WO2017000560A1 - 射频拉远单元及其测试方法 - Google Patents

射频拉远单元及其测试方法 Download PDF

Info

Publication number
WO2017000560A1
WO2017000560A1 PCT/CN2016/073812 CN2016073812W WO2017000560A1 WO 2017000560 A1 WO2017000560 A1 WO 2017000560A1 CN 2016073812 W CN2016073812 W CN 2016073812W WO 2017000560 A1 WO2017000560 A1 WO 2017000560A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
local oscillator
test
feedback
remote unit
Prior art date
Application number
PCT/CN2016/073812
Other languages
English (en)
French (fr)
Inventor
吴丽红
李雪林
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2017000560A1 publication Critical patent/WO2017000560A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing

Definitions

  • This document relates to but not limited to the field of wireless communication, and specifically relates to a radio remote unit and a test method thereof.
  • the application of radio remote units is becoming more and more extensive.
  • the cost of on-site fault location for the RF remote unit is very expensive. It has the input of manpower, material and financial resources, and may also interrupt the network business and affect the user experience. Therefore, the remote maintenance requirements of the remote radio unit in the network are receiving more and more attention.
  • the performance of the local oscillator in the remote unit directly affects the quality of the wireless network.
  • the self-test of the remote unit of the related technology does not detect the local oscillator performance. Therefore, in the related technology, the remote field RF is extended. The detection of the local oscillator inside the unit still needs to be tested on site, with low efficiency, high cost, and poor user experience satisfaction.
  • the embodiment of the invention provides a radio remote unit and a test method thereof, which can realize the internal local oscillator detection of the radio remote unit without the need to go to the site, and has high efficiency, low cost and good user experience satisfaction.
  • An embodiment of the present invention provides a radio remote unit, including a local oscillator module, a feedback channel module, a test feedback local oscillator module, a control module, a transceiver module, a signal access selection module, and a processing module.
  • the local oscillator module to be tested is connected to an input end of the signal access selection module; the output end of the signal access selection module is connected to the feedback channel module, and the test feedback local oscillator module and the feedback channel module are Connecting, the feedback channel module is connected to the processing module;
  • the transceiver module is configured to receive a remote test instruction that instructs the radio remote unit to perform local oscillator detection;
  • the control module is configured to configure the test feedback local oscillator module according to the remote test command; and control the signal access selection module to select to access the local oscillator module to be tested;
  • the feedback channel module is configured to process the input signal of the test feedback local oscillator module and the local oscillator module to be tested (including mixing, amplifying, filtering, and ADC conversion processing), and then send the processing to the processing module for processing (including The corresponding frequency shift, filtering, calculation, etc.) obtain the test value.
  • control module is further configured to: before the signal access selection module selects to access the local oscillator module to be tested,
  • the local oscillator module to be tested includes a transmitting local oscillator module and a receiving local oscillator module, and the transmitting local oscillator module and the receiving local oscillator module are respectively associated with the signal access selecting module. Inputs are connected.
  • the transmitting local oscillator module and the receiving local oscillator module are respectively connected to the two input ends of the signal access selection module, including: the transmitting local oscillator module and the receiving local oscillator module.
  • the idle one output is respectively connected to the two input terminals of the signal access selection module.
  • the signal access selection module is configured to selectively access the transmitting local oscillator module and the receiving local oscillator module by:
  • the signal access selection module first accesses the transmitting local oscillator module, and after the input signal of the transmitting local oscillator module and the input signal of the feedback local oscillator are processed by the feedback channel module and the processing module; Reconnecting the receiving local oscillator module;
  • the signal access selection module first accesses the receiving local oscillator module, and after the input signal of the receiving local oscillator module and the input signal of the feedback local oscillator are processed by the feedback channel module and the processing module; And then accessing the local oscillator test signal of the transmitting local oscillator module.
  • the remote test command includes a local oscillator test offset position value;
  • the control module is configured to implement configuring the test according to the remote test command by: Try feedback local oscillator module:
  • the frequency of the test feedback local oscillator module is configured as a frequency point of the transmitting local oscillator module minus the local oscillator test offset position value;
  • the frequency of the test feedback local oscillator module is configured as a frequency point of the receiving local oscillator module minus the local oscillator test offset position value.
  • the frequency of the transmitting local oscillator module is the transmitting radio frequency center frequency of the radio remote unit minus the transmitting intermediate frequency value
  • the frequency of the receiving local oscillator module is the received radio frequency center frequency of the radio remote unit minus the receiving intermediate frequency value.
  • the method further includes a power amplification module, wherein an output end of the power amplification module is connected to an input end of the signal access selection module; the control module is further configured to control the signal access The selection module selects an output signal of the power amplification module to be connected to the feedback channel module.
  • the processing module is further configured to compare the obtained test value with a standard value, and if the difference between the two is greater than the preset difference, determine an abnormality.
  • the embodiment of the invention further provides a test method for the radio remote unit, which comprises:
  • the transceiver module receives a remote test command that instructs the radio remote unit to perform local oscillator detection
  • the control module configures the test feedback local oscillator module according to the remote test command; and controls the signal access selection module to select to access the local oscillator module to be tested;
  • the feedback channel module is configured to process the input signal of the test feedback local oscillator module and the local oscillator module to be tested (including mixing, amplifying, filtering, and ADC conversion processing), and then send the processing to the processing module for processing. value.
  • the embodiment of the invention further provides a computer storage medium, wherein the computer storage medium stores computer executable instructions, and the computer executable instructions are used to execute the above method.
  • the radio remote unit and the testing method thereof are provided by the embodiment of the present invention, and the radio remote unit includes The local oscillator module, the feedback channel module, the test feedback local oscillator module, the control module, the transceiver module, the signal access selection module and the processing module are to be tested; the transceiver module receives the remote test instruction indicating that the radio remote unit performs the local oscillator detection; the control module The test feedback local oscillator module is configured according to the remote test instruction; and the control signal access selection module is selected to access the local oscillator module to be tested; the feedback channel module is configured to mix the input signal of the test feedback local oscillator module and the local oscillator module to be tested.
  • the embodiment of the present invention implements remote testing for the local oscillator inside the remote radio unit, which can save expensive on-site detection cost and improve detection efficiency, and improve the efficiency of fault location and the efficiency of fault repair when there is a fault. Further enhance the satisfaction of the user experience.
  • FIG. 1 is a structural diagram 1 of a radio remote unit according to Embodiment 1 of the present invention.
  • FIG. 2 is a second structural diagram of a radio remote unit according to Embodiment 1 of the present invention.
  • FIG. 3 is a third structural diagram of a radio remote unit according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of a local vibration detection process of a radio remote unit according to Embodiment 1 of the present invention.
  • FIG. 5 is a structural diagram of a radio remote unit according to Embodiment 2 of the present invention.
  • FIG. 6 is a structural diagram of a local oscillator module of the radio remote unit of FIG. 5;
  • FIG. 7 is a schematic diagram of a local oscillator detection process of a radio remote unit according to Embodiment 2 of the present invention.
  • a signal access selection module and a corresponding control module are added in a radio remote unit; a signal access selection module is disposed at an input end of a feedback channel module of the radio remote unit, and the local oscillator module and signal access selection are to be tested.
  • the input end of the module is connected; the control module configures the control signal access selection module according to the remote test command to select the local oscillator module to be tested, and correspondingly configures the test feedback local oscillator module on the feedback channel module; the local oscillator module to be tested and the test
  • the input signal of the feedback local oscillator module is processed by the feedback channel module and processed by the processing module to obtain a test value.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the remote radio unit in this embodiment includes a local oscillator module 5 to be tested, a feedback channel module 8 , a test feedback local oscillator module 6 , a control module 2 , a transceiver module 1 , and a signal access selection module 3 .
  • the feedback channel module 8 is configured to perform mixing, amplification, filtering, ADC conversion, and the like on the received input signal;
  • the processing module 4 is configured to perform frequency shifting and digital filtering processing on the received digital signal, thereby calculating corresponding test values
  • the local oscillator module 5 to be tested is connected to the input end of the signal access selection module 3; the output end of the signal access selection module 3 is connected to the input end of the feedback channel module 8, and the input terminals of the feedback local oscillator module 6 and the feedback channel module 8 are tested. Connected, the feedback channel module 8 is connected to the processing module 4; during the remote testing of the local oscillator:
  • the transceiver module 1 is configured to receive a remote test command for instructing the radio remote unit to perform local oscillator detection.
  • the remote test command can be sent by the background, that is, the maintenance personnel can directly send the local oscillator of the external field remote radio unit directly in the background.
  • the command of the test does not need to go to the site, and can save time and cost; it should be understood that the transceiver module 1 in the embodiment can be realized by the optical port link module of the radio remote unit;
  • the control module 2 is configured to configure the feedback feedback local oscillator module 6 of the feedback channel according to the remote test command received by the transceiver module 1; the control module 2 is further configured to control the signal access selection module 3 to select the local oscillator module 5 to be tested. That is, the input signal of the local oscillator module to be tested is selected, and the input signal and the input signal of the test feedback local oscillator module 6 are mixed, amplified, filtered, and ADC converted by the feedback channel module 8, and then processed.
  • Module 4 (for example, the processing module 4 can be implemented by a digital intermediate frequency processing module (FPGA module)) performs corresponding frequency shifting and digital filtering processing, and then calculates corresponding test values.
  • the control module 2 in this embodiment may be implemented by a processor of the radio remote unit; the control signal access selection module 3 may be selected by multiple multiplexing. Switch module implementation.
  • the signal access selection module 3 is added to the input end of the feedback channel of the radio remote unit, and the local vibration test signal of the local oscillator module 5 to be tested is introduced into the feedback channel and processed by the processing module to obtain a detection result. Achieve the function of self-test of the local oscillator.
  • the radio remote unit in this embodiment further includes a power amplifying module 7, and an output end of the power amplifying module 7 is connected to another input end of the signal access selecting module 3; the control module 2 is further configured to The control signal access selection module 3 connects the output signal of the power amplification module 7 to the feedback channel; since in the radio remote unit, the feedback channel module 8 (ie, the feedback channel, described below as a feedback channel) has its own use.
  • the feedback channel module 8 ie, the feedback channel, described below as a feedback channel
  • the control module 2 controls the signal access selection module 3 to select the output signal of the power amplification module 7 to be connected to the feedback channel; when the feedback channel is set to perform the local oscillator test, The local oscillator test signal of the local oscillator module 5 to be tested is introduced into the feedback channel.
  • the local oscillator module 5 to be tested in this embodiment includes at least one of a transmitting local oscillator module 51 and a receiving local oscillator module 52.
  • the transmitting local oscillator module 51 and the receiving local oscillator module 52 are respectively connected to the signal.
  • the two inputs of the selection module 3 are connected. That is, the present embodiment can selectively detect any one of the transmitting local oscillator module 51 and the receiving local oscillator module 52, or can simultaneously detect the transmitting local oscillator module 51 and the receiving local oscillator module 52; Detection method.
  • the radio remote unit is multi-antenna transmitting multi-antenna reception, so there is more than one way to transmit the local oscillator and receive the local oscillator.
  • the local oscillator link of the remote radio unit is used by the mixer of the local oscillator chip after the power amplification and harmonic suppression are provided to multiple channels through the multi-output of the power splitter.
  • the local oscillator chip has multiple outputs.
  • one channel of the transmitting local oscillator and the receiving local oscillator multiple output ie, idle) is connected to the two input ends of the signal access selecting module 3 for local oscillator detection.
  • control module 2 in order to ensure that other services are not affected during the local oscillator test, is further configured to determine whether the feedback channel is currently idle before the control signal access selection module 3 selects to access the local oscillator test signal. Status, if yes, the control signal access selection module 3 selects to access the local oscillator test signal. That is, the present embodiment preferably performs remote monitoring of the local oscillator when the feedback channel is idle, thereby avoiding interruption of other services, and further improving the satisfaction of the user experience.
  • the signal access selection module 3 selects the access transmitting local oscillator module 51 and the receiving version.
  • the manner of the local oscillator test signal of the vibration module 52 includes but is not limited to the following manners:
  • Manner 1 The signal access selection module 3 first accesses the local oscillator test signal of the transmitting local oscillator module 51 and sends it to the processing module 4 for processing; and then accesses the local oscillator test signal of the local oscillator module 52. ;
  • the signal access selection module 3 first accesses the local oscillator test signal of the local oscillator module 52 and sends it to the processing module 4 for processing; and then accesses the local oscillator test signal of the local oscillator module 51. .
  • the feedback channel can be time-multiplexed into the power detection channel and the IQ calibration channel, I Refers to the in-phase vector, Q refers to the orthogonal vector. Therefore, in this embodiment, the feedback channel can be time-multiplexed into the local oscillator detection channel.
  • the mixer's local oscillator input of the feedback channel is switched to a separate feedback local oscillator through the switch, which is specifically set to IQ calibration.
  • the present embodiment can utilize this single local oscillator to implement the transmitting local oscillator detection.
  • the DPD local oscillator transmitting the local oscillator module is still used as the feedback local oscillator; when the feedback channel is set to test the local oscillator, Then, the feedback channel is disconnected from the DPD local oscillator of the local oscillator module, and is switched to be connected with the IQ calibration local oscillator module.
  • the IQ calibration local oscillator module is configured to test the feedback local oscillator module 6. It should be understood that when the transmitting local oscillator and the feedback local oscillator are two independent local oscillators, the test feedback local oscillator module 6 in this embodiment can directly use the feedback local oscillator.
  • the local oscillator test may specifically detect the phase noise of the local oscillator
  • the remote test command includes a local oscillator test offset position value ⁇ f
  • the process of the control module 2 configuring the test feedback local oscillator module 6 according to the remote test command includes:
  • the frequency of the test feedback local oscillator module 6 is configured to be the frequency of transmitting the local oscillator module 51.
  • the frequency of the test feedback local oscillator module 6 is configured to receive the frequency of the local oscillator module 52 minus Local oscillator test offset position value ⁇ f;
  • the frequency point f LO-TX of the transmitting local oscillator module 51 is the transmitting radio frequency center frequency point f RF_TX of the radio remote unit minus the transmitting intermediate frequency value;
  • the frequency point f LO-RX of the receiving local oscillator module 52 is the receiving radio frequency center frequency f RF_RX of the radio remote unit minus the receiving intermediate frequency value.
  • the processing module 4 is further configured to compare the calculated test value (that is, the phase noise value) with the standard value, and if the difference between the two is greater than the preset difference, the abnormality is determined.
  • the standard value can be set to a value measured by the same test method at the factory, and the standard value can be stored locally in the remote unit of the radio frequency.
  • the preset difference value in this embodiment may be selected according to factors such as a specific application scenario, and may be, for example, 3 dB, 5 dB, or the like.
  • the processing module 4 is further configured to feed back the calculated measurement value and/or the result of determining the abnormality to the background through the transceiver module for the maintenance personnel to view.
  • Step 401 Initiating an instruction in the background, and notifying the radio remote unit to perform the local oscillator phase noise self-test.
  • Step 402 After receiving the instruction, the radio remote unit determines whether the current feedback channel is idle. If it is idle, step 403 is performed; if the feedback channel is occupied, it waits, and returns to step 402 to re-determine;
  • Step 403 The radio remote unit starts to detect the phase noise of the local oscillator module; the input of the control signal to the selection module 3 is switched to the transmitting local oscillator module 51, so that the input signal of the feedback channel becomes the transmitting local oscillator.
  • the feedback local oscillator f LO-PRX of the mixer configuring the feedback channel is f LO-TX - ⁇ f.
  • test signal of the local oscillator is processed by the feedback channel and the input signal of the test feedback local oscillator, and then input to the processing module 4, and the corresponding frequency shift filter processing is performed in the processing module 4 to calculate the position of the off-transmitted local oscillator ⁇ f. Phase noise value;
  • Step 404 Perform detection of receiving local oscillator phase noise: the input of the control signal access selection module 3 is switched to the receiving local oscillator module 52, so that the input signal of the feedback channel becomes the receiving local oscillator.
  • the feedback local oscillator f LO-PRX of the mixer configuring the feedback channel is f LO-RX - ⁇ f.
  • test signal of the receiving local oscillator is processed by the feedback channel and the input signal of the test feedback local oscillator, and then input to the processing module 4, and the corresponding frequency shift filtering processing is performed in the processing module 4 to calculate the position of the deviation from the receiving local oscillator ⁇ f. Phase noise value;
  • Step 405 Comparing the detected phase noise values of the transmitting local oscillator and the receiving local oscillator with a standard value, where the standard value may be a phase noise value collected by the same method in the flash before leaving the factory to see whether the data is abnormal. ;
  • Step 406 The radio remote unit reports the self-test result to the background, so that the remote self-test of the local oscillator phase noise is realized.
  • the external field radio frequency remote unit of the present embodiment does not require expensive hardware cost for the local oscillator phase noise self-test, and does not need to spend human and material resources to locate the local oscillator fault, and only needs to initiate an instruction in the background, and can implement the present through the feedback channel.
  • Remote self-test of phase noise In addition, during the self-test, it can also be selectively performed in the idle gap of the feedback channel, and does not affect the normal operation of the radio remote unit, so the network service is not interrupted.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the radio remote unit includes an optical port link module A (ie, a transceiver module), a digital intermediate frequency processing module B (ie, a processing module), a feedback channel D (ie, a feedback channel module), and a switch module E ( That is, the signal access selection module), the power amplification module F, the transmitting local oscillator module C, the receiving local oscillator module H, and the test feedback local oscillator module G; wherein, the specific structure of the local oscillator module is shown in FIG.
  • the local oscillator chip after power amplification and harmonic suppression, is distributed through the power splitter to transmit and feedback the local oscillator.
  • the switch After power amplification and harmonic suppression, LO1 is distributed through the power divider to receive the local oscillator, and LO2 is harmonically After the wave is suppressed, the switch is switched as a feedback local oscillator to set the real-time IQ calibration.
  • the LO0 module and the LO1 module respectively output one transmitting local oscillator and one receiving local oscillator to the module B-switching module E in the device.
  • the feedback channel D works normally, the output of the switch module E is switched to the feedback output of the power amplifier module.
  • the feedback channel is set to digital pre-distortion processing and power detection; when the feedback channel is idle, the output of the switch module E can be switched to the emission version.
  • the local oscillator When the local oscillator is activated or received, the feedback channel can be set to detect the phase noise of the transmitting local oscillator or the receiving local oscillator.
  • TX0_LO the local oscillator of the transmitting channel 1
  • TX1_LO local oscillator of transmit channel 2
  • TX2_LO local oscillator of transmit channel 3
  • TX3_LO local oscillator of transmit channel 4
  • TX_LO_TEST The transmitted local oscillator to be detected
  • DPD_LO local oscillator for digital predistortion
  • IQ_LO local oscillator for IQ calibration
  • RX0_LO Receive the local oscillator of channel 1
  • RX1_LO Receive local oscillator of channel 2
  • RX2_LO Receive the local oscillator of channel 3
  • RX3_LO Receive local oscillator of channel 4
  • RX_LO_TEST Receive local oscillator to be detected
  • PA_PRX_OUT Feedback output of the power amplifier module
  • TRX_PRX_IN Input to the feedback channel
  • PRX_LO The local oscillator of the feedback channel.
  • This embodiment takes a TDD radio remote unit with four transmissions and four receptions as an example.
  • the transmission and feedback have a common intermediate frequency of 185MHz and a receiving intermediate frequency of 245MHz. Since it is a TDD system, the transmitting radio frequency and the receiving radio frequency are the same frequency point. Assuming that the radio frequency center frequency f RF of the current radio remote unit is 2350 MHz, the corresponding transmitting local oscillator f LO-TX is 2165 MHz, and the corresponding receiving version.
  • the vibration f LO-RX is 2105MHz, and the corresponding feedback local oscillator f LO-PRX is 2165MHz.
  • Step 701 Initiating an instruction in the background, requesting the radio remote unit to perform a phase noise self-test;
  • Step 702 The radio remote unit determines whether the current state of the feedback channel is idle. If it is idle, step 703 is performed. If the feedback channel is occupied, return to step 702 and continue to wait until empty. idle.
  • the TDD system is time-sharing and receiving. In the receiving time slot, the feedback channel is basically idle, so the feedback channel can be used for phase noise detection in this time slot;
  • Step 703 Start transmitting a self-test of the local oscillator phase noise, and switch the output of the module switch module E in FIG. 5 to the input of the transmitting local oscillator;
  • Step 704 Since the transmission and feedback are the same local oscillator module LO0 output, the local oscillator of the feedback channel D in FIG. 5 is switched to the IQ calibration local oscillator LO2 through the switch;
  • the feedback local oscillator f LO-PRX of the feedback channel is configured to be 2164.999 MHz.
  • the local oscillator signal 2165MHz is transmitted as the RF input signal of the feedback channel, which is processed into the feedback channel and output to the digital intermediate frequency processing module B in FIG. 5, and the FPGA performs frequency shifting and digital filtering processing to calculate the phase noise deviation from 1KHz. value;
  • Step 705 Next, start receiving the self-test of the local oscillator phase noise; in the next idle gap of the feedback channel, switch the output of the switch module E in FIG. 5 to the input of the receiving local oscillator;
  • Step 706 Since the transmission and feedback are the same local oscillator module LO0 output, the local oscillator of the feedback channel D in FIG. 5 is switched to the IQ calibration local oscillator LO2 through the switch;
  • the feedback local oscillator f LO-PRX of the feedback channel is configured to be 2104.999 MHz.
  • the FPGA performs frequency shifting and digital filtering processing to calculate the phase noise deviation from 1KHz. value;
  • Step 707 Compare the calculated phase noise value of the transmitted local oscillator 2165 MHz from 1 KHz with the phase noise value collected by the same method in the flash internal table. If the value exceeds 3 dB, the phase noise of the local oscillator is considered to be transmitted. abnormal;
  • Step 708 Similarly, the calculated phase noise value of the received local oscillator 2105 MHz deviated from 1 KHz is compared with the phase noise value collected by the same method in the flash internal table. If the value exceeds 3 dB, the receiving local oscillator is considered to be received. The phase noise performance is abnormal.
  • Step 709 Finally, the collected data is uploaded to the background through the optical port link module in FIG. 5, so that the local phase noise self-test result of the remote radio unit in the network can be obtained in the background, thereby being faulty.
  • the positioning provides the basis.
  • a switch module is added to the feedback channel structure of the radio remote unit itself.
  • the remote self-test of the local oscillator phase noise performance is realized by using the feedback channel in the idle time slot of the feedback channel, which satisfies the requirements of the remote radio unit in the network.
  • the need to remotely locate faults and maintenance under the premise of network services is interrupted.
  • the local self-detection method and device for the local oscillator phase noise provided by the embodiment of the present invention are easy to implement and low in cost, and the supported hardware system can be basically borrowed to facilitate popularization and application.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • the invention is not limited to any specific form of combination of hardware and software.
  • the above technical solution realizes remote testing for the local oscillator inside the radio remote unit, which can save expensive on-site detection cost and improve detection efficiency, and improve the efficiency of fault location and the efficiency of fault repair when there is a fault, thereby further improving User experience satisfaction.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Abstract

一种射频拉远单元及其测试方法,该射频拉远单元包括待测本振模块、反馈通道模块、测试反馈本振模块、控制模块、收发模块、信号接入选择模块和处理模块;收发模块接收指示射频拉远单元进行本振检测的远程测试指令;控制模块根据远程测试指令配置测试反馈本振模块;以及控制信号接入选择模块选择接入待测本振模块;反馈通道模块设置为对测试反馈本振模块和待测本振模块的输入信号进行混频等一系列处理后发给处理模块进行处理得到测试值。可见,上述技术方案针对射频拉远单元内部的本振实现了远程测试,既可以节省昂贵的现场检测成本,又可提升检测效率,当存在故障时刻提升故障定位的效率以及故障修复的效率,进而进一步提升用户体验的满意度。

Description

射频拉远单元及其测试方法 技术领域
本文涉及但不限于无线通讯领域,具体涉及一种射频拉远单元及其测试方法。
背景技术
随着无线网络业务的飞速发展,射频拉远单元的应用也越来越广泛。在工程外场,对射频拉远单元进行现场故障定位的成本非常之昂贵,既有人力物力财力的投入,还可能中断在网业务,影响用户体验。因此,在网射频拉远单元的远程维护需求,越来越受到重视。射频拉远单元内部本振的性能直接影响着无线网络质量的好坏,但是相关技术的射频拉远单元系统自检却没有检测本振性能这一项;因此相关技术中,针对外场射频拉远单元内部本振的检测仍需要到现场进行检测,效率低,成本高,且用户体验的满意度差。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供一种射频拉远单元及其测试方法,可实现不需要到现场进行对射频拉远单元的内部本振检测,效率高,成本低,用户体验满意度好。
本发明实施例提供一种射频拉远单元,包括待测本振模块、反馈通道模块、测试反馈本振模块、控制模块、收发模块、信号接入选择模块和处理模块;
所述待测本振模块与所述信号接入选择模块的输入端连接;所述信号接入选择模块输出端与所述反馈通道模块连接,所述测试反馈本振模块与所述反馈通道模块连接,所述反馈通道模块与所述处理模块连接;
所述收发模块设置为接收指示所述射频拉远单元进行本振检测的远程测试指令;
所述控制模块设置为根据所述远程测试指令配置所述测试反馈本振模块;以及控制所述信号接入选择模块选择接入所述待测本振模块;
所述反馈通道模块设置为对所述测试反馈本振模块和待测本振模块的输入信号进行处理(包括混频、放大、滤波以及ADC转换处理)后发给所述处理模块进行处理(包括相应的移频、滤波以及计算等)得到测试值。
在本发明的一种实施例中,所述控制模块控制,还设置为所述信号接入选择模块选择接入所述待测本振模块之前,
判断所述反馈通道模块当前是否处于空闲状态,如是,控制所述信号接入选择模块选择接入所述待测本振模块。
在本发明的一种实施例中,所述待测本振模块包括发射本振模块和接收本振模块,所述发射本振模块和接收本振模块分别与所述信号接入选择模块的两个输入端连接。
在本发明的一种实施例中,所述发射本振模块和接收本振模块分别与所述信号接入选择模块的两个输入端连接包括:所述发射本振模块和接收本振模块的空闲一路输出分别与所述信号接入选择模块的两个输入端连接。
在本发明的一种实施例中,所述信号接入选择模块是设置为通过如下方式实现选择接入所述发射本振模块和接收本振模块:
所述信号接入选择模块先接入所述发射本振模块,在所述发射本振模块的输入信号和所述反馈本振的输入信号经所述反馈通道模块和所述处理模块处理后;再接入所述接收本振模块;
或,
所述信号接入选择模块先接入所述接收本振模块,在所述接收本振模块的输入信号和所述反馈本振的输入信号经所述反馈通道模块和所述处理模块处理后;再接入所述发射本振模块的本振测试信号。
在本发明的一种实施例中,所述远程测试指令包括本振测试偏移位置值;所述控制模块是设置为通过如下方式实现根据所述远程测试指令配置所述测 试反馈本振模块:
所述信号接入选择模块接入所述发射本振模块时,将所述测试反馈本振模块频点配置为所述发射本振模块的频点减去所述本振测试偏移位置值;
所述信号接入选择模块接入所述接收本振模块时,将所述测试反馈本振模块频点配置为所述接收本振模块的频点减去所述本振测试偏移位置值。
在本发明的一种实施例中,所述发射本振模块的频点为所述射频拉远单元的发射射频中心频点减去所述发射中频值;
所述接收本振模块的频点为所述射频拉远单元的接收射频中心频点减去所述接收中频值。
在本发明的一种实施例中,还包括功率放大模块,所述功率放大模块的输出端与所述信号接入选择模块的输入端连接;所述控制模块还设置为控制所述信号接入选择模块选择将所述功率放大模块的输出信号接入所述反馈通道模块。
在本发明的一种实施例中,所述处理模块还设置为将得到的所述测试值与标准值进行比较,如二者的差值大于预设差值,则判定异常。
本发明实施例还提供了一种上述的射频拉远单元的测试方法,包括:
所述收发模块接收指示所述射频拉远单元进行本振检测的远程测试指令;
所述控制模块根据所述远程测试指令配置所述测试反馈本振模块;以及控制所述信号接入选择模块选择接入所述待测本振模块;
所述反馈通道模块设置为对所述测试反馈本振模块和待测本振模块的输入信号进行处理(包括混频、放大、滤波以及ADC转换处理)后发给所述处理模块进行处理得到测试值。
本发明实施例还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机可执行指令,所述计算机可执行指令用于执行上述方法。
本发明实施例的有益效果是:
本发明实施例提供的射频拉远单元及其测试方法,该射频拉远单元包括 待测本振模块、反馈通道模块、测试反馈本振模块、控制模块、收发模块、信号接入选择模块和处理模块;收发模块接收指示射频拉远单元进行本振检测的远程测试指令;控制模块根据远程测试指令配置测试反馈本振模块;以及控制信号接入选择模块选择接入待测本振模块;反馈通道模块设置为对测试反馈本振模块和待测本振模块的输入信号进行混频等一系列处理后发给处理模块进行处理得到测试值。可见,本发明实施例针对射频拉远单元内部的本振实现了远程测试,既可以节省昂贵的现场检测成本,又可提升检测效率,当存在故障时刻提升故障定位的效率以及故障修复的效率,进而进一步提升用户体验的满意度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本发明实施例一提供的射频拉远单元结构图一;
图2为本发明实施例一提供的射频拉远单元结构图二;
图3为本发明实施例一提供的射频拉远单元结构图三;
图4为本发明实施例一提供的射频拉远单元本振检测流程示意图;
图5为本发明实施例二提供的射频拉远单元结构图;
图6为图5中射频拉远单元的本振模块结构图;
图7为本发明实施例二提供的射频拉远单元本振检测流程示意图。
本发明的实施方式
本发明实施例通过在射频拉远单元中增加信号接入选择模块以及对应的控制模块;信号接入选择模块设置在射频拉远单元反馈通道模块输入端,待测本振模块与信号接入选择模块的输入端连接;控制模块则根据远程测试指令配置控制信号接入选择模块选择接入待测本振模块,并对应配置反馈通道模块上的测试反馈本振模块;待测本振模块和测试反馈本振模块的输入信号经反馈通道模块处理后由处理模块处理得到测试值。可见,本发明实施例针对射频拉远单元内部的本振实现了远程测试,既可以节省昂贵的现场检测成 本,又可提升检测效率。
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
请参见图1所示,本实施例中的射频拉远单元包括待测本振模块5、反馈通道模块8、测试反馈本振模块6、控制模块2、收发模块1、信号接入选择模块3和处理模块4;
反馈通道模块8设置为对接收到的输入信号进行模拟信号的混频、放大,滤波,ADC转换等处理;
处理模块4设置为对接收到的数字信号进行移频和数字滤波处理,进而计算得到相应的测试值;
待测本振模块5与信号接入选择模块3的输入端连接;信号接入选择模块3输出端与反馈通道模块8的输入端连接,测试反馈本振模块6与反馈通道模块8的输入端连接,反馈通道模块8与处理模块4连接;在进行本振的远程测试过程中:
收发模块1设置为接收指示射频拉远单元进行本振检测的远程测试指令,该远程测试指令可以由后台下发,也即维护人员可直接在后台下发对外场射频拉远单元的本振进行测试的指令;并不需要到现场,可以节省时间和成本;应当理解的是,本实施例中收发模块1具体可通过射频拉远单元的光口链路模块实现;
控制模块2设置为根据收发模块1接收到的远程测试指令配置反馈通道的测试反馈本振模块6;控制模块2还用于控制信号接入选择模块3选择接入待测本振模块5,也即选择接入待测本振模块的输入信号,并经反馈通道模块8将所述输入信号与测试反馈本振模块6的输入信号进行混频、放大、滤波和ADC转换处理后,再经处理模块4(例如该处理模块4可通过数字中频处理模块(FPGA模块)实现)进行相应的移频和数字滤波处理,进而计算得到相应的测试值。应当理解的是,本实施例中的控制模块2可以通过射频拉远单元的处理器实现;控制信号接入选择模块3则可通过多种多路选择 开关模块实现。
可见本实施例在射频拉远单元的反馈通道的输入端增加信号接入选择模块3,将待测本振模块5的本振测试信号引入到反馈通道再经处理模块进行处理得到检测结果,从而达到对本振自检的功能。
请参见图2所示,本实施例中的射频拉远单元还包括功率放大模块7,功率放大模块7的输出端与信号接入选择模块3的另外一个输入端连接;控制模块2还设置为控制信号接入选择模块3将功率放大模块7的输出信号接入反馈通道;由于在射频拉远单元中,反馈通道模块8(也即反馈通道,以下以反馈通道进行描述)本身的用途之一就是接功放输出;因此在反馈通道正常使用时,控制模块2控制信号接入选择模块3选择将功率放大模块7的输出信号接入反馈通道;在反馈通道设置为进行本振测试时,才将待测本振模块5的本振测试信号引入到反馈通道。
请参见图3所示,本实施例中的待测本振模块5包括发射本振模块51和接收本振模块52中的至少一个,发射本振模块51和接收本振模块52分别与信号接入选择模块3的两个输入端连接。也即本实施例可以选择性的对发射本振模块51和接收本振模块52中的任意一个进行检测,也可以同时对发射本振模块51和接收本振模块52进行检测;优选后面这种检测方式。
另外,射频拉远单元都是多天线发射多天线接收,所以有不止一路的发射本振和接收本振。射频拉远单元的本振链路都是本振芯片输出经过功率放大和谐波抑制后通过功分器多路输出提供给多个通道的混频器使用。更有甚者,本振芯片就有多路输出。本实施例优选将发射本振和接收本振多路输出中多余(也即空闲)的一路引出来与信号接入选择模块3的两个输入端连接,以进行本振检测。
在本实施例中,为了保证在进行本振测试时对其他业务不产生影响,控制模块2还设置为控制信号接入选择模块3选择接入本振测试信号之前,判断反馈通道当前是否处于空闲状态,如是,才控制信号接入选择模块3选择接入本振测试信号。也即本实施例优选在反馈通道空闲时才进行本振的远程监测,避免中断其他业务,可进一步提升用户体验的满意度。
在本实施例中,信号接入选择模块3选择接入发射本振模块51和接收本 振模块52的本振测试信号的方式包括但不限于以下方式:
方式一:信号接入选择模块3先接入发射本振模块51的本振测试信号经反馈通道处理后发给处理模块4进行处理后;然后再接入接收本振模块52的本振测试信号;
方式二:信号接入选择模块3先接入接收本振模块52的本振测试信号经反馈通道处理后发给处理模块4进行处理后;然后再接入发射本振模块51的本振测试信号。
由于反馈通道本身是将前向发射的信号耦合回来进行数字预失真处理的,因为数字预失真处理并不要求一直实时进行,所以反馈通道可以分时复用为功率检测通道和IQ校准通道,I指同相向量,Q指正交向量。因此,本实施例可以将反馈通道分时复用为本振检测通道。另外,当反馈通道复用为IQ校准通道时,反馈通道的混频器本振输入会通过开关切为一个单独的反馈本振,专门设置为IQ校准的。因此当发射和反馈共本振时,本实施例可以利用这个单独的本振来实现发射本振检测。此时,在本实施例中,当发射和反馈共本振时,在反馈通道正常使用时,仍使用发射本振模块的DPD本振作为反馈本振;当反馈通道设置为测试本振时,则此时将反馈通道与发射本振模块的DPD本振断开连接,切换成与IQ校准本振模块连接,此时的IQ校准本振模块被配置为测试反馈本振模块6使用。应当理解的是,当发射本振和反馈本振本身就是两个相互独立的本振时,本实施例中的测试反馈本振模块6则可直接使用该反馈本振。
本实施例中对本振测试可具体为对本振的相噪进行检测,该远程测试指令包括本振测试偏移位置值Δf;控制模块2根据远程测试指令配置测试反馈本振模块6的过程包括:
当信号接入选择模块3接入发射本振模块51时,也即需要对发射本振模块51进行测试时,将测试反馈本振模块6频点配置为发射本振模块51的频点减去本振测试偏移位置值Δf;
当信号接入选择模块3接入接收本振模块52时,也即需要对接收本振模块52进行测试时,将测试反馈本振模块6频点配置为接收本振模块52的频点减去本振测试偏移位置值Δf;
发射本振模块51的频点fLO-TX为射频拉远单元的发射射频中心频点fRF_TX减去发射中频值;
接收本振模块52的频点fLO-RX为射频拉远单元的接收射频中心频点fRF_RX减去接收中频值。
本实施例中,处理模块4还设置为将计算得到的测试值(也即相噪值)与标准值进行比较,如二者的差值大于预设差值,则判定异常。该标准值具体可设置出厂时采用同样的测试方法进行测量得到的值,该标准值可存储于射频拉远单元的本地。本实施例中的预设差值可根据具体应用场景等因素进行选择设置,例如可为3dB、5dB等等。
本实施例中,处理模块4还设置为将计算得到的测量值和/或根据判断异常与否的结果通过收发模块反馈给后台以供维护人员查看。
基于图3所示的射频拉远单元,对其本振进行检测的过程请参见图4所示,包括:
步骤401:后台发起指令,通知射频拉远单元进行本振相噪自检。
步骤402:射频拉远单元接收到指令后,判断当前反馈通道是否空闲,如果空闲,即执行步骤403;如果反馈通道被占用,则等待,返回步骤402重新判断;
步骤403:射频拉远单元开始发射本振模块相噪的检测;将控制信号接入选择模块3的输入切换到发射本振模块51,这样反馈通道的输入信号就变成发射本振。根据发射本振频点fLO-TX及欲测试偏离本振Δf位置的相噪值,配置反馈通道的混频器的反馈本振fLO-PRX为fLO-TX-Δf。发射本振的测试信号经反馈通道与测试反馈本振的输入信号进行混频等处理后输入到处理模块4,在处理模块4内进行相应的移频滤波处理,计算出偏离发射本振Δf位置的相噪值;
步骤404:进行接收本振相噪的检测:控制信号接入选择模块3的输入切换到接收本振模块52,这样反馈通道的输入信号就变成接收本振。根据接收本振频点fLO-RX及欲测试偏离本振Δf位置的相噪值,配置反馈通道的混频器的反馈本振fLO-PRX为fLO-RX-Δf。接收本振的测试信号经反馈通道与测试反 馈本振的输入信号进行混频等处理后输入到处理模块4,在处理模块4内进行相应的移频滤波处理,计算出偏离接收本振Δf位置的相噪值;
步骤405:将检测到的发射本振和接收本振的相噪值分别和标准值进行比较,该标准值可为存在Flash中的出厂前用同样方法采集到的相噪值,看数据是否异常;
步骤406:射频拉远单元将自检结果上报给后台,这样就实现了本振相噪的远程自检。
因此本实施例的外场射频拉远单元本振相噪自检不需要昂贵的硬件成本,不需要花费人力物力财力去现场定位本振故障,只需要在后台发起指令,就可以通过反馈通道实现本振相噪的远程自检。另外,在进行自检时还可选择性的在反馈通道的空闲间隙进行,不会对射频拉远单元的正常运行造成影响,所以不会中断在网业务。
实施例二:
下面以一个具体的射频拉远单元为例,对本发明做进一步的说明。
请参见图5所示,该射频拉远单元包括光口链路模块A(即收发模块)、数字中频处理模块B(即处理模块)、反馈通道D(即反馈通道模块)、开关模块E(即信号接入选择模块)、功率放大模块F、发射本振模块C、接收本振模块H、测试反馈本振模块G;其中,本振模块的具体结构请参见图6所示,共有三个本振芯片,LO0经过功率放大和谐波抑制后通过功分器分发设置为发射和反馈本振,LO1经过功率放大和谐波抑制后通过功分器分发设置为接收本振,而LO2经过谐波抑制后通过开关的切换作为反馈本振设置为实时IQ校准。LO0模块和LO1模块分别输出一路发射本振和一路接收本振到装置中的模块B—开关模块E。反馈通道D正常工作时,开关模块E的输出切换为功放模块的反馈输出,此时反馈通道设置为数字预失真处理和功率检测的;反馈通道空闲时,开关模块E的输出可以切换为发射本振或者接收本振,此时反馈通道可以设置为检测发射本振或者接收本振的相噪。
图6中各信号说明如下:
TX0_LO:发射通道1的本振;
TX1_LO:发射通道2的本振
TX2_LO:发射通道3的本振
TX3_LO:发射通道4的本振
TX_LO_TEST:待检测的发射本振
DPD_LO:用于数字预失真的本振
IQ_LO:用于IQ校准的本振
RX0_LO:接收通道1的本振
RX1_LO:接收通道2的本振
RX2_LO:接收通道3的本振
RX3_LO:接收通道4的本振
RX_LO_TEST:待检测的接收本振
PA_PRX_OUT:功放模块的反馈输出
TRX_PRX_IN:反馈通道的输入
PRX_LO:反馈通道的本振。
本实施例以四发四收的TDD射频拉远单元为例。发射和反馈共中频,为185MHz,接收中频为245MHz。由于是TDD系统,所以发射射频和接收射频是同一个频点,假设当前射频拉远单元的射频中心频点fRF为2350MHz,则对应的发射本振fLO-TX为2165MHz,对应的接收本振fLO-RX为2105MHz,对应的反馈本振fLO-PRX为2165MHz。
假如现在要测试的是偏离本振位置Δf为1KHz处的相噪值,请参见图7所示,则包括以下步骤:
步骤701:后台发起指令,要求射频拉远单元进行相噪自检;
步骤702:射频拉远单元判断反馈通道当前状态是否空闲,如果空闲,即执行步骤703;如果反馈通道被占用,则返回步骤702,继续等待,直到空 闲。TDD系统是收发分时的,在接收时隙,反馈通道基本是空闲的,所以可以在这个时隙利用反馈通道来进行相噪检测;
步骤703:开始发射本振相噪的自检,将图5中的模块开关模块E的输出切换成发射本振的输入;
步骤704:由于发射和反馈是同一个本振模块LO0输出,所以要将图5中的反馈通道D的本振通过开关切换为IQ校准本振LO2后进行处理;
因为要测试发射本振2165MHz偏离位置1KHz的相噪,所以将反馈通道的反馈本振fLO-PRX配置成2164.999MHz。发射本振信号2165MHz作为反馈通道的射频输入信号,进入反馈通道进行处理后输出到图5中的数字中频处理模块B,FPGA对其进行移频和数字滤波处理,计算出偏离1KHz处的相噪值;
步骤705:接下来开始接收本振相噪的自检;在反馈通道的下一个空闲间隙,将图5中的开关模块E的输出切换成接收本振的输入;
步骤706:由于发射和反馈是同一个本振模块LO0输出,所以要将图5中的反馈通道D的本振通过开关切换为IQ校准本振LO2后进行处理;
因为要测试接收本振2105MHz偏离位置1KHz的相噪,所以将反馈通道的反馈本振fLO-PRX配置成2104.999MHz。接收本振信号2105MHz作为反馈通道的射频输入信号,进入反馈通道进行处理后输出到图5中的数字中频处理模块B,FPGA对其进行移频和数字滤波处理,计算出偏离1KHz处的相噪值;
步骤707:将计算得到的发射本振2165MHz偏离1KHz处的相噪值和存在Flash内表中出厂前用同样方法采集到的相噪值做对比,如超过3dB,则认为发射本振相噪性能异常;
步骤708:同理,将计算得到的接收本振2105MHz偏离1KHz处的相噪值和存在Flash内表中出厂前用同样方法采集到的相噪值做对比,如超过3dB,则认为接收本振相噪性能异常。
步骤709:最后,将上述采集到的数据通过图5中的光口链路模块上传到后台,这样,就可以在后台获得在网射频拉远单元的本振相噪自检结果,从而为故障的定位提供依据。
本实施例在射频拉远单元本身的反馈通道架构上增加了一个开关模块, 通过将发射本振和接收本振引入到反馈通道,在反馈通道空闲的时隙利用反馈通道实现了本振相噪性能的远程自检,很好地满足了对在网射频拉远单元在不中断在网业务的前提下进行远程定位故障和维护的需求。另外,本发明实施例提供的本振相噪远程自检方法和装置实现容易,成本低廉,支持的硬件系统基本可以借用,便于普及应用。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本发明不限制于任何特定形式的硬件和软件的结合。
本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。
工业实用性
上述技术方案针对射频拉远单元内部的本振实现了远程测试,既可以节省昂贵的现场检测成本,又可提升检测效率,当存在故障时刻提升故障定位的效率以及故障修复的效率,进而进一步提升用户体验的满意度。

Claims (10)

  1. 一种射频拉远单元,包括待测本振模块、反馈通道模块、测试反馈本振模块、控制模块、收发模块、信号接入选择模块和处理模块;
    所述待测本振模块与所述信号接入选择模块的输入端连接;所述信号接入选择模块输出端与所述反馈通道模块连接,所述测试反馈本振模块与所述反馈通道模块连接,所述反馈通道模块与所述处理模块连接;
    所述收发模块设置为接收指示所述射频拉远单元进行本振检测的远程测试指令;
    所述控制模块设置为根据所述远程测试指令配置所述测试反馈本振模块;以及控制所述信号接入选择模块选择接入所述待测本振模块;
    所述反馈通道模块设置为对所述测试反馈本振模块和待测本振模块的输入信号进行处理后发给所述处理模块进行处理得到测试值。
  2. 如权利要求1所述的射频拉远单元,
    所述控制模块,还设置为控制所述信号接入选择模块选择接入所述待测本振模块之前,判断所述反馈通道模块当前是否处于空闲状态,如是,控制所述信号接入选择模块选择接入所述待测本振模块。
  3. 如权利要求1所述的射频拉远单元,其中,所述待测本振模块包括:
    发射本振模块和接收本振模块,所述发射本振模块和接收本振模块分别与所述信号接入选择模块的两个输入端连接。
  4. 如权利要求3所述的射频拉远单元,其中,所述发射本振模块和接收本振模块分别与所述信号接入选择模块的两个输入端连接包括:
    所述发射本振模块和接收本振模块的空闲一路输出分别与所述信号接入选择模块的两个输入端连接。
  5. 如权利要求3所述的射频拉远单元,其中,所述信号接入选择模块是设置为通过如下方式实现选择接入所述发射本振模块和接收本振模块:
    所述信号接入选择模块先接入所述发射本振模块,在所述发射本振模块的输入信号和所述反馈本振的输入信号经所述反馈通道模块和所述处理模块 处理后;再接入所述接收本振模块;
    或,
    所述信号接入选择模块先接入所述接收本振模块,在所述接收本振模块的输入信号和所述反馈本振的输入信号经所述反馈通道模块和所述处理模块处理后;再接入所述发射本振模块的本振测试信号。
  6. 如权利要求5所述的射频拉远单元,其中,所述远程测试指令包括本振测试偏移位置值;所述控制模块是设置为通过如下方式实现根据所述远程测试指令配置所述测试反馈本振模块:
    所述信号接入选择模块接入所述发射本振模块时,将所述测试反馈本振模块频点配置为所述发射本振模块的频点减去所述本振测试偏移位置值;
    所述信号接入选择模块接入所述接收本振模块时,将所述测试反馈本振模块频点配置为所述接收本振模块的频点减去所述本振测试偏移位置值。
  7. 如权利要求6所述的射频拉远单元,其中,所述发射本振模块的频点为所述射频拉远单元的发射射频中心频点减去所述发射中频值;
    所述接收本振模块的频点为所述射频拉远单元的接收射频中心频点减去所述接收中频值。
  8. 如权利要求1-5任一项所述的射频拉远单元,还包括功率放大模块,所述功率放大模块的输出端与所述信号接入选择模块的输入端连接;所述控制模块还设置为控制所述信号接入选择模块选择将所述功率放大模块的输出信号接入所述反馈通道模块。
  9. 如权利要求1-5任一项所述的射频拉远单元,所述处理模块还设置为将得到的所述测试值与标准值进行比较,如二者的差值大于预设差值,则判定异常。
  10. 一种如权利要求1-9任一项所述的射频拉远单元的测试方法,包括:
    收发模块接收指示所述射频拉远单元进行本振检测的远程测试指令;
    控制模块根据所述远程测试指令配置所述测试反馈本振模块;以及控制所述信号接入选择模块选择接入所述待测本振模块;
    反馈通道模块对所述测试反馈本振模块和待测本振模块的输入信号进行处理后发给所述处理模块进行处理得到测试值。
PCT/CN2016/073812 2015-06-30 2016-02-15 射频拉远单元及其测试方法 WO2017000560A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510374634.8 2015-06-30
CN201510374634.8A CN106330346B (zh) 2015-06-30 2015-06-30 射频拉远单元及其测试方法

Publications (1)

Publication Number Publication Date
WO2017000560A1 true WO2017000560A1 (zh) 2017-01-05

Family

ID=57607736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073812 WO2017000560A1 (zh) 2015-06-30 2016-02-15 射频拉远单元及其测试方法

Country Status (2)

Country Link
CN (1) CN106330346B (zh)
WO (1) WO2017000560A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469552A (zh) * 2018-04-26 2018-08-31 深圳市华讯方舟微电子科技有限公司 T组件测试方法、装置及系统
CN110311739A (zh) * 2019-07-30 2019-10-08 京信通信系统(中国)有限公司 多通道rru的定标测试系统、方法、装置和存储介质
CN111212436A (zh) * 2019-12-23 2020-05-29 京信通信系统(中国)有限公司 增益定标方法、装置、计算机设备和存储介质
CN111245449A (zh) * 2020-03-03 2020-06-05 上海泽丰半导体科技有限公司 一种用于新型测试机的射频电路、测试系统及测试方法
CN111537964A (zh) * 2020-04-16 2020-08-14 西安电子工程研究所 多通道数字子振自动测试方法
CN113726456A (zh) * 2020-05-26 2021-11-30 大唐移动通信设备有限公司 射频拉远单元的检测方法和射频拉远单元

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022087818A1 (zh) * 2020-10-27 2022-05-05 罗森伯格技术有限公司 一种射频拉远单元的测试系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120201176A1 (en) * 2009-10-19 2012-08-09 Telefonaktiebolaget L M Ericsson (Publ) Method of and Equalizer for Equalizing a Radio Frequency Filter
CN102739584A (zh) * 2011-04-02 2012-10-17 鼎桥通信技术有限公司 本振泄露抑制方法及设备
CN102857303A (zh) * 2011-06-28 2013-01-02 中兴通讯股份有限公司 一种射频拉远单元测试信号生成的方法及装置
CN103067321A (zh) * 2012-12-20 2013-04-24 大唐移动通信设备有限公司 一种本振泄露快速校准装置及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9432063B2 (en) * 2013-01-16 2016-08-30 Huawei Technologies Co., Ltd. Radio frequency signal transceiving and processing method, device, and base station system
CN104639162A (zh) * 2013-11-12 2015-05-20 北京信威通信技术股份有限公司 一种并联多通道射频远端单元装置及其本振信号产生方法
CN103675778B (zh) * 2013-12-25 2016-02-17 北京航天测控技术有限公司 一种本振信号检测装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120201176A1 (en) * 2009-10-19 2012-08-09 Telefonaktiebolaget L M Ericsson (Publ) Method of and Equalizer for Equalizing a Radio Frequency Filter
CN102739584A (zh) * 2011-04-02 2012-10-17 鼎桥通信技术有限公司 本振泄露抑制方法及设备
CN102857303A (zh) * 2011-06-28 2013-01-02 中兴通讯股份有限公司 一种射频拉远单元测试信号生成的方法及装置
CN103067321A (zh) * 2012-12-20 2013-04-24 大唐移动通信设备有限公司 一种本振泄露快速校准装置及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108469552A (zh) * 2018-04-26 2018-08-31 深圳市华讯方舟微电子科技有限公司 T组件测试方法、装置及系统
CN110311739A (zh) * 2019-07-30 2019-10-08 京信通信系统(中国)有限公司 多通道rru的定标测试系统、方法、装置和存储介质
CN110311739B (zh) * 2019-07-30 2022-03-25 京信网络系统股份有限公司 多通道rru的定标测试系统、方法、装置和存储介质
CN111212436A (zh) * 2019-12-23 2020-05-29 京信通信系统(中国)有限公司 增益定标方法、装置、计算机设备和存储介质
CN111212436B (zh) * 2019-12-23 2023-08-25 京信网络系统股份有限公司 增益定标方法、装置、计算机设备和存储介质
CN111245449A (zh) * 2020-03-03 2020-06-05 上海泽丰半导体科技有限公司 一种用于新型测试机的射频电路、测试系统及测试方法
CN111537964A (zh) * 2020-04-16 2020-08-14 西安电子工程研究所 多通道数字子振自动测试方法
CN113726456A (zh) * 2020-05-26 2021-11-30 大唐移动通信设备有限公司 射频拉远单元的检测方法和射频拉远单元

Also Published As

Publication number Publication date
CN106330346B (zh) 2020-12-22
CN106330346A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2017000560A1 (zh) 射频拉远单元及其测试方法
CA2204679C (en) Self-testing transceiver
US10141985B2 (en) Determining actual loop gain in a distributed antenna system (DAS)
WO2018090847A1 (zh) 射频反射波检测装置、无线通信系统及天线状态检测方法
US9113367B2 (en) Method, apparatus and system for determining voltage standing wave ratio in a downlink period of radio communication
EP2458792B1 (en) Wireless transmission device and self-checking method thereof
US8918060B2 (en) 2G, 2.5G RF loopback arrangement for mobile device self-testing
WO2018171282A1 (zh) 分布式天线系统远端机及其上行信号链路检测方法、装置
MXPA97006076A (en) Autoverification transceiver
JP4159780B2 (ja) 無線トランシーバの応答試験
EP2512037B1 (en) Radio frequency signal loopback method and outdoor unit
CN110596661A (zh) 一种带自检电路的相控阵雷达及其自检方法
KR20220116540A (ko) 기지국, 멀티 안테나 송수신 장치 및 그 제어 방법
KR100531619B1 (ko) 수신전용 패스를 포함하는 통신 시스템의 수신감도를측정하는 장치 및 방법
US20130260699A1 (en) Generating test measurement values for automatic calibration using an internal testing load
WO2015117443A1 (zh) 多制式基站的检测参数获取方法及装置
WO2018227921A1 (zh) 一种dpd环路检测方法及设备
CN112583500B (zh) 基于微波射频环回的故障检测系统及方法
JP6448021B2 (ja) 携帯電話端末
WO2012109887A1 (zh) 电压驻波比的获取方法及电路、基站设备
US6421332B1 (en) Apparatus for measuring input and output levels of base station transmitters in a mobile communication system
KR100374024B1 (ko) 다중 주파수 할당을 사용하는 이동통신시스템의 기지국 시험장치
US20240297679A1 (en) Measurement system and method enabling over-the-air measurements in full-duplex mode for two polarisations
US20160329976A1 (en) Low noise amplifier module with output coupler
JP2003069477A (ja) 複合無線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16816925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16816925

Country of ref document: EP

Kind code of ref document: A1