in the central region Ac is larger than the electrode thickness.

上記電極膜厚の関係を有するバスバー電極112Hに対して、タブ配線20を接着した場合、図9Bの断面図に示すような断面構造となる。つまり、端部領域Apにおけるフィンガー電極111HPとバスバー電極112Hとの非交差部分Pypにおけるタブ配線20とバスバー電極112Hとの距離は、中央領域Acにおけるフィンガー電極111HCとバスバー電極112Hとの非交差部分Pycにおけるタブ配線20とバスバー電極112Hとの距離よりも大きくなる。   When the tab wiring 20 is bonded to the bus bar electrode 112H having the above-described relationship of the electrode thickness, a cross-sectional structure as shown in a cross-sectional view of FIG. 9B is obtained. That is, the distance between the tab wiring 20 and the bus bar electrode 112H at the non-intersecting portion Pyp between the finger electrode 111HP and the bus bar electrode 112H in the end region Ap is the non-intersecting portion Pyc between the finger electrode 111HC and the bus bar electrode 112H in the central region Ac. Is larger than the distance between the tab wiring 20 and the bus bar electrode 112H.

また、図9Bの下段には、非交差部分PypおよびPycをフィンガー電極の延伸方向で切断した断面図が表されている。ここで、(1)非交差部分Pypにおけるタブ配線20とバスバー電極112Hとの距離が非交差部分Pycにおけるタブ配線20とバスバー電極112Hとの距離よりも大きいこと、および、(2)非交差部分Pypにおける接着部材40の断面積Spと、非交差部分Pycにおける接着部材40の断面積Scとが等しい、ことから、非交差部分Pypにおけるタブ配線20と接着部材40との上記延伸方向における接着幅Wp40は、非交差部分Pycにおけるタブ配線20と接着部材40との上記延伸方向における接着幅Wc40よりも狭くなる。   9B shows a cross-sectional view of the non-intersecting portions Pyp and Pyc cut in the extending direction of the finger electrodes. Here, (1) the distance between the tab wiring 20 and the bus bar electrode 112H at the non-intersecting portion Pyp is larger than the distance between the tab wiring 20 and the bus bar electrode 112H at the non-intersecting portion Pyc, and (2) the non-intersecting portion Since the cross-sectional area Sp of the adhesive member 40 at the non-intersecting portion Pyc is equal to the cross-sectional area Sp of the adhesive member 40 at the non-intersecting portion Pyc, the bonding width of the tab wiring 20 and the adhesive member 40 at the non-intersecting portion Pyp in the above-described extending direction. Wp40 is smaller than the bonding width Wc40 between the tab wiring 20 and the bonding member 40 in the extending direction in the non-intersecting portion Pyc.

よって、端部領域Apにおける非交差部分Pypにおけるタブ配線20とバスバー電極112Hとの接着強度は、端部領域Acにおける非交差部分Pycにおけるタブ配線20とバスバー電極112Hとの接着強度よりも低くなる。   Therefore, the adhesive strength between the tab wiring 20 and the bus bar electrode 112H at the non-intersecting portion Pyp in the end region Ap is lower than the adhesive strength between the tab wiring 20 and the bus bar electrode 112H at the non-intersecting portion Pyc in the end region Ac. .

タブ配線20とバスバー電極112Hとの上記接着構造によれば、交差部分PxpおよびPxcでは、バスバー電極112Hとタブ配線20とが接触または最近接し、非交差部分PypおよびPycでは、バスバー電極112Hとタブ配線20とは、上記樹脂材料を介して離間している。さらに、非交差部分Pypのほうが非交差部分Pycよりも上記接着強度は低い。   According to the above-described bonding structure between the tab wiring 20 and the bus bar electrode 112H, the bus bar electrode 112H and the tab wiring 20 are in contact with or closest to the intersection Pxp and Pxc, and the bus bar electrode 112H and the tab are non-crossing parts Pyp and Pyc. It is separated from the wiring 20 via the resin material. Further, the non-intersecting portion Pyp has a lower adhesive strength than the non-intersecting portion Pyc.

上記接続構成によれば、太陽電池素子11Hおよびタブ配線20が熱膨張および熱収縮を繰り返しても、バスバー電極112Hとタブ配線20との電気的導通を確保しつつ、太陽電池素子11Hとタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を太陽電池素子11Hの端部領域Apにて緩和できる。よって、特に、タブ配線20がストレスを受け易い端部領域Apにおいて、太陽電池素子11H間のタブ配線20および太陽電池素子11Hのストレスをより効果的に低減できる。   According to the above connection configuration, even if the solar cell element 11H and the tab wiring 20 repeatedly undergo thermal expansion and thermal contraction, electrical connection between the bus bar electrode 112H and the tab wiring 20 is maintained, while the solar cell element 11H and the tab wiring 20 are maintained. The stress generated in the longitudinal direction due to the difference in the coefficient of thermal expansion from 20 can be reduced in the end region Ap of the solar cell element 11H. Therefore, especially in the end region Ap where the tab wiring 20 is easily subjected to stress, the stress of the tab wiring 20 between the solar cell elements 11H and the stress of the solar cell element 11H can be more effectively reduced.

[2−3.実施の形態2の変形例2に係る集電極とタブ配線との接続構成]
図9Cは、実施の形態2の変形例2に係る太陽電池素子の電極構成を示す平面図および断面図である。より具体的には、図9Cは、図4の構造断面図における太陽電池素子11の表面付近を拡大した透視平面図および断面図である。本変形例に係る太陽電池素子11Jの電極構成は、図9Aに示された太陽電池素子11Dの電極構成と比較して、特徴的な電極構成を、セル端部領域とセル中央領域とで異ならせている点が異なる。以下では、図9Aに示された太陽電池素子11Dの電極構成と同じ点は説明を省略し、異なる点を中心に説明する。
[2-3. Connection configuration between collector electrode and tab wiring according to Modification 2 of Embodiment 2]
FIG. 9C is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element according to Modification 2 of Embodiment 2. More specifically, FIG. 9C is a perspective plan view and a sectional view in which the vicinity of the surface of the solar cell element 11 in the structural sectional view of FIG. 4 is enlarged. The electrode configuration of the solar cell element 11J according to this modification is different from the electrode configuration of the solar cell element 11D shown in FIG. 9A in that the characteristic electrode configuration is different between the cell end region and the cell central region. Is different. Hereinafter, the same points as those of the electrode configuration of solar cell element 11D shown in FIG. 9A will not be described, and different points will be mainly described.

図9Cの透視平面図に示すように、太陽電池素子11Jの表面には、バスバー電極112JCおよび112JPと、バスバー電極112JCまたは112JPと直交し互いに平行な複数のフィンガー電極111Jとが配置されている。また、バスバー電極112JCおよび112JPとタブ配線20とが受光面を平面視した場合に重なるように、バスバー電極112JCおよび112JPとタブ配線20とを接着する接着部材40が配置されている。なお、図9Cの透視平面図には、接着部材40は図示されていないが、接着部材40は、太陽電池素子11Jと対向するタブ配線20の下面全体に形成されている、または、タブ配線20の下面のうちフィンガー電極111J、ならびに、バスバー電極112JCおよび112JPと対向する領域に形成されている。   As shown in the perspective plan view of FIG. 9C, on the surface of solar cell element 11J, bus bar electrodes 112JC and 112JP, and a plurality of finger electrodes 111J orthogonal to bus bar electrodes 112JC or 112JP and parallel to each other are arranged. Further, an adhesive member 40 for bonding the bus bar electrodes 112JC and 112JP and the tab wiring 20 is arranged such that the bus bar electrodes 112JP and 112JP and the tab wiring 20 overlap when the light receiving surface is viewed in plan. Although the adhesive member 40 is not shown in the perspective plan view of FIG. 9C, the adhesive member 40 is formed on the entire lower surface of the tab wiring 20 facing the solar cell element 11J. Is formed in a region facing the finger electrode 111J and the bus bar electrodes 112JC and 112JP on the lower surface of the.

バスバー電極112JCは、太陽電池素子11Jの中央領域Acに形成されており、バスバー電極112JPは、太陽電池素子11Jの端部領域Apに形成されている。   The bus bar electrode 112JC is formed in the central region Ac of the solar cell element 11J, and the bus bar electrode 112JP is formed in the end region Ap of the solar cell element 11J.

ここで、バスバー電極112JPの電極幅W2npは、バスバー電極112JCの電極幅W2ncよりも狭い。   Here, the electrode width W2np of the bus bar electrode 112JP is smaller than the electrode width W2nc of the bus bar electrode 112JP.

バスバー電極112JCおよび112JPの電極幅の差異、および、スクリーン印刷による電極幅と膜厚との相関関係により、端部領域Apにおけるフィンガー電極111Jとバスバー電極112JPとの交差部分Pxpにおける電極膜厚は、中央領域Acにおけるフィンガー電極111Jとバスバー電極112JCとの交差部分Pxcにおける電極膜厚よりも薄くなる。また、端部領域Apにおけるフィンガー電極111Jとバスバー電極112JPとの非交差部分Pypにおける電極膜厚は、中央領域Acにおけるフィンガー電極111Jとバスバー電極112JCとの非交差部分Pycにおける電極膜厚よりも薄くなる。   Due to the difference between the electrode widths of the bus bar electrodes 112JC and 112JP, and the correlation between the electrode width and the film thickness by screen printing, the electrode film thickness at the intersection Pxp between the finger electrode 111J and the bus bar electrode 112JP in the end region Ap is: The electrode thickness at the intersection Pxc between the finger electrode 111J and the bus bar electrode 112JC in the central region Ac is thinner. The electrode film thickness at the non-intersecting portion Pyp between the finger electrode 111J and the bus bar electrode 112JP in the end region Ap is smaller than the electrode film thickness at the non-intersecting portion Pyc between the finger electrode 111J and the bus bar electrode 112JC in the central region Ac. Become.

上記電極膜厚の関係を有するバスバー電極112JCおよび112JPに対して、タブ配線20を接着した場合、図9Cの断面図に示すような断面構造となる。   When the tab wiring 20 is bonded to the bus bar electrodes 112JC and 112JP having the above-described relationship of the electrode film thickness, a cross-sectional structure as shown in a cross-sectional view of FIG. 9C is obtained.

また、図9Cの下段には、非交差部分PypおよびPycをフィンガー電極の延伸方向で切断した断面図が表されている。ここで、(1)非交差部分Pypにおけるバスバー電極112JPの断面積が非交差部分Pycにおけるバスバー電極112JCの断面積よりも小さいこと、および、(2)非交差部分Pypにおける接着部材40の断面積Spと、非交差部分Pycにおける接着部材40の断面積Scとが等しい、ことから、非交差部分Pypにおけるタブ配線20と接着部材40との上記延伸方向における接着幅Wp40は、非交差部分Pycにおけるタブ配線20と接着部材40との上記延伸方向における接着幅Wc40よりも狭くなる。   9C shows a cross-sectional view of the non-intersecting portions Pyp and Pyc cut in the extending direction of the finger electrodes. Here, (1) the cross-sectional area of the bus bar electrode 112JP at the non-intersecting portion Pyp is smaller than the cross-sectional area of the bus bar electrode 112JP at the non-intersecting portion Pyc, and (2) the cross-sectional area of the bonding member 40 at the non-intersecting portion Pyp. Since Sp and the cross-sectional area Sc of the adhesive member 40 at the non-intersecting portion Pyc are equal, the adhesive width Wp40 of the tab wiring 20 and the adhesive member 40 in the extending direction at the non-intersecting portion Pyc is equal to that at the non-intersecting portion Pyc. The width is smaller than the bonding width Wc40 between the tab wiring 20 and the bonding member 40 in the extending direction.

よって、端部領域Apの非交差部分Pypにおけるタブ配線20とバスバー電極112JPとの接着強度は、端部領域Acの非交差部分Pycにおけるタブ配線20とバスバー電極112JCとの接着強度よりも低くなる。   Therefore, the adhesive strength between the tab wiring 20 and the bus bar electrode 112JP at the non-intersecting portion Pyp of the end region Ap is lower than the adhesive strength between the tab wiring 20 and the bus bar electrode 112JC at the non-intersecting portion Pyc of the end region Ac. .

タブ配線20とバスバー電極112JCおよび112JPとの上記接着構造によれば、交差部分PxpおよびPxcでは、バスバー電極112JPおよび112JCとタブ配線20とが接触または最近接し、非交差部分PypおよびPycでは、バスバー電極112JPおよび112JCとタブ配線20とは、上記樹脂材料を介して離間している。さらに、非交差部分Pypのほうが非交差部分Pycよりも上記接着強度は低い。   According to the above-described bonding structure between the tab wiring 20 and the bus bar electrodes 112JC and 112JP, the bus bar electrodes 112JP and 112JC and the tab wiring 20 are in contact with or closest to each other at the intersection portions Pxp and Pxc, and the bus bar is formed at the non-intersecting portions Pyp and Pyc. The electrodes 112JP and 112JC are separated from the tab wiring 20 via the resin material. Further, the non-intersecting portion Pyp has a lower adhesive strength than the non-intersecting portion Pyc.

上記接続構成によれば、太陽電池素子11Jおよびタブ配線20が熱膨張および熱収縮を繰り返しても、バスバー電極112JCおよび112JPとタブ配線20との電気的導通を確保しつつ、太陽電池素子11Jとタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を太陽電池素子11Jの端部領域Apにて緩和できる。よって、特に、タブ配線20がストレスを受け易い端部領域Apにおいて、太陽電池素子11J間のタブ配線20および太陽電池素子11Jのストレスをより効果的に低減できる。   According to the above connection configuration, even when the solar cell element 11J and the tab wiring 20 repeat thermal expansion and thermal contraction, electrical connection between the bus bar electrodes 112JC and 112JP and the tab wiring 20 is maintained, and the solar cell element 11J and the tab wiring 20 are connected to each other. The stress generated in the longitudinal direction due to the difference in the thermal expansion coefficient from the tab wiring 20 can be reduced in the end region Ap of the solar cell element 11J. Therefore, especially in the end region Ap where the tab wiring 20 is easily stressed, the stress of the tab wiring 20 between the solar cell elements 11J and the stress of the solar cell element 11J can be reduced more effectively.

[2−4.実施の形態2の変形例3に係る集電極とタブ配線との接続構成]
図10は、実施の形態2の変形例3に係る太陽電池素子11Eの電極構成を示す平面図および断面図である。より具体的には、図10は、図4の構造断面図における太陽電池素子11の表面付近を拡大した透視平面図および断面図である。本変形例に係る太陽電池素子11Eの電極構成は、図9Aに示された太陽電池素子11Dの電極構成と比較して、バスバー電極112Eの配置構成のみが異なる。以下では、図9Aに示された太陽電池素子11Dの電極構成と同じ点は説明を省略し、異なる点を中心に説明する。
[2-4. Connection configuration between collector electrode and tab wiring according to Modification 3 of Embodiment 2]
FIG. 10 is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element 11E according to a third modification of the second embodiment. More specifically, FIG. 10 is a perspective plan view and a sectional view in which the vicinity of the surface of the solar cell element 11 in the structural sectional view of FIG. 4 is enlarged. The electrode configuration of the solar cell element 11E according to this modification is different from the electrode configuration of the solar cell element 11D shown in FIG. 9A only in the arrangement of the bus bar electrodes 112E. In the following, the same points as those of the electrode configuration of solar cell element 11D shown in FIG. 9A will not be described, and different points will be mainly described.

図10の透視平面図に示すように、太陽電池素子11Eの表面には、バスバー電極112Eと、バスバー電極112Eと交差し互いに平行な複数のフィンガー電極111Eとが配置されている。また、バスバー電極112Eとタブ配線20とが受光面を平面視した場合に重なるように、バスバー電極112Eとタブ配線20とを接着する接着部材40が配置されている。なお、図10の透視平面図には、接着部材40は図示されていないが、接着部材40は、太陽電池素子11Eと対向するタブ配線20の下面全体に形成されている、または、タブ配線20の下面のうちフィンガー電極111Eおよびバスバー電極112Eと対向する領域に形成されている。   As shown in the perspective plan view of FIG. 10, on the surface of the solar cell element 11E, a bus bar electrode 112E and a plurality of finger electrodes 111E crossing the bus bar electrode 112E and parallel to each other are arranged. The bonding member 40 that bonds the bus bar electrode 112E and the tab wiring 20 is arranged so that the bus bar electrode 112E and the tab wiring 20 overlap when the light receiving surface is viewed in a plan view. Although the adhesive member 40 is not shown in the perspective plan view of FIG. 10, the adhesive member 40 is formed on the entire lower surface of the tab wiring 20 facing the solar cell element 11E, or Is formed in a region facing the finger electrode 111E and the bus bar electrode 112E on the lower surface of the substrate.

バスバー電極112Eは、タブ配線20が配置された長尺方向に延びる、互いに平行な2本の配線で形成されている。   The bus bar electrode 112E is formed of two parallel wires extending in the longitudinal direction where the tab wires 20 are arranged.

ここで、バスバー電極112Eを形成する2本の配線のそれぞれの電極幅W2nは、フィンガー電極111Eの電極幅W1nよりも広い。   Here, the electrode width W2n of each of the two wires forming the bus bar electrode 112E is wider than the electrode width W1n of the finger electrode 111E.

バスバー電極112Eを形成する配線とフィンガー電極111Eとの電極幅の差異、および、スクリーン印刷による電極幅と膜厚との相関関係により、フィンガー電極111Eの膜厚は、バスバー電極112Eを形成する配線の膜厚よりも厚くなる。   Due to the difference in electrode width between the wiring forming the bus bar electrode 112E and the finger electrode 111E, and the correlation between the electrode width and the film thickness by screen printing, the thickness of the finger electrode 111E is determined by the thickness of the wiring forming the bus bar electrode 112E. It becomes thicker than the film thickness.

よって、図10の断面図に示すように、バスバー電極112Eの交差部分Pxは、バスバー電極112Eの非交差部分Pyよりも厚くなる。   Therefore, as shown in the cross-sectional view of FIG. 10, the intersection Px of the bus bar electrode 112E is thicker than the non-intersection Py of the bus bar electrode 112E.

バスバー電極112Eの長尺方向における上記膜厚分布によれば、交差部分Pxでは、バスバー電極112Eとタブ配線20とが接触または最近接し、非交差部分Pyでは、バスバー電極112Eとタブ配線20とは、上記樹脂材料を介在して離間している。   According to the film thickness distribution in the longitudinal direction of the bus bar electrode 112E, the bus bar electrode 112E and the tab wiring 20 are in contact with or closest to the intersection Px, and the bus bar electrode 112E and the tab wiring 20 are not in the non-crossing part Py. , And are separated by the resin material.

さらに、バスバー電極112Eの電極幅をフィンガー電極111Eの電極幅よりも狭くした分、バスバー電極112Eを形成する配線を複数配置することにより、バスバー電極112Eの導電率を向上させることが可能となる。   Furthermore, the conductivity of the bus bar electrode 112E can be improved by arranging a plurality of wirings forming the bus bar electrode 112E by an amount corresponding to the electrode width of the bus bar electrode 112E being smaller than the electrode width of the finger electrode 111E.

上記接続構成によれば、太陽電池素子11Eおよびタブ配線20が熱膨張および熱収縮を繰り返しても、バスバー電極112Eとタブ配線20との電気的導通を確保し、バスバー電極112Eの導電率を向上させつつ、太陽電池素子11Eとタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を緩和できる。よって、太陽電池素子11E間のタブ配線20および太陽電池素子11Eのストレスを低減できる。   According to the above connection configuration, even if the solar cell element 11E and the tab wiring 20 repeat thermal expansion and thermal contraction, electrical conduction between the bus bar electrode 112E and the tab wiring 20 is ensured, and the conductivity of the bus bar electrode 112E is improved. At the same time, the stress generated in the longitudinal direction due to the difference in the thermal expansion coefficient between the solar cell element 11E and the tab wiring 20 can be reduced. Therefore, the stress of the tab wiring 20 between the solar cell elements 11E and the solar cell element 11E can be reduced.

(実施の形態3)
[3−1.実施の形態3に係る集電極とタブ配線との接続構成]
図11Aは、実施の形態3に係る太陽電池素子11Fの電極構成を示す平面図および断面図である。より具体的には、図11Aは、図4の構造断面図における太陽電池素子11の表面付近を拡大した透視平面図および断面図である。
(Embodiment 3)
[3-1. Connection configuration between collector electrode and tab wiring according to Embodiment 3]
FIG. 11A is a plan view and a cross-sectional view illustrating an electrode configuration of solar cell element 11F according to Embodiment 3. More specifically, FIG. 11A is a perspective plan view and a sectional view in which the vicinity of the surface of the solar cell element 11 in the structural sectional view of FIG. 4 is enlarged.

図11Aの透視平面図に示すように、太陽電池素子11Fの表面には、バスバー電極112Fと、バスバー電極112Fと直交し互いに平行な複数のフィンガー電極111Fとが配置されている。また、バスバー電極112Fとタブ配線20とが受光面を平面視した場合に重なるように、バスバー電極112Fとタブ配線20とを接着する接着部材40が配置されている。なお、図11Aの透視平面図には、接着部材40は図示されていないが、接着部材40は、太陽電池素子11Fと対向するタブ配線20の下面全体に形成されている、または、タブ配線20の下面のうちフィンガー電極111Fおよびバスバー電極112Fと対向する領域に形成されている。   As shown in the perspective plan view of FIG. 11A, a bus bar electrode 112F and a plurality of finger electrodes 111F orthogonal to and parallel to the bus bar electrode 112F are arranged on the surface of the solar cell element 11F. The bonding member 40 that bonds the bus bar electrode 112F and the tab wiring 20 is arranged so that the bus bar electrode 112F and the tab wiring 20 overlap when the light receiving surface is viewed in a plan view. Although the bonding member 40 is not shown in the perspective plan view of FIG. 11A, the bonding member 40 is formed on the entire lower surface of the tab wiring 20 facing the solar cell element 11F. Is formed in a region facing the finger electrode 111F and the bus bar electrode 112F on the lower surface of the.

ここで、複数のフィンガー電極111Fの膜厚t1nは、バスバー電極112Fの膜厚t2nよりも厚い。   Here, the thickness t1n of the plurality of finger electrodes 111F is greater than the thickness t2n of the bus bar electrode 112F.

フィンガー電極111Fおよびバスバー電極112Fは、例えば、スクリーン印刷などの印刷法により形成することができる。この場合、フィンガー電極111Fおよびバスバー電極112Fは、メッシュパターンにより樹脂型導電性ペーストを透過させるスクリーンマスクを用いて同時形成される。本実施の形態では、フィンガー電極111Fおよびバスバー電極112Fの形成にあたり、複数回のスクリーン印刷が実行されている。例えば、1回目のスクリーン印刷で、バスバー電極112Fおよび1層目のフィンガー電極111F1を形成する。その後、2回目のスクリーン印刷で、バスバー電極112F上には電極層を形成せず、1層目のフィンガー電極111F1上のみに、2層目のフィンガー電極111F2を形成する。   The finger electrodes 111F and the bus bar electrodes 112F can be formed by, for example, a printing method such as screen printing. In this case, the finger electrodes 111F and the bus bar electrodes 112F are simultaneously formed using a screen mask that allows the resin-type conductive paste to pass therethrough in a mesh pattern. In the present embodiment, a plurality of times of screen printing are executed when forming the finger electrodes 111F and the bus bar electrodes 112F. For example, the bus bar electrode 112F and the first-layer finger electrode 111F1 are formed by the first screen printing. After that, in the second screen printing, an electrode layer is not formed on the bus bar electrode 112F, and the second layer finger electrode 111F2 is formed only on the first layer finger electrode 111F1.

上記製法により、フィンガー電極の電極幅をバスバー電極に対して相対的に広くすることなく、フィンガー電極111Fの膜厚は、バスバー電極112Fの膜厚よりも厚くなる。よって、フィンガー電極の電極幅をバスバー電極に対して相対的に広くした場合と比較して、遮光ロスを低減することが可能となる。   According to the above-described manufacturing method, the thickness of the finger electrode 111F becomes larger than the thickness of the busbar electrode 112F without increasing the electrode width of the finger electrode relatively to the busbar electrode. Therefore, it is possible to reduce the light blocking loss as compared with the case where the electrode width of the finger electrode is relatively wide with respect to the bus bar electrode.

よって、図11Aの断面図に示すように、バスバー電極112Fの交差部分Pxは、バスバー電極112Fの非交差部分Pyよりも厚くなる。   Therefore, as shown in the cross-sectional view of FIG. 11A, the intersection Px of the bus bar electrode 112F is thicker than the non-intersection Py of the bus bar electrode 112F.

前述したように、接着部材40であるテープ状またはシート状の樹脂材料は、例えば、バスバー電極112Fとタブ配線20との間に挟んで熱圧着されることで軟化する。これにより、タブ配線20とバスバー電極112Fとが接合される。   As described above, the tape-shaped or sheet-shaped resin material, which is the adhesive member 40, is softened by being sandwiched between the bus bar electrode 112F and the tab wiring 20 and thermocompression-bonded. Thereby, the tab wiring 20 and the bus bar electrode 112F are joined.

バスバー電極112Fの長尺方向における上記膜厚分布、および、樹脂材料による上記接合方法によれば、交差部分Pxでは、バスバー電極112Fとタブ配線20とが接触または最近接し、非交差部分Pyでは、バスバー電極112Fとタブ配線20とは、上記樹脂材料を介して離間する。   According to the thickness distribution in the longitudinal direction of the bus bar electrode 112F and the bonding method using the resin material, at the intersection Px, the bus bar electrode 112F and the tab wiring 20 are in contact or closest contact, and at the non-intersection Py, The bus bar electrode 112F and the tab wiring 20 are separated via the resin material.

上記接続構成によれば、太陽電池素子11Fおよびタブ配線20が熱膨張および熱収縮を繰り返しても、バスバー電極112Fとタブ配線20との電気的導通を確保し、また遮光ロスを低減しつつ、上記長尺方向に発生する応力を緩和できる。よって、バスバー電極112Fとタブ配線20とが上記長尺方向にわたり均一な厚みを有する接着部材により接合されている場合に比べて、太陽電池素子11F間のタブ配線20および太陽電池素子11Fのストレスを低減できる。   According to the above connection configuration, even if the solar cell element 11F and the tab wiring 20 repeat thermal expansion and thermal contraction, the electrical connection between the bus bar electrode 112F and the tab wiring 20 is ensured, and the light blocking loss is reduced. The stress generated in the longitudinal direction can be reduced. Therefore, the stress of the tab wiring 20 and the solar cell element 11F between the solar cell elements 11F is reduced as compared with the case where the bus bar electrode 112F and the tab wiring 20 are joined by the adhesive member having a uniform thickness in the long direction. Can be reduced.

[3−2.実施の形態3の変形例に係る集電極の形成工程]
本変形例では、実施の形態3で示した集電極のスクリーン印刷法と異なる工程を有するスクリーン印刷法を説明する。
[3-2. Forming Step of Collector Electrode According to Modification of Third Embodiment]
In this modification, a screen printing method having a process different from that of the collector electrode screen printing method described in Embodiment 3 will be described.

図11Bは、実施の形態3の変形例に係る太陽電池素子11Kの電極形成工程を示す図である。太陽電池素子11Kを平面視した場合の電極構成は、実施の形態3に係る太陽電池素子11Fを平面視した場合の電極構成と同じである。   FIG. 11B is a diagram showing a step of forming electrodes of solar cell element 11 </ b> K according to a modification of the third embodiment. The electrode configuration when viewing solar cell element 11K in plan view is the same as the electrode configuration when viewing solar cell element 11F according to Embodiment 3 in plan view.

図11Bに示すように、太陽電池素子11Kの表面には、バスバー電極112Kと、バスバー電極112Kと直交し互いに平行な複数のフィンガー電極111K1および111K2とが配置されている。複数のフィンガー電極111K1は、例えば、全てのフィンガー電極のうち、奇数番目に配置されたフィンガー電極であり、複数のフィンガー電極111K2は、例えば、全てのフィンガー電極のうち、偶数番目に配置されたフィンガー電極である。   As shown in FIG. 11B, a bus bar electrode 112K and a plurality of finger electrodes 111K1 and 111K2 that are orthogonal to and parallel to the bus bar electrode 112K are arranged on the surface of the solar cell element 11K. The plurality of finger electrodes 111K1 are, for example, odd-numbered finger electrodes of all finger electrodes, and the plurality of finger electrodes 111K2 are, for example, even-numbered finger electrodes of all finger electrodes. Electrodes.

ここで、図11BのA−A断面図に示すように、複数のフィンガー電極111K2とバスバー電極112Kとの交差部分の電極膜厚は、複数のフィンガー電極111K1およびバスバー電極112Kの電極膜厚よりも厚い。   Here, as shown in the AA cross-sectional view of FIG. 11B, the electrode film thickness at the intersection between the plurality of finger electrodes 111K2 and the bus bar electrode 112K is larger than the electrode film thickness of the plurality of finger electrodes 111K1 and the bus bar electrode 112K. thick.

フィンガー電極111K1および111K2ならびにバスバー電極112Kは、例えば、スクリーン印刷などの印刷法により形成することができる。この場合、フィンガー電極111K1および111K2ならびにバスバー電極112Kは、メッシュパターンにより樹脂型導電性ペーストを透過させるスクリーンマスクを用いて同時形成される。本変形例では、フィンガー電極111K1および111K2ならびにバスバー電極112Kの形成にあたり、複数回のスクリーン印刷が実行されている。例えば、1回目のスクリーン印刷で、バスバー電極112Kおよびフィンガー電極111K1を形成する。その後、2回目のスクリーン印刷で、フィンガー電極111K2を形成する。   The finger electrodes 111K1 and 111K2 and the busbar electrode 112K can be formed by, for example, a printing method such as screen printing. In this case, the finger electrodes 111K1 and 111K2 and the bus bar electrode 112K are simultaneously formed by using a screen mask that allows the resin-type conductive paste to pass through the mesh pattern. In the present modification, a plurality of times of screen printing are executed when forming the finger electrodes 111K1 and 111K2 and the bus bar electrode 112K. For example, the first screen printing forms the bus bar electrode 112K and the finger electrode 111K1. Thereafter, finger electrodes 111K2 are formed by the second screen printing.

上記製法により、フィンガー電極の電極幅をバスバー電極に対して相対的に広くすることなく、複数のフィンガー電極111K2とバスバー電極112Kとの交差部分の膜厚は、バスバー電極112Kおよびフィンガー電極111Kの膜厚よりも厚くなる。   According to the above-mentioned manufacturing method, the film thickness of the intersection between the plurality of finger electrodes 111K2 and the bus bar electrode 112K can be reduced without increasing the electrode width of the finger electrode relative to the bus bar electrode. Thicker than thick.

よって、フィンガー電極の電極幅をバスバー電極に対して相対的に広くした場合と比較して、遮光ロスを低減することが可能となる。   Therefore, it is possible to reduce the light blocking loss as compared with the case where the electrode width of the finger electrode is relatively wide with respect to the bus bar electrode.

このようにして形成された太陽電池素子11Kに、接着部材40であるテープ状またはシート状の樹脂材料を、バスバー電極112Kとタブ配線20との間に挟んで熱圧着する。これにより、タブ配線20とバスバー電極112Kとが接合される。   A tape-shaped or sheet-shaped resin material, which is the adhesive member 40, is thermocompression-bonded to the solar cell element 11 </ b> K thus formed, between the bus bar electrode 112 </ b> K and the tab wiring 20. Thereby, the tab wiring 20 and the bus bar electrode 112K are joined.

バスバー電極112Kの長尺方向における上記膜厚分布、および、樹脂材料による上記接合方法によれば、フィンガー電極111K2とバスバー電極112Kとの交差部分では、バスバー電極112Kとタブ配線20とが接触または最近接し、それ以外の部分では、バスバー電極112Kとタブ配線20とは、上記樹脂材料を介して離間する。   According to the thickness distribution in the longitudinal direction of the bus bar electrode 112K and the bonding method using the resin material, at the intersection between the finger electrode 111K2 and the bus bar electrode 112K, the bus bar electrode 112K and the tab wiring 20 are in contact with each other. The bus bar electrode 112K and the tab wiring 20 are separated from each other via the resin material in other portions.

上記接続構成によれば、太陽電池素子11Kおよびタブ配線20が熱膨張および熱収縮を繰り返しても、バスバー電極112Kとタブ配線20との電気的導通を確保し、また遮光ロスを低減しつつ、上記長尺方向に発生する応力を緩和できる。よって、バスバー電極112Kとタブ配線20とが上記長尺方向にわたり均一な厚みを有する接着部材により接合されている場合に比べて、太陽電池素子11K間のタブ配線20および太陽電池素子11Kのストレスを低減できる。   According to the above connection configuration, even when the solar cell element 11K and the tab wiring 20 repeat thermal expansion and thermal contraction, electrical continuity between the bus bar electrode 112K and the tab wiring 20 is ensured, and light-blocking loss is reduced, The stress generated in the longitudinal direction can be reduced. Therefore, as compared with the case where the bus bar electrode 112K and the tab wiring 20 are joined by the adhesive member having a uniform thickness in the long direction, the stress of the tab wiring 20 and the solar cell element 11K between the solar cell elements 11K is reduced. Can be reduced.

なお、実施の形態3およびその変形例に係る太陽電池素子の電極形成工程において、使用する導電性ペーストの材料としては、例えば、Ag、Cu、Niの少なくとも1つを含む導電性ペースト、AgコートNi粉末、または、AgコートCu粉末等の導電性粒子を含む導電性ペーストなどが挙げられる。なお、1回目のスクリーン印刷と2回目のスクリーン印刷とで、使用する導電性ペーストの材料を同一にしなくてもよい。例えば、バスバー電極およびフィンガー電極(の一部)が形成される1回目のスクリーン印刷では、集電効率を優先して抵抗率の低い導電性ペースト材料(Agペースト)を用い、フィンガー電極(の一部)のみが形成される2回目のスクリーン印刷では、コストを考慮して相対的に抵抗率が高く安価な導電性ペースト材料(AgコートNi粉末またはAgコートCu粉末等を含む導電性ペースト)を用いてもよい。   In the electrode forming step of the solar cell element according to Embodiment 3 and its modifications, the material of the conductive paste used is, for example, a conductive paste containing at least one of Ag, Cu, and Ni; A conductive paste containing conductive particles such as Ni powder or Ag-coated Cu powder may be used. It is not necessary to use the same conductive paste material for the first screen printing and the second screen printing. For example, in the first screen printing in which the bus bar electrode and (part of) the finger electrode are formed, a conductive paste material (Ag paste) having a low resistivity is used to give priority to current collection efficiency, and the finger electrode (one part) is used. In the second screen printing in which only the second part is formed, a conductive paste material (a conductive paste containing Ag-coated Ni powder or Ag-coated Cu powder) having a relatively high resistivity in consideration of cost is used. May be used.

(その他の実施の形態)
以上、本発明に係る太陽電池モジュールについて、実施の形態1〜3およびそれらの変形例に基づいて説明したが、本発明は、上記の実施の形態およびそれらの変形例に限定されるものではない。
(Other embodiments)
As described above, the solar cell module according to the present invention has been described based on the first to third embodiments and their modifications, but the present invention is not limited to the above-described embodiments and their modifications. .

例えば、上記実施の形態1〜3およびそれらの変形例では、太陽電池素子11、11A〜11Kは、光起電力としての機能を有するものであればよく、太陽電池素子の構造に限定されない。   For example, in the first to third embodiments and their modifications, the solar cell elements 11 and 11A to 11K only need to have a function as a photovoltaic voltage, and are not limited to the structure of the solar cell element.

また、上記実施の形態1〜3およびそれらの変形例では、上述したような特徴を有する電極構成が、太陽電池素子の表面に施されている態様を示したが、上記特徴を有する電極構成は、太陽電池素子の裏面のみ、または、表面および裏面の双方に施されていてもよい。   Further, in the above-described first to third embodiments and their modifications, the configuration in which the electrode configuration having the above-described characteristics is applied to the surface of the solar cell element has been described. May be applied only to the back surface of the solar cell element, or to both the front surface and the back surface.

また、バスバー電極およびフィンガー電極は、直線でなくてもよく曲線であってもよい。   Further, the bus bar electrode and the finger electrode need not be straight lines but may be curved lines.

上記実施の形態に係る太陽電池モジュールでは、複数の太陽電池素子が面上に行列状配置された構成を示したが、行列状配置に限られない。例えば、円環状配置や1次元の直線状または曲線状に配置された構成であってもよい。   In the solar cell module according to the above-described embodiment, a configuration in which a plurality of solar cell elements are arranged in a matrix in a plane has been described, but the invention is not limited to the matrix. For example, an annular arrangement or a configuration arranged in a one-dimensional linear or curved shape may be used.

その他、上記実施の形態1〜3およびそれらの変形例に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で実施の形態1〜3およびそれらの変形例における構成要素および機能を任意に組み合わせることで実現される形態も本発明に含まれる。   In addition, a form obtained by applying various modifications conceived by those skilled in the art to the above-described first to third embodiments and their modifications, and first to third embodiments and their modifications without departing from the spirit of the present invention. Embodiments realized by arbitrarily combining the components and functions in the examples are also included in the present invention.

なお、その他の実施の形態に係る太陽電池モジュールとして、以下のような電極構成が挙げられる。本実施の形態に係る太陽電池モジュールの基本構成などは、実施の形態1〜3に係るそれらと同様であるため説明を省略し、以下、実施の形態1と異なる太陽電池素子11Gの電極構成および断面構造を中心に説明する。   In addition, as a solar cell module according to another embodiment, the following electrode configuration is exemplified. The basic configuration and the like of the solar cell module according to the present embodiment are the same as those according to the first to third embodiments, and thus description thereof is omitted. Hereinafter, the electrode configuration of solar cell element 11G different from the first embodiment and The description will focus on the sectional structure.

図12は、その他の実施の形態に係る太陽電池素子11Gの電極構成を示す平面図および断面図である。   FIG. 12 is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element 11G according to another embodiment.

図12の透視平面図に示すように、太陽電池素子11Gの表面には、2本の平行なバスバー電極112Gと、バスバー電極112Gと直交し互いに平行な複数のフィンガー電極111Gとが配置されている。ただし、2本のバスバー電極112Gとタブ配線20とは、受光面を平面視した場合に重ならないように、フィンガー電極111Gとタブ配線20とを接着する接着部材40が配置されている。なお、図12の透視平面図には、接着部材40は図示されていないが、接着部材40は、太陽電池素子11Gと対向するタブ配線20の下面全体に形成されている、または、タブ配線20の下面のうちフィンガー電極111Gと対向する領域に形成されている。   As shown in the perspective plan view of FIG. 12, two parallel busbar electrodes 112G and a plurality of finger electrodes 111G that are orthogonal to and parallel to the busbar electrodes 112G are arranged on the surface of the solar cell element 11G. . However, the bonding member 40 that bonds the finger electrode 111G and the tab wiring 20 is arranged so that the two bus bar electrodes 112G and the tab wiring 20 do not overlap when the light receiving surface is viewed in a plan view. Although the adhesive member 40 is not shown in the perspective plan view of FIG. 12, the adhesive member 40 is formed on the entire lower surface of the tab wiring 20 facing the solar cell element 11G. Is formed in a region facing the finger electrode 111G on the lower surface of the substrate.

前述したように、接着部材40であるテープ状またはシート状の樹脂材料は、例えば、フィンガー電極111Gとタブ配線20との間に挟んで熱圧着されることで軟化する。これにより、タブ配線20とフィンガー電極111Gとが接合される。   As described above, the tape-shaped or sheet-shaped resin material serving as the adhesive member 40 is softened by being thermocompressed while being sandwiched between the finger electrode 111G and the tab wiring 20, for example. Thereby, the tab wiring 20 and the finger electrode 111G are joined.

タブ配線20とフィンガー電極111Gとを上記樹脂材料により接合することにより、タブ配線20とフィンガー電極111Gとの重複部分では、フィンガー電極111Gとタブ配線20とが接触または最近接し、非重複部分では、タブ配線20と太陽電池素子11Gの表面とが、上記樹脂材料を介して離間する。なお、フィンガー電極111Gとタブ配線20とが上記重複部分で電気的に導通していれば、太陽電池素子11G内部で生成されフィンガー電極111Gで集電された受光電荷をタブ配線20に伝達することが可能である。このため、非重複部分では、太陽電池素子11Gの表面とタブ配線20とは、接着部材40を介して接着されていなくてもよい。   By joining the tab wiring 20 and the finger electrode 111G with the above-mentioned resin material, the finger electrode 111G and the tab wiring 20 are in contact or closest contact with each other at the overlapping portion of the tab wiring 20 and the finger electrode 111G, and at the non-overlapping portion, The tab wiring 20 and the surface of the solar cell element 11G are separated via the resin material. If the finger electrode 111G and the tab wiring 20 are electrically connected to each other in the overlapping portion, the received charge generated in the solar cell element 11G and collected by the finger electrode 111G is transmitted to the tab wiring 20. Is possible. For this reason, in the non-overlapping part, the surface of the solar cell element 11G and the tab wiring 20 need not be bonded via the bonding member 40.

上記接続構成によれば、太陽電池素子11Gおよびタブ配線20が熱膨張および熱収縮を繰り返しても、フィンガー電極111Gとタブ配線20との電気的導通を確保しつつ、太陽電池素子11Gとタブ配線20との熱膨張係数の差によりタブ配線20の長尺方向に発生する応力を緩和できる。よって、バスバー電極とタブ配線とが上記長尺方向にわたり均一な厚みを有する接着部材により接合されている場合に比べて、太陽電池素子11G間のタブ配線20および太陽電池素子11Gのストレスを低減できる。   According to the above connection configuration, even when the solar cell element 11G and the tab wiring 20 repeat thermal expansion and thermal contraction, electrical conduction between the finger electrode 111G and the tab wiring 20 is ensured, and the solar cell element 11G and the tab wiring 20 are maintained. The stress generated in the longitudinal direction of the tab wiring 20 due to the difference in the coefficient of thermal expansion from that of the tab wiring 20 can be reduced. Therefore, the stress of the tab wiring 20 between the solar cell elements 11G and the stress of the solar cell element 11G can be reduced as compared with the case where the bus bar electrode and the tab wiring are joined by the adhesive member having a uniform thickness over the long direction. .

なお、図12において、バスバー電極112Gが形成されていない構成であってもよい。   In FIG. 12, a configuration in which the bus bar electrode 112G is not formed may be employed.

図13は、その他の実施の形態に係る太陽電池素子11Lの電極構成を示す平面図および断面図である。   FIG. 13 is a plan view and a cross-sectional view illustrating an electrode configuration of a solar cell element 11L according to another embodiment.

図13の透視平面図に示すように、太陽電池素子11Lの表面には、バスバー電極がなく、互いに平行な複数のフィンガー電極111Gが配置されている。図13の断面図に示すように、複数のフィンガー電極111Gとタブ配線20とを接着する接着部材40が配置されている。なお、図13の透視平面図には、接着部材40は図示されていないが、接着部材40は、太陽電池素子11Lと対向するタブ配線20の下面全体に形成されている、または、タブ配線20の下面のうちフィンガー電極111Gと対向する領域に形成されている。   As shown in the perspective plan view of FIG. 13, on the surface of the solar cell element 11L, there are no bus bar electrodes, and a plurality of finger electrodes 111G parallel to each other are arranged. As shown in the sectional view of FIG. 13, an adhesive member 40 for adhering the plurality of finger electrodes 111G and the tab wiring 20 is arranged. Although the bonding member 40 is not shown in the perspective plan view of FIG. 13, the bonding member 40 is formed on the entire lower surface of the tab wiring 20 facing the solar cell element 11L, or Is formed in a region facing the finger electrode 111G on the lower surface of the substrate.

タブ配線20とフィンガー電極111Gとを上記樹脂材料により接合することにより、タブ配線20とフィンガー電極111Gとの重複部分では、フィンガー電極111Gとタブ配線20とが接触または最近接し、非重複部分では、タブ配線20と太陽電池素子11Lの表面とが、上記樹脂材料を介して離間する。上記接続構成によれば、太陽電池素子11Lおよびタブ配線20が熱膨張および熱収縮を繰り返しても、フィンガー電極111Gとタブ配線20との電気的導通を確保しつつ、太陽電池素子11Lとタブ配線20との熱膨張係数の差によりタブ配線20の長尺方向に発生する応力を緩和できる。よって、バスバー電極とタブ配線とが上記長尺方向にわたり均一な厚みを有する接着部材により接合されている場合に比べて、太陽電池素子11L間のタブ配線20および太陽電池素子11Lのストレスを低減できる。   By joining the tab wiring 20 and the finger electrode 111G with the above-described resin material, the finger electrode 111G and the tab wiring 20 are in contact or closest contact with each other at the overlapping portion of the tab wiring 20 and the finger electrode 111G, and at the non-overlapping portion, The tab wiring 20 and the surface of the solar cell element 11L are separated via the resin material. According to the above connection configuration, even when the solar cell element 11L and the tab wiring 20 repeat thermal expansion and thermal contraction, electrical conduction between the finger electrode 111G and the tab wiring 20 is ensured, while the solar cell element 11L and the tab wiring 20 are maintained. The stress generated in the longitudinal direction of the tab wiring 20 due to the difference in the coefficient of thermal expansion from that of the tab wiring 20 can be reduced. Therefore, the stress of the tab wiring 20 between the solar cell elements 11L and the stress of the solar cell element 11L can be reduced as compared with the case where the bus bar electrode and the tab wiring are joined by the adhesive member having a uniform thickness in the long direction. .

さらに、図13に記載された太陽電池素子11Lの電極構成に加え、図9Bに示すフィンガー電極の構成のように、端部領域Apにおけるフィンガー電極111Gの電極幅が、中央領域Acにおけるフィンガー電極111Gの電極幅よりも広くてもよい、または、端部領域Apにおけるフィンガー電極111Gの膜厚が、中央領域Acにおけるフィンガー電極111Gの膜厚よりも厚くてもよい。   Further, in addition to the electrode configuration of the solar cell element 11L illustrated in FIG. 13, the electrode width of the finger electrode 111G in the end region Ap is different from the electrode configuration of the finger electrode 111G in the central region Ac, as in the configuration of the finger electrode illustrated in FIG. 9B. Or the thickness of the finger electrode 111G in the end region Ap may be larger than the thickness of the finger electrode 111G in the central region Ac.

上記電極膜厚の関係を有するフィンガー電極111Gに対して、タブ配線20を接着した場合、端部領域Apの上記非重複部分におけるタブ配線20と太陽電池素子表面との距離は、中央領域Acの上記非重複部分におけるタブ配線20と太陽電池素子表面との距離よりも大きくなる。   When the tab wiring 20 is adhered to the finger electrode 111G having the above-described electrode film thickness relationship, the distance between the tab wiring 20 and the surface of the solar cell element in the non-overlapping portion of the end region Ap is equal to the center region Ac. The distance is larger than the distance between the tab wiring 20 and the surface of the solar cell element in the non-overlapping portion.

よって、端部領域Apの上記非重複部分におけるタブ配線20と太陽電池素子との接着強度は、端部領域Acの上記非重複部分におけるタブ配線20と太陽電池素子との接着強度よりも低くなる。   Therefore, the adhesive strength between the tab wiring 20 and the solar cell element in the non-overlapping portion of the end region Ap is lower than the adhesive strength between the tab wiring 20 and the solar cell element in the non-overlapping portion of the end region Ac. .

上記接続構成によれば、太陽電池素子11Lおよびタブ配線20が熱膨張および熱収縮を繰り返しても、フィンガー電極111Gとタブ配線20との電気的導通を確保しつつ、太陽電池素子11Lとタブ配線20との熱膨張係数の差により上記長尺方向に発生する応力を太陽電池素子11Lの端部領域Apにて緩和できる。よって、特に、タブ配線20がストレスを受け易い端部領域Apにおいて、太陽電池素子11L間のタブ配線20および太陽電池素子11Lのストレスをより効果的に低減できる。   According to the above connection configuration, even if the solar cell element 11L and the tab wiring 20 repeatedly undergo thermal expansion and thermal contraction, electrical conduction between the finger electrode 111G and the tab wiring 20 is maintained, while the solar cell element 11L and the tab wiring 20 are maintained. The stress generated in the longitudinal direction due to the difference in the coefficient of thermal expansion from 20 can be reduced in the end region Ap of the solar cell element 11L. Therefore, in particular, in the end region Ap where the tab wiring 20 is easily subjected to stress, the stress of the tab wiring 20 and the solar cell element 11L between the solar cell elements 11L can be reduced more effectively.

1 太陽電池モジュール
11、11A、11B、11C、11D、11E、11F、11G、11H、11J、11K、11L 太陽電池素子
20 タブ配線
40 接着部材
111、111A、111B、111C、111CC、111CP、111D、111E、111F、111F1、111F2、111G、111HC、111HP、111J、111K1、111K2 フィンガー電極
112、112A、112B、112C、112D、112E、112F、112G、112H、112JC、112JP、112K バスバー電極
DESCRIPTION OF SYMBOLS 1 Solar cell module 11, 11A, 11B, 11C, 11D, 11E, 11F, 11G, 11H, 11J, 11K, 11L Solar cell element 20 Tab wiring 40 Adhesive member 111, 111A, 111B, 111C, 111CC, 111CP, 111D, 111E, 111F, 111F1, 111F2, 111G, 111HC, 111HP, 111J, 111K1, 111K2 Finger electrodes 112, 112A, 112B, 112C, 112D, 112E, 112F, 112G, 112H, 112JC, 112JP, 112K Busbar electrodes

Claims (9)

受光面に平行な方向で隣り合う2つの太陽電池素子と、
前記2つの太陽電池素子の一方の表面および他方の裏面に配置され、前記2つの太陽電池素子を電気的に接続する配線部材と、
前記表面および前記裏面に形成され、太陽電池素子で生成された受光電荷を集電する複数のフィンガー電極と、
前記表面および前記裏面であって前記複数のフィンガー電極のそれぞれと交差する方向に延びるように形成され、前記複数のフィンガー電極を電気的に接続するバスバー電極と、
前記バスバー電極と前記配線部材とが前記受光面を平面視した場合に重なるように、前記バスバー電極と前記配線部材とを接着する接着部材とを備え、
前記表面および前記裏面の少なくとも一方の端部領域において、前記バスバー電極の前記フィンガー電極と交差する交差部分の膜厚は、前記バスバー電極の隣り合う前記交差部分で挟まれた部分の膜厚よりも厚く、
記少なくとも一方において、端部領域における前記バスバー電極の前記交差部分の膜厚は、中央領域における前記バスバー電極の前記交差部分の膜厚より大きく、
前記配線部材は、前記2つの太陽電池素子の間において、曲部を有する、
太陽電池モジュール。
Two solar cell elements adjacent in a direction parallel to the light receiving surface,
A wiring member that is disposed on one surface and the other back surface of the two solar cell elements and electrically connects the two solar cell elements;
A plurality of finger electrodes formed on the front surface and the back surface, and collecting received light charges generated by the solar cell element,
A bus bar electrode that is formed to extend in a direction intersecting each of the plurality of finger electrodes on the front surface and the back surface, and electrically connects the plurality of finger electrodes;
An adhesive member that adheres the bus bar electrode and the wiring member so that the bus bar electrode and the wiring member overlap when the light receiving surface is viewed in a plan view,
In at least one end region of the front surface and the back surface, a film thickness of an intersection portion of the bus bar electrode that intersects with the finger electrode is larger than a film thickness of a portion sandwiched between the adjacent intersection portions of the bus bar electrode. Thick,
In one even without prior Kisukuna, the thickness of the intersecting portion of the bus bar electrode in the edge region is greater than the thickness of the crossing portion of the bus bar electrode in the central region,
The wiring member has a curved portion between the two solar cell elements,
Solar cell module.
受光面に平行な方向で隣り合う2つの太陽電池素子と、
前記2つの太陽電池素子の一方の表面および他方の裏面に配置され、前記2つの太陽電池素子を電気的に接続する配線部材と、
前記表面および前記裏面に形成され、太陽電池素子で生成された受光電荷を集電する複数のフィンガー電極と、
前記表面および前記裏面であって前記複数のフィンガー電極のそれぞれと交差する方向に延びるように形成され、前記複数のフィンガー電極を電気的に接続するバスバー電極と、
前記バスバー電極と前記配線部材とが前記受光面を平面視した場合に重なるように、前記バスバー電極と前記配線部材とを接着する接着部材とを備え、
前記表面および前記裏面の少なくとも一方の端部領域において、前記バスバー電極の前記フィンガー電極と交差する交差部分の膜厚は、前記バスバー電極の隣り合う前記交差部分で挟まれた部分の膜厚よりも厚く、
記少なくとも一方において、端部領域におけるフィンガー電極とバスバー電極との非交差部分における電極膜厚は、中央領域におけるフィンガー電極とバスバー電極との非交差部分における電極膜厚よりも薄く、
前記配線部材は、前記2つの太陽電池素子の間において、曲部を有する、
太陽電池モジュール。
Two solar cell elements adjacent in a direction parallel to the light receiving surface,
A wiring member that is disposed on one surface and the other back surface of the two solar cell elements and electrically connects the two solar cell elements;
A plurality of finger electrodes formed on the front surface and the back surface, and collecting received light charges generated by the solar cell element,
A bus bar electrode that is formed to extend in a direction intersecting each of the plurality of finger electrodes on the front surface and the back surface, and electrically connects the plurality of finger electrodes;
An adhesive member that adheres the bus bar electrode and the wiring member so that the bus bar electrode and the wiring member overlap when the light receiving surface is viewed in a plan view,
In at least one end region of the front surface and the back surface, a film thickness of an intersection portion of the bus bar electrode that intersects with the finger electrode is larger than a film thickness of a portion sandwiched between the adjacent intersection portions of the bus bar electrode. Thick,
In one even without prior Kisukuna, electrode thickness in the non-intersection of the finger electrodes and the bus bar electrode in the end region is thinner than the electrode thickness in the non-intersection of the finger electrodes and the bus bar electrode in the central region,
The wiring member has a curved portion between the two solar cell elements,
Solar cell module.
受光面に平行な方向で隣り合う2つの太陽電池素子と、
前記2つの太陽電池素子の一方の表面および他方の裏面に配置され、前記2つの太陽電池素子を電気的に接続する配線部材と、
前記表面および前記裏面に形成され、太陽電池素子で生成された受光電荷を集電する複数のフィンガー電極と、
前記表面および前記裏面であって前記複数のフィンガー電極のそれぞれと交差する方向に延びるように形成され、前記複数のフィンガー電極を電気的に接続するバスバー電極と、
前記バスバー電極と前記配線部材とが前記受光面を平面視した場合に重なるように、前記バスバー電極と前記配線部材とを接着する接着部材とを備え、
前記表面および前記裏面の少なくとも一方の端部領域において、前記バスバー電極の前記フィンガー電極と交差する交差部分の膜厚は、前記バスバー電極の隣り合う前記交差部分で挟まれた部分の膜厚よりも厚く、
前記配線部材は、前記2つの太陽電池素子の間において、曲部を有し、
記少なくとも一方の中央領域および端部領域のうちの端部領域のみにおいて、前記バスバー電極の前記交差部分の膜厚は、前記バスバー電極の隣り合う前記交差部分で挟まれた部分の膜厚よりも厚い
太陽電池モジュール。
Two solar cell elements adjacent in a direction parallel to the light receiving surface,
A wiring member that is arranged on one surface and the other back surface of the two solar cell elements and electrically connects the two solar cell elements;
A plurality of finger electrodes formed on the front surface and the back surface, and collecting received light charges generated by the solar cell element,
A bus bar electrode formed on the front surface and the back surface so as to extend in a direction intersecting with each of the plurality of finger electrodes, and electrically connecting the plurality of finger electrodes;
An adhesive member that adheres the bus bar electrode and the wiring member so that the bus bar electrode and the wiring member overlap when the light receiving surface is viewed in a plan view,
In at least one end region of the front surface and the back surface, a film thickness of an intersection portion of the bus bar electrode that intersects with the finger electrode is larger than a film thickness of a portion sandwiched between the adjacent intersection portions of the bus bar electrode. Thick,
The wiring member has a curved portion between the two solar cell elements,
Only in the end regions of the one of the central region and the edge region even without prior Kisukuna, the thickness of the intersecting portion of the bus bar electrode, the film of the sandwiched by intersection adjacent portions of the bus bar electrode Thicker than thicker solar module.
前記交差部分における前記フィンガー電極の電極幅は、前記フィンガー電極の他の部分の電極幅よりも広い
請求項1〜3のいずれか1項に記載の太陽電池モジュール。
The solar cell module according to any one of claims 1 to 3, wherein an electrode width of the finger electrode at the intersection is wider than an electrode width of another part of the finger electrode.
前記バスバー電極の電極幅は、前記フィンガー電極の電極幅よりも狭い
請求項1〜3のいずれか1項に記載の太陽電池モジュール。
The solar cell module according to claim 1, wherein an electrode width of the bus bar electrode is smaller than an electrode width of the finger electrode.
前記複数のフィンガー電極の膜厚は、前記バスバー電極の膜厚よりも厚い
請求項1〜3のいずれか1項に記載の太陽電池モジュール。
The solar cell module according to claim 1, wherein a thickness of the plurality of finger electrodes is greater than a thickness of the bus bar electrode.
前記接着部材は、樹脂であり、
前記バスバー電極と前記配線部材との間には、前記樹脂が介在している
請求項1〜6のいずれか1項に記載の太陽電池モジュール。
The adhesive member is a resin,
The solar cell module according to any one of claims 1 to 6, wherein the resin is interposed between the bus bar electrode and the wiring member.
前記バスバー電極と前記配線部材とは、前記方向に断続的に接触している
請求項7に記載の太陽電池モジュール。
The solar cell module according to claim 7, wherein the bus bar electrode and the wiring member intermittently contact in the direction.
受光面に平行な方向で隣り合う2つの太陽電池素子と、
前記2つの太陽電池素子の一方の表面および他方の裏面に配置され、前記2つの太陽電池素子を電気的に接続する配線部材と、
前記表面および前記裏面に形成され、太陽電池素子で生成された受光電荷を集電する複数のフィンガー電極と、
前記複数のフィンガー電極と前記配線部材とが前記受光面を平面視した場合に交差するように、前記複数のフィンガー電極と前記配線部材とを接着する接着部材とを備え、
前記表面および前記裏面の少なくとも一方の中央領域および端部領域において、前記端部領域のフィンガー電極の膜厚は前記中央領域のフィンガー電極の膜厚よりも厚い、
太陽電池モジュール。
Two solar cell elements adjacent in a direction parallel to the light receiving surface,
A wiring member that is disposed on one surface and the other back surface of the two solar cell elements and electrically connects the two solar cell elements;
A plurality of finger electrodes formed on the front surface and the back surface, and collecting received light charges generated by the solar cell element,
An adhesive member that adheres the plurality of finger electrodes and the wiring member so that the plurality of finger electrodes and the wiring member intersect when the light receiving surface is viewed in a plan view,
In the central region and the end region of at least one of the front surface and the rear surface, the thickness of the finger electrode in the end region is larger than the thickness of the finger electrode in the central region.
Solar cell module.
JP2017559951A 2016-01-05 2016-12-22 Solar cell module Active JP6628196B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016000733 2016-01-05
JP2016000733 2016-01-05
PCT/JP2016/005206 WO2017119036A1 (en) 2016-01-05 2016-12-22 Solar cell module

Publications (2)

Publication Number Publication Date
JPWO2017119036A1 JPWO2017119036A1 (en) 2018-10-04
JP6628196B2 true JP6628196B2 (en) 2020-01-08

Family

ID=59273514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017559951A Active JP6628196B2 (en) 2016-01-05 2016-12-22 Solar cell module

Country Status (2)

Country Link
JP (1) JP6628196B2 (en)
WO (1) WO2017119036A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900009072A1 (en) 2019-06-14 2020-12-14 Enel Green Power Italia S R L Optimized solar cell, solar cell module and its manufacturing method.

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005353904A (en) * 2004-06-11 2005-12-22 Sharp Corp Electrode, method for forming the same, solar cell, and method for manufacturing the same
EP2264779B1 (en) * 2008-03-31 2018-09-05 Sharp Kabushiki Kaisha Solar cell, solar cell string and solar cell module
JP5368022B2 (en) * 2008-07-17 2013-12-18 信越化学工業株式会社 Solar cell
TWM387372U (en) * 2010-03-29 2010-08-21 Neo Solar Power Corp Electrode structure of solar cell
US9224888B2 (en) * 2010-12-06 2015-12-29 Shin-Etsu Chemical Co., Ltd. Solar cell and solar-cell module
TW201318187A (en) * 2011-10-27 2013-05-01 Motech Ind Inc Solar cell and module thereof
WO2013136436A1 (en) * 2012-03-13 2013-09-19 三洋電機株式会社 Solar cell
WO2014002249A1 (en) * 2012-06-29 2014-01-03 三洋電機株式会社 Solar cell, solar cell module, and method for producing solar cell
KR102018652B1 (en) * 2012-08-29 2019-09-05 엘지전자 주식회사 Solar cell
US20140090702A1 (en) * 2012-09-28 2014-04-03 Suniva, Inc. Bus bar for a solar cell
KR102053138B1 (en) * 2013-09-27 2019-12-06 엘지전자 주식회사 Solar cell
JP2015095609A (en) * 2013-11-14 2015-05-18 デクセリアルズ株式会社 Solar battery cell, solar battery module and manufacturing method thereof
CN106104812A (en) * 2014-05-14 2016-11-09 应用材料意大利有限公司 Solar battery apparatus and the method manufacturing solar battery apparatus
CN107454984B (en) * 2015-03-31 2019-04-19 松下知识产权经营株式会社 Solar cell module

Also Published As

Publication number Publication date
WO2017119036A1 (en) 2017-07-13
JPWO2017119036A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
TWI495124B (en) Solar battery and solar battery module
US20160079459A1 (en) Solar cell module
JP6624418B2 (en) Solar cell module
EP2669954A1 (en) Solar cell and solar cell module
CN105977328B (en) Solar cell module
EP3067937B1 (en) Solar cell module
US20170373210A1 (en) Solar cell module
WO2018003563A1 (en) Solar cell module
WO2017002287A1 (en) Solar battery module
CN112825337B (en) Flexible solar cell array
JP6628196B2 (en) Solar cell module
JP7270631B2 (en) solar module
US20140083499A1 (en) Solar module and manufacturing method therefor
US10388822B2 (en) Encased adhesive tape and method for manufacturing solar cell module
JP6624535B2 (en) Solar cell module
JP6384801B2 (en) Solar cell module
US20170092789A1 (en) Solar cell module
JP2016192436A (en) Solar cell module
JP6872729B2 (en) Manufacturing method of solar cell module and solar cell module
WO2017170214A1 (en) Solar battery module
JP2017050514A (en) Solar battery module
WO2022209585A1 (en) Solar cell module and manufacturing method for solar cell module
CN116864549A (en) Solar cell and photovoltaic module
JP2020120050A (en) Photoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191122

R151 Written notification of patent or utility model registration

Ref document number: 6628196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151