WO2015117443A1 - 多制式基站的检测参数获取方法及装置 - Google Patents

多制式基站的检测参数获取方法及装置 Download PDF

Info

Publication number
WO2015117443A1
WO2015117443A1 PCT/CN2014/090834 CN2014090834W WO2015117443A1 WO 2015117443 A1 WO2015117443 A1 WO 2015117443A1 CN 2014090834 W CN2014090834 W CN 2014090834W WO 2015117443 A1 WO2015117443 A1 WO 2015117443A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
base station
standard base
digital
digital filter
Prior art date
Application number
PCT/CN2014/090834
Other languages
English (en)
French (fr)
Inventor
赵沛
成军平
�田宏
孟海芳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015117443A1 publication Critical patent/WO2015117443A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/34Circuit design for reconfigurable circuits, e.g. field programmable gate arrays [FPGA] or programmable logic devices [PLD]

Definitions

  • the invention relates to the technical field of detecting parameter acquisition of a multi-standard base station, in particular to a method and a device for acquiring detection parameters of a multi-standard base station.
  • LTE Long Term Evolution
  • 4G 4th Generation
  • various standards such as LTE and Global System For Mobile Communication (Global System For Mobile Communication)
  • GSM Global System For Mobile Communication
  • UMTS Universal Mobile Telecommunications System
  • MSR Multi-Standard Radio
  • the present invention has been made to provide a method and apparatus for acquiring detection parameters of a multi-standard base station.
  • a method for acquiring detection parameters of a multi-standard base station includes:
  • the FPGA module obtains the center frequency and bandwidth of the system supported by the pre-configured multi-standard base station;
  • the FPGA module acquires commands according to the detection parameters, calls the digital filter, sets the center frequency and bandwidth of the digital filter to the center frequency and bandwidth of the pre-configured corresponding system, and separates the detection parameters of each system through the digital filter.
  • the detection parameters include: carrier power of each standard supported by the multi-standard base station, and/or The standing wave ratio of each system supported by the multi-standard base station.
  • separating the detection parameters of each system by using a digital filter specifically includes:
  • the output of the amplifier module of the FPGA module couples the output power through the reverse output of the coupler, and sends the output power to the mixer; the mixer converts the output power into an intermediate frequency analog signal and outputs it to the digital-to-analog converter; The converter converts the intermediate frequency analog signal into an intermediate frequency digital signal and outputs it to the digital filter; the digital filter separates the intermediate frequency digital signal into power of different standards, and sends it to the power detection module to obtain the carrier power of each standard.
  • the detection parameter is a standing wave ratio
  • separating the detection parameters of each system by using a digital filter specifically includes:
  • the switching between the forward output and the reverse output of the coupler of the power amplifier output is controlled by the switch of the FPGA module; when the forward output is turned on, the coupler of the power amplifier output couples the forward power and is connected at the reverse output.
  • the amplifier output coupler couples the reverse power and sends the forward power and the reverse power to the mixer;
  • the mixer converts the forward power and the reverse power into an intermediate frequency analog signal and outputs it to the digital analog a converter;
  • the digital-to-analog converter converts the intermediate frequency analog signal into an intermediate frequency digital signal and outputs it to a digital filter;
  • the digital filter separates the intermediate frequency digital signal into forward and reverse powers of different standards, and detects by standing wave ratio
  • the module calculates the standing wave ratio of each system.
  • the foregoing method further includes:
  • the faulty system in the multi-standard base station is located according to the detection parameters.
  • a detection parameter obtaining device for a multi-standard base station comprising:
  • the setting module is configured to: set a digital filter corresponding to each system of the multi-standard base station;
  • the obtaining module is configured to: obtain a central frequency point and a bandwidth of a standard supported by the pre-configured multi-standard base station;
  • the processing module is configured to: according to the detection parameter acquisition command, call the digital filter, set the center frequency and bandwidth of the digital filter to the central frequency point and bandwidth of the pre-configured corresponding system, and separate the various standards by the digital filter. Detection parameters.
  • the detection parameters include: carrier power of each standard supported by the multi-standard base station, and/or The standing wave ratio of each system supported by the multi-standard base station.
  • the processing module is configured to separate the detection parameters of the respective standards by a digital filter as follows:
  • the output of the power amplifier is coupled out of the output power through the reverse output of the coupler, and the output power is sent to the mixer;
  • the mixer converts the output power into an intermediate frequency analog signal, and outputs it to
  • a digital-to-analog converter converts the intermediate frequency analog signal into an intermediate frequency digital signal and outputs it to a digital filter;
  • the digital filter separates the intermediate frequency digital signal into power of different standards, and sends it to the power detection module to obtain each standard Carrier power.
  • the processing module is configured to separate the detection parameters of the respective standards by a digital filter as follows:
  • the switching of the forward output end and the reverse output end of the coupler of the power amplifier output terminal is controlled by the switch; when the forward output end is turned on, the power amplifier output coupler couples the forward power.
  • the inverting output is turned on, the amplifier output coupler couples the reverse power and sends the forward power and the reverse power to the mixer; the mixer converts the forward power and the reverse power to the intermediate frequency
  • the analog signal is output to a digital-to-analog converter; the digital-to-analog converter converts the intermediate frequency analog signal into an intermediate frequency digital signal and outputs it to a digital filter; the digital filter separates the intermediate frequency digital signal into different systems of forward power and reverse Power, and the standing wave ratio of each system is calculated by the standing wave ratio detection module.
  • the foregoing apparatus further includes:
  • the fault location module is configured to: locate a faulty system in the multi-standard base station according to the detection parameter.
  • the embodiment of the invention further discloses a computer program, comprising program instructions, when the program instruction is executed by a computer, so that the computer can execute the detection parameter acquisition method of any of the above-mentioned multi-standard base stations.
  • the embodiment of the invention also discloses a carrier carrying the above computer program.
  • the digital filter corresponding to each system of the multi-standard base station is set on the FPGA module of the digital intermediate frequency portion of the multi-standard base station, and the detection parameters of each system are separated by the digital filter, thereby solving the inaccurate detection in the related art.
  • Which of the multi-standard base stations is located in the multi-standard base station causes the problem of the external field failure, and when the external field fails, it can quickly determine which system is the problem.
  • FIG. 1 is a flowchart of a method for acquiring a detection parameter of a multi-standard base station according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of adding a plurality of digital filters in an FPGA according to an embodiment of the present invention to implement separation of carriers in respective standards;
  • FIG. 3 is a schematic diagram of a specific implementation of an embodiment of the present invention.
  • FIG. 5 is a specific flowchart of standing wave ratio detection according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a detection parameter obtaining apparatus of a multi-standard base station according to an embodiment of the present invention.
  • the present invention provides a method and a device for acquiring detection parameters of a multi-standard base station, in order to solve the problem in the related art that the system cannot be accurately detected and located in the multi-standard base station.
  • the technical solution of the embodiment of the present invention adds a plurality of digital band pass filters to the digital intermediate frequency portion of a remote radio frequency unit (RRU) (corresponding to the multi-standard base station described below), and respectively detects each carrier of the standard format.
  • RRU remote radio frequency unit
  • FIG. 1 is a flowchart of a method for acquiring a detection parameter of a multi-standard base station according to an embodiment of the present invention, as shown in FIG.
  • the method for obtaining detection parameters of the multi-standard base station includes the following processing:
  • Step 101 Set a digital filter corresponding to each standard of the multi-standard base station on the FPGA module of the digital intermediate frequency portion of the multi-standard base station;
  • Step 102 The FPGA module acquires a center frequency point and a bandwidth of a system supported by the pre-configured multi-standard base station;
  • Step 103 The FPGA module acquires a command according to the detection parameter, invokes a digital filter, sets a center frequency point and a bandwidth of the digital filter to a central frequency point and bandwidth of a pre-configured corresponding system, and separates each system by a digital filter.
  • Detection parameters include: carrier power of each system supported by the multi-standard base station, and/or standing wave ratio of each system supported by the multi-standard base station.
  • the detection parameters of each system separated by the digital filter specifically include:
  • the output of the amplifier module of the FPGA module couples the output power through the reverse output of the coupler, and sends the output power to the mixer; the mixer converts the output power into an intermediate frequency analog signal and outputs it to the digital-to-analog converter; The converter converts the intermediate frequency analog signal into an intermediate frequency digital signal and outputs it to the digital filter; the digital filter separates the intermediate frequency digital signal into power of different standards, and sends it to the power detection module to obtain the carrier power of each standard.
  • the detection parameters of each system separated by the digital filter specifically include:
  • the power amplifier output coupler couples forward power.
  • the reverse output is turned on, the power amplifier output coupler couples the reverse power and forward power and reverse
  • the power is sent to the mixer; the mixer converts the forward power and the reverse power into an intermediate frequency analog signal, and outputs the signal to the digital-to-analog converter; the digital-to-analog converter converts the intermediate frequency analog signal into an intermediate frequency digital signal, and outputs the Digital filter; the digital filter separates the intermediate frequency digital signal into forward and reverse power of different systems, and calculates the standing wave ratio of each system through the standing wave ratio detection module.
  • the faulty system in the multi-standard base station may be located according to the detection parameter.
  • FIG. 2 is a schematic diagram of a plurality of digital filters added to an FPGA in the embodiment of the present invention to implement separation of carriers in respective standards
  • FIG. 3 is a schematic diagram of a specific implementation of the embodiment of the present invention, as shown in FIG. 2 and FIG.
  • the technical solution of the embodiment of the present invention adds a plurality of digital filters in the FPGA to realize separation of carriers of each standard, thereby detecting output power and standing wave ratio of each system.
  • the digital intermediate frequency portion is mainly implemented by an FPGA, and is composed of a digital up-conversion module, a DPD, a data acquisition module, and an output adjustment module, and processes the digitized IQ data under the control of the CPU and the DSP.
  • Power detection As shown in Figure 3, the output of the power amplifier is coupled out of the output power through the reverse output of the coupler. At this time, the power signal is a radio frequency analog signal. After the mixing device, it becomes an intermediate frequency analog signal. The analog-to-analog device (ADC) is converted into an intermediate frequency digital signal, and then the power of different systems is separated by a digital filter. Finally, the feedback power detection module is used to obtain the carrier power of each system.
  • ADC analog-to-analog device
  • FIG. 4 is a specific processing flowchart of power detection according to an embodiment of the present invention. As shown in FIG. 4, the following specifically includes the following processing:
  • Step 401 the OMMB (network management system) initiates each system power diagnosis command
  • Step 402 The operator pre-configures the center frequency (fc), the bandwidth (BW), and the power information (Prat) of each carrier on the OMMB, and the CPU control module sends the configuration information to the FPGA module.
  • Block provided that the software developer on the FPGA module adds multiple digital filters, corresponding to the frequency and bandwidth characteristics of each carrier, and encapsulates these digital filters into multiple functions;
  • Step 403 the software will call the above function, and replace the center frequency point and bandwidth of the filter with the configured frequency point and bandwidth, so that the carrier power of each standard can be separated by the filter;
  • step 404 the detected power information is sent to the OMMB through the CPU control module.
  • Standing wave ratio detection As shown in Fig. 3, the switching between the forward output terminal and the reverse output terminal of the coupler of the power amplifier output terminal is controlled by the switch, and when the forward output terminal is turned on, the forward power is coupled. When the reverse output is turned on, the reverse power is coupled, and the signals after the mixer, the ADC, and the digital filter are respectively the forward power and the reverse power of each system, and then calculated by the standing wave ratio detecting module. Standing wave ratio of each system.
  • FIG. 5 is a specific flowchart of the standing wave ratio detection according to the embodiment of the present invention. As shown in FIG. 5, the following specifically includes the following processing:
  • Step 501 the OMMB (network management system) initiates each system of standing wave ratio detection commands
  • Step 502 The operator pre-configures the center frequency (fc), the bandwidth (BW), and the power information (Prat) of each carrier on the OMMB, and the CPU control module sends the configuration signal to the FPGA module, provided that the software is on the FPGA module. Developers will add multiple digital filters, corresponding to the frequency and bandwidth characteristics of each carrier, and package these digital filters into multiple functions;
  • step 503 the software calls the above function, and replaces the center frequency and bandwidth of the filter with the configured frequency and bandwidth, and controls the direction of the switch, so that the forward power and the reverse power of each carrier can be filtered.
  • the device is separated; and the standing wave ratio detection module can be used to calculate the standing wave ratio of each carrier;
  • step 504 the standing wave ratio of each carrier is sent to the OMMB display through the CPU control module.
  • the method for determining the fault is specifically determined: if the detected power of each system is abruptly changed to zero, it can be determined whether the hardware link is abnormal; if the detected difference between the digital power and the actual power of each system becomes larger, a single can be determined. Is there a problem with the system configuration, software operation, etc. In addition, because the bandwidth and power of each carrier are different, the VSWR of each system will be different. It is easier to find some problems by detecting separately.
  • the following uses LTE and GSM dual-standard base stations as an example to illustrate how to detect the output power of two systems. Rate and standing wave ratio, and diagnostic review through OMMB.
  • the operator initiates a power diagnosis process through the OMMB.
  • the FPGA obtains the central frequency point and bandwidth information of each configured system from the OMMB through the CPU control module, and the software calls the encapsulated digital filter function, and transmits the configuration information to the function.
  • the filtered carrier power of each system is sent to the OMMB display through the CPU control module.
  • the operator initiates the VSWR diagnostic process through the OMMB.
  • the FPGA obtains the central frequency and bandwidth information of each configured system from the OMMB through the CPU control module, and the software calls the encapsulated digital filter function and transmits the configuration information to the The function controls the direction of the switch, and obtains the forward power and the reverse power in a time-sharing manner, the forward power and the reverse power of each carrier after the filtering process, and then calculates the standing wave of each system by the standing wave ratio detecting module. Than, sent to the OMMB display through the CPU control module.
  • the digital filter of the technical solution of the embodiment of the present invention is implemented by the related art FPGA device, and the hardware code is not required to be added, and the software code is only required to be modified, and the cost is low and easy to implement.
  • a detection parameter acquisition apparatus for a multi-standard base station is provided on an FPGA module of a digital intermediate frequency portion of a multi-standard base station
  • FIG. 6 is a detection parameter acquisition apparatus of a multi-standard base station according to an embodiment of the present invention.
  • the structure of the detection parameter acquisition device of the multi-standard base station according to the embodiment of the present invention includes: a setting module 60, an obtaining module 62, and a processing module 64. The following describes the modules of the embodiment of the present invention in detail. .
  • the setting module 60 is configured to: set a digital filter corresponding to each system of the multi-standard base station;
  • the obtaining module 62 is configured to: obtain a center frequency point and a bandwidth of a system supported by the pre-configured multi-standard base station;
  • the processing module 64 is configured to: according to the detection parameter acquisition command, invoke a digital filter, set a center frequency point and a bandwidth of the digital filter to a central frequency point and a bandwidth of a pre-configured corresponding system, and separate each through a digital filter.
  • the detection parameters include: carrier power supported by the multi-standard base station, and/or supported by the multi-standard base station. The standing wave ratio of the standard system.
  • the processing module 64 is specifically configured to:
  • the output of the power amplifier is coupled out of the output power through the reverse output of the coupler, and the output power is sent to the mixer;
  • the mixer converts the output power into an intermediate frequency analog signal, and outputs it to
  • a digital-to-analog converter converts the intermediate frequency analog signal into an intermediate frequency digital signal and outputs it to a digital filter;
  • the digital filter separates the intermediate frequency digital signal into power of different standards, and sends it to the power detection module to obtain each standard Carrier power.
  • the switching of the forward output end and the reverse output end of the coupler of the power amplifier output terminal is controlled by the switch; when the forward output end is turned on, the power amplifier output coupler couples the forward power.
  • the inverting output is turned on, the amplifier output coupler couples the reverse power and sends the forward power and the reverse power to the mixer; the mixer converts the forward power and the reverse power to the intermediate frequency
  • the analog signal is output to a digital-to-analog converter; the digital-to-analog converter converts the intermediate frequency analog signal into an intermediate frequency digital signal and outputs it to a digital filter; the digital filter separates the intermediate frequency digital signal into different systems of forward power and reverse Power, and the standing wave ratio of each system is calculated by the standing wave ratio detection module.
  • the foregoing apparatus may further include:
  • the fault location module is configured to: locate a faulty system in the multi-standard base station according to the detection parameter.
  • the embodiment of the invention further discloses a computer program, comprising program instructions, when the program instruction is executed by a computer, so that the computer can execute the detection parameter acquisition method of any of the above-mentioned multi-standard base stations.
  • the embodiment of the invention also discloses a carrier carrying the above computer program.
  • a digital filter corresponding to each system of the multi-standard base station is set on the FPGA module of the digital intermediate frequency portion of the multi-standard base station, and each system is separated by a digital filter.
  • the detection parameters solve the problem that the related art cannot accurately detect and locate which system in the multi-standard base station causes the external field failure, and can quickly determine which type of system is present when the external field fails.
  • the digital filter corresponding to each system of the multi-standard base station is set on the FPGA module of the digital intermediate frequency portion of the multi-standard base station, and the detection parameters of each system are separated by the digital filter, thereby solving the inaccurate detection in the related art.
  • Which of the multi-standard base stations is located in the multi-standard base station causes the problem of the external field failure, and when the external field fails, it can quickly determine which system is the problem. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种多制式基站的检测参数获取方法的装置,该方法包括:在多制式基站数字中频部分的FPGA模块上设置与所述多制式基站的各个制式相对应的数字滤波器;所述FPGA模块获取预先配置的所述多制式基站所支持制式的中心频点和带宽;所述FPGA模块根据检测参数获取命令,调用所述数字滤波器,将所述数字滤波器的中心频点和带宽设置为预先配置的相应制式的中心频点和带宽,并通过所述数字滤波器分离出各个制式的检测参数。利用上述技术方案,在外场发生故障时,能快速判定是哪种制式出现的问题。

Description

多制式基站的检测参数获取方法及装置 技术领域
本发明涉及多制式基站的检测参数获取技术领域,特别是涉及一种多制式基站的检测参数获取方法及装置。
背景技术
随着长期演进系统(Long Term Evolution,简称为LTE)的不断成熟以及第四代(4th Generation,简称为4G)通信系统牌照的发放,多种制式如LTE、全球移动通信(Global System For Mobile Communication,简称为GSM)和通用移动通信系统(Universal Mobile Telecommunications System,简称为UMTS)共存的场景逐渐增多,多制式(Multi-Standard Radio,简称为MSR)基站也越来越多。如何准确地检测和定位哪种制式所引起的外场故障,也成为运营商和设备供应商重点关注的问题。
发明内容
鉴于相关技术中无法准确地检测和定位多制式基站中哪种制式引起外场故障的问题,提出了本发明以便提供一种多制式基站的检测参数获取方法及装置。
为解决上述技术问题,采用如下技术方案:
一种多制式基站的检测参数获取方法,包括:
在多制式基站数字中频部分的FPGA模块上设置与多制式基站的各个制式相对应的数字滤波器;
FPGA模块获取预先配置的多制式基站所支持制式的中心频点和带宽;
FPGA模块根据检测参数获取命令,调用数字滤波器,将数字滤波器的中心频点和带宽设置为预先配置的相应制式的中心频点和带宽,并通过数字滤波器分离出各个制式的检测参数。
可选地,检测参数包括:多制式基站所支持各个制式的载波功率、和/或 多制式基站所支持各个制式的驻波比。
可选地,在检测参数为载波功率的情况下,通过数字滤波器分离出各个制式的检测参数具体包括:
FPGA模块的功放输出端通过耦合器反向输出端耦合出输出功率,并将输出功率发送到混频器;混频器将输出功率转换为中频模拟信号,并输出到数模转换器;数模转换器将中频模拟信号转换为中频数字信号,并输出到数字滤波器;数字滤波器将中频数字信号分离为不同制式的功率,并发送到功率检测模块,获取各制式的载波功率。
可选地,在检测参数为驻波比的情况下,通过数字滤波器分离出各个制式的检测参数具体包括:
通过FPGA模块的切换开关控制功放输出端耦合器的前向输出端和反向输出端的切换;在前向输出端接通时,功放输出端耦合器耦合出前向功率,在反向输出端接通时,功放输出端耦合器耦合出反向功率,并将前向功率和反向功率发送到混频器;混频器将前向功率和反向功率转换为中频模拟信号,并输出到数模转换器;数模转换器将中频模拟信号转换为中频数字信号,并输出到数字滤波器;数字滤波器将中频数字信号分离为不同制式的前向功率和反向功率,并通过驻波比检测模块计算出各制式的驻波比。
可选地,上述方法进一步包括:
根据检测参数对多制式基站中出现故障的制式进行定位。
一种多制式基站的检测参数获取装置,包括:
设置模块设置成:设置与多制式基站的各个制式相对应的数字滤波器;
获取模块设置成:获取预先配置的多制式基站所支持制式的中心频点和带宽;
处理模块设置成:根据检测参数获取命令,调用数字滤波器,将数字滤波器的中心频点和带宽设置为预先配置的相应制式的中心频点和带宽,并通过数字滤波器分离出各个制式的检测参数。
可选地,检测参数包括:多制式基站所支持各个制式的载波功率、和/或 多制式基站所支持各个制式的驻波比。
可选地,处理模块设置成按照如下方式通过数字滤波器分离出各个制式的检测参数:
在检测参数为载波功率的情况下,功放输出端通过耦合器反向输出端耦合出输出功率,并将输出功率发送到混频器;混频器将输出功率转换为中频模拟信号,并输出到数模转换器;数模转换器将中频模拟信号转换为中频数字信号,并输出到数字滤波器;数字滤波器将中频数字信号分离为不同制式的功率,并发送到功率检测模块,获取各制式的载波功率。
可选地,处理模块设置成按照如下方式通过数字滤波器分离出各个制式的检测参数:
在检测参数为驻波比的情况下,通过切换开关控制功放输出端耦合器的前向输出端和反向输出端的切换;在前向输出端接通时,功放输出端耦合器耦合出前向功率,在反向输出端接通时,功放输出端耦合器耦合出反向功率,并将前向功率和反向功率发送到混频器;混频器将前向功率和反向功率转换为中频模拟信号,并输出到数模转换器;数模转换器将中频模拟信号转换为中频数字信号,并输出到数字滤波器;数字滤波器将中频数字信号分离为不同制式的前向功率和反向功率,并通过驻波比检测模块计算出各制式的驻波比。
可选地,上述装置进一步包括:
故障定位模块,设置成:根据检测参数对多制式基站中出现故障的制式进行定位。
本发明实施例还公开了一种计算机程序,包括程序指令,当该程序指令被计算机执行时,使得该计算机可执行上述任意的多制式基站的检测参数获取方法。
本发明实施例还公开了一种载有上述计算机程序的载体。
本发明技术方案的有益效果如下:
通过在多制式基站数字中频部分的FPGA模块上设置与多制式基站的各个制式相对应的数字滤波器,并通过数字滤波器分离出各个制式的检测参数,解决了相关技术中无法准确地检测和定位多制式基站中哪种制式引起外场故障的问题,在外场发生故障时,能快速判定是哪种制式出现的问题。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图概述
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1是本发明实施例的多制式基站的检测参数获取方法的流程图;
图2是本发明实施例的FPGA中新增多个数字滤波器来实现各个制式载波的分离的示意图;
图3是本发明实施例的具体实现示意图;
图4是本发明实施例的功率检测的具体处理流程图;
图5是本发明实施例的驻波比检测的具体流程图;
图6是本发明实施例的多制式基站的检测参数获取装置的结构示意图。
本发明的较佳实施方式
下面将参照附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
为了解决相关技术中无法准确地检测和定位多制式基站中哪种制式引起外场故障的问题,本发明提供了一种多制式基站的检测参数获取方法及装置, 本发明实施例的技术方案在远端射频单元(Remote Radio frequency Unit,简称为RRU)(相当于下述多制式基站)的数字中频部分增加多个数字带通滤波器,分别检测每种制式载波的输出功率和驻波比,以下结合附图以及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不限定本发明。
方法实施例
根据本发明的实施例,提供了一种多制式基站的检测参数获取方法,图1是本发明实施例的多制式基站的检测参数获取方法的流程图,如图1所示,根据本发明实施例的多制式基站的检测参数获取方法包括如下处理:
步骤101,在多制式基站数字中频部分的FPGA模块上设置与多制式基站的各个制式相对应的数字滤波器;
步骤102,FPGA模块获取预先配置的多制式基站所支持制式的中心频点和带宽;
步骤103,FPGA模块根据检测参数获取命令,调用数字滤波器,将数字滤波器的中心频点和带宽设置为预先配置的相应制式的中心频点和带宽,并通过数字滤波器分离出各个制式的检测参数。在本发明实施中,上述检测参数包括:多制式基站所支持各个制式的载波功率、和/或多制式基站所支持各个制式的驻波比。
在步骤103中,在检测参数为载波功率的情况下,通过数字滤波器分离出各个制式的检测参数具体包括:
FPGA模块的功放输出端通过耦合器反向输出端耦合出输出功率,并将输出功率发送到混频器;混频器将输出功率转换为中频模拟信号,并输出到数模转换器;数模转换器将中频模拟信号转换为中频数字信号,并输出到数字滤波器;数字滤波器将中频数字信号分离为不同制式的功率,并发送到功率检测模块,获取各制式的载波功率。
在步骤103中,在检测参数为驻波比的情况下,通过数字滤波器分离出各个制式的检测参数具体包括:
通过FPGA模块的切换开关控制功放输出端耦合器的前向输出端和反向 输出端的切换;在前向输出端接通时,功放输出端耦合器耦合出前向功率,在反向输出端接通时,功放输出端耦合器耦合出反向功率,并将前向功率和反向功率发送到混频器;混频器将前向功率和反向功率转换为中频模拟信号,并输出到数模转换器;数模转换器将中频模拟信号转换为中频数字信号,并输出到数字滤波器;数字滤波器将中频数字信号分离为不同制式的前向功率和反向功率,并通过驻波比检测模块计算出各制式的驻波比。
在本发明实施例中,可以根据检测参数对多制式基站中出现故障的制式进行定位。
以下结合附图,对本发明实施例的上述技术方案继续详细说明。
图2是本发明实施例的FPGA中新增多个数字滤波器来实现各个制式载波的分离的示意图,图3是本发明实施例的具体实现示意图,如图2、图3所示,
本发明实施例的技术方案在FPGA中新增多个数字滤波器来实现各个制式载波的分离,从而检测各个制式的输出功率和驻波比。具体地,在实际应用中,数字中频部分主要由FPGA实现,由数字上变频模块、DPD以及数据采集模块和输出调整模块组成,在CPU和DSP控制下对数字化的IQ数据进行处理。
下面分别对功率检测和驻波比检测的处理继续详细说明。
1、功率检测:如图3所示,功放输出端通过耦合器反向输出端耦合出输出功率,这时的功率信号是射频模拟信号,经过混频器件后变成中频模拟信号,在通过数模转换器件(ADC)转换为中频数字信号,再经过数字滤波器分离出不同制式的功率,最后经过反馈功率检测模块,得到各制式的载波功率。
图4是本发明实施例的功率检测的具体处理流程图,如图4所示,具体包括如下处理:
步骤401,OMMB(网管系统)发起各制式功率诊断命令;
步骤402,操作人员预先在OMMB上配置各制式载波的中心频点(fc)、带宽(BW)和功率信息(Prat),CPU控制模块将配置信息下发到FPGA模 块,前提是FPGA模块上软件开发人员会增加多个数字滤波器,对应各个制式载波的频点、带宽特性,并将这些数字滤波器封装成多个函数;
步骤403,软件会调用上述函数,并将滤波器的中心频点和带宽替换成配置的频点和带宽,就可以将各个制式的载波功率通过滤波器分离出来;
步骤404,将检测出的功率信息通过CPU控制模块送给OMMB显示。
2、驻波比检测:如图3所示,通过切换开关控制功放输出端耦合器的前向输出端和反向输出端的切换,在前向输出端接通的时候,耦合出前向功率,在反向输出端接通的时候,耦合出反向功率,通过混频器、ADC和数字滤波器之后的信号分别为各制式的前向功率和反向功率,再通过驻波比检测模块计算出各制式的驻波比。
图5是本发明实施例的驻波比检测的具体流程图,如图5所示,具体包括如下处理:
步骤501,OMMB(网管系统)发起各制式驻波比检测命令;
步骤502,操作人员预先在OMMB上配置各制式载波的中心频点(fc)、带宽(BW)和功率信息(Prat),CPU控制模块将配置信号下发到FPGA模块,前提是FPGA模块上软件开发人员会增加多个数字滤波器,对应各个制式载波的频点、带宽特性,并将这些数字滤波器封装成多个函数;
步骤503,软件会调用上述函数,并将滤波器的中心频点和带宽替换成配置的频点和带宽,控制切换开关的方向,就可以将各个制式载波的前向功率和反向功率通过滤波器分离出来;再通过驻波比检测模块,就可以计算出各制式载波的驻波比;
步骤504,各制式载波的驻波比通过CPU控制模块发送给OMMB显示。
在本发明实施例中,具体判定故障方法:如果检测到的各制式功率突变为零,可以判断硬件链路是否出现异常;如果检测到的各制式数字功率和实际功率差别变大,可以判断单个制式配置、软件运行等是否出现问题。另外,由于各个制式载波带宽和功率不一样,也导致各个制式的驻波比会有差别,通过分别检测,也能更容易的发现一些问题。
下面以LTE和GSM双制式基站为例,说明如何检测两种制式的输出功 率和驻波比,并通过OMMB进行诊断查看。
1、操作人员通过OMMB发起功率诊断流程,FPGA通过CPU控制模块从OMMB获取配置的各个制式的中心频点和带宽信息,软件调用封装好的数字滤波器函数,并将配置信息传递给该函数,经过滤波处理后的各制式载波功率通过CPU控制模块发送给OMMB显示。
2、操作人员通过OMMB发起驻波比诊断流程,FPGA通过CPU控制模块从OMMB获取配置的各个制式的中心频点和带宽信息,软件调用封装好的数字滤波器函数,并将配置信息传递给该函数,控制切换开关的方向,分时得到前向功率和反向功率,经过滤波处理后的各制式载波的前向功率和反向功率,再通过驻波比检测模块计算出各制式的驻波比,通过CPU控制模块发送给OMMB显示。
综上所述,本发明实施例的技术方案的数字滤波器由相关技术的FPGA器件实现,不用增加硬件器件,只需修改软件代码,成本低,易于实现。
装置实施例
根据本发明的实施例,提供了一种多制式基站的检测参数获取装置,设置于多制式基站数字中频部分的FPGA模块上,图6是本发明实施例的多制式基站的检测参数获取装置的结构示意图,如图6所示,根据本发明实施例的多制式基站的检测参数获取装置包括:设置模块60、获取模块62、以及处理模块64,以下对本发明实施例的各个模块进行详细的说明。
设置模块60,设置成:设置与多制式基站的各个制式相对应的数字滤波器;
获取模块62,设置成:获取预先配置的多制式基站所支持制式的中心频点和带宽;
处理模块64,设置成:根据检测参数获取命令,调用数字滤波器,将数字滤波器的中心频点和带宽设置为预先配置的相应制式的中心频点和带宽,并通过数字滤波器分离出各个制式的检测参数。在本发明实施例中,检测参数包括:多制式基站所支持各个制式的载波功率、和/或多制式基站所支持各 个制式的驻波比。
处理模块64具体设置成:
在检测参数为载波功率的情况下,功放输出端通过耦合器反向输出端耦合出输出功率,并将输出功率发送到混频器;混频器将输出功率转换为中频模拟信号,并输出到数模转换器;数模转换器将中频模拟信号转换为中频数字信号,并输出到数字滤波器;数字滤波器将中频数字信号分离为不同制式的功率,并发送到功率检测模块,获取各制式的载波功率。
在检测参数为驻波比的情况下,通过切换开关控制功放输出端耦合器的前向输出端和反向输出端的切换;在前向输出端接通时,功放输出端耦合器耦合出前向功率,在反向输出端接通时,功放输出端耦合器耦合出反向功率,并将前向功率和反向功率发送到混频器;混频器将前向功率和反向功率转换为中频模拟信号,并输出到数模转换器;数模转换器将中频模拟信号转换为中频数字信号,并输出到数字滤波器;数字滤波器将中频数字信号分离为不同制式的前向功率和反向功率,并通过驻波比检测模块计算出各制式的驻波比。
在本发明实施例中,上述装置还可以进一步包括:
故障定位模块,设置成:根据检测参数对多制式基站中出现故障的制式进行定位。
本发明实施例还公开了一种计算机程序,包括程序指令,当该程序指令被计算机执行时,使得该计算机可执行上述任意的多制式基站的检测参数获取方法。
本发明实施例还公开了一种载有上述计算机程序的载体。
本发明实施例的各个模块的具体操作可以根据上述方法实施例中的描述进行理解,在此不再赘述。
综上所述,通过在多制式基站数字中频部分的FPGA模块上设置与多制式基站的各个制式相对应的数字滤波器,并通过数字滤波器分离出各个制式 的检测参数,解决了相关技术中无法准确地检测和定位多制式基站中哪种制式引起外场故障的问题,在外场发生故障时,能快速判定是哪种制式出现的问题。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。
工业实用性
通过在多制式基站数字中频部分的FPGA模块上设置与多制式基站的各个制式相对应的数字滤波器,并通过数字滤波器分离出各个制式的检测参数,解决了相关技术中无法准确地检测和定位多制式基站中哪种制式引起外场故障的问题,在外场发生故障时,能快速判定是哪种制式出现的问题。因此本发明具有很强的工业实用性。

Claims (12)

  1. 一种多制式基站的检测参数获取方法,包括:
    在多制式基站数字中频部分的FPGA模块上设置与所述多制式基站的各个制式相对应的数字滤波器;
    所述FPGA模块获取预先配置的所述多制式基站所支持制式的中心频点和带宽;
    所述FPGA模块根据检测参数获取命令,调用所述数字滤波器,将所述数字滤波器的中心频点和带宽设置为预先配置的相应制式的中心频点和带宽,并通过所述数字滤波器分离出各个制式的检测参数。
  2. 如权利要求1所述的多制式基站的检测参数获取方法,其中,所述检测参数包括:所述多制式基站所支持各个制式的载波功率、和/或所述多制式基站所支持各个制式的驻波比。
  3. 如权利要求2所述的多制式基站的检测参数获取方法,其中,在所述检测参数为所述载波功率的情况下,通过所述数字滤波器分离出各个制式的检测参数的步骤包括:
    所述FPGA模块的功放输出端通过耦合器反向输出端耦合出输出功率,并将所述输出功率发送到混频器;所述混频器将所述输出功率转换为中频模拟信号,并输出到数模转换器;所述数模转换器将所述中频模拟信号转换为中频数字信号,并输出到所述数字滤波器;所述数字滤波器将所述中频数字信号分离为不同制式的功率,并发送到功率检测模块,获取各制式的载波功率。
  4. 如权利要求2所述的多制式基站的检测参数获取方法,其中,在所述检测参数为所述驻波比的情况下,通过所述数字滤波器分离出各个制式的检测参数的步骤包括:
    通过所述FPGA模块的切换开关控制功放输出端耦合器的前向输出端和 反向输出端的切换;在所述前向输出端接通时,所述功放输出端耦合器耦合出前向功率,在所述反向输出端接通时,所述功放输出端耦合器耦合出反向功率,并将所述前向功率和所述反向功率发送到混频器;所述混频器将所述前向功率和所述反向功率转换为中频模拟信号,并输出到数模转换器;所述数模转换器将所述中频模拟信号转换为中频数字信号,并输出到所述数字滤波器;所述数字滤波器将所述中频数字信号分离为不同制式的前向功率和反向功率,并通过驻波比检测模块计算出各制式的驻波比。
  5. 如权利要求1所述的多制式基站的检测参数获取方法,所述方法进一步包括:
    根据所述检测参数对所述多制式基站中出现故障的制式进行定位。
  6. 一种多制式基站的检测参数获取装置,包括设置模块、获取模块和处理模块,其中:
    所述设置模块设置成:设置与所述多制式基站的各个制式相对应的数字滤波器;
    所述获取模块设置成:获取预先配置的所述多制式基站所支持制式的中心频点和带宽;
    所述处理模块设置成:根据检测参数获取命令,调用所述数字滤波器,将所述数字滤波器的中心频点和带宽设置为预先配置的相应制式的中心频点和带宽,并通过所述数字滤波器分离出各个制式的检测参数。
  7. 如权利要求6所述的多制式基站的检测参数获取装置,其中,所述检测参数包括:所述多制式基站所支持各个制式的载波功率、和/或所述多制式基站所支持各个制式的驻波比。
  8. 如权利要求7所述的多制式基站的检测参数获取装置,其中,所述处理模块设置成按照如下方式通过所述数字滤波器分离出各个制式的检测参数:
    在所述检测参数为所述载波功率的情况下,功放输出端通过耦合器反向输出端耦合出输出功率,并将所述输出功率发送到混频器;所述混频器将所述输出功率转换为中频模拟信号,并输出到数模转换器;所述数模转换器将所述中频模拟信号转换为中频数字信号,并输出到所述数字滤波器;所述数字滤波器将所述中频数字信号分离为不同制式的功率,并发送到功率检测模块,获取各制式的载波功率。
  9. 如权利要求7所述的多制式基站的检测参数获取装置,其中,所述处理模块设置成通过所述数字滤波器分离出各个制式的检测参数:
    在所述检测参数为所述驻波比的情况下,通过切换开关控制功放输出端耦合器的前向输出端和反向输出端的切换;在所述前向输出端接通时,所述功放输出端耦合器耦合出前向功率,在所述反向输出端接通时,所述功放输出端耦合器耦合出反向功率,并将所述前向功率和所述反向功率发送到混频器;所述混频器将所述前向功率和所述反向功率转换为中频模拟信号,并输出到数模转换器;所述数模转换器将所述中频模拟信号转换为中频数字信号,并输出到所述数字滤波器;所述数字滤波器将所述中频数字信号分离为不同制式的前向功率和反向功率,并通过驻波比检测模块计算出各制式的驻波比。
  10. 如权利要求6所述的多制式基站的检测参数获取装置,所述装置进一步包括故障定位模块,其中:
    所述故障定位模块设置成:根据所述检测参数对所述多制式基站中出现故障的制式进行定位。
  11. 一种计算机程序,包括程序指令,当该程序指令被计算机执行时,使得该计算机可执行权利要求1-5中任一项所述的多制式基站的检测参数获取方法。
  12. 一种载有权利要求11所述计算机程序的载体。
PCT/CN2014/090834 2014-07-22 2014-11-11 多制式基站的检测参数获取方法及装置 WO2015117443A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410351672.7 2014-07-22
CN201410351672.7A CN105323781A (zh) 2014-07-22 2014-07-22 多制式基站的检测参数获取方法及装置

Publications (1)

Publication Number Publication Date
WO2015117443A1 true WO2015117443A1 (zh) 2015-08-13

Family

ID=53777252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090834 WO2015117443A1 (zh) 2014-07-22 2014-11-11 多制式基站的检测参数获取方法及装置

Country Status (2)

Country Link
CN (1) CN105323781A (zh)
WO (1) WO2015117443A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111131109A (zh) * 2019-12-31 2020-05-08 京信通信系统(中国)有限公司 信号识别方法、装置、计算机设备和存储介质
CN111818566A (zh) * 2020-06-30 2020-10-23 武汉虹信通信技术有限责任公司 一种射频信号故障监测装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107484199B (zh) * 2017-07-20 2020-11-24 厦门市美亚柏科信息股份有限公司 全制式基站信息采集装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050227728A1 (en) * 2004-04-02 2005-10-13 Trachewsky Jason A Multimode wireless communication device
CN101217719A (zh) * 2008-01-16 2008-07-09 中兴通讯股份有限公司 用于双模基站的接收机实现方法
CN101801122A (zh) * 2009-12-30 2010-08-11 华为技术有限公司 基带信号处理装置、方法及多模基站
CN102843116A (zh) * 2012-07-16 2012-12-26 中兴通讯股份有限公司 用于多模接收机的宽带滤波装置及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7548153B2 (en) * 2004-07-09 2009-06-16 Tc License Ltd. Multi-protocol or multi-command RFID system
US8514785B2 (en) * 2011-04-04 2013-08-20 Freescale Semiconductor, Inc. Common RF interface for separating and mixing wireless signals
CN202143072U (zh) * 2011-06-03 2012-02-08 京信通信系统(中国)有限公司 一种功率和驻波比检测的装置
CN202310127U (zh) * 2011-10-09 2012-07-04 京信通信系统(中国)有限公司 一种多模Femto 系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050227728A1 (en) * 2004-04-02 2005-10-13 Trachewsky Jason A Multimode wireless communication device
CN101217719A (zh) * 2008-01-16 2008-07-09 中兴通讯股份有限公司 用于双模基站的接收机实现方法
CN101801122A (zh) * 2009-12-30 2010-08-11 华为技术有限公司 基带信号处理装置、方法及多模基站
CN102843116A (zh) * 2012-07-16 2012-12-26 中兴通讯股份有限公司 用于多模接收机的宽带滤波装置及方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111131109A (zh) * 2019-12-31 2020-05-08 京信通信系统(中国)有限公司 信号识别方法、装置、计算机设备和存储介质
CN111818566A (zh) * 2020-06-30 2020-10-23 武汉虹信通信技术有限责任公司 一种射频信号故障监测装置

Also Published As

Publication number Publication date
CN105323781A (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
US9634857B2 (en) Auxiliary channel remote device management, diagnostics, and self-installation
US8638819B2 (en) Wireless communication transceiver and mode-switch device thereof
US9264523B2 (en) Wireless device management with local and remote links
US7953406B2 (en) Access point
WO2015117443A1 (zh) 多制式基站的检测参数获取方法及装置
CN105375945A (zh) 用于机器到机器应用的rf前端架构
WO2017000560A1 (zh) 射频拉远单元及其测试方法
WO2013189431A2 (zh) 传输无线基带数据的方法、装置和射频拉远单元
KR20170021748A (ko) 통합 라디오 어플리케이션 인터페이스를 이용하는 재구성 가능한 모바일 장치 및 그 작동 방법
WO2017004920A1 (zh) 无线通信设备检测方法和无线通信设备
CN106804044B (zh) 通信故障检测方法、装置以及射频拉远电路
US11507043B2 (en) Method and system for automatically configuring I/O port
WO2017000418A1 (zh) 射频拉远单元的外场维护方法、装置、终端设备及系统
CN103188576A (zh) 一种模拟对讲机数字化实现装置
WO2016188482A1 (zh) 一种检测方法及装置
CN109348493B (zh) 一种高可靠性的无线通信系统链路备份装置及其控制方法
WO2016095471A1 (zh) 测试装置和测试方法
WO2018227921A1 (zh) 一种dpd环路检测方法及设备
CN114915980B (zh) 基于无线变频的5g室内多路基站信号覆盖方法
CN109981189B (zh) 故障检测电路及方法
US10454503B1 (en) System and method for wireless communication with improved protocol support
CN110138464B (zh) 一种对讲机监测系统
KR101529508B1 (ko) 다중모드 모노펄스 신호 수신을 위한 단일 출력 채널 저잡음 증폭 장치 및 그 장치의 출력 방법
JP2010109546A (ja) 無線機及びその制御方法
CN217216580U (zh) 通信基站及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14881603

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14881603

Country of ref document: EP

Kind code of ref document: A1